
Publication# 20381 Rev: A Amendment/0
Issue Date: March 1996

This document contains information on a product under development at Advanced Micro Devices. The information
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed
product without notice.

Magic Packet Technology Application
in Hardware and Software

Application Note

ABSTRACT

This application note addresses the use of the Magic Packet technology in conjunction with green
PC hardware and system-level software. Its objective is to assist individuals in using this new tech-

nology in their own environments.

INTRODUCTION

Over the last few years, two technologies have evolved
that seem to be competing rather than complementing
each other at the PC desktop. These technologies are
network technology and green PC technology. The
connectivity rate in large companies using network
technology has been increasing exponentially. This
trend has resulted in an on-going need for network
management and fo r ne twor k managers to
have access to PCs on their networks. At the same
time, the concept of green PCs has gained momentum
because the Environmental Protection Agency (EPA)
began encouraging the use of low-power computers to
conserve energy.

Network administrators and Information Systems (IS)
personnel in large companies are required to perform
tasks, such as backups or installation of software up-
grades, at remote sites at night when system downtime
does not impact the users. However, these tasks per-
formed after hours require the users to leave their ma-
chines on overnight, resulting in twice as much
electricity consumed as daytime usage (16 hrs. vs. 8
hrs.). Green PCs, however, are not network friendly.
That is, if the machine is asleep (in a low-powered
state), it cannot be addressed from the network, thus
hindering the network administrators from doing their
nightly tasks.

Working together, AMD and Hewlett Packard (HP)
came up with a solution to this problem. Since power is
generally on inside a green machine, the network side
of the machine could be left in a state, whereby it would
continue to scan every packet coming in from the net-
work, this time looking for the special data sequence
that would serve to

 wake up

 the sleeping machine. The
value that separates one machine from another on an
Ethernet network is its unique IEEE address. This
unique address repeated 16 times in a row anywhere
within a valid network frame’s data field was chosen to
serve as the

wake-up call. This frame has now been
called a

Magic Packet

 frame.

In the interest of making Magic Packet technology an
industry standard, AMD is licensing this technology to
network vendors at minimal cost, royalty free, so that all
vendors can enjoy its benefits. Although Magic Packet
technology is not limited to any par ticular type
of Ethernet connect ion, the only connect ion
that makes sense from a low-power standpoint is a
10BASE-T connection.

The green computer hardware implementation and the
software interface now stand in opposition to the final
solution. This application note is meant to pull the solu-
tion together in a concise format providing a way for PC
vendors and embedded system users to implement
AMD’s Magic Packet technology. Divided into two sec-
tions, this application note addresses (1) the hardware
interface for three different hardware models and (2)
how the DOS-level Magic Packet software driver inter-
faces both with the operating system and the hardware
to bring a complete solution to the marketplace.

Currently, AMD has designed

Magic

Packet

 technology
into two of its network controllers, the PCnet™-ISA II
(79C961A) and the PCnet™-PCI II (79C970A). Both of
these controllers are available and in production today.
For further information, refer to the following AMD data
sheets:

Am79C961A Data Sheet (PID 19364)

 and

Am79C970A Data Sheet (PID 19436).

HARDWARE

In the competitive PC environment,

green

 has become
the byword for the next new standard system feature.
The original targets by the Department of Energy
(DOE) in its green recommendations were 30 watts (W)
for the system box and 30 W for the monitor in a low
power state. Since these values were relatively easy to
obtain in current technology, the market shifted to ask-
ing the question, “how deep a shade of green is your
system?” There now stands at least three different so-
lutions to obtaining green status in the market. The fol-
lowing solutions are ordered from most power used to
least power used:

2 Magic Packet Technology Application in Hardware and Software

1. Simply lower the clock speed on the motherboard to
a slow speed, usually 8 MHz. Shut down all disks
and stop all synchs at the video controller.

2. Stop the processor clock, putting the DRAM in slow
refresh, in addition to solution 1.

3. Suspend to disk all DRAM and control registers, and
then power off the entire system, leaving a small
auxiliary power supply to

some

 circuits to allow them
to awaken the sleeping machine.

In examining each option below, an increasing level of
complexity will be found in the hardware solutions to
implement the Magic Packet technology. In time, some
system vendors may use each of these levels in the or-
derly shutdown of the box to meet the needs of the
green PC market.

Hardware Model 1

Hardware Model 1 requires no hardware, software, or
even Magic Packet technology for implementation, be-
cause nothing in the system box, except the disks, is
shut down. All network activity is fully alive and the
speed of the CPU can be varied with the interrupt rate
being handled. The CPU is not stopped and the net-
work controller is not required to do anything differently.

Hardware Model 2

Hardware Model 2 requires some level of interface.
Since clocks are stopped in this implementation, some-
thing must be used to return the system to normal op-
erating mode. Without the network card installed in the
system box, either a keystroke or mouse movement
could repower the system to full power. In reality, either
of these actions could cause an interrupt on the back-
plane. This model contains a circuit added by chipset
vendors to monitor specifically designated interrupts
for activity and then return the clock to the CPU, signal-
ing this event through a technique known as System
Management Interrupt (SMI).

Since AMD controllers already use an interrupt line to
signal that the driver’s service is needed for network-re-
lated activities, this same interrupt line can be used to
wake the system as well. This waking interrupt can be
added to the designated interrupt list in the main sys-
tem board setup menu. However, with the PCI clock
stopped, neither Direct Memory Access (DMA) activity
nor Magic Packet interrupt generation by the controller
on the PCI bus can take place.

Since normal operation of AMD’s network controllers
requires DMA activity, they must be placed in Magic
Packet Mode. Currently, PCnet-ISA II and PCnet-PCI II
support this. In this mode, the AMD controller will not
initiate any DMA activity. All incoming data is scanned
by the address recognition logic until a Magic Packet is
received. When this occurs, MPINT is set in CSR 5 (bit
4) and will be reported through the interrupt pin

if MPINTE is set in CSR 5 (bit 3). The use of these two
bits will be discussed later in the

Software

 section.

