GE Fanuc Automation

VMIVME-7807 VME-7807RC*

Intel[®] Pentium[®] M-Based VME SBC

PRODUCT MANUAL 500-007807-000 REV. F

*NOTE: THE VME-7807RC IS DESIGNED TO MEET THE EUROPEAN UNION (EU) RESTRICTION OF HAZARDOUS SUBSTANCE (RoHS) DIRECTIVE (2002/95/EC) CURRENT REVISION.

Embedded Systems

This page is intentionally left blank.

The information in this document has been carefully checked and is believed to be entirely reliable. While all reasonable efforts to ensure accuracy have been taken in the preparation of this manual, GE Fanuc Embedded Systems assumes no responsibility resulting from omissions or errors in this manual, or from the use of information contained herein.

GE Fanuc Embedded Systems reserves the right to make any changes, without notice, to this or any of GE Fanuc Embedded Systems' products to improve reliability, performance, function, or design.

GE Fanuc Embedded Systems does not assume any liability arising out of the application or use of any product or circuit described herein; nor does GE Fanuc Embedded Systems convey any license under its patent rights or the rights of others.

For warranty and repair policies, refer to GE Fanuc Embedded Systems' Standard Conditions of Sale.

AMXbus, BITMODULE, COSMODULE, DMAbus, IOMax, IOWorks Access, IOWorks Foundation, IOWorks Manager, IOWorks Server, MAGICWARE, MEGAMODULE, PLC ACCELERATOR (ACCELERATION), Quick Link, RTnet, Soft Logic Link, SRTbus, TESTCAL, "The Next Generation PLC", The PLC Connection, TURBOMODULE, UCLIO, UIOD, UPLC, Visual Soft Logic Control(ler), VMEbus Access, *VMEmanager, VMEmonitor*, VMEnet, VMEnet II, *VMEprobe* and VMIC Shutdown are trademarks and The I/O Experts, The I/O Systems Experts, The Soft Logic Experts, and The Total Solutions Provider are service marks of GE Fanuc Embedded Systems.

IOWorks, Visual IOWorks and the VMIC logo are registered trademarks of GE Fanuc Embedded Systems.

Other registered trademarks are the property of their respective owners.

Copyright © 2007 by GE Fanuc Embedded Systems. All Rights Reserved.

This document shall not be duplicated, nor its contents used for any purpose, unless granted express written permission from GE Fanuc Embedded Systems.

RoHS Compliance

The VMIVME-7807 uses the Intel 82546EB Dual Gigabit Ethernet Controller.

The VME-7807RC uses the Intel 82546GB Dual Gigabit Ethernet Controller.

There are no other differences in Form, Fit or Function between the standard product or the RoHS compliant product with the exception of the RoHS product is free of lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs). In conjunction with the WEEE (Waste Electrical & Electronic Equipment) Directive 2002/96/EC (January 27, 2003).

This page is intentionally left blank.

Table of Contents

List of Figures	9
List of Tables	11
Overview	13
Intel 855GME Chipset	15
Organization of the Manual	17
References	18
Safety Summary	19
Ground the System	19
Do Not Operate in an Explosive Atmosphere	19
Keep Away from Live Circuits	19
Do Not Service or Adjust Alone	19
Do Not Substitute Parts or Modify System	19
Dangerous Procedure Warnings	19
Safety Symbols Used in This Manual	20
Chapter 1 - Installation and Setup	21
Unpacking Procedures	22
Hardware Setup	23
Installation	28
BIOS Setup	28
Front/Rear Panel Connectors	31
Front Panel Layout	33
Chapter 2 - Standard Features	35
CPU	36
Physical Memory	36

PCI Device Interrupt Map	37
Integrated Peripherals	38
Ethernet Controller	39
10BaseT	39
100BaseTX	39
1000BaseT	39
Video Graphics Adapter	40
Digital Visual Interface (DVI)	41
DVI Connectors	41
Dual Head Video	42
Dual Head Setup Procedure:	42
Hot Keys	42
Digital Video Display Modes	43
Chapter 3 - Embedded PC/RTOS Features	45
VME Bridge	46
I2C/SMBus Temperature Sensor	46
Embedded PCI Functions	47
Timers	48
General	48
Timer Control Status Register 1 (TCSR1)	48
Timer Control Status Register 2 (TCSR2)	49
Timer 1 & 2 Load Count Register (TMRLCR12)	50
Timer 3 Load Count Register (TMRLCR3)	50
Timer 4 Load Count Register (TMRLCR4)	51
Timer 1 & 2 Current Count Register (TMRCCR12)	51
Timer 3 Current Count Register (TMRCCR3)	51
Timer 4 Current Count Register (TMRCCR4)	52
Timer 1 IRQ Clear (T1IC)	52
Timer 2 IRQ Clear (T2IC)	52
Timer 3 IRQ Clear (T3IC)	52
Timer 4 IRQ Clear (T4IC)	53
Watchdog Timer	54
General	54
WDT Control Status Register (WCSR)	54
WDT Keepalive Register (WKPA)	55
NVRAM	56
VME Control	57
CompactFlash Disk	58
Configuration	58
Remote Ethernet Booting	59
Boot BIOS Features:	59

Maintenance	61
Maintenance Prints	62
Compliance Information	63
CE	64
International Compliance	64
European Union	64
United States	64
Australia/New Zealand	64
Japan	64
Canada	64
FCC Part 15	65
FCC Class A	65
Canadian Regulations	65
Appendix A - Connector Pinouts	67
VME Connector Pinout	68
VME P1 Connector and Pinout	68
VME P2 Connector and Pinout	69
Serial Connector (J22) and Pinout	70
Mouse/Keyboard Connector and Pinout (J10)	71
Ethernet Connector Pinout (10/100Mbit) J15	73
PMC Site Connectors and Pinouts	74
PMC (J11) Connector and Pinout	74
PMC (J12) Connector and Pinout	75
PMC (J13) Connector and Pinout	76
USB Connectors (J16 and J17)	77
Gigabit Ethernet Connector and Pinout (J18)	78
Appendix B - AMI BIOS Setup Utility	79
First Boot	80
Main	81
Advanced BIOS Setup	82
PCI/PnP Setup	83
Boot Setup	84
Security Setup	85
Chipset Setup	86
Exit Menu	87

Appendix C - Argon BIOS	89
Boot Menus	90
First Boot Menu	90
Boot Menu	90
BIOS Features Setup	92
RPL	92
ТСР/ІР	92
Netware	93
PXE	93
Appendix D - System Driver Software	95
Microsoft Windows 2000 Professional Software Driver Installation	96
Video Driver Installation	96
6300ESB (Hance Rapids) ICH Chipset Software Installation	96
USB 2.0 EHCI Host Controller	97
Ethernet Adapter Drivers Installation	97
Microsoft Windows XP Professional Software Driver Installation	98
Video Driver Installation	98
6300ESB (Hance Rapids) Chipset Software Installation	98
USB 2.0 EHCI Host Controller	99
Ethernet Adapter Drivers Installation	99

List of Figures

VMIVME-7807/VME-7807RC Block Diagram	16
VMIVME-7807/VME-7807RC PMC Site and Switch Locations	24
Installing a PMC Card on the VMIVME-7807/VME-7807RC	29
Backside Mounting for the PMC Card	30
VMIVME-7807/VME-7807RC Front Panels	32
Front Panels Layout	33
VME P1 Connector Diagram	68
VME P2 Connector Diagram	69
Serial Connectors and Pinouts	70
Mouse Connector and Pinout	71
Mouse/Keyboard Y Splitter Cable	72
Ethernet Connector and Pinout	73
PMC (J11) Connector	74
PMC (J12) Connector	75
PMC (J13) Connector	76
USB Connectors and Pinouts	77
Dual Gigabit Ethernet Connector (J18) and Pinout	78

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

List of Tables

Table 1-1	CPU Board Connectors and Switches	25
Table 1-2	Battery Enable (User Configurable) - Jumper (E3)	25
Table 1-3	VME System Controller (User Configurable) - Switch (S1)	26
Table 1-4	Password Clear/BIOS Boot Mode (User Configurable) - Switch (S2)	26
Table 1-5	Universe II Mapping/SYSFAIL Generation (User Configurable) - Switch (S6)	27
Table 1-6	VME Strapping (User Configurable) - Switch (S7)	27
Table 2-1	PCI Device Interrupt Mapping by the BIOS	37
Table 2-2	Supported Graphics Video Resolutions for Windows 2000 (Analog)	40
Table 2-3	Supported Graphics Video Resolutions for Windows XP (Analog)	40
Table 2-4	Partial List of Display Modes Supported	43
Table 3-1	PCI Configuration Space Registers	47
Table 3-2	Register Definitions Offset From BAR0	57
Table A-1	VME P1 Connector Pinout	68
Table A-2	VME P2 Connector Pinout	69
Table A-3	Keyboard/Mouse Y Splitter Cable	72
Table A-4	PMC (J11) Connector Pinout	74
Table A-5	PMC (J12) Connector Pinout	75
Table A-6	PMC (J13) Connector Pinout	76

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

Overview

Introduction

GE Fanuc Embedded Systems' VMIVME-7807/VME-7807RC are full featured Pentium[®] M-based, single board computers (SBCs) in a single-slot, passively cooled, VME Eurocard form factor. These products utilize the advanced technology of Intel[®]'s 855GME chipset.

The VMIVME-7807/VME-7807RC provide features typically found on desktop systems such as:

- 1.0GB DDR SDRAM using one SODIMM and an optional 512MB of solder-in memory for a maximum of 1.5GB
- Built-in SVGA support (front panel connection)
- Digital video controller (rear I/O) DVI-D with dual head display capabilities
- 10/100 Mbit Ethernet controller (front panel connection)
- Dual Gigabit Ethernet supporting (front panel or rear I/O)
- Optional P0 with VITA 31.1 interface
- Serial ATA (SATA) support (rear I/O)
- Serial port COM1 (front panel connection)
- Ultra IDE drive support (rear I/O)
- Real-Time clock/calendar
- Front panel reset switch
- Miniature speaker
- Keyboard/Mouse port (front panel connection)

The 855GME chipset allows the VMIVME-7807/VME-7807RC to provide enhanced features such as integrated video and Ultra ATA/100 IDE support. The VMIVME-7807/VME-7807RC are capable of executing many of today's desktop operating systems such as Microsoft[®]'s Windows[®] XP, Windows 2000 and a wide variety of Linux[®] based operating systems. The standard desktop features of the VMIVME-7807/VME-7807RC are described in Chapter 2 of this manual.

The VMIVME-7807/VME-7807RC provide features useful to embedded applications such as:

- Three serial ports: COM2, COM3 and COM4 (rear I/O)
- Four USB 2.0 ports (two on front panel and two rear I/O)
- 32KB of nonvolatile RAM
- Remote Ethernet booting
- Up to 2GB of CompactFlash on secondary IDE (optional)
- Software-selectable Watchdog Timer with reset

Additionally, the VMIVME-7807/VME-7807RC offer one PMC expansion site (PCI-X, 66MHz) with front panel access. The VMIVME-7807/VME-7807RC are capable of executing many of today's operating systems such as VxWorks[®], Solaris[™] or QNX[®]. The embedded features of the VMIVME-7807/VME-7807RC are described in Chapter 3 of this manual.

The VMIVME-7807/VME-7807RC are suitable for use in applications ranging from telecommunications, simulation, instrumentation, industrial control, process control and monitoring, factory automation, automated test systems, data acquisition systems and anywhere that the highest performance processing power in a single VME slot is desired.

Intel 855GME Chipset

The VMIVME-7807/VME-7807RC incorporate the latest Intel chipset technology, the 855GME. This chipset utilizes Advanced Hub Architecture (AHA). The AHA allows for increased system performance by separating many high-bandwidth I/O accesses from PCI accesses, relieving bottlenecks on the PCI bus. Furthermore, the 855GME chipset brings new levels of integration to motherboard chipsets and provides additional features such as Integrated LVDS and Serial ATA.

NOTE 1: When the P0 option is chosen, the two Gigabit Ethernet ports **are not** routed to the front panel or the P2 connector. **NOTE 2**: The Intel 82546GB Ethernet Controller is used on the VME-7807 RoHS version of the product **ONLY**.

Figure 1 VMIVME-7807/VME-7807RC Block Diagram

Organization of the Manual

This manual is composed of the following chapters and appendices:

Chapter 1 - Installation and Setup describes unpacking, inspection, hardware jumper settings, connector definitions, installation, system setup and operation of the VMIVME-7807/VME-7807RC.

