
June 1992 Report No. STAN-CS-92-1426

Proceedings of the ACM SIGPLAN Workshop
on Continuations CW92

edited by

Olivier Danvy and Carolyn Talcott

Department of Computer Science

Stanford University

Stanford, California 94305

Proceedings

of the ACM SIGPLAN Workshop

on Continuations CW92

June 21, 1992

San Francisco, California

(between PLDI192 and LFP92)

The notion of continuation is ubiquitous in many different areas of computer science, including

logic, constructive mathematics, programming languages, and programming. This workshop aims

at providing a forum for discussion of: new results and work in progress; work aimed at a better

understanding of the nature of continuations; applications of continuations, and the relation of

, continuations to other areas of logic and computer science.

This technical report serves as informal proceedings for CW92. It consists of submitted

manuscripts bound together according to the program order.

General chair: Olivier Danvy, danvy@cis.ksu.edu

Carolyn L. Talcott, clt@sail.stanford.edu

Program committee: Olivier Danvy (Kansas State University)

Matthias Felleisen (Rice University)

Daniel P. Friedman (Indiana University)

Tim Griffin (Bell Laboratories)

Bob Harper (Carnegie Mellon University)

Jon Riecke (University of Pennsylvania)

Carolyn L. Talcott (Stanford University)

Mitchell Wand (Northeastern University)

Contents

Session 1: 9:00-10:00 — Control (Chaired by Jon Riecke)

ANLICATCH «oooeee]

Guy L. Steele Jr. (Thinking Machine Corporation)

Recursion from ITeration «eu... eeeeee

Andrzej Filinski (Carnegie-Mellon University)

Session 2: 10:15-12:00 — Typing (Chaired by Mitch Wand)

Polymorphic Type Assignment and CPS CONVErSion cue unenans sverraeannans]3

Bob Harper, Mark Lillibridge (Carnegie-Mellon University)

Continuations and Simple TYPES . . cove eee ei reine 23

Franco Barbanera, Stefano Berardi (Universitb di Torino)

Session 3: 1:30-3:15 — Logic (Chaired by Tim Griffin)

Three Monads for CONtINUATIONS . . oo. ou ute ete te ete eeeA

Richard Kieburtz, Borislav Agapiev, James Hook (Oregon Graduate Institute)

Control Operators, Hierarchies, and Pseudo-Classical Type Systems ceeeeeennans .49

Chet Murthy (INRIA)

Session 4: 3:45-5:30 — Implementation (Chaired by Dan Friedman)

On PaiLisp Continuation and irs Implementationouuiuuneernn verneanneann. (3

Takayasu Ito, Tomohiro Seino (Tohoku University)

Continuation-passing and Graph Reduction ui iueienin.|

Chris Okasaki, Peter Lee, David Tarditi (Carnegie-Mellon University)

Anticatch

Guy L. Steele Jr.

Thinking Machines Corporation
245 First Street

Cambridge, Massachusetts 02142

glsQ@think.com

One evening at POPL ‘92, some jolly souls were tramp roles and the past and future exchange roles. My intuition

ing down Tijeras from the hotel to the restaurant called was that if throw gives the current value to some saved
Stephen’s, chatting loudly about the theory of program- continuation, then ant ithrow should give a future value to

ming languages and generally looking like the rowdy, un- the current continuation. This 1s what results from doing
ruly band of marauding computer scientists that we were. language design in one’s head while walking sociably down

Monads were a favorite topic of discussion, thanks to the street. Anyway, we had a. few good laughs over it.

Phil Wadler’s tutorial on the subject that Monday morn- (Fifteen years ago, not long after catch and throw were

ing [6], and some of us were speculating on silly and per- put into MacLisp, Jon LL. White and I used to laugh over
haps not-so-silly extensions to the examples he had given. the idea of a. special form that could intervene between

One such example concerned the monad of reversed a throw and its matching catch and decide whether the
state: thanks to lazy evaluation in the metalanguage, one catch form or the throw form should return the value.

can write an interpreter that appears to propagate state This hypothetical special form was known as bat.)
backwards through the interpreted computation (at least, I looked at the idea for anticatch more closely on the

relative to our intuitions about how an interpreter behaves airplane home. To simplify the semantics, I decided to use

when implemented in a. call-by-value metalanguage). The Church encoding instead of special syntactic forms (I was
illustration was an interpreter for a language in which the sure that Olivier would approve).
computation has access to a primitive that returns the So I needed to invent a new function that would

number of evaluation steps yet to be performed in the com- take another function f and feed it an “antithrow func-
putation. Of course, this value must be used in such a way tion” as an argument. This new function would bear the
that the number of steps yet to be performed does not de- same relationship to the anticatch special form that the
pend on the value received, lest an unresolvable mutual de- Scheme function call-with-current-continuation [3]
pendence arise. (There is probably theoretical fruit here bears to catch. So it looked as though it should be called
for science fiction writers who address the paradoxes of call-with-function-that-returns-eventual-value.
time travel.) Yuck!

On our stroll towards dinner, it occurred to me that But then I thought: why feed f an antithrow function?

perhaps not just derived measurement quantities, but the For such an antithrow function would take no arguments.
very values of expressions themselves could be propogated Why not just feed £ the eventual value itself?
backwards through the computation by a similar tech- So I decided to call it call-with-eventual-value,
nique. A few of us (including, I think, Phil Wadler, or call/ev for short (by analogy with the abbreviation
Matthias Felleisen, Olivier Danvy, and myself) discussed call/cc used mn a number of dialects of Scheme). Thus,
this more or less lightheartedly. I named the appar- as with our previous example,
ently necessary new language constructs anticatch and

antithrow, on the grounds that whereas throw (as de- (call/ev (lambda (v) (+ 3 (begin (print v) 4))))
fined by MacLisp [4] and later Common Lisp [5]) accepts returns 7 after printiiig 7.
a value and transmits it to be returned by catch, I wanted So the new specification is for a. function call/ev such
antithrow to obtain and return the value that anticatch that (call/ev f) invokes f, giving it as an argument the
will return: value that the call to call/ev will eventually return. And

(anticatch (+ 3 (begin (print (antithrow)) 4))) what value should the call to call/ev eventually return?
Presumably whatever the call to f returns.

returns 7 after printing 7. So (call/ev f) = (f (call/ev £)).
I was trying to make a dual to catch in the sense of How about that? call/ev = Y.

Filinski [1, 2], in which values and continuations exchange So much for anticatch.

References

[1] Filinski, Andrzej. Declarative Continuations and Cat-
egorical Duality. Master’s thesis. DIKU-University

of Copenhagen (August 1989). DIKU Report 89/11.

[2] Filinski, Andrzej. Declarative continuations: An inves-
tigation of duality in programming language seman-

tics. In Pitt, D. H., et al., editors, Category Theory

and Computer Science. Lecture Notes in Computer

Science. Springer-Verlag (Manchester, UK, September

1989), 224-249.

[3] IEEE Standard for the Scheme Progmmming Lan-
guage, ieee std 11781990 edition. IEEE Computer

Society (New York, 1991).

[4] Moon, David A. MacLISP Reference Manual. MIT
Project MAC (Cambridge, Massachusetts, April 1974).

[5] Steele, Guy L., Jr., Fahlman, Scott E., Gabriel,
Richard P., Moon, David A., Weinreb, Daniel L.,

Bobrow, Daniel G., DeMichiel, Linda G ., Keene,

Sonya E., Kiczales, Gregor, Perdue, Crispin, Pitman,
Kent M., Waters, Richard C., and White, Jon L. Com-

mon Lisp: The Language (Second Edition). Digital

Press (Bedford, Massachusetts, 1990).

[6] Wadler, Philip. The essence of functional program-
ming. In Proc. Nineteenth Annual ACM Symposium

on Principles of Programming Languages. Association
for Computing Machinery (Albuquerque, New Mexico,

January 1992), 1-14.

2

Recursion from Iteration

Andrzej Filinski*

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

andrzej+@cs.cmu.edu

Abstract

In a call-by-value language with first-class continuations, the usual CBV fixpoint combinator
can be expressed in terms of a simpler iteration primitive. We give an informal derivation of
this correspondence, together with a formal correctness proof. We also present a number of

generalizations and possible applications.

1 Introduction

Recursive definitions in CBV functional languages have always been a bit troublesome. The usual

definition of the Y-combinator doesn’t work, but must be tweaked by insertion of “magical” g-
redexes. In a simply-typed setting, where a recursion operator must be explicitly included as part

of the language, its operational behavior 1s also significantly more complicated than in the CBN

case. Finally, we can define recursive functions but not general recursive values. These technical

problems seem to indicate that, at least in a CBV setting, recursion might more properly be viewed

as a derived, contml-specific concept, not a fundamental, definitional one.

It 1s an elementary observation that iteration 1s a special case of recursion (so-called “tail

recursion”). What 1s not so obvious 1s that the converse can also be true. At the implementation

level, this 1s evident; after all, current machines only have simple loops and must keep track of

recursive calls in an auxiliary data structure (typically a stack). In the following, we will see how

first-class continuations can bring this correspondence up to the language level.

The best-known language with first-class continuations is of course Scheme [CR91]. However,
many of the finer points and distinctions are brought out only in a statically-typed language.

Fortunately, the widely available Standard ML of New Jersey compiler has an experimental first-

class continuation facility (see [DHM91] for details). We will therefore use SML/NJ as the main
language for examples, but give translations to Scheme where possible and appropriate.

The main difference between SML/NJ’s and Scheme’s first-class continuations is that the former
are not represented as procedures but as values of a special type: for any type a, a cont is the

type of o-accepting continuations. The function callcc provides access to the current continuation

exactly like call/cc in Scheme, but applications of continuations use an explicit throw operator.

*Supported in part by NSF Grant CCR-8922109 and in part by the Avionics Lab, Wright Research and Develop

ment Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, OH 45433-6543 under

Contract F33615-90-C-1465, ARPA Order No. 7597.

3

"

Such a presentation is somewhat more convenient in SML’s polymorphic type system; it also permits
a slightly more efficient implementation.

2 Fixpoints from unbounded iteration

Let us first note that adding call/cc to a simply-typed functional language without a recursion

operator does not by itself make it possible to write non-terminating programs [Gri90]. We therefore
need some kind of repetition construct to get started; fortunately, almost anything will do. Consider

the following “endless iteration” operator:

fun loop f = (define (loop ££)

let val rec loopf = (letrec ([loopf

fn a => loopf (f a) (lambda (a) (loopf (f a)))])

in loopf end loopf))
(* loop : (’a => ’a) => ’a => 'b *)

(ML’s fun , like Scheme’s define , defines a recursive function. We will use these constructs for

compactness only, resorting to an explicit val rec or letrec when we actually need recursion).

How can we use such an iterator to create a “recursor”? The key is the following observation:

any function call in a CBV language 1s completely specified by a pair (argument value, return

continuation); we call such a pair an application context. First-class continuations allow us to

capture the application contexts, and thus to schedule all the calls explicitly.

Our first step is to define an application-context capturer:

fun switch 1 = fn x => (define (switch 1) (lambda (x)

callcc (fn gq=>throw 1 (x,q)) (call/cc (lambda (q) (1 (cons x q))))))
(* switch : (‘a * ’2b cont) cont => ’a => ’2b *)

(Type constructors like cont in ML bind very tightly, so’a * ’b cont is implicitly parenthesized

as ’a * (’b cont) . The ’a, usually pronounced “alpha”, is ML’s syntax for a generic type

variable; ignore for the moment the 2 in ’b). The idea is that switch 1 looks like an ordinary
function, but when applied to an ‘a-typed argument with a ‘b-typed return continuation, it will

capture and pass these to I:

k (switch l)v)=1(k, v)

We can now pass in this hook to our recursively-defined function and capture the full context of a
recursive call:

fun step f => fn (v,c) => (define (step f) (lambda (vc)

callcc (fn 1 => (call/cc (lambda (1)

throw c ((cdr ve)

(f (switch 1) v)) ((f (switch 1)) (car vc)))))))
(* step : ((’2a => ’2b) => ’¢c => ’d) => ’c * ’d cont => 2a * ’2b cont *)

The type if step may be a bit confusing at first sight, but the key observation is that it

expresses { as an application-context transformer, mapping from a context for f to a context for

f ‘s argument. If f never applies it argument, step does not return to the point of call.

We can now set up an iteration over contexts, intercepting all recursive calls and sending them

once more through the loop; when a recursive call terminates, we pass the result to whichever
continuation was waiting for it:

|

fun fix f = fn x => (define (fix £) (lambda (x)

callcc (fn r => (call/cc (lambda (r)

loop (step £) (x,r)) ((Loop (step £f)) (cons x r))))))
(* fix : ((’2a => 2b) -> '2a => 2b) -> ’2a -> ’2b *)

(The type of fix 1s only “weakly polymorphic” because of the corresponding restrictions on

| callcc [Har91]. Informally, the 2 in the type indicates that any computational effects are “pro-
| tected” by at least two levels of functional abstraction. In practice this means that result computed

) by a recursively-defined function cannot have its type generalized (i1.e., made usable at two differ-

ent type instances) by a polymorphic let. Fortunately, most actual ML code does not use this
generality, and there 1s evidence suggesting that polymorphic generalization of non-value terms 1s

semantically questionable anyway [HL92].)
As expected from a fixpoint combinator, we get:

-fix(fn fib => fn n => > ((fix (lambda (fib) (lambda (n)

if n<2 then n (if (<n 2) n

else £ib(n-1) + £ib(n-2)) (+ (£ib (= n 1)) (£ib (= n 2)))))))
10; 10)

val 1t = 56 : int = 5b

We use “naive Fibonacci” as our example instead of the traditional factorial function to em-

phasize that the recursion does not have to be linear (1.e., with at most one recursive call in the

body of the defined function).