The level of compliance required (for both green and
network

)

 can be done on any current card or mother-
board implementation on the open market, using either
PCnet-ISA II or PCnet-PCI II as the network controller
solution, without need for any hardware addition or
modification. However, there is one issue that must be
considered. That is, if the PCnet-PCI II part is used and
the PCI clock is stopped when in standby mode, a PCI
interrupt cannot be generated and an LED pin must be
used to perform the interrupt operation.

Hardware Model 3

To make Hardware Model 3 work, several issues need
to be solved in the hardware implementation. Current
technology for the complete system power down and
wake up calls for a modem ring detect input to wake up
the sleeping unit. When the modem is called the first
time, the ring detector pulses a logic input to the sys-
tem box. Because the serial port does not have the
Data Set Ready (DSR) true, the modem does not an-
swer. However, the system starts its power up. The call-
ing party times out and calls again, and by this time, the
system is powered up and ready. This is the model to
be emulated in the network adapter card using Magic
Packet technology.

Since the network card is plugged into the backplane,
which will be powered down, the power for the network
card must come from an alternate source. This power
is usua l l y supp l ied by an aux i l i a r y power
supply connection, and the normal +5 volt (V) connec-
tion to the ISA or PCI bus connector is an open circuit.
This auxiliary supply would have to be able to supply an
additional 100 milliamperes (mA). A zero ohm (

Ω

)
jumper could be used here to make the card a manu-
facturing configurable unit for use with or without auxil-
iary power supplies.

If the PCnet controller was certified for +5/-10% VCC
tolerance, then a low resistance P channel Field Effect
Transistor (FET) could be utilized to provide a direct no
jumper support of the Printed Circuit Board (PCB) be-
tween backplane voltage and auxiliary voltage as the
system was configured. The gate of the FET would be
driven with the auxiliary voltage connector and would
isolate the power planes from the backplane if the aux-
iliary power supply were present. However, this would
add to the cost and complexity of the PCB design.

For Federa l Commun ica t ions Commiss ion
(FCC) purposes, a set of chokes or preferably a balun
should be added with bypass capacitors to prevent
false ground loops from radiating noise on the auxiliary
power connector.

The next issue that must be addressed is that of reset.
Since the power on the backplane will be cycling, a

Magic Packet Technology Application in Hardware and Software 3

reset on the first power up and then on the power down
will occur, and yet a third reset on the subsequent
power up. Since a reset to an AMD controller would
take the Magic Packet detection logic off line, at least
the second reset has to be blocked, or the Media Ac-
cess Controller (MAC) will be taken off line and the
Magic Packet frame will not be seen.

In order for the network card to be used together with
the modem ring detection logic, there must be an exter-
nal signal that comes from the controller on the card
that tells the modem logic to wake up the system. AMD
designers foresaw this need and provided that the de-
tection of a Magic Packet frame be indicated on any of
the LED pins. This is enabled by setting MPSE (bit 9) in
any of the respective LED control registers. However,
some of the LED registers do have power-up default
values that may be the wrong polarity for the modem
logic. Only LED3 has a default value to transmit activity
that on power up or reset can be guaranteed to provide
a signal to the modem logic with the correct polarity.
Therefore, the LED3 pin has to be the external connec-
tion for Magic Packet indication. Figures 1 and 2 show
the schematic and general timing diagram for a correct
LED3 implementation using either PCnet-ISA II or
PCnet-PCI II.

Magic Packet mode is enabled by performing three
steps. First, the PCnet-ISA II or PCnet-PCI II controller
must be put into suspend mode, allowing any current
network activity to finish. Next MPMODE (CSR 5, bit1)
must be set to ONE if it has not been set already. Fi-
nally, either SLEEPL must be asserted (hardware con-
trol) or MPEN (CSR 5. bit 2) must be set to ONE
(software control). Of the two ways, the software way is
preferable because the only way on an adapter card to
detect power going down is to monitor the backplane
VCC or RESET to set the SLEEP pin. This could cause
Magic Packet mode to happen in the middle of a DMA
cycle resulting in a DMA problem (as power is going
down) that may result in loss of data. The only way to
coordinate going into Magic Packet mode with the op-
erating system is by using the software-enabled Magic
Packet mode. How the software works will be dis-
cussed in the next section.

PAL Equation Discussion

Since AMD’s current controllers do not have all the nec-
essary interface circuitry built into them, an external
PALCE16V8 is used in this application to provide the
necessary interface to the system bus RESET and to
provide the proper polarity for the LED3 pin to interface
to the modem ring detect. In the case of the system
vendor used for demonstration purposes, modem ring
detect was positive true, while the LED3 pin is negative
true on power up default.

Appendix A contains the PALASM equations for the
PALCE16V8 used. This PAL’s function is mainly

to condition the RESET pin of the PCnet controller and
to interface the LED3 pin to the system vendor’s power
control circuitry. Most of the PAL is used to build an
asynchronous state machine used to decide when to
block the second reset (the one generated when power
is going down). Depending on whether the system sim-
ply reloads the memory image and takes off, or
the system is restarted from ground up, will determine
whether subsequent repower-up RESETs need to be
blocked also.

In system operation, the first power supply to reach its
final operating voltage level is the auxiliary power sup-
ply. This usually happens when the machine is simply
plugged into the wall. The auxiliary power supply pow-
ers the PALCE16V8 and the PCnet controller. It will be
some time later when the power switch is turned on for
the main system power, and the interface RESET be-
comes active for the first time while main power is rising
to its final voltage level.

From initial auxiliary power supply turn on to the end of
the system RESET, the reset pin of the PCnet control-
ler must be held active to ensure the PCnet controller
state. Therefore, the equations for S_R_RESET deter-
mine the initial time when auxiliary power has come on
for the first time and the main power supply has not
come on yet. This is accomplished by using an exclu-
sive OR in the first two terms of the equation using
PULLUP and NC2, which generates a 2 Tpd pulse, set-
ting S_R_RESET true. This is then reinforced by the
third term in a positive feedback loop. S_R_RESET will
then be held true unt i l the first system reset
(RESET_IN) becomes true. Once S_R_RESET goes
false, it will never come true again until the auxiliary
power supply goes off and comes back on again.