Chapter 2 - Standard Features describes the unit design in terms of the standard PC memory and I/O maps, along with the standard interrupt architecture.

Chapter 3 - Embedded PC/RTOS Features describes the unit features that are beyond standard functions.

Maintenance provides information relative to the care and maintenance of the unit.

Compliance provides applicable information regarding regulatory compliance.

Appendix A - Connector Pinouts illustrates and defines the connectors included in the unit's I/O ports.

Appendix B - AMI BIOS Setup Utility describes the menus and options associated with the AMI (system) BIOS.

Appendix C - Argon BIOS describes the menus and options associated with the LAN Boot BIOS.

Appendix D - System Driver Software describes the steps required to load system drivers.

VMIVME-7807/VME-7807RC Product Manual

References

Intel Pentium M Processor Datasheet

June 2003, Order Number 252612-002

Intel 855GME Chipset Graphics and Memory Controller Hub (GMCH)

March 2003, Order Number 252615-001

Intel 6300ESB I/O Controller Hub

February 2004, Order Number 300641-001

PCI Local Bus Specification, Rev. 2.2

PCI Special Interest Group P.O. Box 14070 Portland, OR 97214 (800) 433-5177 (U.S.) (503) 797-4207 (International) (503) 234-6762 (FAX)

LPC47M107 100-Pin Enhanced Super I/O with LPC Interface for Consumer Applications

Standard Microsystems Corp. 80 Askay Dr. Hauppauge, NY 11788-8847 www.smsc.com

CMC Specification, P1386/Draft 2.0 from:

IEEE Standards Department Copyrights and Permissions 445 Hoes Lanes, P.O. Box 1331 Piscataway, NJ 08855-1331

PMC Specification, P1386.1/Draft 2.0 from:

IEEE Standards Department Copyrights and Permissions 445 Hoes Lanes, P.O. Box 1331 Piscataway, NJ 08855-1331, USA

The following is useful information related to the operation of the I²C controllers:

The I^2C Specification version 2.0

Philips Semiconductor 811 East Arques Ave. Sunnyvale, CA 94088-3409 (800) 234-7381 www.semiconductors.philips.com

I²C/SMBus-Compatible Remote/Local Temperature Sensors with Overtemperature Alarms

Maxim Integrated Products, Inc. 120 San Gabriel Drive Sunnyvale, CA 94086 USA 408-737-7600 800-629-4642 Fax: 408-737-7194 www.maxim-ic.com

Safety Summary

The following general safety precautions must be observed during all phases of the operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of this product.

GE Fanuc Embedded Systems assumes no liability for the customer's failure to comply with these requirements.

Ground the System

To minimize shock hazard, the chassis and system cabinet must be connected to an electrical ground. A three-conductor AC power cable should be used. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet.

Do Not Operate in an Explosive Atmosphere

Do not operate the system in the presence of flammable gases or fumes. Operation of any electrical system in such an environment constitutes a definite safety hazard.

Keep Away from Live Circuits

Operating personnel must not remove product covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

Do Not Substitute Parts or Modify System

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to GE Fanuc Embedded Systems for service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede only potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING: Dangerous voltages, capable of causing death, are present in this system. Use extreme caution when handling, testing, and adjusting.

Safety Symbols Used in This Manual

STOP: This symbol informs the operator that a practice or procedure should not be performed. Actions could result in injury or death to personnel, or could result in damage to or destruction of part or all of the system.

WARNING: This sign denotes a hazard. It calls attention to a procedure, practice, or condition, which, if not correctly performed or adhered to, could result in injury or death to personnel.

CAUTION: This sign denotes a hazard. It calls attention to an operating procedure, practice, or condition, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the system.

NOTE: Calls attention to a procedure, practice, or condition which is essential to highlight.

Installation and Setup

Contents

Unpacking Procedures	22
Hardware Setup	23
Installation	28
Front/Rear Panel Connectors	31

Introduction

This chapter describes the hardware jumper settings, connector descriptions, installation, system setup and operation of the VMIVME-7807/VME-7807RC .

Unpacking Procedures

Any precautions found in the shipping container should be observed. All items should be carefully unpacked and thoroughly inspected for damage that might have occurred during shipment. The board(s) should be checked for broken components, damaged printed circuit board(s), heat damage and other visible contamination. All claims arising from shipping damage should be filed with the carrier and a complete report sent to GE Fanuc Embedded Systems Customer Care along with a request for advice concerning the disposition of the damaged item(s).

CAUTION: Some of the components assembled on GE Fanuc Embedded Systems products may be sensitive to electrostatic discharge and damage may occur on boards that are subjected to a high energy electrostatic field. When the board is placed on a bench for configuring, etc., it is suggested that conductive material be inserted under the board to provide a conductive shunt. Unused boards should be stored in the same protective boxes in which they were shipped.

Hardware Setup

The VMIVME-7807/VME-7807RC are factory populated with user-specified options as part of the VMIVME-7807/VME-7807RC ordering information. The memory size and CompactFlash sizes are not user-upgradable. To change memory or CompactFlash size, contact Customer Care to receive a Return Material Authorization (RMA). RMAs are available from rma@gefanuc.com.

GE Fanuc Embedded Systems Customer Care is available at: 1-800-GEFANUC (1-800-433-2682),1-780-401-7700 or E-mail us at <u>support.embeddedsystems@gefanuc.com</u>

The VMIVME-7807/VME-7807RC are tested for system operation and shipped with factory-configured jumpers and switches. The physical location of the switches, jumpers and connectors for the SBC are illustrated in Figure 1-1 on page 24. The definitions of the SBC switches, jumpers and connectors are included in Table 1-1 through Table 1-4. Please note that the VMIVME-7807/VME-7807RC offer one PMC site designated PMC #1 as shown in Figure 1-1 on page 24.

CAUTION: All jumpers marked *User Configurable* in the following tables may be changed or modified by the user. All jumpers marked *Factory Configured* should not be modified by the user.

Care must be taken when making jumper modifications to ensure against improper settings or connections. Improper settings may result in damage to the unit.

Modifying any jumper not marked *User Configurable* will void the Warranty and may damage the unit.

Figure 1-1 VMIVME-7807/VME-7807RC PMC Site and Switch Locations

Connector	Function	
P1	VME interface connector	
P2	USB 2.0, Serial ATA, digital video, IDE, COM2, 3 and 4, optional Gigabit Ethernet	
P0	VITA 31.1 Interface connector (optional)	
P3	CompactFlash socket	
J16 and J17	USB ports	
J10	Keyboard/Mouse PS/2 Type connector	
J9	ITP connector	
J15	10/100 Mb RJ45 Ethernet connector	
J18	Gigabit Ethernet connector (optional)	
J11, J12 and J13	PMC Site Connector	
J22	Serial port connector (COM1)	
J19	SVGA connector	
J21	GE Fanuc Embedded Systems' PCI expansion connector (PMC237CM1/V)	
B1	Battery	
Switches	Function	
S1	System Controller	
S2	CMOS clear switch/BIOS Boot Mode	
S4	Reset switch (Front Panel)	
S6	Map Universe II to I/O Space	
S7	VME SYSRESET	

Table 1-1 S	SBC Connectors	and Switches
-------------	----------------	--------------

Table 1-2 Battery Enable (User Configurable) - Jumper (E3)

Select	Jumper Position
Battery Enabled	On
Battery Disabled	Off

Position	Function	State
1 - 4	Normal Operation (Default)	Off
1 - 4	Enables System or non-system controller (any slot)	On
2 - 3	Force system controller (any slot)	Off
2 - 3	Force system or non-system controller (any slot)	On

 Table 1-3
 VME System Controller (User Configurable) - Switch (S1)

NOTE: The BIOS has the capability (not currently enabled) of password protecting casual access to the unit's CMOS set-up screens. The Password Clear switch allows the user to clear the CMOS and password in the case of a system BIOS malfunction or forgotten password.

Table 1-4 Password Clear/BIOS Boot Mode (User Configurable) - Switch (S2)

Position	Function	State
1 - 4	Normal	Off
1 - 4	Clear CMOS/Password	On
2 - 3	Boot with Post Errors	On
2 - 3	Boot Halt on Post Errors	Off

To clear the CMOS password:

- 1. Turn off power to the unit.
- 2. Move switch S2 position 1 to On.
- 3. Wait approximately 5 seconds.
- 4. Move switch S2 position 1 to Off.
- 5. Power up the unit.

When power is reapplied to the unit, the CMOS password will have been cleared and the CMOS will be set to its defaults.

Position	Function	State
1 - 4	Map UNIV2 to I/O Space	On
1 - 4	Map UNIV2 to Memory Space	Off
2 - 3	Enable SYSFAIL Generation	On
2 - 3	Disable SYSFAIL Generation	Off

Table 1-5 Universe II Mapping/SYSFAIL Generation (User Configurable) - Switch (S6)

Table 1-6 VME Strapping (User Configurable) - Switch (S7)

Position	Function	State
1 - 4	Enable VME SYSRESET Driver	Off
2 - 3	Enable SYSRESET Receiver	Off

Installation

The VMIVME-7807/VME-7807RC conform to the VME physical specification for a 6U board. The VMIVME-7807/VME-7807RC can be used for system control or as a peripheral board. They can be plugged directly into any standard chassis accepting either type of board.

The following steps describe the GE Fanuc Embedded Systems-recommended method for installation and powerup of the VMIVME-7807/VME-7807RC :

1. If a PMC module is to be used, connect it to the VMIVME-7807/VME-7807RC prior to board installation (as shown in Figure 1-2 on page 29). Refer to the Product Manual for the PMC module for configuration and setup.

NOTE: Air flow requirements as measured at the output side of heatsink is to be greater than 450LFM.

- 2. Insert the VMIVME-7807/VME-7807RC into a VME chassis system controller or peripheral slot. While ensuring that the board is properly aligned and oriented in the supporting board guides, slide the board smoothly forward against the mating connectors. Use the ejector handles to firmly seat the board.
- 3. All needed peripherals can be accessed from the front panel or the rear I/O VMIACC-0586/ACC-0586RC or VMIACC-0590/ACC-0590RC Rear Transition Modules (RTMs). Each connector is clearly labeled on the front panel and detailed pinouts are in Appendix A.
- 4. Connect a keyboard and mouse if the system has not been previously configured.
- 5. The VMIVME-7807/VME-7807RC feature an optional CompactFlash Disk resident on the board. Refer to Chapter 3 for set up details.
- 6. If an external drive module is installed, the BIOS Setup program must be used to configure the drive types. See Appendix B to properly configure the system.
- 7. If a drive module is present, install the operating system according to the manufacturer's instructions.

BIOS Setup

The VMIVME-7807/VME-7807RC have an onboard BIOS Setup program that controls many configuration options. These options are saved in a special non-volatile, battery-backed memory chip and are collectively referred to as the board's 'CMOS Configuration'. The CMOS configuration controls many details concerning the behavior of the hardware from the moment power is applied.

Details of the VMIVME-7807/VME-7807RC BIOS setup program are included in Appendix B.

Figure 1-2 Installing a PMC Card on the VMIVME-7807/VME-7807RC

VMIVME-7807/VME-7807RC Product Manual

Figure 1-3 Backside Mounting for the PMC Card

Front/Rear Panel Connectors

The VMIVME-7807/VME-7807RC provide front panel access for the PMC expansion site, an optional Gigabit Ethernet port, one 10/100 RJ45 connector, one serial port, SVGA, keyboard/mouse, the manual reset switch and the status LEDs. A drawing of the VMIVME-7807/VME-7807RC front panels are shown in Figure 1-5. The front panel connectors and indicators are labeled as follows:

- 10/100 10/100 Mbit Ethernet connector
- G1 10/100/1000 Mbit Ethernet connector 1 (or LEDs) port 1
- G2 10/100/1000 Mbit Ethernet LEDs port 2
- M/K Mouse/keyboard connector
- COM1 Serial Port
- RST Manual reset switch
- S Status LEDs
- SVGA Analog Video connector

The VMIVME-7807/VME-7807RC provide rear I/O support for the following: digital video, Serial ATA, COM2, 3 and 4, IDE drive and two USB ports. These signals are accessed by the use of an RTM such as the VMIACC-0586/ACC-0586RC and the VMIACC-0590/ACC-0590RC, which terminates into industry standard connectors.

The front panel connectors, including connector pinouts and orientation, for the VMIVME-7807/VME-7807RC are defined in Appendix A. Rear panel connections are defined in the appropriate RTM Installation Guide. Contact Sales for compatible RTMs offered by GE Fanuc Embedded Systems.