3 Correctness of the simulation

The above informal explanation of fix can be turned into a more rigorous proof, either by conver-

sion to CPS (see section 4) or by direct-style reasoning about control operators [FH89]; let us use
the latter approach here. First, we note that all of the above uses of callcc are in a restricted form

in which the body of a function called by callcc is always a throw (i.e., the function called with
the current continuation never returns directly to the point of call). This pattern of use for callcce

seems quite common 1n programs with first-class continuations. From a Curry-Howard perspective

[Gri90], it corresponds to introducing a control operator as double-negation elimination instead of
the logically equivalent but less intuitively appealing Peirce’s law. Operationally, it also coincides

with Felleisen’s rules for the C-operator on the subset of the language where the body of a C-called

function 1s a continuation application.

Expanding the definitions above, and adopting a more compact X-syntax, we have:

fiz = Mf.2z.C (Ar.doop (A(v,¢).C (Alc (f (Az.C (Ag.l(z,q)))v))) (z,7))

We can now prove that from (loop g) b= (loop g) (g b), it follows that (fizf) a =f (fixf) a:

F

(fir fla = [Mx.C(Ar.doop (M(v,c).C (M.c(f(Az.C (Ag.l(z,q)))v)))(z, T))]a

= C(Ar.doop F(a, T))

= C(Ar.loop F (F (a, T)))

= C(Ar.loopF ([A(v,¢).C (Ml.c(f (Az.C(Ag.l(z,q)))v))](a,7)))

= C(Ar.doopF (C(Al.r(f (Az.C(Aq.l(z,q)))a))))

1

= C(ArC(Ak.r(f (Az.C(Aq.A(k (loop F (z,q)))))a)))

= C(Ar.L(Ak.r(f (Az.C(Aq.k (loop F(z,q))))a)))

= C(Ar.r(f (Az.C(Aq.A (loopF (z,q))))a))

= C(Ar.r(f (Az.C()Aq.loopF (z,q)))a))

= f (Az.C(Ag.loopF (z,q9)))a

=f (Ae.C(Ag.loop(A(v,¢).C(Le (f (Az.L (Aad (,9))) v))) (2,9) @

= f (fizfla

In the above, we have used twice the identity C (Ak.A E) = C (Ak.E). This is vacuously true in
a typed setting (where the d can never actually be executed), but also holds in general.

4 The essence of iteration

In this section, we will see in more detail why loop is a natural iteration/recursion primitive for

call-by-value languages. Since the details tend to get somewhat obscured by Scheme’s identification

of continuations and general procedures, we will only use SML for the concrete syntax.

The characteristic equations for fixpoints and loops 1n a CBV language look very similar:

(fix £) a = f (fix £) a

(loop f) a = (loop £) (£ a)

However, their principal types perhaps give a better picture of their relative complexity:

fix : ((‘a =>?) => (Pa => ’b)) => (a => ’b)

loop : (a => ’a) => (’a => ’b)

Moreover, the unconstrained type variable ’b in loop shows (because of type soundness) that

(loop f) a can never return a value. We can make this explicit by instantiating ’b to a type

with no values. Let us therefore define the type void’, as follows:

datatype void = VOID of void

fun ignore (VOID v) = ignore v (* ignore : void => ’a *)

This declaration of void as an inductive type with no “base case” ensures that it has no values;

ignore 1s the “empty function” from void to any other type, defined by a degenerate form of

primitive recursion. Since ignore can never be applied to an actual value, its body does not really

matter; we could equally well make it an infinite loop or raise an exception, either of which would

also give it the correct type.

Now, an alternative representation of first-class continuations is as void-returning functions

(see also [DHM91]). Since SML/NJ has no direct mechanism for turning such functions into
continuations, we need the following idiom:

fun mkcont f = callcc (fn k=>ignore (f (callcc (fn c=>throw k ¢))))
(* mkcont : (‘la => void) => ‘la cont *)

(Informally, the continuation ¢ captures the context “pass the argument to f and do not return”;

we need the other callcce to actually return ¢). We can now go all the way and express the fact

that loop actually returns a new continuation:

‘Not to be confused with the void found in C or some versions of ML; these correspond to SML’s unit.

fun loop’ f =

let val rec loopf = fn a=>loopf (f a)
in mkcont loopf end

(* loop’ : (“la =>?1a) -> ’1a cont *)

In particular, for all f and v of appropriate types, we have:

throw (loop’ f) v = throw (loop’ I) (f Vv)

We can directly use this iterator in fix by replacing the initial call of the loop with a throw :

fun fix f = fn x =>

callcc (fn r =>

throw (loop’ (step f£)) (x,r))

From a logical point of view [Gri90], the type of loop’ : (a — a) = —a appears just as paradoxical
as the usual fix : (a—a)—a.However, to actually use the looping construct, we need some form of
double-negation elimination — in the form of a call/cc operator - thereby linking non-termination

to general “non-returning” behavior, i.e., escapes; the type of the fixpoint operator gives no such
hint. In other words, loop’ gives us not a recursively-defined value, but a recursively-defined

continuation. And for this to be useful, the iterated function must be non-rotal (i.e., escaping),

just like the usual fixpoint construction only makes practical sense for non-strict functions.

Let us finally look at the CPS conversions of loop and fix, taking o (= int for the example)

as the type of final answers:

val rec loopc = fn f => fn a => f a (fn a’=>loopc f a’) : 0

(* loopc : (Ca=> (Ca =>0) => 0) => ’a => 0 =)

val fixc =fn f => fn x => fn r =>

loopc (fn (v,c)=>fn 1=>f (fn x=>fn q=>1 (x,q)) v ¢) (x,r)
(* fixc : ((‘a =>"'b => 0) => ’a => ’b => 0) => ’a => ’b => 0 a)

fixc (fn f=>fn n=>fn c=>

if n=0 then c¢c 1 else f (n-1) (fn a=>c (n*a)))

5 (fn r=>r);

(x val it = 120 : 0 =)

(Since loop f 1s a non-returning function, it doesn’t need a continuation parameter). We see that

loopc 1s 1n fact a fixpoint combinator at the CPS level (only the order of arguments 1s switched)!

Shifting viewpoints a bit, it 1s the continuation semantics of CBV iteration that corresponds to

a domain-theoretical fixpoint, while an explicit CBV fixpoint combinator f ixc just adds some
administrative argument-shuffling with little inherent significance.

5 Variations

The above development was based on an infinite iteration primitive, relying on an escape to ter-

minate the iteration. In a procedural language, this would correspond to a loop/ exit construct.

It 1s also possible to use a looping primitive with an explicit termination check (corresponding to

7

while or repeat-until). Here, the function to be iterated returns an explicit indication of whether

another iteration should be performed, and no explicit jumps out of the loop are allowed.?

datatype (’a,’b) itres = ; (#2 a> or (Xt b)
AGAIN of ’a| DONE of ’b

fun repeat f = (define (repeat f)

let val rec 1 = (letrec ([1 (lambda (x)

fn (DONEDb) => b (if (car x) (cadr x)

| (AGAIN a') = 1 (f a’) (1 (£ (cadr x)))))1)

in fn a=>1 (AGAIN a) end (lambda (a) (1 (list #£ a)))))
(* repeat : (‘a => (’a,’b) itres) => ’a => ’b *)

We still iterate over application contexts, but an additional complication is that we need an

initial continuation for the first time round the loop. We make this a special case:

"datatype ’a opt = SOME of ’a I NONE ; <procedure> or ()

fun app (SOMEk)r = throw kr (define (app k r)
| app NONE xr = DONE x (1f (procedure? k)(kr)

(list #t r)))

fun switcha 1 = fa x=> (define. (switcha 1) (lambda (x)

callcc (fn q=> (call/cc (lambda (q)
throw 1 (AGAIN (x, SOME q))) (1 (lirt #£ (cons x q)))))))

fun fix € = fn x => (define (fix ft) (lambda (x)

repeat ((repeat
(fn (v,c)=>callcc (fn 1 => (lambda (ve) (call/cc (lambda (1)

app c (app (cdr vec)
(£ (switcha 1) v))) ((f (switcha 1)) (car vc)))))))

(x, NONE) (cons x °()))))

(In Scheme, we could have used a non-continuation procedure instead of the () and app . But

this would require a recursive type for the “continuation” part of the context. A similar typing

problem occurs if we try to actually get an explicit representation of the stack as a list of pending

contexts using the “generalized CPS” operators shift and reset [DF90].)

In procedural languages there 1s another kind of iteration construct, the bounded loop (usually

known as for). The iteration/recursion correspondence mentioned above can be extended to this

case as well, leading naturally to a notion of bounded recursion. In the most primitive form, we can

simply define a “bounded iterator”:

fun bloop n f = (define (bloop n) (lambda (£)

let val rec 1 = (letrec ([1 (lambda (n a>

fn (0,a) => raise Bound (1f (zero? mn) (error "Bound")
I (n,a)=>1 (n-1, f a) (1 (-n1) (fa)

in fn a=>1 (n,a) end (lambda (2a) (1 n a)))))

In fact, there is a close correspondence between these two approaches: in a CBV language with first-class
continuations, any function returning a sum-typed result has a unique co-curried form where one of the two cases

is returned via a non-local continuation [Fil89]. In a precise sense, this is the dual concept to non-local values and
currying.

8

We can use this to define a bf 1x exactly as before. The immediate impression might be that

a bound on the number of iterations in bloop would translate directly into a bound on the total

number of recursive calls. However, a closer inspection shows that the bound actually controls

the depth of recursion (essentially because for “parallel” recursive calls, the loop counter gets

reinstantiated to the value it had when the loop continuation was captured). In particular, the

Fibonacci function above will run with n as a bound. We can thus get an exponential amount of

work done with what looks like a linearly-bounded primitive.

In fact, computational-complexity analysis of programs with continuations seems to be a little-

explored field. For example, [DF90] presents a direct simulation of a non-deterministic finite au-
tomaton in a simple first-order functional program extended with generalized control operators.

Using two levels of CPS translation, it is possible to perform collections over all paths of such a

nondeterministic computation. Very speculatively, it would seem that every level of CPS adds the

expressive power of an additional quantifier alternation in the polynomial hierarchy. This may or

may not be related to similar-looking results about CPS transformation and logical complexity of

predicate-calculus formulas [Mur91]. Also possibly relevant are the exponential-slowdown results
for translation of functional programs into tail-recursive form [Kfo87].

Another way of bounding the number of iterations would be to decrement an updatable variable

every time through the loop. Since the store 1s single-threaded, this will result in a hard bound on

the number of recursive calls. More generally, the whole technique of “subverting the fixpoint” may

have interesting applications — by intercepting all recursive definitions “at the root” we can express
concepts like algorithmic profiling (i.e., counting recursive invocations, while remaining insensitive

to compiler optimizations like in-line expansion of function bodies), engines, or preemptive thread

scheduling, etc., without explicit system support.

6 Comparison with related work

A fair amount 1s known about transforming programs using recursion into iterative form, the

so-called “flowchartability” problem. Most such work has been done in an explicitly procedural

setting (e.g., [GreT75]), or for first-order recursion equations [WS73]. However, some extensions to
higher-order call-by-name functional programs are reported in [Kfo87]. Interestingly, the methods
in the latter work rely heavily on a notion of contexts, but the author apparently never draws

any connections to continuation-passing style, let alone first-class continuations. The simulation

presented above attacks a somewhat different problem: instead of considering general program

transformations, we restrict ourselves to defining a fixpoint combinator — a construction made

possible only by the additional expressive power of call/cc.

The operational derivation of fix in section 2 appears similar to “stepping” techniques used

in some approaches to computational reflection [Baw88]. However, while the overall effect may be
similar, the actual code (in a slightly different form) was discovered completely unexpectedly from

a category-theoretical analysis of the symmetry between iteration in CBV and recursion in CBN

[Fil89]. Informally, by adopting a syntax in which call/cc-like continuation abstractions look
like the mirror images of ordinary X-abstractions, the abstract principle of duality can be used to

expose a number of otherwise obscured symmetries involving data types, control structures and

evaluation strategies.

As it turns out, a similar kind of symmetries arise for translations of either CBV or CBN A-

calculus with control operators into a system of linear control [Fil92]. Here, the same repetition
operator corresponds to either a looping primitive in CBV or a fixpoint combinator in CBN.