The equation RESET_TO_CHIP is used to condition
the reset pin on the PCnet controller. The first term
S_R_RESET will provide reset until the main power
supply comes on. Then RESET_IN wi l l reset
S_R_RESET, but because FIRST_TIME is false, it will
also provide reset to the PCnet controller. The third
term in this equation is only used if the system being
powered back up reestablishes the network driver. If
the system only reloads the DRAM image and does not
execute

config.sys

 and

autoexec.bat

, then this
line should be commented out in the PALASM compile.

The equation FIRST_TIME is used to sense when the
PCnet controller has established its default EEPROM
values, by using the EEPROM clock to clock a flip-flop
whose D input is the false of S_R_RESET. The
AMPALCE16V8 has an internal power-on reset circuit
for all flip-flops; therefore, it can be guaranteed that this
flip-flop will always come up in the reset condition. This
flip-flop is then used to qualify what is done with
RESET_IN and the fact that VCC at the backplane in-
terface has gone away (VCC_GONE on pin 3 is simply

4 Magic Packet Technology Application in Hardware and Software

tied to one of the backplane VCC pins and provides a
sense condition for the backplane power).

The equation SEC_RESET_OK is used to provide a
state of indication between the power down and the re-
power up due to the presence of a Magic Packet frame.
The first and the third terms are used in the event that
someone uses the power switch on the front panel,
rather than at the arrival of a Magic Packet frame. The
second term is used if a Magic Packet arrives and is in-
dicated by LED3. LED3 will go away on a Magic Packet
arrival condition after power comes up and the
RESET_IN is allowed to go the RESET_TO_CHIP
through the third term of RESET_TO_CHIP.

The equation LED3_OUT is used to both invert the po-
larity of the LED output driver as well as AND the indi-
cation of a Magic Packet frame’s presence with the
state of backplane VCC. The polarity is dictated by the
system vendor and the spare output may also be used
to generate the negative true output for those systems
that would prefer that condition.

Appendix A gives the equations for an implementation
using the PCnet-ISA II controller. The PCnet-PCI II
controller is similar but has some differences. Because
of the architecture of the PCnet-PCI II part, the LED
pins are multiplexed with the EEPROM pins. The equa-
tions applicable to PCnet-PCI II are given in Appendix
B. The timing for the PCI version is shown in Figure 3.

PCnet Issues

After these PAL discussions, the issue of having the
PCnet controller’s I/O pins driving the backplane bus
while power is down on the motherboard must be ad-
dressed. The PCnet-ISA II controller only has one ac-
tively driven high non-tristated output on the DREQ pin
selected. Since the current for this pin is limited, the
only issue will be the small amount of extra current
drawn on the auxiliary power supply.

The PCnet-PCI II does not have the same issues as the
PCnet-ISA. When the MAC is put into Magic Packet
mode, all bus interface output pins are placed into High
Z. The expansion ROM pins are not tristated so an ex-
pansion ROM must also be powered off the auxiliary
power supply. However, the PCnet-PCI II does have
one other consideration. That is, this controller has two
sets of power pins, one for the core and the other for the
I/O buffers. This was done to support both 5-V PCI bus
interface and 3.3-V PCI interface by connecting the Vio
pins of the PCI bus interface to the Vbuffer pins on the
PCnet-PCI II controller. These power pins were de-
signed to never have to go below 3.0 V in a working
system. However, when a motherboard powers down,
these pins will go to 0 V. This can cause internal break-
down on the chip, so the voltage (Vbuffer) pins must be
connected to the auxiliary power supply. This implies
that this card design will not support a 3.3-V PCI bus.

SOFTWARE

The software issues of interfacing the network drivers
and Magic Packet code with the operating system will
be discussed in this section. The only demonstrable
code working today is in the DOS and Windows 3.1/
Windows for Workgroups 3.11 environment. OS2 and
other environments, probably with similar implementa-
tion schemes, will not be discussed here.

The power management standard in a DOS system
was established by Microsoft and Intel by way of the
Advanced Power Management (APM) Specification. In
the APM specification, some system interrupts were
established to inform the necessary drivers needing
the information that the system is preparing for power
down or going to resume from a power down state. Un-
fortunately, by the time the APM specification was cre-
ated, all the interrupts DOS was using were already
taken. Therefore, interrupt 2F was chosen to be the
APM interrupt. Interrupt 2F had been the catchall for
miscellaneous interrupts, so that any driver associating
with this interrupt has to check to see if this interrupt is
even available for its use. Therefore, it is this interrupt
that will be used in the DOS-based Terminate Stay
Resident (TSR) driver. Appendix C shows the DOS
TSR developed to do the interface between DOS and
the PCnet controller and the network driver.

In the way the operating system and the network driv-
ers work, the APM is unknown to the network stack.
This may change in the future, but for now the real in-
terface will be between the operating system and the
hardware itself. Once loaded, the network driver oper-
ates strictly off interrupts, so that if there are no inter-
rupts it simply is asleep and waiting. The hardware is
set up by the driver to generate interrupts only for the
receive activity. The transmit activity is initiated by a
system call to the disk redirector, which eventually fil-
ters down to a call to the transmit routine. Therefore, if
the system goes to sleep, there will be no redirection
effort, because no programs will be running. If the
PCnet hardware is put in the suspend mode before
being put into Magic Packet mode, then any receive ac-
tivity will be used for Magic Packet detection only.

Because of this independence between the Magic
Packet TSR driver and the network driver, it was de-
cided to treat them as separate entities. The advan-
tage is that both programs can be independently
revised as needed. In addition, the TSR is written so
that it can be loaded in any order with respect to the
network driver, and both can coexist. If the TSR is
loaded without the network driver, then the Magic
Packet functionality will not work, because the MAC is
never initialized and enabled, and there is no damage
done to the operating system or the operation of the
base system.