VMIVME-7807/VME-7807RC Product Manual

Figure 1-4 VMIVME-7807/VME-7807RC Front Panels

ectors **1**

Front Panel Layout

Figure 1-5 Front Panels Layout

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

Standard Features

Contents

CPU	36
Physical Memory	36
PCI Device Interrupt Map	37
Integrated Peripherals	38
Ethernet Controller	39
Video Graphics Adapter	40

Introduction

The VMIVME-7807/VME-7807RC are Pentium M processor-based single board computers compatible with modern industry standard desktop systems. The VMIVME-7807/VME-7807RC therefore retain industry standard memory and I/O maps along with a standard interrupt architecture. The integrated peripherals described in this section (such as serial ports, USB ports, IDE drives, floppy drives, video controller and Ethernet controller) are all memory mapped the same as similarly equipped desktop systems, ensuring compatibility with modern operating systems.

The following sections describe the standard features of the VMIVME-7807/VME-7807RC.

CPU

The VMIVME-7807/VME-7807RC CPUs are factory populated with Pentium M processors. The CPU speed and Memory/CompactFlash size are user specified as part of the VMIVME-7807/VME-7807RC ordering information.

To change memory size or CompactFlash size contact Customer Care to receive a Return Material Authorization (RMA). RMAs are available at <u>rma@gefanuc.com</u>.

GE Fanuc Embedded Systems Customer Care is available at: 1-800-GEFANUC (or 1-800-433-2682), 1-780-401-7700 or E-mail us at <u>support.embeddedsystems@gefanuc.com.</u>

Physical Memory

The VMIVME-7807/VME-7807RC provide DDR Synchronous DRAM (SDRAM) as onboard system memory. Memory can be accessed as bytes, words or longwords.

The VMIVME-7807/VME-7807RC accept one 200-pin DDR SDRAM SODIMM along with the optional solder-in 512MB onboard memory, for a maximum capacity of 1.5GB. The onboard DRAM is accessible to the VME through the PCI-to-PCI bridge and is addressable by the local processor.

NOTE: Memory capacity may change due to part availability.

PCI Device Interrupt Map

The PCI bus-based external devices include the Universe IID bridge, PMC site, Ethernet controllers, FPGA and the GE Fanuc Embedded Systems connector. The default BIOS maps these external devices to the PCI Interrupt Request (PIRQx) lines of the 6300ESB I/O controller Hub. This mapping is defined in Table 2-1.

Device	PGNT	PREQ	IDSEL	IRQ	Vendor ID	Device ID
Universe IID	PCI0_GNT[1]#	PCI0_REQ[1]#	PCI0_AD[29]	PCI_IRQE#	10E3H	0001H
PMC Site	PCI_GNT[3]#	PCI_REQ[3]#	PCI_AD[30]	PCI_IRQC#	Customer	Customer
Gigabit Ethernet #1	PCI_GNT[0]#	PCI1_REQ[0]#	PCI_AD[21]	PCI_IRQA#	8086H	1010H 1079H*
Gigabit Ethernet #2	PCI_GNT[1]#	PCI1_REQ[0]#	PCI_AD[21]	PCI_IRQB#	8086H	1010H 1079H*
82551	PCI_GNT[2]#	PCI0_REQ[2]#	PCI_AD[28]	PCI_IRQF#	8086H	N/A
FPGA	N/A	N/A	PCI_AD[21]	PCI_IRQD#	N/A	N/A
GE Fanuc Embedded Systems Conn	PCI_GNT[3]#	PCI0_REQ[3]#	PCI_AD[20]	PCI_IRQ[A:D]#	N/A	N/A

Table 2-1 PCI Device Interrupt Mapping by the BIOS

* The Device ID for the Intel 82546EB is 1010H.

The Device ID for the Intel 82546GB is 1079H.

Integrated Peripherals

The VMIVME-7807/VME-7807RC incorporate an SMSC Super I/O (SIO) chip. The SIO provides the VMIVME-7807/VME-7807RC with two 16550 UART-compatible serial ports, keyboard and mouse port. The keyboard and mouse ports are available via the front panel using a standard PS/2 type connector. COM1 is accessed via the front panel. COM2 is routed to the VME P2 connector.

COM ports 3 and 4 are also provided by the 6300ESB I/O Controller Hub and are routed to the VME P2 connector.

The parallel IDE interface is provided by the Intel 6300ESB I/O Controller Hub. The IDE interface supports two channels: primary and secondary. The secondary channel is routed onboard to the optional CompactFlash socket. The primary channel is routed out of the VME P2 backplane connector to an RTM which terminates into a standard 40-pin header. This channel can support a master and slave drive. The IDE interface on the VMIVME-7807/VME-7807RC supports Ultra ATA/33, Ultra ATA/66 and Ultra ATA/100 drives and automatically determines the proper operating mode based on the type of drive used. In order to properly function in the Ultra ATA/100 mode, a special 80 conductor cable must be used instead of the standard 40 conductor cable. This cable is typically available from the Ultra ATA/100 drive manufacturer.

A Serial ATA Drive Interface is also provided by the 6300ESB I/O Controller Hub. The Serial ATA port can be used alone or in limited conjunction with the parallel IDE interface.

NOTE: Selection of drive type (parallel or serial), along with detailed IDE/ATA selections is available in the CMOS Advanced BIOS Setup Menu.

Ethernet Controller

The network capability is provided by the Intel 82546EB for the VMIVME-7807 or the Intel 82546GB for the VME-7807RC Ethernet Controller for Gigabit Ethernet and the Intel 82551 10/100 Mbit Ethernet. These Ethernet controllers are PCI bus based and are software configurable. The VMIVME-7807/VME-7807RC supports 10BaseT, 100BaseTX and 1000BaseT Ethernet.

10BaseT

A network based on the 10BaseT standard uses unshielded twisted-pair cables, providing an economical solution to networking by allowing the use of existing telephone wiring and connectors. The RJ45 connector is used with the 10BaseT standard. 10BaseT has a maximum length of 100 meters.

100BaseTX

The VMIVME-7807/VME-7807RC also supports the 100BaseTX Ethernet. A network based on a 100BaseTX standard uses unshielded twisted-pair cables and a RJ45 connector. 100BaseTX has a maximum length of 100 meters.

1000BaseT

The VMIVME-7807/VME-7807RC support 1000BaseT Ethernet using the Intel 82546EB for the VMIVME-7807 or the Intel 82546GB for the VME-7807RC dual Ethernet controller. The interface uses shielded cables with four pairs of conductors, along with an RJ45 connector on the front panel or routed to the VME P2 connector. The Gigabit Ethernet is also available with the optional VITA 31.1 routed out of the optional P0 connector.

NOTE: Ethernet activity is noted on the front panel LEDs by a blinking yellow LED. The yellow LED will be on continuously when the Ethernet port is linked but with no activity.

Video Graphics Adapter

The SVGA port on the VMIVME-7807/VME-7807RC is controlled by the Intel 855GME Graphic and Memory Controller Hub (GMCH). The GMCH is hardware and BIOS compatible with the industry SVGA and digital video standards supporting both VESA high-resolution and extended video modes. Table 2-2 and Table 2-3 show the graphics video modes supported by the GMCH video controller for analog monitors.

Screen Resolution	Maximum Colors	Maximum Refresh Rates (Hz)
640 x 480	256, High and True	85
768 x 1024	are supported at all resolutions.	85
800 x 600		85
1024 x 768		85
1024 x 1280		75
1200 x 1600		60
1280 x 1024		75
1600 x 1200		60

Table 2-2 Supported Graphics Video Resolutions for Windows 2000 (Analog)

Table 2-3 Supported Graphics Video Resolutions for Windows XP (Analog)

Screen Resolution	Maximum Colors	Maximum Refresh Rates (Hz)
640 x 480	High and True are	85
800 x 600	supported at all resolutions.	85
1024 x 768		85
1080 x 1280		75
1600 x 1200		60

Not all SVGA monitors support resolutions and refresh rates beyond 640 x 480 at 85Hz. Do not attempt to drive a monitor to a resolution or refresh rate beyond its capability.

NOTES: The VMIACC-0586/ACC-0586RC or the VMIACC-0590/ACC-0590RC RTMs are required for graphics operation when using the digital video out the P2 backplane connector.

The default setup in the BIOS for Digital Video Output is 800x600.

Digital Visual Interface (DVI)

The VMIVME-7807/VME-7807RC have a Digital Visual Interface that provides a high-speed digital connection for visual data types that are display technology independent. DVI is a display interface developed in response to the proliferation of digital flat-panel displays. For the most part, these displays are currently connected to an analog Video Graphics Array (VGA) interface and, thus, require a double conversion.

The digital signal from the computer must be converted to an analog signal for the analog VGA interface, then converted back to a digital signal for processing by the flat-panel display. This inherently inefficient process takes a toll on performance and video quality and adds cost. In contrast, when a flat-panel display is connected to a digital interface, no digital-to-analog conversion is required.

DVI uses Silicon Image's PanelLink, a high-speed serial interface that uses Transition Minimized Differential Signaling (TMDS) to send data to the monitor. The DFP and VESA Plug and Display interfaces also use PanelLink. For this reason, DVI can work with these previous interfaces by using adapter cables (depending on the signal quality of the adapter.)

DVI also supports the VESA Display Data Channel (DDC) and the Extended Display Identification Data (EDID) specifications. DDC is a standard communications channel between the display adapter and monitor. EDID is a standard data format containing monitor information such as vendor information, monitor timing, maximum image size, and color characteristics. EDID information is stored in the display and is communicated over the DDC. EDID and DDC enable the system, display and graphics adapter to communicate so that the system can be configured to support specific features available in the display.

DVI Connectors

The DVI connector has 24 pins that can accommodate up to two TMDS links and the VESA DDC and EDID services. The DVI specification defines two types of connectors (see Figure 1):

- DVI-Digital (DVI-D) supports digital displays only (used on the VMIVME-7807/VME-7807RC)
- DVI-Integrated (DVI-I) supports digital displays and is backward compatible with analog displays (not supported)

The VMIVME-7807/VME-7807RC use the DVI-I connector with a single TMDS link. The DVI-I interface accommodates a 12- or 24-pin DVI plug connector or a new type of analog plug connector that uses four additional pins, plus a ground plane plug to maintain a constant impedance for the analog RGB signals.

Dual Head Video

The VMIVME-7807/VME-7807RC are capable of driving two monitors at the same time using the Intel 855GME GMCH. The graphics controller allows the use of one digital monitor connected to the VMIACC-0590/ACC-0590RC or VMIACC-0586/ ACC-0586RC RTMs, routed out the rear I/O P2 connector. The second is a standard SVGA monitor connected to the front panel of the VMIVME-7807/VME-7807RC, using a standard DB15 connector.

Dual Head Setup Procedure:

- 1. Boot Windows 2000.
- 2. In the windows desktop right click.
- 3. When the menu appears, scroll down to the 'Graphics Options' and then click on 'Graphics Properties'. The Intel 82852/82855GM/GME graphics controller properties menu will appear. From this menu you can choose the display mode of choice.

The monitors can be displayed in several modes:

- Monitor Mode In this mode only the SVGA monitor is displayed.
- Digital Mode In this mode only the Digital is displayed.
- Dual Display Clone Mode In this mode both the SVGA and the Digital monitors are displayed, with the desktop the same on both monitors.
- Extended Desktop Mode In this mode the two monitors are displayed as one desktop.
- 4. After making your choice click 'OK' to apply the changes.

NOTE: When using the Dual Head mode, the maximum resolution for each monitor is 1600x1200 for the 855GME. Refer to manufacturer's documentation for the resolutions of each monitor used.

Hot Keys

The Intel 855GME Graphic and Memory Controller allows the use of hot keys to set up the monitors:

Action	Hot Key Combination
Enable Monitor	<crtl><alt><f1></f1></alt></crtl>
Enable Notebook	<crtl><alt><f3></f3></alt></crtl>
Enable Digital Display	<crtl><alt><f4></f4></alt></crtl>
Invoke Graphics Properties	<crtl><alt><f12></f12></alt></crtl>
Rotate Normal	<crtl><alt><up></up></alt></crtl>
Rotate 90 Degrees	<crtl><alt><left></left></alt></crtl>
Rotate 180 Degrees	<crtl><alt><down></down></alt></crtl>
Rotate 270 Degrees	<crtl><alt><right></right></alt></crtl>

Digital Video Display Modes

High-resolution digital graphics and multimedia-quality video are supported on the VMIVME-7807/VME-7807RC using the 855GME (GMCH) chipset internal graphics controller. Screen resolutions up to 1,600 x 1,200 x 256 colors (single view mode) are supported by the graphics adapter.