9

7 Conclusion and Issues

The additional expressive power of first-class continuations allows us to decompose the usual CBV

fixpoint combinator into an iterative core, whose semantics corresponds directly to a fixpoint com-

binator at the CPS level, and an administrative w rapping presenting a more convenient and general

' interface. In other words, in the presence of a call/cc-like operator, reasoning about CBV recur-

sion can be reduced to reasoning about simple loops.
. There seem to be considerable benefits from investigating first-class continuations in a typed

setting. The exciting connections to classical logic [Gri90, Mur91] rely fundamentally on types, as
does the author’s work mentioned above. In the present investigation, the type system of SML

was also a big help, ensuring that the all unbounded repetition could originate only in the loop

operator itself, not from a disguised Y-like combinator in the administrative superstructure.

More generally, the equivalence of iteration and recursion gives another reason for why some

form of first-class continuations should be considered a natural part of a CBV language, especially

one defined by a continuation semantics. Traditionally, non-termination has been treated differently

- from other computational effects (1.e., the deviation of procedures from the intuitive ideal of total,

set-theoretical functions). For example, a result like type soundness is often stated as: If the
program terminates, it will do so with a result of the expected type.

In the last few years, however, there has been a shift towards a more unified view of general com-

putation, conveniently expressible in the framework of computational monads [Mog89]. As noted
by several authors, monads and CPS are very closely related [DF90, Wad92, FS92]. In this context,
control operators like call/cc allow us to separate the study of non-termination (generalized to

arbitrary non-returning behavior, including exceptions and non-local exits) from recursion/domain

theory proper (approximations, fixpoints, etc.); in fact, what appear to be purely domain-theoretic

concepts like strictness have natural generalizations in the world of control. [Fil89, Fil92]. No
doubt, continuations will play an important role in any comprehensive theory of programming

language semantics, far beyond what was initially imagined.

Acknowledgments

I want to thank John Reynolds for support, and Olivier Danvy, Matthias Felleisen, Dan Friedman,

and the anonymous referees for their helpful comments on various versions of this paper.

References

[Baw88] Alan Bawden. Reification without evaluation. In Proceedings of the 1966 ACM Confer-
ence on Lisp and Functional Progmmming, pages 342-351, Snowbird, Utah, July 1988.

[CR91] William Clinger and Jonathan Rees. Revised report on the algorithmic language Scheme.
Lisp Pointers, 4(3):1-55, July 1991.

[DF90] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, pages 151-160, Nice, France,
June 1990.

[DHM91] Bruce F. Duba, Robert Harper, and David MacQueen. Typing first-class continuations
in ML. In Proceedings of the Eighteenth Annual ACM Symposium on Principles of

Programming Languages, pages 163-173, Orlando, Florida, January 1991.

10

[FH89] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Technical Report COMP TR89-100, Department of Com-

puter Science, Rice University, Houston, Texas, December 1989. To appear in Theoretical

Computer Science.

[Fil89] Andrzej Filinski. Declarative continuations and categorical duality. Master’s thesis,
Computer Science Department, University of Copenhagen, August 1989. DIKU Report

89/11.

[Fil92] Andrzej Filinski. Linear continuations. In Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Progmmming Languages, pages 27-38, Albuquerque, New

Mexico, January 1992.

[FS92] Matthias Felleisen and Amr Sabry. Reasoning about programs in continuation-passing
style. In Proceedings of the 1392 ACM Conference on Lisp and Functional Programming,

San Francisco, California, June 1992. (To appear).

[Gre75] Sheila Greibach. Theory of Progmm Structures: Schemes, Semantics, Verification. Num-
ber 36 in Lecture Notes in Computer Science. 1975.

[Gri90] Timothy G. Griffin. A formulae-as-types notion of control. In Proceedings of the Seven-
teenth Annual ACM Symposium on Principles of Progmmming Languages, pages 47-38,

San Francisco, California, January 1990.

[Har91] Robert Harper. Typing first-class- continuations in ML. In Proceedings of the Third
International Workshop on Standard ML, Pittsburgh, PA, September 1991.

[HL92] Robert Harper and Mark Lillibridge. Polymorphic type assignment and CPS conversion.
In ACM SIGPLAN Workshop on Continuutions, San Francisco, California, June 1992.

(To appear).

[Kfo87] A.J. Kfoury. The translation of functional programs into tail-recursive form (part I).
BUCS Tech Report 87-003, Computer Science Department, Boston University, January
1987.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science, pages 14-23, Pacific Grove,
California, June 1989. IEEE.

[Mur91] Chetan R. Murthy. An evaluation semantics for classical proofs. In Proceedings of
the Sixth Annual IEEE Symposium on Logic in Computer Science, Amsterdam, The

Netherlands, July 1991.

[Wad92] Philip Wadler. The essence of functional programming (invited talk). In Proceedings
of the Nineteenth Annual ACM Symposium on Principles of Programming Languages,

pages 1-14, Albuquerque, New Mexico, January 1992.

[WS73] S. A. Walker and H. R. Strong. Characterizations of flowchartable recursion. Journal of
Computer and System Sciences, 7:404-447, 1973.

11

Polymorphic Type Assignment and CPS Conversion

Robert Harper* Mark Lillibridge!
Carnegie Mellon University

Pittsburgh, PA 15213

April 10, 1992

Abstract

Meyer and Wand established that the type of a term in the simply typed X-calculus may be related in

a straightforward manner to the type of its call-by-value CPS transform. This typing property may be

extended to Scheme-like continuation-passing primitives, from which the soundness of these extensions

follows. We study the extension of these results to the Damas-Milner polymorphic type assignment

system under both the call-by-value and call-by-name interpretations. We obtain CPS transforms for

the call-by-value interpretation, provided that the polymorphic let is restricted to values, and for the

call-by-name interpretation with no restrictions. We prove that there is no call-by-value CPS transform

for the full Damas-Milner language that validates the Meyer-Wand typing property and is equivalent to

the standard call-by-value transform up to gn-conversion.

1 Introduction

In their study of the relationship between direct and continuation semantics for the simply typed X-calculus

(A), Meyer and Wand note that the type of a term in A™ may be related in a simple and natural way to
the type of its call-by-value continuation passing style (CPS) transform [8]. This result may be extended
to the calculus that results from extending A™ with Scheme-like continuation-passing primitives callcc and

throw (A= + cont) [1, 3]. Since A™ under a call-by-value operational semantics is “type safe” in the sense of
Milner [9, 2], and since the call-by-value CPS transform faithfully mimics the call-by-value semantics [12],
it follows that A™ + cont under a call-by-value operational semantics is also type safe.

In a subsequent study Duba, Harper, and MacQueen studied the addition of callcc and throw to Stan-

dard ML [10]. The extension of the Meyer-Wand transform to A™ + cont establishes the soundness of the
monomorphic fragment of the language, but the soundness of the polymorphic language with continuation-
passing primitives was left open. It was subsequently proved by the authors [7] that the full polymorphic
language is unsound when extended with callcc and throw. The source of this discrepancy may be traced to
the interaction between the polymorphic let construct and the typing rules for callcc. Several ad hoc methods

for restricting the language to recover soundness have been proposed [6, 14].
In this paper we undertake a systematic study of the interaction between continuations and polymorphism

by considering the typing properties of the CPS transform for both the call-by-value and call-by-name

variants of the Damas-Milner language [2] and its extension with continuation-passing primitives. We obtain
suitable extensions of the Meyer-Wand theorem for the call-by-value CPS transform, provided that the

polymorphic let is restricted to values, and for the call-by-name transform, under no restrictions. Finally, we

*This work was sponsored by the Defense Advanced Research Projects Agency, CSTO, under the title “The Fos Project:

Advanced Development of Systems Software”, ARPA Order No. 8313, issued by ESD/AVS under Contract No. [F19628-91-C-
0168.

! Supported by a National Science Foundation Graduate Fellowship.

13

prove that there is no call-by-value CPS transform for the full Damas-Milner language that both satisfies the

Meyer-Wand typing property and is equivalent to the usual transform up to frn-conversion. In particular,
the standard call-by-value CPS transform fails to preserve typability.

2 Untyped Terms

The language of untyped terms is given by the following grammar:

e u= X|Az.e|eyes]|let xbeeyin es] callcc | throw

Here x ranges over a countably infinite set of variables. We include the let construct as a primitive because

it is needed in the discussion of polymorphic type assignment. callcc and throw are continuation-passing

primitives whose definitions are derived from analogous constructs in Scheme [1] and Standard ML of New

Jersey [3].
We consider two CPS transforms for untyped terms, corresponding to the call-by-value and call-by-name

operational semantics [12]. Each CPS transform consists of a transformation |—| for untyped terms and a
transformation | |— | | for untyped values. Exactly what is considered a value depends on which operational
semantics 1s being used. Under call-by-value, variables, X-abstractions, and constants! are considered values.
Under call-by-name, only X-abstractions and constants are considered values. We shall use v as a meta-

variable for call-by-value values and w as a meta-variable for call-by-name values.

Definition 2.1 (Call-by-Value CPS Transform)

[veo = Ak.k||v]lcow
le e2|cbu = Ak.le1}cou (Az, Jea]cbu (Aza.zy Z2 k))

letx be eyinealcoy - Ak.lerlcos (AZ.|e2]cov k)

lzlleey = =
lIAz.e||lcor = Az.le|coo
|lcallee||coy = Af.Akf k Kk
||throw||cpy = Ac. Ak.k(Az.Al.cz)

Lemma 2.2

LA [v/z]! cov = [||v]lcou/x] Hv"llcbo-

2. | [v/zle |cov = [|vllcov/z] le] cou

We shall also have need of a variant call-by-value CPS transform (cbv’) defined on untyped terms sat-
isfying the restriction that all let expressions are of the form let x be v in e. lLe., the let-bound expression is
required to be a (call-by-value) value. Because of this restriction, a simpler rule can be given for the let case:

let xbevinelepy = Ak.letxbellv||couin (|e]cov k)

This simpler rule for let expressions is the only difference between the two transforms.

Lemma 2.3 Let v and v' be values obeying the restriction on let expressions and e be a term obeying the

restriction on let expressions. Then

L | [v/2]v" flow = 1 [[vllcoor/@[0] |cbor-

2. | [v/z]e |cowr = []vllcoor/x] le]ctor-

‘Note that callcc and throw are considered to be constants.

14

Definition 2.4 (Call-by-Name CPS Transform)

|z| con = X
ler ezlcon = Ak.ler]con (Az1.21 |€2|ctn k)

|let x be ejin eg | con = Mk.letzbe le1| con in (|e2lcbn k)

|lcallec||con = Af AE f(Af.f(X11k)k)
l|throw||con = Ac. Ak.k (Az. Alc (Ad.z (Az'.c’ z')))

Lemma 2.5

1 ||le/z]wllcon = [lelcon/z] llw]|con-

2.1 [e/z]e |con = [lecon/z] |€’|con.

The correctness of these transforms may either be established by relating them to an independently-

defined operational semantics (as in [12, 4]), or else taken as the definition of call-by-value and call-by-name
semantics. :

3 Simple Type Assignment

In this section we review Meyer and Wand’s typing theorem for the call-by-value CPS transform for the

simply- typed X-calculus (A™), and present an analogous result for the call-by-name CPS transform.

Definition 3.1 (A= Types and Contexts)

types T u=b|T oT |

contexts T' == - | T, zr

Here b ranges over a countable set of base types. We assume that among the base types there is a distinguished

type «, which will be used in what follows to represent the “answer” type of a CPS transform.

Definition 3.2 (A™ Typing Rules)
['ox:T(z) (VAR)

I''z:mype:m (z ¢ dom(I")) (ABS)_— (Z om

I'bAze:m =m

F'pey:mm—7 I'bes:m
-— = (APP)

Io €1€9: T

I'be;: my I'zmpoey: rm (MoNo—1ET)
I'biet x beejiney:T

The type system A™ + cont is defined by adding the type espression 7 cont and the following typing rules
for the continuation-passing primitives:

[' o callec : (cont = 7) => 7 (CALLCC)

[' o throw : rcont = 7 — 7’ (THROW)

15

Definition 3.3 (Call-by-Value Type Transform for A™)

ITlese = (ll7llcov = @) =

Bllcow - b
Ir —=72ll cow = lI71]l cov —r 172] chu

The type transform is extended to contexts by defining ||T'||cew(z) = ||T'(2)||cov for each x € dom(T).

Theorem 3.4 (Meyer-Wand)

LIFAZ FT pvr, then AF ||Tllcbw b [[ollcbw : [17]lcbo-

2.IfF A I-T pe :1, then A FIT cow > l€|eby « |T)coo-

The’ call-by-value type transform is extended to A™ +cont by defining ||7cont||cov = ||7||cov = a. It is
straightforward to verify that Theorem 3.4 extends to A™ + cont in this way [3].

Definition 3.5 (Call-by-Name Type Transform for A™) 2

ITlcon = (lI7llctn = a) =

| Ibllcen = &
|| —=72l| con = [71] con — | 72] con

The type transform is extended to contexts by defining |I|cen(xX) = |T(z) |cpn for each x € dom(TI).

Theorem 3.6

LIA? t-T pw:t, then A F|Tcon © ||wl|con = ||7]|ctn-

2. If Xr t- Toe: 7, then A t- [Icon v |e]con : |Tlcon-

The call-by-name CPS transform is extended to A™ + cont by defining ||7cont||con = ||7||con = @, just
as for call-by-value. It is straightforward to verify that Theorem 3.6 extends to A™ + cont in this way.