Magic Packet Technology Application in Hardware and Software 5

(See the

Flowcharts

 section for a step-by-step illustra-
tion of the Magic Packet TSR driver software.)

If the Magic Packet TSR did want to initialize the PCnet
part because a 2F interrupt was received, the stop bit
could be checked in the TSR. If the controller was found
stopped, the following could be a minimum procedure
to place the MAC on line:

1. Write the IEEE address of the node directly to the
PADR.

2. Write the MODE register (CSR 15) with DRX and
DTX set to 1.

3. Set CSR 4 and CSR 5 as they should be for Magic
Packet mode.

4. Set START bit in CSR 0 to 1.

The TSR program listing in Appendix C is basically di-
vided into two parts. The first part of the code is located
in the last part of the listing. This is the initialization part
of the code. After the code runs for the first time, this
code drops off and the second part of the code, the
TSR itself, stays behind to do the interface job.

The initialization is responsible for two tasks. First, the
controller must be searched out on the backplane.
Since the PCnet-ISA II and the PCnet-PCI II are on two
different busses, the method of employing the search is
different. The ISA controller is found by looking for the
characteristic ‘57’ (ASCII

w

) at location XXF in the reg-
ister space. This search is started at the base address
of 200h and incremented by 20h until found. If there is
no ISA controller found, then the search is made on the
PCI bus.

The search on the PCI bus is accomplished by using a
call to the PCI BIOS and asking the PCI BIOS to find
the vendor ID of 1022h. If no controller is found, the
software driver returns to DOS outputting a message to
that fact and does not leave the TSR stub. If a controller
is found, the controller is examined to ensure that it
supports Magic Packet mode. If the controller found is
not Magic Packet capable, then the software driver re-
turns to DOS outputting that fact and does not leave the
TSR s tub. I f the con t ro l le r found i s Mag ic
Packet capable, then the address of the controller is
stored for later use by the TSR itself. This value is
saved within a data area of the TSR itself. Before hook-
ing the

2F

 vector, the TSR programs Magic Packet
mode in CSR 5 and sets DPOLL in CSR 4 (bit 12) to
disable polling. After saving the address and the initial-
ization routine, the TSR then prepares for the hooking
of the 2F vector. This is done by first getting the current
CS:IP of the first routine in the stack in the vector table
and saving it in a data structure of the TSR. Then the
address of the TSR (CS:IP) is put in place of that vector
entry in the table and a return is done to DOS, but this
time the software driver leaves the TSR part of the code
active and waiting.

The TSR is a simple procedure in that it is now hooked
at the top of the 2F chain. Once a 2F interrupt is re-
quested, the software driver will be called and first in-
terrogates the call by looking at the AX register for a
value of 530Bh, which is for an APM function. If it is not
530Bh, then the software driver simply restores the flag
register and calls the routine below. If it is a 530Bh,
then the software driver looks at BL for a value of 2 or
3. If BL is a 2, then the software driver is requested to
prepare for a

suspend

 (not the AMD controller sus-
pend), and if it is a 3, the software driver is being re-
quested to do a

power up resume

. If it is any other
value, the software driver simply restores the flag reg-
ister and calls the routine below.

For a

suspend

, the routine does two things. It uses the
stored controller address that was found in the initial-
ization of the TSR to prepare the LED3 control register
to output the indication of a Magic Packet frame found
on this pin. This is done by setting MPSE (bit 9) in the
BCR7 register to support Hardware Model 3. If the in-
terrupt method is used, then this step could be skipped.
A consideration might also be to disable all other LED
pin drivers by setting bit LEDDIS (bit 13) to 0 (false) to
conserve power on the auxiliary power supply. Then
CSR 5 is programmed to enable Magic Packet mode. It
is during the write to CSR 5 that the Magic Packet in-
terrupt method can be controlled by setting the appro-
priate enable bit. This corresponds to Hardware Model
2. After that, the AX, DX, and flag registers are fixed
and control is passed to the next TSR in the 2F chain.

If a BL of 3 is found, the software driver will do a

power
up resume

. Here the program simply does a write of the
CSR 5 register to clear the Magic Packet enable and
suspend bits, and then fixes the AX, DX, and flag reg-
isters and passes control to the next routine. If the in-
terrupt method were employed, then the interrupt bit
would have to be reset as necessary.

CONCLUSIONS

The Magic Packet technology enables better working
networks within the corporate environment and can
easily be added to a

green

 enabled computer at little or
no cost above the standard system cost, as indicated
by this application note. This represents a strong value
proposition for the Magic Packet technology to become
the standard in the market place, allowing early imple-
mentors to be on the leading edge of a new standard
with a small investment.

6 Magic Packet Technology Application in Hardware and Software

FIGURES

Figure 1. PAL and PCnet Controller Schematic

Figure 2. ISA Version Timing Diagram

PCnet
Controller

Reset

Jumper out for
power managed

Bus Interface

PAL 16V8

Reset_to_Controller

Modem
Ring

DetectEEPROM_CLK

Auxiliary
Power
Supply

LED3

*Positive true for ISA, negative true for PCI

+5 V+5 V

*Reset

A/D/Control

L3

L4

L1

L2

+5 V

VCC_GONE

(L1 to L4 = 10 µh)

Pin 1
LED3_Out

+5 Volt Aux

+5 Volt Main

EEPROM_CLK

FIRST_TIME

S_R_RESET

RESET_IN

RESET_TO_CHIP

LED3

LED3_OUT

Timing Diagram for ISA Version

Magic Packet Technology Application in Hardware and Software 7

Figure 3. PCI Timing Diagram

+5 Volt Aux

+5 Volt Main

EEPROM_CLK

RESET_IN

RESET_TO_CHIP

LED3

LED3_OUT

Timing Diagram for PCI

8 Magic Packet Technology Application in Hardware and Software

FLOWCHARTS

Magic TSR
Enter

Power TSR
Enter

Install

Is
“2F” Inter.