Desolution	Bits Per Pixel (Frequency in Hz)			
Resolution	8-bit Indexed	16-bit	24-bit	
320 x 200	70	70	70	
320 x 240	70	70	70	
352 x 480	70	70	70	
352 x 576	70	70	70	
400 x 300	70	70	70	
512 x 384	70	70	70	
640 x 400	70	70	70	
640 x 480	60, 70, 72, 75, 85	60, 70, 72, 75, 85	60, 70, 72, 75, 85	
720 x 480	75, 85	75, 85	75, 85	
720 x 576	60, 75, 85	60, 75, 85	60, 75, 85	
800 x 600	60, 70, 72, 75, 85	60, 70, 72, 75, 85	60, 70, 72, 75, 85	
1,024 x 768	60, 70, 72, 75, 85	60, 70, 72, 75, 85	60, 70, 72, 75, 85	
1,152 x 864	60, 70, 72, 75, 85	60, 70, 72, 75, 85	60, 70, 72, 75, 85	
1,280 x 720	60, 75, 85	60, 75, 85	60, 75, 85	
1,280 x 960	60, 75, 85	60, 75, 85	60, 75, 85	
1,280 x 1,024	60, 70, 72, 75, 85	60, 70, 72, 75, 85	60, 70, 75, 85	
1,600 x 900	60, 75, 85	60, 75, 85		
1,600 x 1,200	60, 70, 72, 75			

 Table 2-4
 Partial List of Display Modes Supported

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

Embedded PC/RTOS Features

Contents

VME Bridge
Embedded PCI Functions
Timers
Watchdog Timer
NVRAM
VME Control
CompactFlash Disk
Remote Ethernet Booting 59

Introduction

GE Fanuc Embedded Systems' VMIVME-7807/VME-7807RC feature additional capabilities beyond those of a typical desktop computer system. The units provide four software-controlled, general-purpose timers along with a programmable Watchdog Timer for synchronizing and controlling multiple events in embedded applications. The VMIVME-7807/VME-7807RC also provide a bootable CompactFlash Disk system and 32KB of non-volatile RAM. Also, the VMIVME-7807/ VME-7807RC support an embedded intelligent VME bridge to allow compatibility with the most demanding VME applications. These features make the unit ideal for embedded applications, particularly where standard hard drives and floppy disk drives cannot be used.

VME Bridge

In addition to their desktop functions, the VMIVME-7807/VME-7807RC have the following VME features:

- Complete six-line Address Modifier (AM-Code) programmability
- VME data interface with separate hardware byte/word swapping for master and slave accesses
- Support for VME64 multiplexed MBLT 64-bit VME block transfers
- User-configured interrupter
- User-configured interrupt handler
- System Controller mode with programmable VME arbiter (PRI, SGL and RRS modes are supported)
- VME BERR bus error timer (software programmable)
- Slave access from the VME to local RAM and mailbox registers
- Full-featured programmable VME requester (ROR, RWD and BCAP modes are supported)
- System Controller auto detection
- Complete VME master access through five separate Protected-mode memory windows

The VMIVME-7807/VME-7807RC support High Throughput DMA transfers of bytes, words and longwords in both Master and Slave configurations.

If Endian conversion is not needed, GE Fanuc Embedded Systems offers a special "Bypass" mode that can be used to further enhance throughput (not available for byte transfers).

The VMIVME-7807/VME-7807RC VME interface is provided by the PCI-to-VME bridge built around the Tundra Semiconductor Corporation Universe II VME interface chip. The Universe II provides a reliable high-performance 64-bit VME-to-PCI interface in one design. The functions and programming of the Universe-based VME interface are addressed in detail in a companion manual titled: *GE Fanuc Embedded Systems' Tundra Universe II Based VME Interface Product Manual* (500-000211-000).

I²C/SMBus Temperature Sensor

The MAX6657MSA can be monitored and controlled on the SMBus at address **0x98 for the VMIVME-7807/VME-7807RC**. This will allow the user to monitor and set up the two alarms available (ALERT and OVERT1).

For more information on the Maxim MAX6657MSA contact them directly at:

1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Embedded PCI Functions

The VMIVME-7807/VME-7807RC provide non-volatile RAM (NVRAM), timers and a Watchdog Timer via the PCI bus. These functions are required for embedded and real time applications. The PCI configuration space of these embedded functions are shown below.

31	16	15	00	Register Address
Device	ID 0004	Vendor ID 114A		00h
Sta	itus	Com	mand	04h
	Class Code		Revision ID	08h
BIST	Header Type	Latency Timer	Cache Line Size	0Ch
PCI Base Add	ress 0 for Memory-Ma	pped VME Control reg	gisters (BAR0)	10h
PCI Base	Address 1 for Memory	-Mapped 32kB NVRA	M (BAR1)	14h
PCI Base Address	2 for memory-mapp	ed Watchdog and ot	her timers (BAR2)	18h
Reserved				1Ch
Reserved				20h
Reserved				24h
Reserved				28h
Subsystem ID 7807 Subsystem Vendor ID 114A				2Ch
Reserved				30h
Reserved				34h
Reserved			38h	
Max_Lat	Min_gnt	Interrupt Pin	Interrupt Line	3Ch

Table 3-1 PCI Configuration Space Registers

The "Device ID" field indicates that the device is for VME products (00) and indicates the supported embedded feature set.

The "Vender ID" and "Subsystem Vendor ID" fields indicate GE Fanuc Embedded Systems' PICMG assigned Vender ID (114A).

The "Subsystem ID" field indicates the model number of the product (7807).

Timers

General

The VMIVME-7807/VME-7807RC provide four user-programmable timers (two 16-bit and two 32-bit) which are completely dedicated to user applications and are not required for any standard system function. Each timer is clocked by independent generators with selectable rates of 2MHz, 1MHz, 500kHz and 250kHz. Each timer may be independently enabled and each is capable of generating a system interrupt on timeout.

Events can be timed by either polling the timers or enabling the interrupt capability of the timer. A status register allows for application software to determine which timer is the cause of any interrupt.

Timer Control Status Register 1 (TCSR1)

The timers are controlled and monitored via the Timer Control Status Register 1 (TCSR1) located at offset 0x00 from the address in BAR2. The mapping of the bits in this register are as follows:

Field	Bits	Read or Write
Timer 1 Caused IRQ	TCSR1[0]	R/W
Timer 1 Enable	TCSR1[1]	R/W
Timer 1 IRQ Enable	TCSR1[2]	R/W
Timer 1 Clock Select	TCSR1[43]	R/W
Timer 2 Caused IRQ	TCSR1[8]	R/W
Timer 2 Enable	TCSR1[9]	R/W
Timer 2 IRQ Enable	TCSR1[10]	R/W
Timer 2 Clock Select	TCSR1[1211]	R/W
Timer 3 Caused IRQ	TCSR1[16]	R/W
Timer 3 Enable	TCSR1[17]	R/W
Timer 3 IRQ Enable	TCSR1[18]	R/W
Timer 3 Clock Select	TCSR1[2019]	R/W
Timer 4 Caused IRQ	TCSR1[24]	R/W
Timer 4 Enable	TCSR1[25]	R/W
Timer 4 IRQ Enable	TCSR1[26]	R/W
Timer 4 Clock Select	TCSR1[2827]	R/W
Reserved	All Other Bits	R/W

All of these bits default to "0" after system reset.

Clock Rate	MSb	LSb
2MHz	0	0
1MHz	0	1
500kHz	1	0
250kHz	1	1

Each timer has an independently selectable clock source which is selected by the bit pattern in the "Timer x Clock Select" field as follows:

Each timer can be independently enabled by writing a "1" to the appropriate "Timer x Enable" field. Similarly, the generation of interrupts by each timer can be independently enabled by writing a "1" to the appropriate "Timer x IRQ Enable" field.

If an interrupt is generated by a timer, the source of the interrupt may be determined by reading the "Timer x Caused IRQ" fields. If the field is set to "1", then the respective timer caused the interrupt. Note that multiple timers can cause a single interrupt. Therefore, the status of all timers must be read to ensure that all interrupt sources are recognized.

A particular timer interrupt can be cleared by writing a "0" to the appropriate "Timer x Caused IRQ" field. Alternately, a write to the appropriate Timer x IRQ Clear (TxIC) register will also clear the interrupt. When clearing the interrupt using the "Timer x Caused IRQ" fields, note that it is very important to ensure that a proper bit mask is used so that other register settings are not affected. The preferred method for clearing interrupts is to use the "Timer x IRQ Clear" registers described on page 52.

Timer Control Status Register 2 (TCSR2)

The timers are also controlled by bits in the Timer Control Status Register 2 (TCSR2) located at offset 0x04 from the address in BAR2. The mapping of the bits in this register are as follows:

Field	Bits	Read or Write
Read Latch Select	TCSR2[0]	R/W
Reserved	All Other Bits	R/W

All of these bits default to "0" after system reset.

The "Read Latch Select" bit is used to select the latching mode of the programmable timers. If this bit is set to "0", then each timer output is latched upon a read of any one of its address. For example, a read to the TMRCCR12 register latches the count of timers 1 and 2. A read to the TMRCCR3 register latches the count of timer 3. This continues for every read to any one of these registers. As a result, it is not possible to

capture the values of all four timers at a given instance in time. However, by setting this bit to "1", all four timer outputs will be latched only on reads to the Timer 1 & 2 Current Count Register (TMRCCR12). Therefore, to capture the current count of all four timers at the same time, perform a read to the TMRCCR12 first (with a 32-bit read), followed by a read to TMRCCR3 and TMRCCR4. The first read (to the TMRCCR12 register) causes all four timer values to be latched at the same time. The subsequent reads to the TMRCCR3 and TMRCCR4 registers do not latch new count values, allowing the count of all timers at the same instance in time to be obtained.

Timer 1 & 2 Load Count Register (TMRLCR12)

Timers 1 & 2 are 16-bits wide and obtain their load count from the Timer 1 & 2 Load Count Register (TMRLCR12), located at offset 0x10 from the address in BAR2. The mapping of bits in this register are as follows:

Field	Bits	Read or Write
Timer 2 Load Count	TMRLCR12[3116]	R/W
Timer 1 Load Count	TMRLCR12[150]	R/W

When either of these fields are written (either by a single 32-bit write or separate 16-bit writes), the respective timer is loaded with the written value on the next rising edge of the timer clock, regardless of whether the timer is enabled or disabled. The value stored in this register is also automatically reloaded on terminal count (or timeout) of the timer.

Timer 3 Load Count Register (TMRLCR3)

Timer 3 is 32-bits wide and obtains its load count from the Timer 3 Load Count Register (TMRLCR3), located at offset 0x14 from the address in BAR2. The mapping of bits in this register are as follows:

Field	Bits	Read or Write
Timer 3 Load Count	TMRLCR3[310]	R/W

When this field is written, Timer 3 is loaded with the written value on the next rising edge of the timer clock, regardless of whether the timer is enabled or disabled. The value stored in this register is also automatically reloaded on terminal count (or timeout) of the timer.

Timer 4 Load Count Register (TMRLCR4)

Timer 4 is 32-bits wide and obtains its load count from the Timer 4 Load Count Register (TMRLCR4), located at offset 0x18 from the address in BAR2. The mapping of bits in this register are as follows:

Field	Bits	Read or Write
Timer 4 Load Count	TMRLCR4[310]	R/W

When this field is written, Timer 4 is loaded with the written value on the next rising edge of the timer clock, regardless of whether the timer is enabled or disabled. The value stored in this register is also automatically reloaded on terminal count (or timeout) of the timer.

Timer 1 & 2 Current Count Register (TMRCCR12)

The current count of timers 1 & 2 may be read via the Timer 1 & 2 Current Count Register (TMRCCR12), located at offset 0x20 from the address in BAR2. The mapping of bits in this register are as follows:

Field	Bits	Read or Write
Timer 2 Count	TMRCCR12[3116]	R.O.
Timer 1 Count	TMRCCR12[150]	R.O.

When either field is read, the current count value is latched and returned. There are two modes that determine how the count is latched depending on the setting of the "Read Latch Select" bit in the WDT Control Status Register (CSR2). See the CSR2 register description for more information on these two modes.