4 Polymorphic Type Assignment

In this section we study the extension of the Meyer-Wand typing property to Damas and Milner’s polymor-

phic type assignment system (DM).

The syntax of types and contexts in (DM) is defined by the following grammar:

Definition 4.1 (DM Types and Contexts)

monotypes 7 ::= t|blT om
polytypes o = 7 | Vio

contexts I' ==. | TI, zo

Here t ranges over a. countably infinite set of type variables. The typing rules of the Damas-Milner system
extend those of A= as follows:

2The term “call-by-name type transform” is something of a misnomer since there exists a by-value CPS transform that
validates the by-name typing property [5]. Nevertheless we stick with the suggestive, if somewhat misleading, terminology.

16

Definition 4.2 (Additional DM Typing Rules)

toe: wa FTV(D) (GEN)
I'oe: Vio

I've: Vio (INST)
['pe:[r/t]le

Foe io T,zioppeg:r

lid Sd Sl Reb Seb ARE) (x ¢ dom(T")) (POLY—-LET)
Ipletzbeeyines : m

The system DM + cont is defined by adding the type expression 7 cont, as before, and adding the following

typing rules:

I' ocallec : Vi.(t cont = t) = ¢ (CALLCC')

I’ o throw : Vs.Vt.scont — s — ¢ (THROW ')

Let Ocallce ad Oiheow De the polytypes assigned to callcc and throw, respectively.

4.1 Restricted Call-by-Value

Let DM™ denote the sub-system of DM obtained by restricting let expressions so that the bound expression

is a call-by-value value. The Meyer-Wand typing theorem may be extended to terms of DM™, provided that

we use the variant call-by-value CPS transform (cbv’) given in Section 2.

Definition 4.3 (Call-by-Value Type Transform for DMT)

ITlebv = (Illy = 0) =>

[11] cou = 1
[16]] cv = b

Ik! — Toll cho = H71ll cov — |72| cou
IVt.o|lcee = VE]|ol|coo

This definition extends the Meyer-Wand type transform to polymorphic types. In the terminology of

Reynolds [13], polymorphic instantiation is given a “trivial” interpretation in that no interesting computation
can occur as a result of the specialization of a value of polymorphic type. The definition of |Vt.o|cp, reflects
the fact that in DM™ there is no need of continuations whose domain is a polymorphic type.

Lemma 4.4

L|[/t)olleov = [HTllcow /t] llo]|cou-

2. |[7/t]o] cou — [lIrlleso / 1] lo} cbu-

Theorem 4.5

1. fDM™ FT ov: 0. then DMT EF ||T|cour > ||t}l ctv © [|o]] ctu

2. IfFDM™ t- 0 e : 0. then DM™ F ||[Tllcov © |e|cou : |o] chu

The proof hinges on the following observations. First, the definitions of the transformations |—|.4. and
l|—|]cor On polytypes are such that the een and inst rules carry over to applications of the same rule.
Specifically, if T > e : ¢ and t does not occur free in I’, then ¢ does not occur free in | |T' | |ceer, and hence
UT] cour © |€|cows : VE.|o]| coy is derivable by an application of een and the induction hypothesis. A similar
argument suffices for the value transform. Uses of INST are handled similarly.

17

Second, the restriction on let expressions in DM™ combined with the use of the variant transform ensure

that let’s are carried over to let's, and hence that polymorphic typing is preserved. Specifically, if T' o

vi - oyand [,z:01 0 ey: Tp are both derivable, then by induction ||T||cour 0 ||v1]]ctv : |lo1]]ctw and
[IT] | ctv, T:|jo1llcow © le2]cbur © |72|cov are derivable, and hence ||T}|coyr 0 Ak.let @ be [|vi]|cour in |€2]|cbv k :
[72 |cby is also derivable.

Theorem 4.5 extends to DM™ + cont by defining ||7cont||csw = ||7||cse = cr. We need only verify that
||callec| [caer and |throw||cper, given in Section 2, have types ||0calicellcov and [|o¢hrow!lcbys respectively. The
soundness of DM™ + cont under call-by-value follows from the extended theorem. (Same proof as for the

soundness of A™ + cont under call-by-value.)

4.2 Call-by-Name

Theorem 3.6 (the Meyer-Wand-like typing theorem for call-by-name) can be extended to the unrestricted

D M langauge.

Definition 4.6 (Call-by-Name Type Transform for DM)

ITlctn = (ll7llcon = a) = @

|[]]con =
bllcbn - B

|| 272] con = |71| con — |72| con
[IVt.o||con = VE.||o}]con

Lemma 4.7

L|[[r/tlo llcen = 1 lITllcon /t1Io]|ctn.

2.1 [r/t]o |con = [lI7llcon /t] |o]con-

Theorem 4.8

1.LIFDMFT ow:0o, then DME |T|con © ||w]lcon : llo]]con-

The proof proceeds along similar lines to that of the call-by-value case. For example, if I' 0 ey : 0}

and T', 2:01 0 ea : To are derivable, then by induction so are ||cpn o |€1]con : |01]con and |Tlcon, z:lo1|con ©
le2|con : |T2|cbn, and hence so is |T'|cpn 0 Ak.letz be |e1|con in |€2|con & : |72]con, as required.

Theorem 4.8 extends to DM + cont by defining ||7cont||con = ||7||con = a. We need only verify that

||callec||cpn and ||throw||cen, given in Section 2, have types || cqiicellctn and [|o¢h owllcon, respectively. The
soundness of DM + cont under call-by-name operational semantics follows from the extended theorem in a

manner similar to that of the call-by-value case for DM™ + cont.

4.3 Unrestricted Call-by-Value

Having established suitable typing properties for the variant call-by-value transform for DM™ and the call-
by-name transform for full DM, it is natural to consider whether there is a call-by-va.lue CPS transform for

full DM that satisfies a Meyer-Wa.nd-like typing property. Since cbv’ is only defined on terms with restricted
let expressions, we can not simply extend Theorem 4.5 to full DM.

Let us consider attempting to extend Theorem 4.5 to full DM by using cbv instead of cbv’ as the transform.
Consider the induction step for the polymorphic let case. By induction we have

DM + || cho > le1] chu : lo 1 cou

and

DM + || cov, zo cb > lea chy : | 72] cho.

18

We are to show that

DM F ||[T}|cow D> Ak.|e1 |cbw (Az.|€2|cbu k) 1 |T2]cbu-

Since the call-by-value interpretation of let requires that e; be evaluated before es, the call-by-value CPS

transform of let x be e; in €3 involves a continuation whose argument may, in general, be of polymorphic type.

To capture this we must change the definition of |—|coy so that |¢|eoy = (||o|lcov = @) — @. But this takes
us beyond the limits of the Damas-Milner type system since ||o||csv is, in general, a polytype. We therefore
consider as target language the extension, DM™, of DM, in which the distinction between monotypes and
polytypes is dropped, leading to full polymorphic type assignment [11]. The decidability of type checking
for DMT is unknown, but this is not important for our purposes. We shall rely, however, on the fact that
the subject reduction property holds for P-reduction in DM* [11].

With these changes to the type transformation and the associated enrichment of the target type sys-

tem, the induction step for general let's works. However, polymorphic generalization becomes problematic.

Specifically, if DM F T' 5 o : o with + € FTV(T), then by induction DM% t- ||T||csv © |elesy © |o|cbw, and
t & FTV (||T]|cbv). We are to show DMY F [|T||csy 0 le] : |VE.0coy, and there is no evident way to proceed.
We can indeed show that |e] has type Vt.(|g|leswv = @) = a, but this is not enough. In fact we shall prove
that any variant call-by-value CPS transform |e| verifying the Meyer-Wand typing property for DM must
not be ,&-convertible to |e|cpy-

The argument proceeds by way of the extension of DM with continuation passing primitives. Under the

call-by-value evaluation strategy, DM + cont is unsound. Specifically, we can find a term e such that e has

a type 7, but whose value, when executed, fails to have type 7. In other words, evaluation fails to respect

typing. Assuming that we have base types int and bool, and constants® 0 : int and true : bool, the following
term 1s well-typed with type bool im DM + cont but evaluates under call-by-value to 0:

eg = let f be callcc (Ak.Az.throw k Ay.z)
in (Az.Ay.y) (f 0) (f true)

Using the typing rules of DM +cont, the let-bound identifier f is assigned the type Vi.t—%, and hence may be

used at types int—int and bool—bool in the body. But the binding for f grabs the continuation associated
with the body of the let expression and saves it. Upon evaluation off 0, the continuation is invoked and f is
effectively re-bound to a constant function returning 0. The body is re-entered, f 0 is evaluated once again
(without difficulty), but then f true is evaluated, resulting in O.

It follows that there is no call-by-value CPS transform for DM + cont that preserves typability. Con-

sequently, any call-by-value CPS transform for DM must be of a somewhat different form than the usual
one.

Theorem 4.9 (No Call-by-Value CPS Transform) There is no call-by-value CPS transform le] for DM
that simultaneously satisfies the following two conditions:

1. Equivalence: |e| =p, |e|cov.

2. Typing: If DM FT oe : a, then DMT F ||T]|coy o le] : |] cho

Proof: Given such a transform we could form |eg| (where eg is given above) by regarding callcc and

throw as variables of polytype Fc allcec and Tihrows TeSpectively. By the typing property this term has
type |bool|csy, under the assumption that callec and throw have types ||ocaficcllcov and [|o ph owllcov, Te-
spectively. Consequently the substitution instance ej = [||callcc||coy, ||throw]|csy/callce, throw] |eg| has type
lbool|cpy = (bool = a) — a. But the corresponding substitution instance of |eo|csy is precisely the call-
by-value CPS transform of eg, taking account of callcc and throw directly. Since &-conversion is preserved

under substitution, we have by the equivalence property that e; is Gn-convertible to |eg|cpw. Now, we know

that |eglcpy Az.z evaluates under call-by-value to 0. Consequently, this expression’s #1 (and hence §) normal

“This argument can be made without constants but at the cost of increased complexity. Constants of base type can easily

be added to any of the transforms presented in this paper by defining ||c|| = c. ¢ a constant. Constants of non-base type must
be handled on a case-by-case basis.

19

form is 0. Therefore, we have that e; Az.x is P-reducible to 0. But this is a violation of the subject reduction

property of DM¥ [11] since e; Az.z has type bool!
The conditions of Theorem 4.9 leave open the possibility of either finding a variant call-by-value transform

that 1s not convertible to the standard one, or else varying the type transform in such a way that a Meyer-

3 Wand-like typing property can be proved, or both. Any variant type transform must be such that either
||callec]|coy OF ||throw]|csy fail to have the required types under this transform so as to preclude extension to
DM + cont. We know of no such variants, but have no evidence that none exist.

4.4 Related Transforms

It seems worthwhile, however, to point out that there is a variant type transform that “almost” works. This

transform is defined by taking ||Vt.o|| = Vt.|o|, and |o| = (|hl| & a) = a. The intuition behind this choice
is to regard polymorphic instantiation as a “serious” computation (in roughly the sense of Reynolds [13]).
This interpretation is arguably at variance with the usual semantics of ML polymorphism since it admits

R primitives that have non-trivial computational effects when polymorphically instantiated. Nevertheless, we
can use this type transform to extend the Meyer-Wand theorem to a variant call-by-value CPS transform for

DM™ and to a variant call-by-name CPS transform for DM, provided that we restrict attention to programs

of monomorphic type. It does not provide a variant call-by-value CPS transform for full DM because of the

way in which polymorphic generalization is handled. .

To make these observations precise, we sketch the definitions of variant CPS transforms based on this

type interpretation. The main idea 1s to define the CPS transform by induction on typing derivations so

that the effect of polymorphic generalization and instantiation can be properly handled. We give here only

the two most important clauses, those governing the rules een and INST:

IT oe:Vio| = Ak.k|e|, where
To ¢ : a - |e

IT oe: [r/tle} = Ak.Je] (Xxx k), where
Toe :Vio| = |e

This definition may be extended to the other inference rules in such a way as to implement either a call-

by-name or call-by-value interpretation of application. However, the transform fails (in general) to agree

with the usual (call-by-value or call-by-name) ML semantics on terms of polymorphic type. Specifically,

the transformation of a een rule applies the current continuation to the suspended computation of e.

If this continuation is not strict, then an expression that would abort in ML terminates normally after

transformation into CPS. For example, consider the principal typing derivation of the term hd nil in a

context assigning the obvious types to hd and nil. The resulting transform, when applied to Az.0, will yield

answer 0, despite the fact that the usual ML semantics leads to aborting in this case.

By restricting attention to programs of monomorphic type, we may obtain a correct CPS transform

for DM™ (under call-by-value) and DM (under call-by-name). This is essentially because in DM™ under
call-by-value there are no non-trivial polymorphic computations, and because in DM under call-by-na.me the

semantics 1s defined by substitution. But the above argument shows that this transform is incorrect, for DM

under call-by-value. Specifically, it fails to correctly implement the usual ML semantics for expressions such

as let x be hd nil in O (which, under the above transformation yields result O rather than aborting).

5 Conclusion

The Meyer-Wand typing theorem for the call-by-value CPS transform for the simply-typed A-calculus es-
tablishes a simple and natural relationship between the type of a term and the type of its call-by-value CPS
transform. Meyer and Wand exploited this relationship in their proof of the equivalence of the direct and

continuation semantics of A™ [8]. A minor extension of this result may be used to establish the soundness
of typing for A + cont, the extension of A™ with continuation-passing primitives [3], under call-by-value.