530b?

No

Yes

Is
bl = 2

?

Yes

No

Normal_Resume

Suspend_REQ

Is
bl = 3

?

Yes

No

Jump to Hooked
Routine Indirect
Old_2F_Vector

Jump to Hooked
Routine Indirect
Old_2F_Vector

Suspend_REQ

Set Up DS
and

Save DX

Set LED3
REQ (BCR7)

with 0200

Set CSR4
for

Disable Polling

Set CSR5
for Magic Packet

Enable 0006

Restore AX
and DS and DX

and Flags

Jump to Hooked
Routine Indirect
Old_2F_Vector

Magic Packet Technology Application in Hardware and Software 9

Save DS and DX
Set Up DS

Set CSR5
to 0002

Restore
DS, DX

AX and Flags

Normal_Resume

Jump to Hooked
Routine Indirect
Old_2F_Vector

Install

Look for ISA Card
at 20F

Using “57”

Increment
Search Address

by 20

Card
Found

?

No

Found

All
Address Used

3EF?

Yes

Exit_to_DOS

Exit_to_DOS

No

Is
Machine PCI

BIOS?

No

Yes

Yes

Is
PCI Type

“2”?

No

Yes

A

10 Magic Packet Technology Application in Hardware and Software

Scan for
AMD Device

Using PCI BIOS

Get Address of Card
through PCI BIOS
Remove Extra 1

Exit_to_DOS

Exit_to_DOS

Found
Card

?

No

Yes

If
ISA Card

Is It ISA II?

No

Yes

B

A

Found

Set CSR5 to 2
for Magic Packet

Sleep Enable

Save AX in
Found_Address

Save Entry Point
of Power_TSR

in 2F Vector

Get the
Old 2F Vector

and Save (CS:IF)
 in Old_2F_Vector

Exit_to_DOS

Return to DOS
But Keep Power_TSR
in INT 27

If
PCI Card

Is It PCI II?
No

Yes

B

INT 25A

Output Fail
Message

(Return to DOS)INT 21

Exit_to_DOS

Magic Packet Technology Application in Hardware and Software 11

Appendix A

PAL Equations

;

PALASM Design Description

;---------Declaration Segment-----------

TITLE Magic Packet Converter

PATTERN mag_pkt.pds

REVISION A

AUTHOR David Stoenner

COMPANY AMD

DATE 02/02/95

CHIP _mag_pkt PALCE16V8

---------------PIN Declarations---------

PIN 1 EEPROM_CLK

PIN 2 RESET_IN

PIN 3 /VCC_GONE

PIN 4 /LED3

PIN 5 /PULLUP

PIN 10 GND

PIN 11 /OE

PIN 12 RESET_TO_CHIP

PIN 13 /FIRST_TIME

PIN 14 SPARE

PIN 15 LED3_OUT

PIN 16 SEC_RESET_OK

PIN 17 /S_R_RESET

PIN 18 /NC1

PIN 19 /NC2

PIN 20 VCC

;-------- Boolean Equation Segment -----
-

EQUATIONS

LED3_OUT = LED3 * VCC_GONE

NC1 = PULLUP

NC2 = NC1

S_R_RESET = PULLUP * /NC2 * /RESET_IN

 + /PULLUP * NC2 * /
RESET_IN

 + S_R_RESET * /RESET_IN

SEC_RESET_OK = FIRST_TIME * VCC_GONE

 + SEC_RESET_OK * LED3

 + SEC_RESET_OK *
RESET_IN

FIRST_TIME := /S_R_RESET

RESET_TO_CHIP = S_R_RESET

 + /FIRST_TIME * RESET_IN

 + FIRST_TIME * SEC_RESET_OK *
RESET_IN

12 Magic Packet Technology Application in Hardware and Software

Appendix B

PALASM Design Description

;PALASM Design Description

;---------- Declaration Segment --------
-
TITLE Magic Packet Convertor
PATTERN MAG_PCI.PDS
REVISION A
AUTHOR David Stoenner
COMPANY AMD
DATE 08/28/95

CHIP _mag_pkt PALCE16V8

;------------- PIN Declarations --------
-
PIN 1 EEPROM_CLK
PIN 2 /RESET_IN
PIN 3 /VCC_GONE
PIN 4 /LED3
PIN 10 GND
PIN 11 /OE
PIN 12 /RESET_TO_CHIP
PIN 13 /FIRST_TIME

PIN 15 LED3_OUT
PIN 19 /SLEEP
PIN 20 VCC

;-------- Boolean Equation Segment -----
-
EQUATIONS

LED3_OUT = LED3 * VCC_GONE * FIRST_TIME
 + LED3_OUT * VCC_GONE

FIRST_TIME := VCC

RESET_TO_CHIP = /FIRST_TIME * RESET_IN
 + FIRST_TIME * LED3_OUT
* VCC_GONE

SLEEP = VCC_GONE

;--------- Simulation Segment ----------
-

Magic Packet Technology Application in Hardware and Software 13

Appendix C

;--

; This program is used with the PCnet family of parts to hook into the power interrupt
;so magic packet can be utilized. For now we can use PCNTNW or the PCNTND (NDIS 2.0)
;drivers to initialize and run the PCnet_ISA II or the PCnet_PCI II controllers. This
;TSR could be made to initialize the controller and deal with the receive interrupt
;but that would require a foot print in memory that would contain at least a 2K buffer
;hence making the TSR 2K larger than needed to demonstrate the magic packet capability.
;This TSR works only if POWER.EXE is activated.

;---

 .286

 .model tiny

 .stack 256

;--------------- REV HISTORY ---------------

;3.0 Reworked adding PCI scan support

;2.0 Reworked the 2f Interrupt section by moving some of the initialization code from
;the original startup to the 2f Interrupt itself. This was for the setting of csr4
;for the polling disabled and the setting of LED3 for the Magic Packet Interrupt.
;This now made the driver work with both Novell ODI and Windows for Workgroups NDIS
;2.0 drivers both in DOS and Windows environment. I removed the requirement to have
;the MAC running before loading the 2f interrupt vector so, therefore, made the loading
;of this TSR independent of load order.