Timer 3 Current Count Register (TMRCCR3)

The current count of Timer 3 may be read via the Timer 3 Current Count Register (TMRCCR3), located at offset 0x24 from the address in BAR2. The mapping of bits in this register are as follows:

Field	Bits	Read or Write
Timer 3 Count	TMRCCR3[310]	R.O.

When this field is read, the current count value is latched and returned. There are two modes that determine how the count is latched depending on the setting of the "Read Latch Select" bit in the WDT Control Status Register (CSR2). See the CSR2 register description for more information on these two modes.

Timer 4 Current Count Register (TMRCCR4)

The current count of Timer 4 may be read via the Timer 4 Current Count Register (TMRCCR4), located at offset 0x28 from the address in BAR2. The mapping of bits in this register are as follows:

Field	Bits	Read or Write	
Timer 4 Count	TMRCCR4[310]	R.O.	

When this field is read, the current count value is latched and returned. There are two modes that determine how the count is latched depending on the setting of the "Read Latch Select" bit in the WDT Control Status Register (CSR2). See the CSR2 register description for more information on these two modes.

Timer 1 IRQ Clear (T1IC)

The Timer 1 IRQ Clear (T1IC) register is used to clear an interrupt caused by Timer 1. Writing to this register, located at offset 0x30 from the address in BAR2, causes the interrupt from Timer 1 to be cleared. This can also be done by writing a "0" to the appropriate "Timer x Caused IRQ" field of the timer Control Status Register (CSR1). This register is write only and the data written is irrelevant.

Timer 2 IRQ Clear (T2IC)

The Timer 2 IRQ Clear (T2IC) register is used to clear an interrupt caused by Timer 2. Writing to this register, located at offset 0x34 from the address in BAR2, causes the interrupt from Timer 2 to be cleared. This can also be done by writing a "0" to the appropriate "Timer x Caused IRQ" field of the timer Control Status Register (CSR1). This register is write only and the data written is irrelevant.

Timer 3 IRQ Clear (T3IC)

The Timer 3 IRQ Clear (T3IC) register is used to clear an interrupt caused by Timer 3. Writing to this register, located at offset 0x38 from the address in BAR2, causes the interrupt from Timer 3 to be cleared. This can also be done by writing a "0" to the appropriate "Timer x Caused IRQ" field of the timer Control Status Register (CSR1). This register is write only and the data written is irrelevant.

Timer 4 IRQ Clear (T4IC)

The Timer 4 IRQ Clear (T4IC) register is used to clear an interrupt caused by Timer 4. Writing to this register, located at offset 0x3C from the address in BAR2, causes the interrupt from Timer 4 to be cleared. This can also be done by writing a "0" to the appropriate "Timer x Caused IRQ" field of the timer Control Status Register (CSR1). This register is write only and the data written is irrelevant.

Watchdog Timer

General

The VMIVME-7807/VME-7807RC provide a programmable Watchdog Timer (WDT) which can be used to reset the system if software integrity fails.

WDT Control Status Register (WCSR)

The WDT is controlled and monitored by the WDT Control Status Register (WCSR) which is located at offset 0x08 from the address in BAR2. The mapping of the bits in this register are as follows:

Field	Bits	Read or Write
SERR/RST Select	WCSR[16]	R/W
WDT Timeout Select	WCSR[108]	R/W
WDT Enable	WCSR[0]	R/W

All of these bits default to "0" after system reset. All other bits are reserved.

The "WDT Timeout Select" field is used to select the timeout value of the Watchdog Timer as follows:

Timeout	WCSR[10]	WCSR[9]	WCSR[8]
135s	0	0	0
33.6s	0	0	1
2.1s	0	1	0
524ms	0	1	1
262ms	1	0	0
131ms	1	0	1
32.768ms	1	1	0
2.048ms	1	1	1

The "SERR/RST Select" bit is used to select whether the WDT generates an SERR# on the local PCI bus or a system reset. If this bit is set to "0", the WDT will generate a system reset. Otherwise, the WDT will make the local PCI bus SERR# signal active.

The "WDT Enable" bit is used to enable the Watchdog Timer function. This bit must be set to "1" in order for the Watchdog Timer to function. Note that since all registers default to zero after reset, the Watchdog Timer is always disabled after a reset. The Watchdog Timer must be re-enabled by the application software after reset in order for the Watchdog Timer to continue to operate. Once the Watchdog Timer is enabled, the application software must refresh the Watchdog Timer within the selected timeout period to prevent a reset or SERR# from being generated. The Watchdog Timer is

З

refreshed by performing a write to the WDT Keepalive register (WKPA). The data written is irrelevant.

WDT Keepalive Register (WKPA)

When enabled, the Watchdog Timer is prevented from resetting the system by writing to the WDT Keepalive Register (WKPA) located at offset 0x0C from the address in BAR2 within the selected timeout period. The data written to this location is irrelevant.

NVRAM

The VMIVME-7807/VME-7807RC provide 32KB of non-volatile RAM. This memory is mapped in 32K of address space starting at the address in BAR1. This memory is available at any time and supports byte, short word and long word accesses from the PCI bus. The contents of this memory are retained when the power to the board is removed.

VME Control

The following table shows the register definitions for the VMIVME-7807/ VME-7807RC (offset from BAR0).

Register Name	Offset	
VMECOMM	0x00	
Bit Name	Bit	Definition
MEC_SEL	0	Master big-endian enable bit 1=Big Endian, 0=Little Endian bit
SEC_SEL	1	Slave Big-Endian enable bit 1=Big Endian, 0=Little Endian
ABLE	2	Auxiliary BERR logic enable bit 1=Aux. BERR enabled 0=Aux. BERR disabled
BTO	3	Bus error timer enabled 1=enabled, 0=disabled
BTOV [1:0]	5:4	Timeout value
		00 - 16µs
		01 - 64µs
		10 -256µs
		11 - 1.00ms
BERRI	6	BERR interrupt enable 1=Interrupt enabled 0=Interrupt disabled
BERRST	7	BERR status read/clear bit 1=Clear BERR status, 0=Do nothing
SFENA	8	Enables generation of VME SYSFAIL upon WDT timeout 1= Enable SYSFAIL generation, 0=Disable
Unused	9	Not Used
BPENA	10	Endian conversion bypass bit 1=bypass, 0=Not bypassed
VBENA	11	VME enable bit (VBENA) 1 = enabled, 0 = disabled
Unused	31:12	Not Used
VBAM	0x04	
VME_ADDR	5:0	Latched VME Address Modifier
Unused	31:6	Not Used
SEC_SEL	0x001	
VBAR	0x08	
VME_ADDR	All	Latched VME Address

Table 3-2 Register Definitions Offset From BAR0

Please refer to Table 3-1, "PCI Configuration Space Registers," on page 47 for more information concerning BAR0.

CompactFlash Disk

The VMIVME-7807/VME-7807RC feature an optional onboard CompactFlash mass storage system with a capacity of up to 2GB. This CompactFlash Disk appears to the user as an intelligent ATA (IDE) disk drive with the same functionality and capabilities as a "rotating media" IDE hard drive. The VMIVME-7807/VME-7807RC BIOS includes an option to allow the board to boot from the CompactFlash with user-provided operating system.

Configuration

The CompactFlash Disk resides on the VMIVME-7807/VME-7807RC as the secondary IDE bus master device (the secondary IDE bus slave device is not assignable).

Remote Ethernet Booting

The VMIVME-7807/VME-7807RC are capable of booting from a server using either 10/100 Mb or the Gigabit Ethernet over a network utilizing the ARGON Boot ROM BIOS. The BIOS gives you the ability to remotely boot the VMIVME-7807/VME-7807RC using a variety of network protocols. The Ethernet must be connected through either front panel (RJ45) connectors to boot remotely. This feature allows users to create systems without the worry of disk drive reliability or the extra cost of adding CompactFlash drives.

Boot BIOS Features:

- Netware (802.1, 802.3 or EthII), TCP/IP (DHCP or BootP), RPL and PXE boot support
- Unparalleled boot sector virus protection
- Detailed boot configuration screens
- Comprehensive diagnostics
- Optional disabling of local boots
- Dual-boot option lets users select network or local booting

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

Maintenance

If a GE Fanuc Embedded Systems product malfunctions, please verify the following:

- 1. Software resident on the product
- 2. System configuration
- 3. Electrical connections
- 4. Jumper or configuration options
- 5. Boards are fully inserted into their proper connector location
- 6. Connector pins are clean and free from contamination
- 7. No components or adjacent boards were disturbed when inserting or removing the board from the chassis
- 8. Quality of cables and I/O connections

If products must be returned, contact GE Fanuc Embedded Systems for a Return Material Authorization (RMA) Number. **This RMA Number must be obtained prior to any return**. RMAs are available at <u>rma@gefanuc.com</u>.

GE Fanuc Embedded Systems Customer Care is available at: 1-800-GEFANUC (or 1-800-433-2682), 1-780-401-7700, or E-mail us at support.embeddedsystems@gefanuc.com.

Maintenance Prints

User level repairs are not recommended. The drawings and diagrams in this manual are for reference purposes only.

Compliance Information

This chapter provides the applicable information regarding regulatory compliance for the VMIVME-7807/VME-7807RC.

CE

GE Fanuc Embedded Systems has evaluated the VMIVME-7807/VME-7807RC and they have met the following standards:

- EN55024
- EN55022, Class A
- EN61000-4-2
- EN61000-4-3
- EN61000-4-4
- EN61000-4-5
- EN61000-4-6

International Compliance

These products have also met the following international levels.

European Union

- EN55024 (1998 w A1:01 & A2: 03)
- CISPR22, EN55022 (Class A)
- CISPR11, EN55011(Class A, Group 1)

United States

- FCC Part 15, Subpart B, Section 109, Class A
- CISPR 22 (1997), Class A
- ANSI C63.4 (2003) method

Australia/New Zealand

• AS/NZS CISPR 22 (2002) Class A using: EN55022 (1998) Class A

Japan

• VCCI (April 2005) Class A using: CISPR 22 (1997) Class A ANSI C63.4 (2003) method

Canada

 ICES-003 Class A using: CISPR 22 (1997) Class A ANSI C63.4 (2003) Method

FCC Part 15

These devices comply with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC Class A

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference at his own expense.

NOTICE: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Canadian Regulations

The VMIVME-7807/VME-7807RC Class A digital apparatus comply with Canadian ICES-003.

NOTE: Any equipment tested and found compliant with FCC Part 15 for unintentional radiators or EN55022 (previously CISPR 22) satisfies ICES-003.

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

Connector Pinouts

Contents

VME Connector Pinout	68
Serial Connector (J22) and Pinout	70
Mouse/Keyboard Connector and Pinout (J10)	71
Ethernet Connector Pinout (10/100Mbit) J15	73
PMC Site Connectors and Pinouts	74
USB Connectors (J16 and J17)	77
Gigabit Ethernet Connector and Pinout (J18)	78

Introduction

The VMIVME-7807/VME-7807RC VME SBCs have several connectors for their I/O ports. Wherever possible, the VMIVME-7807/VME-7807RC use connectors and pinouts typical for any desktop PC. This ensures maximum compatibility with a variety of systems.

Connector diagrams in this appendix are generally shown in a natural orientation with the SBC mounted in a VME chassis.

VMIVME-7807/VME-7807RC Product Manual

VME Connector Pinout

D1

Figure A-1 shows the location of the VME P1 and P2 connectors and their orientation on the VMIVME-7807/VME-7807RC. Table A-1 shows the pin assignments for the VME P1 connector. Table A-2 on page 69 is the connector pinout for the P2 connector.