In this paper we have presented a. systematic study of the extension of the Meyer-Wand theorem to the

Damas-Milner system of polymorphic type assignment. Our main positive results are the extension of the

20

Meyer-Wand theorem to the call-by-value interpretation of a restricted form of polymorphism, and to the

call-by-name interpretation of the unrestricted language. These results have as a consequence the soundness

(in the sense of Damas and Milner [2]) of these programming languages. We have also argued that there is
no “natural” call-by-value CPS transform for the unrestricted language, but this leaves open the possibility

of finding a transformation that is radically different in character from the usual one.

Our investigation makes clear that there 1s a fundamental tension between implicit polymorphism and the

by-value interpretation of let. In particular, we are able to provide a CPS transform for the full Damas-Milner

language that extends to continuation-passing primitives, but which is “not quite” equivalent to the usual

call-by-value semantics. This suggests that a language in which polymorphic generalization and instantiation

are semantically significant would be well-behaved, and might be a suitable alternative to ML-style implicit

polymorphism. We plan to report on this subject in a future paper.

6 Acknowledgments

We are grateful to Olivier Danvy, Tim Griffin, Mark Leone, and the referees for their helpful comments on

earlier drafts of this paper.

References

[1] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for higher-level semantic algebra.
In Maurice Nivat and John C. Reynolds, editors, Algebraic Methods in Semantics, pages 237-250.

Cambridge University Press, Cambridge, 1985.

[2] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Ninth ACM Sym-
posium on Principles of Progmmming Languages, pages 207-212, 1982.

[3] Bruce Duba, Robert Harper, and David MacQueen. Typing first-class continuations in ML. In Eigh-
teenth A CM Symposium on Principles of Progmmming Languages, January 1991.

[4] Matthias Felleisen, Daniel Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactic theory of
sequential control. Theoretical Computer Science, 52(3):205-237, 1987.

[6] Timothy Griffin. Private communication., January 1992.

[6] Robert Harper, Bruce Duba, and David MacQueen. Typing first-class continuations in ML. Revised
and expanded version of [3], in preparation.

[7] Robert Harper and Mark Lillibridge. Announcement on the types electronic forum., July 1991.

[8] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda calculi (summary). In
Rohit Parikh, editor, Logics of Programs, volume 224 of Lecture Notes in Computer Science, pages
219-224. Springer-Verlag, 1985.

[9] Robin Milner. A theory of type polymorphism in programming languages. Journal of Computer and
System sciences, 17:348-375, 1978.

[10] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press, 1990.

[11] John C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic

expressions. In 1986 Symposium. on LISP and Functional Programming, pages 308-319, August 1986.

[12] Gordon Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoretical Computer. Science,
1:125-139, 1975.

[13] John C. R.eynolds. Definitiona. interpreters for higher-order programming languages. In Conference
Record of the 25th National ACM Conference, pages 717-740, Boston, August 1972. ACM.

21

[14] Andrew K. Wright and Matthias %elleisen. A syntactic approach to type soundness. Technical Report
TR91-160, Department of Computer Science, Rice University, July 1991.

22

Continuations and simple types: a strong normalization result

Franco Barbanera Stefano Berard:
Universita di Torino

Dipartimento di Informatica

Corso Svizzera, 185 10149 Torino (Italy)
barba,stefano@di.unito.it

Abstract

In the paper we study the termination problem for a typed X-calculus with continuations.

We do not bound ourselves to study a particular reduction strategy, like call-by-value or call-

by-name. Reductions may be applied to any part of any term in any order.

Our main result is that every reduction sequence in the system terminates.

1 Introduction

Recentely, in the computer science community, efforts have been made in order to understand and

investigate functional languages enriched with so called control operators. One esample of such

control operators the Call/cc of the programming language SCHEME [3]. An operator like that
allows us to have, even in a. functional enviroment, a sort of goto-like facility which enable the pro-

grammers to write, in many cases, shorter and more coincise programs. This is of course a useful

feature, but one could now wonder if such a feature, when embedded in a functional programming

language, does not destroy any of its good properties. In particular, those peculiar properties of
pure functiona. languages which have been the main motivations of their development , namely

espressiveness, possibility of developing programs satisfying their specifications and so on. This
risk is a serious one. However, the benefits we can gain from control operakors axe definitely worth

a study and investigation. What one needs is to frame control operakors for functional languages in

a. correct and clear theoretical setting. Such a theoretical setting is the necessary basis for a deep

understanding of control operators and would enable one to define precise and ”harmless” method-

ology for their use. In fact, that has been the main motivation which led people like I‘elleisen to

investigate pure calculi in which to isolate and study the properties of control operators. A possi-
ble pure control language is the pure lambda calculus enriched with a particular operator C (Ac)

[4],[5]. C which can be considered as an abstraction of the actual control operators. To study this
language it is possible to give a machine-like operational semantics or to define a calculus extending
the notion of fS-reduction of the X-calculus. Of course, for the purpose of theoretical investigation

it is better not to restrict oneself just to machine-like operational semantics, since forma.l calculi

allow precise mathematical reasoning about programs. In particular they allow reasoning abou t

programs equivalences under various possible evaluators. Such calculi and their equational theory

have been and axe still widely investigated [4][5].

More recentely, the in terest for control calculi has increased even more because of the st rong
connection which has been unveiled with classical logics. Recent results ([6],{7].[8]) have shown

23

that there exists a precise proofs-as-programs correspondence between classical proofs and control

functional languages. More precisely, Fellaisen’s control operator C can be consistently interpreted

as the “computational content” of the classical rule of double negation elimination. This corre-

spondence with classical logics could be in the future a key tool for the design of environments for

developing programs in functional languages with control operators (and maybe also imperative

languages), in the same way the correspondence with constructive logics has been (and is still) of

much help in the field of pure functional languages. Of course there is still a lot to do. The corre-

spondence with the logics, for instance, makes necessary to investigate more closely typed version

of control calculi. Besides, the correspondence results have been obtained just for control calculi

with particular reduction strategies. Each time one wishes to use a new strategy one has to check

for it all the properties we whishes the calculus to have.

The present paper tackles some of these problems. We consider a typed control calculus Ag.—

in the style of [6],[7],[8]. Of this calculus we prove the property of strong normalizability without
sticking to any particular reduction strategies. Such a property has never been considered as

relevant for such calculi, even because it is widely believed that control operators have a sense only

in languages with precise reduction strategies. This is not our opinion. First of all because, given

a calculus, it is a properties worth being investigated by itself. Besides, strong normalizability for

reductions performed in whatever order allows one to settle the question of termination of any

possible reduction strategy once and for all.

There is another relevant argument which leads to investigate a continuation calculus in which

no fixed reduction strategy is given. Once one considers terms in the typed Ac as classical proofs,

the reduction rules of the calculus can be viewed simply as reduction on proofs, enabling to extract,

for instance, witnesses from existentially quantified classical proofs, in the style of [1],[2] and [9].
By not forcing a particular reduction strategy we get a calculus which is not Church-Rosser. This

means that different reductions strategies allow us to get different ” answers” (witnesses) from a

given term (proof) which we can now look at as a non-deterministic program. If we restricted

ourselves to a fixed reduction strategy, we would choose only one answer, in a. rather arbitrary

way. In a sense, if we forced it to be deterministic we would “mutilate” the algorithm implicitly

expressed by a classical proof.

The proof of strong normalization use a non trivia.l variant of Girard’s method of candidates of

reducibility.

In Section 2 we shall describe the control calculus A-,-, while whole Section 3 is occupied by

the strong normalization proof.

2 The system AC;--

In this section we shall describe the typed system A-__ and the set or reduction rules on its terms.

The terms of A,.- are typed lambda, terms enriched with the control operator C. The typing for
the terms will follows the one proposed in [6] [#]which is essentially a. typing for classical proofs.
This means that our types are formulas, and terms are anything but linearized classical proofs. For

motivations we shall make clear in the following, we restrict the types of A,.— to a strict subset of

a.11 the possible logical formulas (the superscript ® ?-‘? on the 7 in the name A-._, espressing in turn

the ” typefulness” of the system, is to recall that we do not. consider all the possible types).

The types of our system are a. subset of the simple types a la Curry, i.e. of the types built out

of atomic types a, b, c,... and rising the con nectives — ("im plication”) and L (“falsehood”). The

24

negation 1n our system 1s defined as usual, by

-A =p. A — lL.

We restrict the types a la Curry by forbidding types to have strict subtypes of the form ——A4. We

also forbid L to occur on the righthand side of — (like in L — A).

Hence =—A and =(B — —A) (A, B # 1) are types of our system, while A — ==B and A — (L —
B) are not.

This restrictions on types is indeed no restriction for the classical logic associated to the calculus:

in classical logic =—A can always be replaced by A. Moreover types of the form L — 4 are of no

real use, since from L we can deduce any A.

The formal definition of the types of Ac,- runs as follows:

Definition 2.1 The sets of Positive types (P), Negative types (N), PosNeg types (PN) and Double

. negated types (NN) are defined by the following grammars, where a denotes the set of type constants

P ::=a|P = P|P — =P|-P — P|-P — =P
N:.=7P

PN := P|N)
NN = -—P.

The set of Types (T) of Acr- is the union of the sets defined above, i.e. it is defined by

T = L|P|N|INN

| Then positive types are those which are not negations; 1 can occur in a type only in subtypes
of the form —A and a double negated type can occur alone, but not inside other types.

In the following, positive types will be denoted by P, P’, P”,. . . . Types and PosNeg types will be

denoted by T, A, B, C,. . . (then if A is a. PosNeg type, mA will denote a correct type, maybe double

negated, while -—A instead may be out of the set of correct types, if A is itself negated).

For each type T, we suppose to have infinitely many variables labelled with T:

Varr =pef 2p, 21. T3,-

We shall not use the label T when it will be clear from the contest.

We define now a set of “pseudoterms” and a set of typing rules. The set of terms of system

Ac.— Will be the pseudoterms having a. correct type. The pseudoterms are built out of variables,
using abstraction, application and the operators C (continuation operator) and .A (abort operator).

We shall assume each occurrence of the operator A to have a type label T # L (Ar) which we

shall not show when unnecessary.

Definition 2.2 The set Of Pseudoterms of \.._ is defined by the following grammar :

M = atxM(MM)|CM|ATM

25

Definition 2.3 (Typing rules) Let A, B be PosNeg types, P a positive type, and M, N pseu-
doterms.

var) zd: A

M:B M:A—>BN A4] — F
NAM:ASB ~MN.B+) Ae. M:A—B)

) MzAM :-A) MN : 1

——E) Mop A) M1CM: P ArM 71

We call then term a pseudo term having a correct type.

It is not difficult to see that the type of a term is unique (because of the type labels on variables)

and may be computed.

We shall denote by Termr the set of terms having type T.
A term of the form CM will be called a continuation. One of the form AM an abort.

We introduce now reductions on terms, and define strong normalization for them. Reductions

Cr and Cj are the typed version of Felleisen’s reductions [4][5]. To deal with the case when the

redexes (CM)N or M(CN) have a negative type we introduce rules Cp and Cj that, instead of
moving the continuation outside, make it disappear. This is possible because a triple negation is

intuitionistically equivalent to a negation. The necessity of having these latter rules depends on

the restriction on types we imposed to the system. Rule C3 is an instance of the general rule
E[CM] —1 M(Az.E[z]) for continuations and is introduced in order to deal with the case of the
elimination of negation.

Definition 2.4 (Reduction rules)

B) (Ax.M)N —; MJ[N/z]
Cc L) (CM)N — CAEM(Af.E(fN)) (Y)
Cr) (CM)N = Ap.M(Af .(f N)p) (%)
Cr) M(CN) —1 CAk.N(Aa.k(Ma)) (3)
Cr) MCN) =i Ap.N(Aae.(Ma)p) (%)
Ch) M(CN) = N(ra.(Ma)) 0
A) E[AM] =, M J

Provisos:

(Y) M has to have type of the form =—(A — P)
(2) M has to have type of the form =—(A — -P)
(3) M has to have type of the form A — P
(1) M has to have type of the form A — =P
(°) M has to have type of the form —~P
(%) E]-] is « context # [—] with type L and FV (M) C FV(E[AM])

— will denote the reflexive and transitive closure of —j.

26

In the reductions defined above we have not put the type decorations for sake of semplicity. We

give below the reduction rules with all the type decorations.

B) ((Az4.MB)A-+B yA)B — (M[N/z])B
Cr) ((C (M)~(A=P))A=P Ny A)P —1

(CORP(MAfAZP(K(fN)) 4) (AB) L)==F)P
Ct) ((C(M)~(A=~F))A~=P Ny AYP —1

(APP(MAFARE(FN) Fp)t)(4=P))4)=F
Cr) (MAZP(C(N)™4HA)F —

(CARP. (N (Aah. (k(Ma)P)+)~4)+)™F)F
CR) (MAP=P(C(N)™=4)4)~F —1

(Ap”.(N (Aat.((Ma)~Fp)+)=4)+)=F
Ck) (M™AC(N)~A)4)+ = (N(Aa?.(Ma)t)~4)+
A) (E[(AMA)T])* — Mt

Definition 2.5 Let n be an integer, M a term and T a type.

i)nis ‘a bound for M If the reduction tree ofM has a finite height <n.
ii) M strongly normalizes If it has a bound.
iii) SNy = { M€ Termp | M strongly normalizes)

Then a term strongly normalizes iff its reduction tree is finite.