;

;1.0 Initial working model for PCnet_ISA II only.

;

;--------- END OF REV HISTORY -----------

;

; PCI BIOS equates

;

PCI_FUNCTION_ID_1equ0b0h;PCI BIOS spec version 1

PCI_FUNCTION_ID_2equ0b1h;PCI BIOS spec version 2

PCI_BIOS_PRESENT equ 01h;PCI BIOS present

FIND_PCI_DEVICE equ 02h;PCI device search

14 Magic Packet Technology Application in Hardware and Software

READ_CONFIG_BYTE equ 08h;PCI configuration space byte read

READ_CONFIG_WORD equ 09h;PCI configuration space word read

READ_CONFIG_DWORDequ 0ah;PCI configuration space dword read

;--

;

; AMD PCI devices equates

;

AMD_IDequ1022h;vendor ID

PCI_PCNETequ2000h;golden gate PCnet

MAX_PCI_DEV_NUMequ0ffh;maximum PCI device number

;---

; This data segment will be appended by the loader after the .code section.

; However we will need some storage for the stacks and variables we need to retain
;after we have returned to DOS. Therefore, we will put some data storage in the code
;section. The following will be a list of the variables. Since we need some stack for
;operations we will set the ss=cs=ds and use a sp=00ffh

;

; Old_2F_Vector dd

;

; Found_address dw

;

; Our_code_segment dw

;

; Incomming_Stack_Segment dw

;

; Incomming_Stack_Pointer dw

;

;

 .data

message1 db "PCnet_ISA II Controller was not found.",0dh,0ah

l_message1 equ $ - message1

message2 db "PCnet Controller was not found and TSR was not installed.",0dh,0ah,

 "Please check setup.",0dh,0ah

l_message2 equ $ - message2

message3 db "PCnet controller that was found is not capable of Magic Packet.",

Magic Packet Technology Application in Hardware and Software 15

 0dh,0ah

l_message3 equ $ - message3

message4 db "PCnet Controller is now ready for Magic Packet.",0dh,0ah

l_message4 equ $ - message4

message5 db "This machine does not have a PCI BIOS.",0dh,0ah

l_message5 equ $ - message5

message6 db "This machine has a PCI BIOS type 1.",0dh,0ah

l_message6 equ $ - message6

message7 db "This machine has a PCI BIOS type 2.",0dh,0ah

l_message7 equ $ - message7

message8 db "PCnet_ISA II Controller was found.",0dh,0ah

l_message8 equ $ - message8

message9 db "PCnet_PCI II Controller was found.",0dh,0ah

l_message9 equ $ - message9

message10 db "PCnet_PCI II Controller was not found.",0dh,0ah

l_message10 equ $ - message10

message11 db "PCI BIOS read failure.",0dh,0ah

l_message11 equ $ - message11

PCI_BIOS db 0 ; PCI BIOS version number

PCI_DEVICE_NUM db MAX_PCI_DEV_NUM ; maximum number of pci devices

PCI_DEVICE_FND db 0 ; used to decide whether ISA or PCI

;---

 .code

main proc far

 .startup

16 Magic Packet Technology Application in Hardware and Software

;we jump over the code we want and only install the encloser code and leave

 jmp Install

; The data section needed in the code space goes in here.

Old_2F_Vector dd 0h

Found_address dw 0h

Our_code_segment dw 0h

Incoming_DX dw 0h

Incoming_DS dw 0h

Incomming_Stack_Segment dw 0h

Incomming_Stack_Pointer dw 0h

main endp

;---

; Here is the main Power Interrupt routine

;---

Power proc

 pushf

 cmp ax, 0530bh

 jne NOT_MINE

 cmp bl, 2

 je SUSPEND_REQ

 cmp bl, 3

 je NORMAL_RESUME

; We get here because we got a 2f vector but not a shut down or power up so we

; will pass it on to the other linked routines of 2F.

Magic Packet Technology Application in Hardware and Software 17

NOT_MINE:

 popf

 jmp dword ptr cs:Old_2F_Vector

; We got here because the computer is going to go to sleep. We need to set

; the PCnet controller into sleep mode. This is done by putting a 6 in the

; CSR5 register.

SUSPEND_REQ:

 mov Incoming_DX,dx ; Save off DS, DX and DS

 mov ax,ds

 mov Incoming_DS,ax

 mov ax, cs ; fix up the data segment pointer

 mov ds, ax

; first we will program the LED3 register for magic packet indication and

; then we will set the part for magic packet detection mode.

 mov dx, Found_address ; point the RAP to the register wanted

 add dx, 012h

 mov ax, 0007h

 out dx, ax

; DB9 of iscar7 controls the use of magic packet detection for LED3

 add dx, 04h

 mov ax, 0200h

 out dx, ax

 sub dx, 04h ; realign DX to the RAP

 mov ax, 5

 out dx, ax

 sub dx, 2 ; point the DX to RDP

 mov ax, 026h ; put into magic packet suspend mode and

18 Magic Packet Technology Application in Hardware and Software

 ; broadcast accept

 out dx, ax

 mov ax,Incoming_DS ; Restore DS, AX and DX

 mov ds,ax

 mov dx,Incoming_DX

 mov ax,0530bh ; repair the ax register

 popf

 jmp dword ptr cs: Old_2F_Vector

; We got here because the computer is going to wake up. We need to clear the

; Magic Packet look for bit. We will set CSR5 back to 2

NORMAL_RESUME:

 mov Incoming_DX,dx ; Save off DS, DX and DS

 mov ax,ds

 mov Incoming_DS,ax

 mov ax, cs ; fix up the data segment pointer

 mov ds, ax

 mov dx, Found_address ; point the RAP to the register wanted

 add dx, 012h

 mov ax, 5

 out dx, ax

 sub dx, 2 ; point the dx to RDP

 mov ax, 02h ; take out of magic packet mode

 out dx, ax

 mov ax,Incoming_DS ; Restore DS, AX and DX

 mov ds,ax

 mov dx,Incoming_DX

 mov ax, 0530bh ; repair the ax register

Magic Packet Technology Application in Hardware and Software 19

 popf

 jmp dword ptr cs: Old_2F_Vector

Power endp

end_of_program:

Install:

 push cs ; just in case

 pop ds ; ds is now set to the cs for com file

; We will now save the current cs for later use

 mov ax,cs

 mov Our_Code_Segment, ax

; Now we will look for a PCnet ISA. The first location can be 0x200 base

 mov dx, 020fh

LOOK_AGAIN:

 in al, dx

 cmp al, 057h

 jz ISA_FOUND

 add dx, 020h

 cmp dx, 040fh

 jz CHECK_FOR_PCI

 jmp LOOK_AGAIN

; We did not find an ISA device so now we will look for a PCI device. This

; will involve first seeing if we have a PCI machine. Then if a PCI BIOS is

; present we will then scan the PCI backplane for an AMD device and save the

; address at configuration space + 10h as the card address.

20 Magic Packet Technology Application in Hardware and Software

;

; now we will put out a message about finding no ISA adapter.

CHECK_FOR_PCI:

 mov bx, 0001h ; output message no isa ii card

 lea dx, message1

 mov cx, l_message1

 mov ah, 40h

 int 21h

;--------------------------------

; test PCI BIOS spec version 2 interface

;--------------------------------

 xor bx,bx ;clear BX

 xor cx,cx ;clear CX

 xor dx,dx ;clear DX

movah,PCI_FUNCTION_ID_2;assume PCI BIOS spec version 2

moval,PCI_BIOS_PRESENT ;request for PCI BIOS support

int1ah ;PCI BIOS interface

;--------------------------------

; check return value from PCI BIOS spec version 2

;--------------------------------

jccheck_PCI_BIOS_ver1;jump, if carry set

;

 cmp dx,"CP" ;check for PCI signature

jnecheck_PCI_BIOS_ver1;jump, if PCI BIOS version is not 2

;

orah,ah;check present status

jnzno_PCI_BIOS;jump, if no PCI BIOS present

;

movPCI_BIOS,2;set PCI BIOS version = 2

movPCI_DEVICE_NUM,cl;save CL = # of last PCI bus in system

 mov bx, 0001h ; output message about BIOS type

 lea dx, message7

 mov cx, l_message7

 mov ah, 40h

 int 21h

Magic Packet Technology Application in Hardware and Software 21

 jmp SCAN_FOR_CARD ;jump, get hardware mechanism

;--------------------------------

; If not version 2 then test PCI BIOS spec version 1 interface

;--------------------------------

check_PCI_BIOS_ver1:

xor cx,cx ;clear CX

xordx,dx;clear DX

movah,PCI_FUNCTION_ID_1;assume PCI BIOS spec version 2

moval,PCI_BIOS_PRESENT;request for PCI BIOS support

int1ah;PCI BIOS interface

;--------------------------------

; check return value from PCI BIOS spec version 1

;--------------------------------

 jc no_PCI_BIOS ;jump, if carry set

;

cmpdx,"CP";check for PCI signature

jneno_PCI_BIOS;jump, if no PCI BIOS present

cmpcx," I";check for PCI signature

jneno_PCI_BIOS;jump, if no PCI BIOS present

;

movPCI_BIOS,1;set PCI BIOS version = 1

movPCI_DEVICE_NUM,MAX_PCI_DEV_NUM;maximun PCI device number

;assume mechanism 2 for PCI BIOS ver1

 mov bx, 0001h ; output message about BIOS type

 lea dx, message6

 mov cx, l_message6

 mov ah, 40h

 int 21h

 jmp SCAN_FOR_CARD ;jump, get hardware mechanism

22 Magic Packet Technology Application in Hardware and Software

;--------------------------------

; no PCI BIOS exists

;--------------------------------

no_PCI_BIOS:

 mov bx, 0001h ; output message no PCI BIOS

 lea dx, message5

 mov cx, l_message5

 mov ah, 40h

 int 21h

 jmp NOT_HERE ;exit

;--------------------------------

; search AMD PCI PCNet devices

;--------------------------------

SCAN_FOR_CARD:

xorsi,si;SI = 0 (index initialize)

;

movdx,AMD_ID;DX = AMD vender ID

;

movcx,PCI_PCNET;assume CX = PCI PCNet device ID

movah,PCI_FUNCTION_ID_1;assume BH = PCI BIOS spec version 1

cmpPCI_BIOS,1;check PCI BIOS version = 1

jePCI_BIOS_version_set;jump, if PCI BIOS version determined

movah,PCI_FUNCTION_ID_2;BH = PCI BIOS spec version 2

PCI_BIOS_version_set:

;--------------------------------

; find AMD PCI device through BIOS API

;--------------------------------

 mov al,FIND_PCI_DEVICE ;request for AMD PCI device

 int 1ah; PCI BIOS interface

Magic Packet Technology Application in Hardware and Software 23

; This function will return in the BX register the bus number in BH and the

; device number in BL.