VME P1 Connector and Pinout

A1 Z1

A32 Z32

D32

Pin #	P1 Row A Signal	P1 Row B Signal	P1 Row C Signal	P1 Row D Signal	P2 Row Z Signal
1	D00	BBSY#	D08	N/C	N/C
2	D01	BCLR#	D09	N/C	N/C
3	D02	ACFAIL#	D10	N/C	N/C
4	D03	BG0IN#	D11	N/C	N/C
5	D04	BG0OUT#	D12	N/C	N/C
6	D05	BG1IN#	D13	N/C	N/C
7	D06	BG1OUT#	D14	N/C	N/C
8	D07	BG2IN#	D15	N/C	N/C
9	GND	BG2OUT#	GND	VCC_3.3	N/C
10	SYSCLK	BG3IN#	SYSFAIL#	VCC_3.3	N/C
11	GND	BG3OUT#	BERR#	VCC_3.3	N/C
12	DS1#	BR0#	SYSRESET#	N/C	N/C
13	DS0#	BR1#	LWORD#	VCC_3.3	N/C
14	WRITE#	BR2#	AM5	N/C	N/C
15	GND	BR3#	A23	VCC_3.3	N/C
16	DTACK#	AM0	A22	N/C	N/C
17	GND	AM1	A21	VCC_3.3	N/C
18	AS#	AM2	A20	N/C	N/C
19	GND	AM3	A19	N/C	N/C
20	IACK#	GND	A18	N/C	N/C
21	IACKIN#	N/C	A17	N/C	N/C
22	IACKOUT#	N/C	A16	N/C	N/C
23	AM4	GND	A15	N/C	N/C
24	A07	IRQ7#	A14	N/C	N/C
25	A06	IRQ6#	A13	N/C	N/C
26	A05	IRQ5#	A12	N/C	N/C
27	A04	IRQ4#	A11	N/C	N/C
28	A03	IRQ3#	A10	N/C	N/C
29	A02	IRQ2#	A09	N/C	N/C
30	A01	IRQ1#	A08	N/C	N/C
31	-12 V	N/C	+12 V	N/C	N/C
32	+5V	+5V	+5V	NC	N/C

Table A-1 VME P1 Connector Pinout

Figure A-1 VME P1 Connector Diagram

VME P2 Connector and Pinout

	Pin #	P2 Row A Signal	P2 Row B Signal	P2 Row C Signal	P2 Row D Signal	P2 Row Z Signal
	1	N/C	+5V	PCIB_RST#	SER3_RI#	ICH_SATA_TXP0
D1	2	IDE_PDD8	GND	IDE_PDD7	SER3_DCD#	GND
	3	IDE_PDD9	N/C	IDE_PDD6	SER3_DSR#	ICH_SATA_TXN0
	4	IDE_PDD10	A24	IDE_PDD5	SER3_DTR#	GND
	5	IDE_PDD11	A25	IDE_PDD4	SER3_IN	ICH_SATA_RXP0
	6	IDE_PDD12	A26	IDE_PDD3	SER3_OUT	GND
	7	IDE_PDD13	A27	IDE_PDD2	SER3_RTS#	ICH_SATA_RXN0
	8	IDE_PDD14	A28	IDE_PDD1	SER3_CTS#	GND
	9	IDE_PDD15	A29	IDE_PDD0	GND	ICH_SATA_TXP1
	10	IDE_PREQ	A30	VCC_5.0	DVI_TXC-	GND
	11	IDE_PDIOW#	A31	GND	DVI_TXC+	ICH_SATA_TXN1
	12	IDE_PDIOR#	GND	GND	DVI_TX0-	GND
	13	IDE_PIORDY#	+5V	GND	DVI_TX0+	ICH_SATA_RXP1
	14	GND	D16	GND	DVI_TX1-	GND
	15	GND	D17	IDE_PDDACK#	DVI_TX1+	ICH_SATA_RXN1
	16	GND	D18	IDE_IRQ14	DVI_TX2-	GND
	17	IDE_PDA[1]	D19	IDE_PDA2	DVI_TX2+	USB_OC3#
	18	IDE_PDCS1#	D20	IDE_PDA0	GND	GND
	19	HD_ACTA#	D21	IDE_PDCS3#	DVO_DDCLK	USB_P3P_L
	20	USB_P2P_L	D22	Port2_Link#	DVO_DDCDATA	GND
	21	N/C	D23	UDMA_PRI_DET	DVI_HTPLG	USB_P3N_L
	22	USB_P2N_L	GND	SP2_RI#B	SER4_RI#	GND
	23	GND	D24	SP2_DCD#B	SER4_DCD#	SP3_4_232_422
	24	MDIB0_P_P2	D25	SP2_DSR#B	SER4_DSR#	GND
	25	MDIB0_N_P2	D26	SP2_DTR#B	SER4_DTR#	MDIB2_P_P2
	26	GND	D27	SP2_RXB	SER4_IN	GND
	27	MDIB1_P_P2	D28	SP2_TXB	SER4_OUT	MDIB2_N_P2
	28	MDIB1_N_P2	D29	SP2_RTS#B	SER4_RTS#	GND
	29	GND	D30	SP2_CTS#B	SER4_CTS#	MDIB3_P_P2
	30	N/C	D31	USB_OC2#	SP4_Active	GND
□ A32 Z32	31	Port2_link100#	GND	SP3_Active	GND	MDIB3_N_P2
DOL	32	Port2_Link1000#	+5V	Port2_Activity#	N/C	GND

Table A-2 VME P2 Connector Pinout

Figure A-2 VME P2 Connector Diagram

Serial Connector (J22) and Pinout

COM1 serial port connector is a standard RJ45 connector as shown in Figure A-3.

COM 1 Serial Port Connector					
RJ45 Pin	DIR	RS232 Signal	Function		
1	In	DCD	Data Carrier Detect		
2	Out	RTS	Request to Send		
3		CGND	Chassis Ground		
4	Out	TXD	Transmit Data		
5	In	RXD	Receive Data		
6		GND	Ground		
7	In	CTS	Clear to Send		
8	Out	DTR	Data Terminal Ready		

Figure A-3 Serial Connectors and Pinouts

Mouse/Keyboard Connector and Pinout (J10)

The mouse/keyboard connector (J10) is a standard 6-pin female mini-DIN PS/2 connector as shown in Figure A-4. The mouse/keyboard connector uses a "Y" splitter cable to separate the mouse and keyboard signals. The "Y" splitter cable is shown in Figure A-5 on page 72, the pinout in shown in Table A-3 on page 72.

Keyboard/Mouse Connector*					
Pin	Dir	Function			
1	In/Out	Mouse Data			
2	In/Out	Keyboard Data			
3		Ground			
4		+5V			
5	Out	Mouse Clock			
6	Out	Keyboard Clock			
Shield		Chassis Ground			
*An adapter cable is included with the VMIVME-7807/VME-7807RC to separate the keyboard and mouse connector.					

Figure A-4 Mouse Connector and Pinout

Figure A-5 Mouse/Keyboard Y Splitter Cable

Keyboard			Mouse		
Pin	Dir	Function	Pin	Dir	Function
1	In/Out	Keyboard Data	1	In/Out	Mouse Data
2		Unused	2		Unused
3		Ground	3		Ground
4		+5V	4		+5V
5	Out	Keyboard Clock	5	Out	Mouse Clock
6		Unused	6		Unused
Shield		Chassis Ground	Shield		Chassis Ground

Table A-3 Keyboard/Mouse Y Splitter Cable

NOTE: The Mouse/Keyboard pinout shown above has pins 2 (Keyboard Data) and 6 (Keyboard Clock) signals on the Mouse cable. This may not work with some Keyboard and Mouse devices. We recommend that you contact *support.embeddedsystems@gefanuc.com* for more information.
Ethernet Connector Pinout (10/100Mbit) J15

The pinout diagram for Ethernet connector J15 is shown in Figure A-6.

Figure A-6 Ethernet Connector and Pinout

PMC Site Connectors and Pinouts

PMC (J11) Connector and Pinout

				PMC Connector (J11)				PMC Conr	nector ((J11)
			Left Side		R	ight Side	L	Left Side Right Side		ight Side
Pin1—		— Pin2	Pin	Name	Pin	Name	Pin	Name	Pin	Name
	ΙΞΞ		1	GND	2	-12V	33	FRAME#	34	GND
			3	GND	4	INTA#	35	GND	36	PCI_IRDY#
	<u>∓</u> <u>∓</u>		5	INTB#	6	INTC#	37	DEVSEL#	38	VCC_5.0
			7	BMODE1#	8	VCC_5.0	39	PCIXCAP	40	PCI1_LOCK#
			9	INTD#	10	N/C	41	SDONE#	42	PMC_SB0#
			11	GND	12	N/C	43	PAR	44	GND
			13	CLK3_PCI1	14	GND	45	VCC_3.3	46	AD[15]
	± ±		15	GND	16	PCI1_GNT3	47	AD[12]	48	AD[11]
	± ±		17	PCI1_REQ3#	18	VCC_5.0	49	AD[9]	50	VCC_5.0
			19	VCC_3.3	20	AD[31]	51	GND	52	PCI1_C/BE#0
	± ±		21	AD[28]	22	AD[27]	53	AD[6]	54	AD[5]
	± ±		23	AD[25]	24	GND	55	AD[4]	56	GND
	‡ ‡		25	GND	26	C/BE#3	57	VCC_3.3	58	AD[3]
	‡ ‡		27	AD[22]	28	AD[21]	59	AD[2]	60	AD[1]
Pin63 —	╤┤╪╸┿╞╤	Pin64	29	AD[19]	30	VCC_5.0	61	AD[0]	62	VCC_5.0
			31	VCC_3.3	32	AD[17]	63	GND	64	PCI1_REQ64#

Table A-4 PMC (J11) Connector Pinout

Figure A-7 PMC (J11) Connector

PMC (J12) Connector and Pinout

		PMC Conr	nector	(J12)	PMC Connector (J12)			
		Left Side		light Side		Left Side	Right Side	
	Pin	Name	Pin	Name	Pin	Name	Pin	Name
Pin1 Pin2	1	VCC_12.0	2	VCC_3.3	33	GND	34	N/C
‡ ‡	3	GND	4	N/C	35	PCI1_TRDY#	36	VCC_3.3
<u>+</u> <u>+</u>	5	VCC_3.3	6	GND	37	GND	38	STOP#
<u> </u>	7	GND	8	N/C	39	PCI1_PERR#	40	GND
± ±	9	N/C	10	N/C	41	VCC_3.3	42	SERR#
‡ ‡	11	BMODE2#	12	VCC_3.3	43	PCI1_C/BE#1	44	GND
‡ ‡	13	PCIB_RESET#	14	BMODE3#	45	AD[14]	46	AD[13]
I Ŧ Ŧ I	15	VCC_3.3	16	BMODE4#	47	M66EN	48	AD[10]
	17	N/C	18	GND	49	AD[8]	50	VCC_3.3
± ±	19	AD[30]	20	AD[29]	51	AD[7]	52	N/C
‡ ‡	21	GND	22	AD[26]	53	VCC_3.3	54	N/C
‡ ‡	23	AD[24]	24	VCC_3.3	55	N/C	56	GND
I Ŧ Ŧ I	25	PMC_IDSEL	26	AD[23]	57	N/C	58	N/C
	27	VCC_3.3	28	AD[20]	59	GND	60	N/C
Pin63 Pin64 Pin64	29	AD[18]	30	GND	61	ACK64#	62	VCC_3.3
	31	AD[16]	32	PCI1_C/BE#2	63	GND	64	N/C

 Table A-5
 PMC (J12) Connector Pinout

Figure A-8 PMC (J12) Connector

PMC (J13) Connector and Pinout

				PMC Conr	nector	(J13)	PMC Connector (J13)			
Dia1				Left Side	R	light Side	L	eft Side	Right Side	
Pin I —		Pin2	Pin	Name	Pin	Name	Pin	Name	Pin	Name
			1	N/C	2	GND	33	GND	34	AD[48]
	± ±		3	GND	4	PCI1_C/BE#7	35	AD[47]	36	AD[46]
	‡ ‡		5	PCI1_C/BE#6	6	PCI1_C/BE#5	37	AD[45]	38	GND
	‡ ‡		7	PCI1_C/BE#4	8	GND	39	VCC_3.3	40	AD[44]
	+ +		9	VCC_3.3	10	N/C	41	AD[43]	42	AD[42]
	‡ ‡		11	AD[63]	12	AD[62]	43	AD[41]	44	GND
	‡ ‡		13	AD[61]	14	GND	45	GND	46	AD[40]
	‡ ‡		15	GND	16	AD[60]	47	AD[39]	48	AD[38]
	‡ ‡		17	AD[59]	18	AD[58]	49	AD[37]	50	GND
	‡ ‡		19	AD[57]	20	GND	51	GND	52	AD[36]
	‡ ‡		21	VCC_3.3	22	AD[56]	53	AD[35]	54	AD[34]
	‡ ‡		23	AD[55]	24	AD[54]	55	AD[33]	56	GND
	‡ ‡		25	AD[53]	26	GND	57	VCC_3.3	58	AD[32]
	‡ ‡		27	GND	28	AD[52]	59	N/C	60	N/C
Pin63 —	╤╡╞╼┥╞╌╴	Pin64	29	AD[51]	30	AD[50]	61	N/C	62	GND
			31	AD[49]	32	GND	63	GND	64	N/C

Table A-6 PMC (J13) Connector Pinout

Figure A-9 PMC (J13) Connector

A

USB Connectors (J16 and J17)

The USB ports are two industry standard 4-position shielded connectors. Figure A-10 shows the connector and pinout for the USB ports.