This definition has to be preferred to the usual one, i.e. “each reduction sequence from M is

finite”, because the latter is intuitionistically weaker than the former (classically, they are equivalent

through Konig Lemma).

In the nest section we shall give the proof of strong normalization for terms of Ac,—.

3 Strong normalization for Ag,

Our proof method of strong normalization is essentially a non-trivial modification of Girard’s can-

didates. We sketch briefly now why, even with the restriction on types, Girard’s method is not

applicable direcly as it is, and what are the modifications we made to it.

Girard’s method, following Tait, is based on a notion of “computability”. Computable terms

strongly normalizes. Thus the goal to prove strong normalization becomes to show that each term

is computable, a. thing that is not difficult to prove by induction on the term. To define a notion

of computability for continuations, instead, is not easy. The first attempt which naturally would

come in mind, in order to define a notion of computability, would be the following :

1. a. variable is computable outright.

2. Ax.M is computable if, for all computable terms N with the same type of x, M[N/a] is
computable.

3. C(M) is computable if M is computable.

4. MN is computable if it strongly normalizes, and all its reducts which are not applications

are computable (i.e.? they satisfy either 1., or 2., or 3.).

This definition is uncorrect as stated. While 2. is a definition by induction on the type of the

term, 3. forces a circularity. By 3., the computable terms C(M) of type A are defined from the

coin pu table terms of type =A. The latters. by 2., are defined form the computable terms of type
= 4, and by 2. again, from the computable terms of type A.

27

|

What we have done is to break this cycle by stratifying the above definition over an ordinal

parameter, i.e. by considering it as a general inductive definition and using this ordinal induction

during the proof.

We add terms of the form CA4 to the interpretation of A by steps. In the first step we put in the

interpretation of A only the terms which are not continuations. Then in step a + 1 we considers

the terms produced in step «, and we add to A all the terms CM such that M introduced in ——A

at the otf step. For Tarski theorem it is impossible to go on indefinitely in adding terms to the
interpretation of A; we have to stop at most at step wi, the frst uncountable ordinal.

A formal definition of our notion of computability will be given in the next subsection.

3.1 Stratified Girard candidates for Ac-

In this section we define a notion of candidates for the language, and we associate a candidate to

each type.

Definition 3.1 A ser X of terms is a candidate fora type T ff the following conditions hold :

Cand0) X 2 Varr

Candl) SN 2 X

Cand?) X is closed by reductions

Cand3) for every MN € Termr : if VQ € Termp)(MN —1 Q = Q € X) then MN € X.

Lemma 3.1 SN, is a candidate for I.

Proof.

Straightforward. e I

In order to associate a particular candidate to each type, we first define some operators on sets

of terms : Lambda, Lambda™, Not, Ap, Clos, Cont, Abort, having the following functionality

Lambda : P(Termy) = P(Termp) = P(Termap)
Lambda’, not : P(Termy) = P(Termy)
Ap, Clos, Cont : P(Termy) = P(Termy)
Abort.4 : P(Termy)

Definition 3.2 Let A, B be types, X € P(Termy), Y € P(Termp), Z € P(Term~-p). We define

 Aborta =pe; {AaM € Termy | M € SN.)
Lambda(X,Y) =pes {Xa.M€ Termasp | (VQ € X)(M[Q/2]€Y)} |
Lambda™(X) =pey {Ax.M€ Term_4 | (VQ € X)(M[Q/x]€ SN.)}
Ap(X) | =pef {MN €E€SN4 |

(VQ € Termy)(Q not application, MN — Q) = Q € X}
Clos(X) =pes X UAp(X)
Not(X) =pes Clos(Varo4U Abort. 4U Lambda™(X))
Cont(Z) =pesf {CM € Termp | M € Z} |

28

It is possible to see that Lambda and Lambda’ express the constructive meaning of lambda

abstraction, while Ap says that the constructive meaning of a term MN depends on the construc-

tive meaning of its reducts. The use of the operator Clos is to close a set of terms X under Ap.

The operator Not translates the constructive meaning of the negation. Cont expresses that the

constructive meaning of a term CM is nothing but the constructive meaning of M.

It is not difficult to see that the operator Lambda’ is decreasing w.r.t. the set-theoretical in-

clusion order; Ap and Continuation are instead increasing. ;From the observations above it easily

descends that Not is decreasing and NotoNot is increasing.

We are now ready to define, for each type 7, a candidate [7] associated to it. If T is positive,

we shall define [T] as the wj limit of an increasing chain [IT], of subsets of Term, where a denote
an ordinal and w; is the first uncountable ordinal. For non positive types the associated candidate

will be defined using the definition of candidate for positive types and the operator Not.

Definition 3.3 (i) [1] =pef SN.
(ii) Let T be a type. We define [T'] and [T], € P(T ermt),for each ordinal a, as follows:

.a=10 oo

1. If P is an atomic type a # L :

[Plo =Def Clos(VarpU Abortp)

2.IfP is A = B, assume to have already defined [P'] for all subtypes P’ ofP :
[Plo =pef Clos(VarpU AbortpU Lambda([A], [B])

3. If T =-P :

[Plo =pes Not([Plo)

1. If Tis positive :
[Tly41 =Des Clos([T],U Cont([~—T},))

2. If T =A:

[T}y+1 =Des Not([Aly41)

oe a x a limit ordinal § :

1. If T is positive :

Ts —Def U~<slT la
2. If T =A:

[Tl =pes Not([Alg)

[T]is now defined as follows :

[T] =pes [Tl

If P is a positive type it is easy to check that the chain [P)], is increasing because [Plyi41 =

Clos([Pls u...) 2[P]a. Therefore, by Tarski’s Fixed Point Theorem we get [P] = [Pl,, = [Plu, +1-
Thus, by putting « = w, in the definition of [P],+; we have that:

[P] = Clos([P] u Cont([-—P]))

If T = =A, by the same argument we have instead [7] = Not([.4]).

29

Definition 3.4 Let M be a term andA its type.

Following Tait, we shall call M computable iff M € [A].

Later we shall prove that every term is computable. It will follow, by Candl, that every term

strongly normalizes.

3.1.1 Compound candidates

In this subsection we shall check that [T] defined previously, is a candidate for any type T.

In the following Lemmas 3.2-3.5 we shall prove relevant properties of the operators we intro-

duced. Then we shall be able to prove (in Lemma 3.6) that for each type 7 and ordinal ¢, the set

[T]s (in particular [T]) is a candidate.

Lemma 3.2 Let T be type and X € P(Termr). Then:
X satisfies Cand0, Candl, Cand2 = Clos(X) is a candidate.

Proof:

We check separately Cand0,. . . , Cand3 for Clos(X).
Recall that Clos(X) = X U Ap(X).

Cand0) Clos(X) DO X 2 Var. |

Candl) SNt 2 Clos(X) by definition of Ap and SN 2 X.

Cand2) Assume M € Clos(X) and M — N in order to prove N € Clos(X). Then either M € X, or
M € Ap(X). In the first case, we apply Cand2 on X to M — N to deduce N € X. Thus,
N € Clos(X) because Clos(X) 2 X. In the second case, by definition of Ap we know that
M = MiM; € SNp, and that

(VQ € Termy) (Q not application and MyM; = Q) = Q € X (1)

Suppose now N not to be an application. Then from AM; My; — N we deduce N € X by 1.

We are so reduced to the first case. If N is instead an application, then, since N — Q) =

(Mi M3; — Q), from 1 we conclude:

(VQ € Termy)(Q not application and N — Q) = Q € X) (2)

Therefore, N € Ap(X) by definition of Ap. Thus, N € Clos(X') because Clos(X) DO Ap(X).

Cand3) Assume:

(VQ € Termy)(MN —; Q) = Q € Clos(X) (3)

in order to prove MN € Clos(X). It is indeed enough to prove MN € Ap(.X). There are
finitely many Q’s such that MN —; Q; say, Qi, . .. , Qn. Since each @; € Clos(.X'), and
Clos(X) satisfies Candl), then each @; has a bound n;. Therefore, max;{n; + 1} is a. bound
for MN, and MN € SN4. To prove MN € Ap(X), there is still left to check:

(VQ € Termy) (Q not application and MN — Q) = Q € X (4)

To prove 4, assume Q is not an application, and MN — (J. Then Q # MN. It. follows that. for

some Q’ we have MN —; Q° — Q. By the assumption 3, Q’ € Clos(.X'). Then Q & Clos(X)

follows by Q° — Q, because Clos(X) satisfies Cand2. Since Q is not an application, IT heu
Q ¢ Ap(X), and therefore Q € X. « |

30

|

Lemma 3.3 Let A, B be positive or negative types, C any type # I, X € P(Termy), Y €
P(Termp),Z,Z' € (Termg).

(i) X satisfies Cand0, Y satisfies Candl, Cand2 = Lambda(X,Y) satisfies Candl, Cand2.

(ii) X satisfies Cand0 = Lambda’(X) satisfies Candl, Cand2.

(iii) (Z, Z' satisfy Candl, Cand2) and (Z or Z’ satisfy also Cand0) = Z U Z' satisfies Cand,
Candl and Cand?2.

(iv) Varc satisfies Cand0, Candl and Cand?2.

(v) Varg U Aborto satisfies Cand0, Cand! and Cand?2.

Proof.

i) Let Az.M € Lambda(X, Y). We check Candl and Cand2 separately.

Candl) We have to prove that Az.M € SN4,p. By Cand0, © € X; by definition of Lambda(X,Y),

it follows M € Y; by Candl, we deduce M € S Np. Since Az.M has not type I, it is not an

A-redex, and each reduction out of Azxz.M is indeed a reduction on M and any bound for M

is a bound for Ax.M as well. We conclude that Ae.M € SN. p.

Cand2) Assume Axz.M — N in order to prove N € Lambda(X, Y). Since Az.M is not an d-recles, each
reduction out of Az.M is indeed a reduction on M; then N = Az.) and M — (). Therefore,

it is enough to check that, for every S € X, Q[S/z] € Y. By Az.M € Lambda(X, Y) it
follows that M[S/z] € Y. Since M[S/x] — Q[S/z], applying Cand2 for Y we conclude that
@[S/x] € Y. Thus, N € Lambda(X, Y).

ii) Analogous to point i). We use the fact that SIV; is a candidate.

iii) If Z D Varg, then ZU Z' OD Varg. If S Ng 2 Z,7’, then SNg 2 Z U Z’. Assume now Z and Z’

to be closed by reduction, and that M € Z U Z’, M — N. If M € Z then N € Z; if M € Z’' then
N € Z’. In both cases, N € Z U Z'.

iv) Left to the reader. We use the fact that no reduction is possible on a variable. v) By (iv) and

(iii), VarcU Abort satisfies Cand0, Candl and Cand2 if Aborte satisfies Candl and Cand2. Thus,

we have to prove Candl, Cand2 for Aborto. Since C is positive or negative, then C' # 1, Ac M is

not an d redes, and each reduction sequence out of AcM € Aborty is a reduction sequence out

of M. Then Abort satisfies Candl and Cand? since M € SN for each AM € Aborty. O

Lemma 3.4 Let A, B be positive or negative types, a an atomic type, X € P(Termy).

i) X satisfies Cand0 = Not(X) candidate for ~A.
ii) [a]o is a candidate for a.
iii) [A], [B] are candidates for A, B = [A — Bp is a candidate for A — B.

Proof.

i) Since .X satisfies Cand0, then Lambda™(.X') satisfies Candl, Cand2 by Lemma 3.3.(ii}. By ap-

plying 3.3.(v), (iii) in this ortler, we deduce that Var_4 U A bort_4 U Lambda™(X) satisfies Cand.

31

Candl, Cand2. Thus, by Lemma 3.2, Not(X) = Clos(Var.4 U Abort4 U Lambda’(X)) is a candi-
date.

ii) By Lemma 3.3.(v) and Lemma 3.2, [a]p = Clos(Var, U Abort, is a candidate.
111) If [A] and [B] are candidates for A and B, then Lambda([A], [B]) satisfies Candl, Cand2

by Lemma 3.3.(1). By applying 3.3.(v), (iii)in this order, we deduce that Varsp U Abort, U
Lambda([A], [B]) satisfies Cand0, Candl, Cand2. We conclude by Lemma 3.2 that [A — Blo =
Clos(Varg-,p U Lambda([A], [B])) is a candidate. O

Lemma 3.5 Let P be a positive type, X € P(Termp).
i) X satisfies Cand0 => Cont(Not(Not(X))) satisfies Candl, Cand?2.

ii) [Ply is a candidate = [Plq+1 16 a candidate.
iii) Let 8 be a limit ordinal, [Ply a candidatefor all a < § = [P]g in a candidate.