; test for error carry = 1

jnc find_PCI_device_success ;find PCI device success

search_fail:

 mov bx, 0001h ;output message no PCI II card

 lea dx, message10

 mov cx, l_message10

 mov ah, 40h

 int 21h

 jmp NOT_HERE

;

find_PCI_device_success:

or ah,ah check search successful

jnz search_fail jump, if search failed

; we have now found a PCnet_PCI device. Now we will get its address at

; configuration space + 10h. BX is being maintained here from the previous

; call with the bus number and the device number

mov ah,PCI_FUNCTION_ID_1; assume AH = PCI BIOS spec version 1

cmp PCI_BIOS,1 ;check PCI BIOS version = 1

je PCI_BIOS_ver_set ;jump, if PCI BIOS version determined

mov ah,PCI_FUNCTION_ID_2 ;AH = PCI BIOS spec version 2

PCI_BIOS_ver_set:

;

 mov di,010h ;DI = PCI config space data bytes

;--------------------------------

; read PCI configuration space

;--------------------------------

24 Magic Packet Technology Application in Hardware and Software

 mov al,READ_CONFIG_DWORD ; request for AMD PCI device

 int 1ah ; PCI BIOS interface

;

 jc READ_FAIL ; exit, if error

;

 or ah,ah ; check return code

 jnz READ_FAIL ; jump, if error happened

; CX now contains the address of the card but the address has its lower bit

; set in PCI config register to indicate it is I/O not memory. Therefore we

; will have to mask off that bit.

 ;

 mov ax,cx ; save config byte

 and ax,0fffeh ; mask off the lower bit to 0

 mov Found_address, ax ; Save off the Found_address

 mov ax,1 ; 1 = PCI Device found

 mov PCI_DEVICE_FND, al

 mov bx, 0001h ; output message PCI card found

 lea dx, message9

 mov cx, l_message9

 mov ah, 40h

 int 21h

 jmp FOUND

READ_FAIL:

 mov bx, 0001h ; output message read address fail

 lea dx, message11

 mov cx, l_message11

 mov ah, 40h

 int 21h

 jmp NOT_HERE

Magic Packet Technology Application in Hardware and Software 25

ISA_FOUND:

 sub dx, 0fh

 mov ax, dx

 mov Found_address, ax ; Save off the Found_address

 mov ax,0 ; 0 = ISA Device found

 mov PCI_DEVICE_FND, al

 mov bx, 0001h ; output message ISA card found

 lea dx, message8

 mov cx, l_message8

 mov ah, 40h

 int 21h

; We get here if we found the card at an address. Now DX contains the address

; of the found card but with an offset of 0xF so we need to adjust.

FOUND:

; Now that we have found the controller we must check to see if the PCnet

; controller can handle the Magic Packet. Only PCnet ISA II and PCnet_PCI II

; can handle a magic packet. PCnet ISA II can be identified with a 01h

; in the address space + 9h register. While a PCnet_PCI II controller can

; be found by a 1X in the rev register of the PCI configuration register.

 mov ah, 0

 mov al,PCI_DEVICE_FND

 jnz USE_PCI_CHECK

; This is the ISA check

 mov dx, Found_address ; point the RAP to the register wanted

 add dx, 09h

 in al, dx

 cmp al, 01h

 jz INTERRUPT_LINK

26 Magic Packet Technology Application in Hardware and Software

; This is the PCI check

USE_PCI_CHECK:

 mov dx, Found_address ; point the RAP to the register wanted

 add dx, 09h

 in al, dx

 cmp al, 11h

 jz INTERRUPT_LINK

 mov bx, 0001h

 lea dx, message3

 mov cx, l_message3

 mov ah, 40h

 int 21h

 jmp RETURN_TO_DOS

INTERRUPT_LINK:

 mov dx, Found_address

 add dx, 012h

; Now we will program the csr5 register turn on magic packet mode.

 mov ax, 05h ; point the RDP to CSR 5

 out dx, ax

 sub dx, 02h

 mov ax, 02h

 out dx, ax

; Now we will program the csr4 register to disable polling just in case a

; motherboard has a timer on the BREQ/DREQ activity of the controller.

 add dx,02h ; Realign DX to the RAP

 mov ax, 04h ; point the RDP to CSR 4

Magic Packet Technology Application in Hardware and Software 27

 out dx, ax

 sub dx, 02h

 in ax, dx

 or ax, 01000h ; set the disable polling bit

 out dx, ax

 add dx, 02h ; Now reset the address pointer back to 0

 mov ax, 00h

 out dx, ax

; We now need to hook the 2F interrupt (Power Management). Since this

; interrupt is cascaded with other programs we need to get the old 2F

; interrupt vector and save it in Old_2F_Vector and then put our pointer

; in 2F.

 xor ax, ax

 mov es, ax

 pushf

 cli

 mov ax, es:[2fh * 4] ; Get the old vector

 mov word ptr Old_2F_Vector, ax

 mov ax, es:[2fh * 4 + 2]

 mov word ptr Old_2F_Vector + 2 , ax

 lea ax, Power

 mov es:[02fh * 4], ax

 mov ax, cs

 mov es:[02fh * 4 + 2], ax

 popf ; This re-enables the interrupts

; Now we display the message that we are magic packet ready

 mov bx, 0001h

 lea dx, message4

28 Magic Packet Technology Application in Hardware and Software

 mov cx, l_message4

 mov ah, 40h

 int 21h

; now we return to DOS but we leave the TSR for POWER

 mov al, 0

 lea dx, end_of_program

 mov ah, 31h

 int 27h

NOT_HERE:

; Now we display the message that the PCnet was not found and TSR was not

; installed.

 mov bx, 0001h

 lea dx, message2

 mov cx, l_message2

 mov ah, 40h

 int 21h

RETURN_TO_DOS:

 mov ah,4ch

 int 21h

 end

.

Trademarks

Copyright © 1998 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Am186, Am386, Am486, Am29000,

b

IMR, eIMR, eIMR+, GigaPHY, HIMIB, ILACC, IMR, IMR+, IMR2, ISA-HUB, MACE, Magic Packet, PCnet,
PCnet-

FAST

, PCnet-

FAST

+, PCnet-Mobile, QFEX, QFEXr, QuASI

,

QuEST, QuIET, TAXIchip, TPEX, and TPEX Plus are trademarks of Advanced
Micro Devices, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

	MAGIC PACKET TECHNOLOGY APPLICATION IN HARDWARE AND SOFTWARE
	ABSTRACT
	INTRODUCTION
	HARDWARE
	SOFTWARE
	CONCLUSIONS
	FIGURES
	FLOWCHARTS
	APPENDIX A
	APPENDIX B
	APPENDIX C