USB Connector (J16 and J17)								
Pin Signal Function								
1	USB_VCC	USB Power						
2	USB-	USB Data -						
3	USB+	USB Data +						
4	USBG	USB Ground						

Figure A-10 USB Connectors and Pinouts

Gigabit Ethernet Connector and Pinout (J18)

The pinout diagram for the dual Gigabit Ethernet connector and pinout are shown in Figure A-11.

Figure A-11 Dual Gigabit Ethernet Connector (J18) and Pinout

AMI BIOS Setup Utility

Contents

1ain	1
Advanced BIOS Setup	2
CI/PnP Setup	3
oot Setup	1
ecurity Setup	5
Thipset Setup 86	5
xit Menu	7

Introduction

This appendix gives a brief description of the setup options in the system BIOS. Due to the custom nature of GE Fanuc Embedded Systems' Single Board Computers, your BIOS options may vary from the options discussed in this appendix.

AMI refers to their BIOS setup screens as ezPORT. For a complete description of all the options available with the AMI BIOS, please visit www.ami.com and download their ezPORT PDF file. The options listed on AMI's web site may not be available on your system.

To Access the First Boot setup screen press the F11 key at the beginning of boot.

To access the ezPORT setup screens, press the DEL key at the beginning of boot.

First Boot

The VMIVME-7807/VME-7807RC have a First Boot menu enabling the user to, on a one time basis, select a drive device to boot from. This feature is useful when installing from a bootable disk. For example, when installing Windows XP from a CD, enter the First Boot menu and use the arrows keys to highlight ATAPI CD-ROM Drive. Press ENTER to continue with system boot.

This feature is accessed by pressing the F11 key at the very beginning of the boot cycle. The selection made from this screen applies to the current boot only, and will not be used during the next boot-up of the system. If you have trouble accessing this feature, disable the QuickBoot Mode in the Boot BIOS setup screen. Exit, saving changes and retry accessing the First Boot menu.

Boot Menu

- 1. + Removable Devices:
- 2. + Hard Drive
- 3. ATAPI CD-ROM Drive
- 4. MBA UNDI (Bus 1 Slot 6) LAN 1

<Enter Setup>

Main

The Main BIOS setup menu screen has two main areas. The left frame displays all the options that can be configured. "Grayed-out" options cannot be configured. Options in blue can be configured. The right frame displays the key legend. Above the key legend is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white and a text message in the right frame gives a brief description of the option.

The Main menu reports the BIOS revision, processor type and clock speed, and allows the user to set the system's clock and calendar. Use the left and right arrow keys to select other screens.

Below is a sample of the Main screen. The information displayed on your screen will reflect your actual system.

		TI LI TY				
Mai n	Advanced	PCI PnP	Boot	Securi ty	Chi pset	Exi t
System Over	∼view	Use [Enter], [TAB]				
AMIBIOS Version : (Build Date ID : 0780 Processor Type : In Speed : 10 System Mem Size : 10 System Tim System Date	08.00.10 : 03/02/04 7_010 tel(R) Penti 500MHz pry 16MB e [11:39: e [Tue 03	um (R) M pr 40] /04/2004]	ocessor 160	ЭОМН	- Or [SHIF Select a Use [+] Configur Time. ↓ Sel +- Cha Tab Sel F1 Ger F10 Sav ESC Exi	ect Screen ect Item ange Field ect Field ect Help ve and Exit t

002.53 (C) Copyright 1985-2002, American Megatrends, Inc.

NOTE: Options shown may not be available on your system.

Advanced BIOS Setup

The Advanced BIOS Setup menu allows the user to configure some CPU settings, the IDE bus, SCSI devices, other external devices and internal drives.

Select the *Advanced* tab from the ezPORT setup screen to enter the Advanced BIOS Setup screen. You can select the items in the left frame of the screen, such as SuperIO Configuration, to go to the sub menu for that item. You can display an Advanced BIOS Setup option by highlighting it using the <Arrow> keys. A sample of the Advanced BIOS Setup screen is shown below.

NOTE: Changes in this screen can cause the system to malfunction. If problems are noted after changes have been made, reboot the system and access the BIOS. From the Exit menu select 'Load Failsafe Defaults' and reboot the system. If the system failure prevents access to the BIOS screens, refer to Chapter One for instructions on clearing the CMOS.

BIOS SETUP UTILITY										
Main	Advanced	PCI PnP	Boot	Securi ty	Chi pse	et	Exi t			
Advanced Settings Configure CPU.										
WARNING: So main > CPU Co > I DE Co > Fl oppy > SuperI > Remote > USB Co	etting wrong ay cause syst onfiguration / Configurati 0 Configurati Access Conf nfiguration	values in em to mal1 on ion iguration	bel ow secti functi on.	ons	←→ ↑↓ Enter F1 F10 ESC	Sel ec: Sel ec: Go to Genera Save a Exi t	t Screen t Item Sub Screen al Help and Exit			

002.53 (C) Copyright 1985-2002, American Megatrends, Inc.

NOTE: Options shown may not be available on your system.

PCI/PnP Setup

Included in this screen is the control of internal peripheral cards, as well as various interrupts. From this menu, the user can also determine if the system's plug-and-play is enabled or disabled.

NOTE: Changes in this screen can cause the system to malfunction. If problems are noted after changes have been made, reboot the system and access the BIOS. From the Exit menu select 'Load Failsafe Defaults' and reboot the system. If the system failure prevents access to the BIOS screens, refer to Chapter One for instructions on clearing the CMOS.

Below is a sample screen of the PCI/PnP menu; options in your system may be different from those shown.

	BIOS SETUP UTILITY								
Mai n	Advanced	Securi ty	Chi ps	set	Exi t				
Advanced	I PCI/PnP Setti		NO: lets the BLOS						
WARNI NG:	Setting wrong may cause sys	values in b tem to malfu	elow sect nction.	i ons	devices in the system. YES: lets the operating system				
Plug & Play O/S PCI Latency Timer Allocate IRQ to PCI VGA Palette Snooping PCI IDE BusMaster OffBoard PCI/ISA IDE Card				[No] [64] [Yes] [Di sabl ed] [Di sabl ed] [Auto]	configure Plug and Play (PnP) devices not required for boot if your system has a Plug and Play operating system.				
I RQ3 I RQ4 I RQ5 I RQ7 I RQ9 I RQ10 I RQ11 I RQ14				[Avai abl e] [Avai abl e]	←→ ↑↓ +- F1 F10 ESC	Sel ec Sel ec Chang Gener Save Exi t	t Screen t Item e Option al Help and Exit		

002.53 (C) Copyright 1985-2002, American Megatrends, Inc.

Boot Setup

Use the Boot Setup menu to set the priority of the boot devices, including booting from a remote network. The devices shown in this menu are the bootable devices detected during POST. If a drive is installed that does not appear, verify the hardware installation. Also available in this screen are 'Boot Settings' which allow the user to set how the basic system will act, for example, support for PS/2 mouse and whether to use 'Quick Boot' or not.

			_I TY					
Mai n	Adv	anced	PCI PnP	Boot	Securi ty	Chi pse	et	Exi t
Boot	Setti ngs			Configure Settings During System Boot.				
>	Boot Setti	ngs Conf						
A A	Boot Devic Removable I	e Priori Drives	ty					
						←→ ↑↓ Enter F1 F10 ESC	Sel ec Sel ec Go to Gener Save Exi t	t Screen t Item Sub Screen al Help and Exit

002.53 (C) Copyright 1985-2002, American Megatrends, Inc.

Security Setup

The ezPORT setup provides both a Supervisor and a User password. If you use both passwords, the Supervisor password must be set first.

The system can be configured so that all users must enter a password every time the system boots or when ezPORT setup is executed, using either the Supervisor password or User password.

	BIOS SETUP UTILITY	
Main Advanced PCI PnP	Boot Secur	ity Chipset Exit
Security Settings		Install or Change the
Supervisor Password : User Password : Change Supervisor Password Change User Password Clear User Password Boot Sector Virus Protection		
		$\begin{array}{rcl} & \longleftrightarrow & \text{Select Screen} \\ \uparrow \downarrow & \text{Select Item} \\ \text{Enter Change} \\ \text{F1} & \text{General Help} \\ \text{F10} & \text{Save and Exit} \\ \text{ESC} & \text{Exit} \end{array}$

002.53 (C) Copyright 1985-2002, American Megatrends, Inc.

To reset the security in the case of a forgotten password you must drain the NVRAM and reconfigure.

To clear the CMOS password:

- 1. Turn off power to the unit.
- 2. Move switch S2 position 1 to On.
- 3. Wait approximately 5 seconds.
- 4. Move switch S2 position 1 to Off.
- 5. Power up the unit.

When power is reapplied to the unit, the CMOS password will have been cleared, and the CMOS will be set to its defaults.

Chipset Setup

Select the various options for chipsets located in the system (for example, the CPU configuration and configurations for the North and South Bridge). The settings for the chipsets are processor dependent and care must be used when changing settings from the defaults set at the factory. Below is a sample of the Chipset Setup screen; the actual options on your system may vary.

NOTE: Changes in this screen can cause the system to malfunction. If problems are noted after changes have been made, reboot the system and access the BIOS. From the Exit menu select 'Load Failsafe Defaults' and reboot the system. If the system failure prevents access to the BIOS screens, refer to Chapter One for instructions on clearing the CMOS.

	BIOS SETUP UTILITY										
Mai n	Advanced	PCI PnP	Boot	Securi ty	Chi pset	Exi t					
Advance	ed Chipset Setti	Intel Montara GML NorthBridge chipset									
WARNING In Ha CP La	5: Setting wrong may cause syst tel Montara Nor nce Rapids Sout CI (HINT HB6) B n (8254EB) Port	values in l tem to malfi thBridge Co hBridge Con ridge Confi Routing Op	below sectio unction. nfiguration figuration guration tions	n	Confi gurati	on options.					
					$\begin{array}{lll} \longleftrightarrow & \text{Selec} \\ \uparrow \downarrow & \text{Selec} \\ \text{Enter Go tc} \\ \text{F1} & \text{Gorer} \\ \text{F10} & \text{Save} \\ \text{ESC} & \text{Exit} \end{array}$	ct Screen ct Item o Sub Screen -al Help and Exit					

002.53 (C) Copyright 1985-2002, American Megatrends, Inc.

Exit Menu

Select the *Exit* tab from the ezPORT setup screen to enter the Exit BIOS Setup screen. You can display an Exit BIOS Setup option by highlighting it using the <Arrow> keys. The Exit BIOS Setup screen is shown below.

Mai n	Advanced	PCI PnP	Boot	Securi ty	Chipset Exit
Exit Opti	ons				Exit system setup
Save Char Discard (Discard (Load Opti Load Fail	nges and Exit Changes and Ex Changes mal Defaults safe Defaults	after saving the changes. F10 key can be used For this operation			
					<pre>←→ Select Screen ↑↓ Select Item Enter Go to Sub Screen F1 General Help F10 Save and Exit ESC Exit</pre>

002.53 (C) Copyright 1985-2002, American Megatrends, Inc.

If changes have previously been made in the BIOS and the system malfunctions, reboot the system and access this screen. Select 'Load Failsafe Defaults' and continue the reboot.

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

Argon BIOS

Contents

Boot Menus	90
BIOS Features Setup	92

Introduction

The VMIVME-7807/VME-7807RC include an Argon BIOS option which allows the SBCs to be booted from a network. This appendix describes the procedures to enable this option and the Argon BIOS Setup screens.

Boot Menus

There are two methods of enabling the Argon BIOS option. The first method is the *First Boot* menu. The second is the *Boot* menu from the BIOS Setup Utility.

First Boot Menu

Press F11 at the very beginning of the boot cycle, which will access the *First Boot* menu. Selecting "Managed PC Boot Agent (MBA)" to boot from the LAN in this screen applies to the current boot only, at the next reboot the VMIVME-7807/VME-7807RC will revert back to the setting in the Boot menu.

Using the arrow keys, highlight *Managed PC Boot Agent (MBA)*, and press the ENTER key to continue with the system boot.

Boot Menu

The second method of enabling the Argon BIOS option is to press the DEL key during system boot. This will access the BIOS Setup Utility. Advance to the Boot menu, and to the Boot Device Priority sub-menu. Use the arrow keys to highlight the Managed PC Boot Agent (MBA) option. Repeat entering <+> until the desired MBA is at the top of the list.