Proof.

i) Assume that X satisfies Cand0. Then, by applying Lemma 3.4.(i) twice, Not(Not(X)) is a

candidate. In particular, if M € Not(Not(X)) and M — N, then M € SN_..p by Candl and

N € Not(Not(X)) by Cand2. We check now that Cont(Not(Not(X))) satisfies Candl, Cand2.

Candl) Each reduction on CM is indeed a reduction on M, because M cannot have type ——L1 and

thus CM is not an d) redex. It follows that if CM € Cont(Not(Not(X))) then CM € SNp.

“Cand?2) For the same motivation, if CM — N', then N' = CM’ and M — M’, and therefore M' €
Not(Not(X)), N° = CM’ € Cont(Not(Not(X))).

ii) Assume [P], is a candidate.
Then, by point i) above, Cont([-—P],) = Cont(Not(Not([P],)) satisfies Candl, Cand2. By
Lemma 3.3.(iii) wededuce that [P],UCont([P],) satisfies Cand0, Candl, Cand2. We conclude
that [P]a41 = Clos([P]a U Cont([P]y)) is a candidate by Lemma. 3.2.

iii) By definition, [Plg = Uy<g[FPla . Therefore we have to prove that the union of a non- empty
increasing chain of candidates satisfies Cand0, Cand], Cand2, Cand3.

Cand0) The condition [P], DO Varp are clearly preserved under non-empty unions.

Candl) Simolarly for SNp 2 [Pla-

Cand2) assume M € |J,<g[P]a and M — N. Then M € [P}, for some «, and N € [P], by Candl
for [Ply. Thus, N € Us<plPla-

Cancl3) Assume

(VQ € Termy)(MN =, Q) = Q € 9 [Pla
al3

MN has a finite number of one-step reducts, say (J1,.. ., J». For each of them we have

Qi € UacplPla- Therefore, @; € [Pla, for some a; < #. Let a’ = max{ay, . . ., ap} < 3
(with «/ = 0 if n = 0). Since [Ply is an increasing chain, then [P], D [P]., and thus
Qi...Qn € [Plar. We apply Cand3 to [Ply and we deduce MN € [P],.. It follows

MN € Ua<slPla- 0

Lemma 3.6 Let T be a type and o an ordinal. Then [T]., [T] are candidates.

32

Proof.

By induction on the definition of [T]4, [T]; i.e., by principal induction on the number of arrows
in 7, and by secondary induction on «. All the properties required in the inductive steps are in

Lemma 3.1, Lemma 3.4 (1), (i1), (in) and Lemma 3.5 (i1), (ii). 4

We are ready to prove now, in the next section, that every term is computable.

3.2 Computability for terms of A¢,-

In order to prove that every term is computable, we have to check that all constructors of the

language build computable terms from computable terms. For some connectives, this fact follows

by the definition we have given. For variables it follows from the fact that [A] is a candidate and
from Cand0.

Lemma 3.7 Let A, B be positive or negative types, P a positive type, Ax.M € Term_4 and Ax.N€

Terma. Then :

i) (VQ € [Ala)(M[Q/z] € SN1) = Az.M € [A],
ii) (VR € [A]o)(N[R/z] €[Bla) = Az.N €[A = Bl,
iii) M € [--P], = CM € [Pl,
iv) M € SNy = AsM € [Al

Proof.

i) [=A] © Lambda™([A]), and Az.M € Lambda™([A]) by definition of Lambda’.
ii) JA — B] 2 Lambda([A], [B]), and Az.N € Lambda([A], [B]) by definition of Lambda.

iii) [P] = Clos([P] u Cont([-—P])))) 2 Cont([-—P]) by Tarski Theorem, and CM € Cont([-—P],)
by definition of Cont.

iv) From the definition of [A], it is easy to check that [A], 2 Abort4 and hence As M € [A], when

To check instead that M € [A — B] and N € [A] imply MN € [B] is more difficult. It will
justify the need for the heavy candidate machinery we introduced.

The difficulty to prove MN € [B] lies in the fact that MN has a functional constructive mean-

ing (it may be reduced by 3) butalso non-functional ones (it may be reduced by Cr, Cr, C1, Ck,
C7). Suppose, for instance? that M = CM’, and reduce MN by Cp to CAk.M'(Af.k(fN)). If we
try to prove CAk.M'(Af.k(fN)) € [B],after a while, because of the presence of Af... (fN)...in

CAk.M'(\f.k(fN)), we are reduced to prove M”"N € [B] for any M" € [A — B].
The situation seems to be hopeless; in an attempt to prove MN & [B], we are reduced to prove

M"N € [B] for all M” € [A — BJ]. In other words, the reduction rules we have seem to give a cyclic

definition of the constructive meaning of MN. The idea is to break this cycle, by saying that we

introduced M(= CM’) in [A — BJ after we introduced M’ in [-—~(A — B)], and M" in [A — B].
This informal idea has been formalized in the definition [P]o+1 =pes Clos([Pls U Cont([P]«)). This
definition says that if we introduced M' in [-—P] at the stage «, then we introduced CM’ in [P]
at the stage a + 1.

The nest lemma (Lemma, 3.8) characterizes the terms of the form CM occurring in [P],. Then
we will check (Lemmas 3.9 and 3.10) that M € [-A], N € [4] imply MN € SN,, and finally
(Lemma 3.1°2) that M € [A — B], N € [A] imply M/N € [B]. The lasttwo properties axe really
hard to prove, but they are required in order to prove that every term is compu ta ble.

33

Lemma 3.0 Let P be a positive type and a an ordinal. Then:

CMe[PlaoMEe [-= Py

for somed < a.

Proof. <<) M € [~=P]y for some o < a => (CM) € [Plorg1 and &¢ + 1 € a = (CM) € [Pla
| (because the chain [Pla 1S Increasing).

=) We proceed by induction on ¢. The case a = 0 is trivial because CM ¢ [Plo by definition of

: In the case @ = & + 1, if CM € [Plgr41 =Des Clos([P]y UCont([—~—P]y)) then, since CM is not an
| application, either CM € [Ply or CM € Cont([-—P]y). In the first case we apply induction hy-

pothesis on o obtaining M € [== P],n for some &” < & < & + 1; in the second one, M € [== P],
by definition of Cont, and o/ < o + 1, as we wished to show.

| In the case a is a limit ordinal, if CM € UycolPlar then CM € [Ply for some o < a. We apply
the induction hypothesis on o' and we obtain M € [== P|, for some o” < o/ < a. QO

| We check now (in Lemmas 3.9 and 3.10) that M € [-A], N € [A] imply MN € SN|.

| Lemma 3.9 Let P be a positive type and & an ordinal. Then:

(i) M € [-=Ply, N € [Pla = MN € SN}
(ii) M € [-~P], N € [P| = MN € SN,

: Proof.

(i) By lemma 3.6, [-—P], and [~P]y are candidates. By Candl, M and N have bounds m and n.
] We prove now that MN € SN; by induction on m + I. Since SN, is a candidate by Lemma 3. 1,
| by Cand3 it is enough to prove: (VQ € Term)(MN —; Q) = Q € SN,.

Assume MN —; Q in order to prove Q € SN,. Then there are four cases : either () = MV

and M —; Mj, or Q = MN, and N —; Ny, or Q = M/[N/z] and M = Az.M’ or Q = R and
{ MN = E[AR] (by definition, Cj cannot be applied). In the first case, M; has a bound m; < m

and M, € [=P], by Cand2. In the second one Nj has a bound n; < n and N; € [=P], by Cand2.
In both cases we apply the induction hypothesis and deduce M;N (or MNy)e SN, as required to

| prove. In the third case, M = Az.M’' € [=P], € Not([-P]y). Since M is neither an application
nor a variable nor an abort, then M € Lambda™([-P],), and we conclude M'[N/x] € SN, by
definition of Lambda,. In the fourth case R is necessarily a subterm of M or N. In both cases

R € SN, since M and N have bounds.

(11) Straightforward by (i), putting a = w;. U

| Lemma 3.10 Let P be a positive type and « an ordinal. Then:
(i) M € [=P], N € [Pla = MN € SN,
(ii) M € [~P), N € [P] = MN € SN;

1 Proof.

(i) By lemma 3.6, [-P] and [P] axe candidates. By Candl, m and N have bounds m and n. We
prove now MN ¢€ SN; by principal induction on o and secondary induction on m + MT. Since SN

is a. candidate by Lemma 3.1, by Cand3 it is enough to prove: (VQ € Term) (MN —, Q) = €

Assume MN =; (Q in order to prove (} € SN. There are five subcases:

| 34

1. Q = MiN and M —, M;

2. Q = MN; and N “21 NN

3. Q = M'[N/z] and M = Az.M' (we applied 3)

: 4. Q = N'(Aa.(Ma)) and N = CN’ (we applied Cj)

: 5.Q = R and MN = E[AR] (we applied A).

We check Q € SN, separately in each case.

1. If @ = MiN and M —; M, then M; has a bound m; < m and M; € [-P] by Cand2. By
the secondary induction hypothesis we deduce My N € SN;.

2. f Q = MN; and N =; N; then Nj has a bound n; < n and N; € [P], by Cand2. By the
secondary induction hypothesis we deduce MN; € SN;.

: 3. Assume Q = M'[N/z] and M = Az.M’'. Then M € Lambda™([P]), because M € [=P] and
M is neither an application nor a variable nor an abort. We conclude M'[N/z] € SN, by
definition of Lambda’, NV; € [Pls and [P] 2 [Pls (the inclusion holds because P is positive).

4. Assume Q = N'(Aa.(Ma)) and N = CN’. Then N’ € [=P], for some ¢ < @, by Lemma
3.S and N € [Pls. To prove N'(Aa.(Ma)) € SN;, by Lemma 3.9 it is enough to prove
Ae.(Ma) € [-P]y. By Lemma 3.%(i), Aa.(Ma) € [~P], may be proved if we prove (VN €
[Pla) (MN € SN). This last statement follows by principal inductive hypothesis on o' < «a.

5. R is necessarily a subterm of M or N. In both cases R € SN, since M and N have bounds.

(ii) Straightforwardly by (i), putting o = wy. O

Lemma 3.11 For uny positive or negative type A,

M €[-A], Ne[A]= MN e€ SN,.

Proof.

By Lemma 3.9 (if A is negative) or 3.10 (if A is positive).O

We prove now the last and harder lemma of this paper.

Lemma 3.12 Let 4, B be positive or negutive types and «, 3 be ordinals. If A is a negative type.

assume also 3 = wy. Then:

(i) M € [A— Bl]y,N €[A]p = MN € [B]
i) Me[A—>B],Ne[A]= MN € [B]

Proof.

(i) By lemma. 3.7, [4 — Bla, [Als and [B] are candidates. By Candl, M and N have bounds m
and n. We prove now MN € [B] by threefold induction on the indexes a, 3, m + n. (Actually, the

order between the first two indeses does not. matter). By Cand3 it is enough to prove:

(VQ € Term)(MN —; Q) = Q € [B]

Assume MN —; Q in order to prove Q € [B]. There are five subcases:

35

1. Q = MiN and M = M,

2.Q = MN; and N —5; N

3. Q = M’[N] and M = Az.M' (we applied rule (3))

4. Q = CAR.M'(Af.k(fN)), M = CM’ and B is positive (we applied rule Cr)

5 0 = Ap.M'(Af.(fN)p), M = CM’ and B is negative (we applied rule C7)

6. Q = CAk.N'(Aa.k(Ma)), N = CN’ and B is positive (we applied rule Cg)

7. Q = Ap.N'(ha.(Ma)p), N = CN’ and B is negative (we applied rule Cf).

We check Q € [B] separately for each case.

1. IfQ@ = M{N and M —; M,; then M, has a bound m; < m and M; € [A — BJ], by Cand2.
By induction hypothesis on (my + n) we deduce MiN € [B]

2. f @Q=MN; and N —; N; then Nj has a bound nl; < n and N; € [A]g by Cand2. By the
induction hypothesis on {m + n;) we deduce MN; € [B].

3. Assume Q = M'[N] and M = Az.M'. Then M € Lambda([A], [B]), because M € [A — Bj],
and M 1s neither an application nor a variable nor an abort nor a continuation. We conclude

M'[N/z] € [B] by definition of Lambda and N € [A]g, [A] 2 [A]g. Remark that [A] 2 [A]p
holds because either A is a positive type (and the chain [A], is increasing) or § = w; (and
[A] = [A]g)-

4. Assume Q = CAk.M'(Af.E(fN)), M = CM’ and B positive. Then M’ € [-~(A — B)]u
for some o' < «, by Lemma 3.8 and M € [A — B],. We proceed now backwards from
our thesis. To prove CAk.M'(Af.k(fN)) € [B] by Lemma 3.7.(iii) it is enough to prove
Ae.M'(Af.k(fN)) € [--B]. By Lemma 3.7.(ii), Ak. M'(Af.k(fN)) € [-—B] may be proved if
we prove (VQ € [-B)(M'(Af.Q(fN)) € SN). By Lemma 3.11 and M’ € [-~(4 — B)].,
M'(Af.Q(fN)) € SN, may in turn be proved if we prove Af.Q(fN) € [-(A — B)].. This
last statement, by Lemma. 3.7.(i), is implied by (VM"” € [A = B].)(Q(M"N) € SN). Since
Q € [BJ], by Lemma 3.11 all we have to prove is (YM"” € [A — B]y)(M"”N € [B]). This last
statement may be obtained by the principal induction hypothesis on o < a.