Advance to the Exit menu, select "Exit Saving Changes" and press ENTER When the system prompts for confirmation, press "Yes". The computer will then restart the system boot-up.

BLOS SETUP UTILITY				
Boot				
Boot Device Priority		Specifies the boot		
1st Boot Device 2nd Boot Device 3rd Boot Device	[MBA UNDI (Bus2 Slot5)] [1st Floppy Drive] [Hard Drive]	 ↔ Select Screen ↑↓ Select Item +- Go to Sub Screen F1 General Help F10 Save and Exit ESC Exit 		

BIOS Features Setup

After the Managed PC Boot Agent has been enabled, there are several boot options available to the user. These options are RPL (default), TCP/IP, Netware and PXE. The screens below show the defaults for each boot method.

RPL

Argon Managed PC Boot Agent (MBA) v4.00 (BLOS Integrated) (c) Copyright 2002 Argon Technology Corporation ALL rights reserved

Boot Method:

Config Message: Message Timeout: Boot failure Prompt: Boot Failure: Enabled 3 Seconds Wait for timeout Next boot device

Confi gurati on

RPL

Use cursor keys to edit: Up/Down change field, Left/Right change value ESC to quit, F9 restore previous settings, F10 to save

TCP/IP

Argon Managed PC Boot Agent (MBA) v4.00 (BIOS Integrated) (c) Copyright 2002 Argon Technology Corporation All rights reserved

Boot Method:

Protocol Config Message: Message Timeout: Boot failure Prompt: Boot Failure: Confi gurati on

TCP/IP

DHCP Enabled 3 Seconds Wait for timeout Next boot device

Use cursor keys to edit: Up/Down change field, Left/Right change value ESC to quit, F9 restore previous settings, F10 to save

BIOS Features Setup

Netware

Argon Managed PC Boot Agent (MBA) v4.00 (BLOS Integrated) (c) Copyright 2002 Argon Technology Corporation ALL rights reserved

Boot Method: Netware Protocol Config Message: Message Timeout: Boot failure Prompt: Boot Failure:

Confi gurati on

802.3

Enabl ed 3 Seconds Wait for timeout Next boot device

Use cursor keys to edit: Up/Down change field, Left/Right change value ESC to quit, F9 restore previous settings, F10 to save

PXE

Argon Managed PC Boot Agent (MBA) v4.00 (BLOS Integrated) (c) Copyright 2002 Argon Technology Corporation All rights reserved

Boot Method:

Config Message: Message Timeout: Boot Failure Prompt: Boot Failure:

Confi gurati on

PXE

Enabl ed 3 Seconds Wait for timeout Next boot device

Use cursor keys to edit: Up/Down change field, Left/Right change value ESC to quit, F9 restore previous settings, F10 to save

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

System Driver Software

Contents

Microsoft Windows 2000 Professional Software Driver Installation	96
Microsoft Windows XP Professional Software Driver Installation	98

Introduction

The VMIVME-7807/VME-7807RC provide high-performance video, Local Area Network (LAN) access and associated software drivers. High-performance video is provided by the embedded Intel 855GME chipset. High-performance LAN operation is provided by a dual-port Intel 82546EB for the VMIVME-7807 or the Intel 82546GB for the VME-7807RC Gigabit Ethernet controller and the 82551 10/100 Mbit Ethernet controller. The LAN adapters can be configured to allow access to two separate, physical networks. Each LAN adapter is capable of running 10BaseT and 100BaseTX. The Gigabit adapter is capable of running 1000BaseT.

To optimize performance of each of these PCI-based subsystems, the user must install the driver software located on the distribution CD-ROM provided with the unit. Detailed instructions for the installation of the drivers under Microsoft Windows 2000 Professional and XP Professional are provided in the following section.

Microsoft Windows 2000 Professional Software Driver Installation

NOTE: Prior to installing device drivers, Windows 2000 should be updated to Service Pack 4 or later. Visit <u>http://support.microsoft.com</u> and search for the latest Service Pack information.

Video Driver Installation

- 1. If not already present, insert the Windows Drivers CD-ROM.
- Click 'Start', 'Run', 'Browse'. In the 'Look in' pull-down selection menu, select the CD-ROM drive. Double-click on the 'Video' folder. Double-click on 'win2k_xp141'. Click 'OK'.
- 3. At the 'Intel(R) Extreme Chipset Graphics Driver Software' window, click 'Next'.
- 4. At the 'Intel(R) Extreme Graphics 2' window, click 'Next'.
- 5. Click 'Yes' to agree to the software license agreement.
- 6. Ensure 'Yes, I want to restart my computer now' is selected and click 'Finish'. The computer will restart. The video resolution settings may be changed as desired.

NOTE: If only analog video is being used, ensure that '*Monitor*' is selected as the default video device in the driver.

6300ESB (Hance Rapids) ICH Chipset Software Installation

- 1. If not already present, insert the Windows Drivers CD-ROM.
- 2. Click 'Start', 'Run', 'Browse'. In the 'Look in' pull-down selection menu, select the CD-ROM drive. Double-click on the 'Hance Rapids' folder. Double-click on the 'Applications' folder. Double-click on 'infinst_enu'. Click 'OK'.
- 3. At the 'Intel Chipset Software Installation Utility' window, click 'Next'. Click 'Yes' to agree to the software license agreement. Click 'Next'. At each of the following 'Hardware Installation' windows, click 'Continue Anyway'.
- 4. Ensure 'Yes, I want to restart my computer now' is selected and click 'Finish'. The computer will restart.

D

USB 2.0 EHCI Host Controller

Depending on how the operating system and the latest service pack were installed, the USB 2.0 controller driver may or may not be running. Visit <u>http://support.microsoft.com</u> and search for *Availability of USB 2.0 Support in Windows 2000 SP1*, for more information on this topic.

To determine whether the driver for the USB 2.0 controller is running, right-click on 'My Computer', and select 'Manage'. In the left pane of the 'Computer Management' window, click on 'Device Manager'. In the right pane, click on the '+' next to 'Universal Serial Bus controllers' to expand the group. If there is a 'Standard Enhanced PCI to USB Host Controller' listed in the group, the USB 2.0 EHCI Host Controller driver is already running, and no further configuration is necessary for the device.

If there is a device labeled 'Universal Serial Bus (USB) controller' under the 'Other devices' section in the right pane of the 'Computer Management' window, the driver has not been installed. To install the driver, right-click on the 'Universal Serial Bus (USB) controller' and select 'Properties' from the drop-down menu. 'Next' select the 'Driver' tab and select 'Update Driver'. When the wizard starts, choose 'Next' and 'Search for a suitable driver' and 'Next again'. The Hardware Update Wizard will find the appropriate driver and begin installation automatically. Click 'Next' as necessary then click 'Finish' and 'Close' to close the drivers properties dialog box. Device Manager will relocate the device to the 'Universal Serial Bus controllers' section in the right pane.

Ethernet Adapter Drivers Installation

- 1. If not already present, insert the Windows Drivers CD-ROM.
- 2. Right-click on 'My Computer', and select 'Manage'. In the left pane of the 'Computer Management' window, click on 'Device Manager'.
- 3. Intel(R) PRO/1000 MT Dual Port Server Adapter. Perform this step for each of the Ethernet controllers under the 'Other devices' section in the right pane of the 'Computer Management' window. Right-click on the 'Ethernet Controller' and select 'Properties' from the drop-down menu. Select the 'Driver' tab and select 'Update Driver'. When the wizard starts ensure 'Install the software automatically' is selected and click 'Next'. The Hardware Update Wizard will find the appropriate driver and begin installation automatically. Click 'Finish'. Device Manager will relocate the devices to the 'Network adapters' section in the right pane.
- 4. Click 'X' to close the 'Computer Management' window.
- 5. Changes may be made to the network configuration as desired.

Microsoft Windows XP Professional Software Driver Installation

NOTE: Prior to installing device drivers, Windows XP should be updated to Service Pack 1a or later. Visit <u>http://support.microsoft.com</u> and search for the latest Service Pack information.

Video Driver Installation

- 1. If not already present, insert the Windows Drivers CD-ROM.
- Click 'Start', 'Run', 'Browse'. In the 'Look in' pull-down selection menu, select the CD-ROM drive. Double-click on the 'Video' folder. Double-click on 'win2k_xp141'. Click 'OK'.
- 3. At the 'Intel(R) Extreme Chipset Graphics Driver Software' window, click 'Next'.
- 4. At the 'Intel(R) Extreme Graphics 2' window, click 'Next'.
- 5. Click 'Yes' to agree to the software license agreement.
- 6. Ensure 'Yes, I want to restart my computer now' is selected and click 'Finish'. The computer will restart. The video resolution settings may be changed as desired.

NOTE: If only analog video is being used, ensure that '*Monitor*' is selected as the default video device in the driver.

6300ESB (Hance Rapids) Chipset Software Installation

- 1. If not already present, insert the Windows Drivers CD-ROM.
- 2. Click 'Start', 'Run', 'Browse'. In the 'Look in' pull-down selection menu, select the CD-ROM drive. Double-click on the 'Hance Rapids' folder. Double-click on the 'Applications' folder. Double-click on 'infinst_enu'. Click 'OK'.
- 3. At the 'Intel Chipset Software Installation Utility' window, click 'Next'. Click 'Yes' to agree to the software license agreement. Click 'Next'. At each of the following 'Hardware Installation' windows, click 'Continue Anyway'.
- 4. Ensure 'Yes, I want to restart my computer now' is selected and click 'Finish'. The computer will restart.

USB 2.0 EHCI Host Controller

Depending on how the operating system and the latest service pack were installed, the USB 2.0 controller driver may or may not be running. Visit <u>http://support.microsoft.com</u> and search for *Availability of USB 2.0 Support in Windows XP SP1*, for more information on this topic.

To determine whether the driver for the USB 2.0 controller is running, click 'Start', right-click on 'My Computer', and select 'Manage'. In the left pane of the 'Computer Management' window, click on 'Device Manager'. In the right pane, click on the '+' next to 'Universal Serial Bus controllers' to expand the group. If there is a 'Standard Enhanced PCI to USB Host Controller' listed in the group, the USB 2.0 EHCI Host Controller driver is already running, and no further configuration is necessary for the device.

If there is a device labeled 'Universal Serial Bus (USB) controller' under the 'Other devices' section in the right pane of the 'Computer Management' window, the driver has not been installed. To install the driver, right-click on the 'Universal Serial Bus (USB) controller' and select 'Update Driver'. Ensure 'Install the software automatically' is selected and click 'Next'. The Hardware Update Wizard will find the appropriate driver and begin installation automatically. Click 'Finish'. Device Manager will relocate the device to the 'Universal Serial Bus controllers' section in the right pane.

Ethernet Adapter Drivers Installation

- 1. If not already present, insert the Windows Drivers CD-ROM.
- 2. Click 'Start', right-click on 'My Computer', and select 'Manage'. In the left pane of the 'Computer Management' window, click on 'Device Manager'.
- 3. Intel(R) PRO/1000 MT Dual Port Server Adapter. Perform this step for each of the Ethernet controllers under the 'Other devices' section in the right pane of the 'Computer Management' window. Right-click on the 'Ethernet Controller' and select 'Update Driver'. Ensure 'Install the software automatically' is selected and click 'Next'. The Hardware Update Wizard will find the appropriate driver and begin installation automatically. Click 'Finish'. Device Manager will relocate the devices to the 'Network adapters' section in the right pane.
- 4. Click 'X' to close the 'Computer Management' window.
- 5. Changes may be made to the network configuration as desired.

VMIVME-7807/VME-7807RC Product Manual

This page is intentionally left blank.

GE Fanuc Information Centers

Americas:	1 (800) 322-3616
Huntsville, AL	1 (256) 880-0444
Camarillo, CA	1 (805) 987-9300
Greenville, SC	1 (864) 627-8800
Richardson, TX	1 (972) 671-1972
Europe, Middle East (and Africa:
Edinburgh, UK	44 (131) 561-352

Edinburgh, UK44 (131) 561-3520Paris, France33 (1) 4324-6007

 Paris, France
 33 (1) 4324-6007

 ©2007 GE Fanuc Automation, Inc. All Rights Reserved.

All other brands or names are property of their respective holders.

Additional Resources

For more information, please visit the GE Fanuc Embedded Systems web site at:

www.gefanucembedded.com

Embedded Systems