5. Assume Q = Ap.M/(Af.(fN)p) and M = CM’, with B = =P for some positive type P. Then
M' € [-=(A — B)]4 for some ¢’ < «, by Lemma 3.S and M € [A — BJ. We proceed now

backwards from our thesis. To prove Ap.M'(Af.(fN)p) € [B] = [-P] by Lemma 3.7.(i) it is
enough to prove (VQ € [P))(M'(Af(fN)Q) € SN). By Lemma 3.11 and M’ € [-~(4 —
B)]ar, M/(Af(fN))Q € SN, may in turn be proved if we prove Af.(fN)Q € [-(A — B)]..
This last statement, by Lemma. 3.7.(i), is implied by (VM"” € [A = B])((M"N)Q € SN).
Since Q € [P], by Lemma. 3.11 all we have to prove is (YM" € [A = B].)(M"N € [B] =
[=P]). This last statement may be obtained by the principal induction hypothesis on a’ < a.

6. Assume Q = CAL.N'(Aa.k(Ma)), N = CN’ and B positive. Then N’ € [-—A]z for some
#8’ < 8. by Lemma. 3.8 and N € [A]3. Remark that, for the restriction we put on typing,
A must be a. positive type, and therefore rue did not assume B = w, . We proceed now
backwards from our thesis. To prove CAk.N'(Ae.k(Ma)) € [B] by Lemma 3.7.(iii) it is enough
to prove Ak.N'(Aa.k(AMa)) € [--B]. By T,emma 3.7.(ii), Ak. N'(Ae.k(Ma)) € [--B] may be

36

proved if we prove (VQ € [-B])(N'(Aa.Q(Ma)) € SN). By Lemma 3.9 and N* € [-—A4]z,
N'(Aa.Q(Ma)) € SN; may in turn be proved if we prove Aa.Q(Ma) € [-A]p. This last
statement, by Lemma 3.7.(1), may be deduced from (VN” € [A]p)(Q(MN") € SN). Since
Q € [-B], by Lemma 3.11 ‘all we have to prove is (VN” € [A]g") (MN” € [B]). This last
statement may be obtained by the secondary induction hypothesis on #’ < B (in order to

apply inductive hypothesis to 8’ < (3, it is crucial that we did not assume § = wy).

7. Assume Q = Ap.N'(Aa.(Ma)p) and N = CN’ with B = =P. Then N’ € [-—A]p for some
B’ < B, by Lemma 3.8 and N € [A]g. Remark that, for the restriction we put on typing,
A must be a positive type, and therefore we did not assume B = w;. We proceed now

backwards from our thesis. To prove Ap.N'(Aa.(Ma)p) € [B] = [-P] by Lemma 3.7.(3) it
is enough to prove (VQ € [P])(N'(Aa.(Ma)Q) € SN1). By Lemma 3.9 and N’ € [~—A]g,
N'(Aa.(Ma)Q) € SN may in turn be proved if we prove Aa.(Ma)Q € [-A]p. This last
statement, by Lemma 3.7.(1), may be deduced from (VN” € [Alg)((MN")Q € SN). Since
Q € [P], by Lemma 3.11 all we have to prove is (VN” € [A]g)(MN" € [B] = [-P]). This
last statement may be obtained by the secondary induction hypothesis on 8’ < #8 (in order

to apply inductive hypothesis to 8’ < B, it is crucial that we did not assume 8 = wy).

(ii) Straightforwardly by (i), putting a = 8 = wy. O y

3.3 The result

We now ready to prove a’ Soundness Theorem and to deduce Strong Normalization from it. We

only need a last definition before.

Definition 3.5 Let M be any term.

(i) A substitution is uny mup from a finite set of variables to the terms.

(ii) A substitution a is on M If the free variables of M ure all in the domain of ©.

(iii) If a is a substitution on M, we denote by a(M) the result of replacing each x free in M by a(x).

(iv) A sstitution ois computable if o (x) is computable for all variables x in the domain of o.

Theorem 3.1 (Soundness) Let M be any term and o a substitution on it. Then:

o is computable = o(M) is computable

Proof.

By induction on AL

e Al is a variable.

The thesis holds by definition of computable substitution.

We apply Lemma 3.7.1) or 3.7.(ii), if the type of M has the form —=A or A — B respectively.

eo MM = AS | Al,
We apply Lemma 3.11 or 3.12, i the type of AM; has the form =A or A — B respectively.

37

o M = CM;

We apply Lemma 3.7.(iii).

o M = AM,

We apply Lemma 3.7.(iv).0

Corollary 3.1 (Strong Normalization) Every term M of Ac¢,-
strongly normalizes.

Proof. Consider the identical substitution on M, defined by id(x) = = for each = free in M. The
substitution id is computable because 4 € [A] by Cand0. Therefore by the Soundness Theorem
M(= id(M)) is computable. Thus, M € [A] for the type A of M. Then, by Lemma 3.6 and Candl,

M strongly normalizes. O

Acknowledgements

We are grateful to Mariangiola Dezani for her constant support and gentle guidance, and to Mario

Coppo for helpful discussions and his careful reading of an earlier draft.

| The first author wishes to express his gratitude also to Paola Fochesato and Pierpaolo Fiorletta

for their steadfast encouragement.

References

1. Barbanera F., Berardi S. Witness Extraction in Classical Logic through Normalization. To

appear in Proceedings of BRA-LF workshop, Cambridge University Press.

| 2. Barbanera F., Berardi S. A constructive valuation interpretation for classical logic and its
use in witness extraction. To appear in Proceedings of Colloquium on Trees in Algebra and

| Programming (CAAP), 1992.

| 3. Clinger W., Rees J. The revised’ report on the algorithmic language scheme. SIGPLAN
Notices, 21(12):37-79, 1986.

| 4. M. Felleisen, R. Hieb, The revised report on the syntactic theories of sequential control.

Technical report 100, University of Rice, Houston, 1989. To appear in Theoretical Computer
Science.

5. M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba, Reasoning with continuations. In

“Proceedings of the First Annual Symposium on Logic in Computer Science”, pages 131-

141,1986.

6. Timothy G. Griffin. A formulas-as-types notion of control. In” Conference Record of the

Seventeenth Annual ACM Symposium on Principles of Programming Languages, 1990.

| 7. Murthy C. Extracting constructive content from classical proofs. Ph.d. thesis, Department
of Computer science, Cornell University, 1990.

8. C. Murthy. An evaluation semantic for classical proof. In “Proceedings of the Fifth Annual

Symposium on Logic in Computer Science” 1991.

9. Murthy C. Finding the Answers in Classical Proofs: A Unifying Framework. To appeat in

Proceedings of BRA-LIF workshop, Ca mbridge University Press.

38

|

Three Monads for Continuations *

Richard B. Kieburtz Borislav Agapiev James Hook

Oregon Graduate Institute of Science & Technology
19600 N.W. von Neumann Dr.

Beaverton, OR 97006

e-mail : lastname@cse. ogi . edu

1 Monads capture semantic structure

We propose three monads that express the structure of different modes of continuation seman-

tics. The first 1s the familiar CPS semantics, the second 1s a semantics for languages with

first-class continuations, and in the third we have ‘composable continuations’ that are useful

to express the semantics of backtracking such as occurs in the computations of logic programs.

The third structure is not actually a monad, as the left identity law fails for reasons that we

discuss. The object map of each monad, if expressed as a formula of propositional logic, forms

the hypothesis of an implication from which one can derive full classical propositional logic.

In each monad (or pre-monad), certain morphisms of an underlying category can be ‘taken

for granted’, rather than constructed. These morphisms are respectively, eval, the evaluator

of applicative expressions, call/cc, a meta-language analog of the call/cc control primitive

of Scheme, and a new (but related) morphism that we call eval/cc.

1.1 Monads of a Cartesian-closed category

As a model for programming language semantics, we assume an underlying Cartesian-closed

category. The intended interpretation 1s that objects of the category correspond to types and

morphisms to functions. State is easily accommodated in such a model {11, 10]. We shall use
the following characterization of a monad [8]

Definition 1: A Kleisli triple (T, n,(-)*)in a category C consists of

e an object mapping function T :0bj(C) — Obj(C),

e a natural transformation called the unit, nx : X — TX,

~ %The research reported here was supported in part by the National Science Foundation under grant No.
CCR-9101721.

39

. e a natural extension operation that takes each morphism f : X — TY to a morphism

f*: TX = TY in C.

Co These components of a monad must satisfy three laws:

(K1) nx = tdrx

(K2) fron =f

(K3) (g*of) =g*0f*

0

Laws (K1) and (K2) express that the unit is respectively, a left and a right identity with respect
to Kleisli composition. Law (K3) expresses that natural extension 1s associative with respect to

morphism composition. We shall call a monad-like structure a left or a right pre-monad 1f it

satisfies (K3) and one of the identity laws, (K1) or (K2), but the other identity is not assured.
A morphism i : X — Y of the underlying category can be ‘lifted’ to a T-monadic morphism

by composition on the left with the unit of the monad, ny o 2 : X — TY. Such morphisms are

called the proper, (or existing) morphisms of T. The natural extension of proper morphisms

provides a mapping of morphisms X — Y to TX — TY which together with the object

mapping function constitutes a functor 7 : C — C. The more interesting morphisms of a
monad are those of types X — TY that are non-proper. For each of the monads we consider,

we shall be interested in the interpretation given to its non-proper morphisms.

1.2 What 1s a monad for continuations?

Each of the monadic structures studied here can be used to transform a direct semantics for the

X-calculus to a call-by-value semantics that uses continuations explicitly. As the language 1s

extended, we do not expect that every function will denote a proper morphism in the category.

Hence, functions given the type X — Y in the language will correspond to morphisms from X

to TY in the category, i.e. they will map values to computations. Furthermore, an expression

representing a function value acquires a type T(X — TY). These observations yield what has

been called the Kleisli interpreter [2]:

[zlp = n(pz)

Az. Mp = n(Av.[M]plz — v])

IMNjp = (Aff (IN[P) (IMP)

The natural extension of a function in the monad allows substitution of computations, rather

than values, for argument variables. This 1s the essence of continuation semantics.

40

1.3 The continuation-passing monad

The functions of CPS semantics are captured in the monad whose object function, unit and

natural extension operation are:

TX =(X—-A)-A

nx = AzAc.cT

[f= Ataet(Az.fzc)
where f J X= TY

We call this the CPS monad. It has previously been called the monad of continuations [10]
but, as we shall see, it 1s not the only interesting monadic structure that captures computation
with continuations.

If C is to be a nontrivial Cartesian-closed category, then the naturality required of the unit

and the extension restrict the choice of object A. Intuitively, A should correspond to a universal
type for final answers; a type on which we can assume no interesting operations to be defined.

Formally, A must be an involution object [9, 7] of C, satisfying two conditions !

(11) the function space [A — A] is a final object in C;

(12) VA € 0bj(C) there is a monic arrow Kx : X — A.

Continuations are modeled as arrows X — A. Condition (12) guarantees that there is a
continuation that can distinguish the elements of X from one another.

In the propositions-as-types analogy between intuitionistic propositional logic and the sim-

ply typed A-calculus, X-terms of type t correspond to proofs of the formula corresponding to

t in the logic. Closed lambda terms correspond to proofs of tautologies. Griffin [5] observed
that the analogy extends to one relating classical logic to a X-calculus extended with typed

continuations, and used the analogy to suggest types for control operators.

An involution object is analogous to the absurdity proposition of an intuitionistic logic [5].
An object TX 1s analogous to a double-negation proposition, ==X, in intuitionistic logic. The
formula =-=X = X, when added as an axiom scheme, yields classical logic. Analogous to this

formula is a morphism evaly : 7X — X in the category C. For proper computations of T it
satisfies:

eval(Ac.cz) = x

Such a morphism cannot be defined as a closed &expression, i.e. it does not necessarily exist as

a consequence of the Cartesian-closed property of C. Although evaly is natural in X it is not

universal unless every arrow Y — TX in C is proper for the monad 7. Its formal introduction
rule 1s:

'kt: TX

['t-evalxt: X

1The reader should note that involution does not imply isomorphism of objects X and TX. Such an isomor-
phism would have as a consequence that if C is Cartesian-closed, it is an order category, in which there is at

most one arrow between any pair of objects [6].

41

The CPS monad internalizes as objects TX the morphisms that map X-accepting contin-

uations to final results. Such objects are sets of ‘latent computations’ that provide semantics

for applicative expressions. If I’ 7 X = Y is a morphism of C, then the proper morphism
f=nyofl :X > TY satisfies the equation

fXC = ¢(f'z)

Non-proper morphisms of this monad are those whose codomain element may represent a com-

putation that discards the nominal result continuation and instead uses a different continuation

to effect a tail-call or to raise an exception, or which diverges.

1.4 The monad of control alternatives

The second monad we consider 1s motivated by the desire to provide semantics to expressions
abstracted on a continuation variable. The constituents of the monad are:

sx =(X =» A)—-X

nx = Az.Ac.x

f* = As. xe. f(s(Az.c(fzc))e
where f.X = SY

As before, A 1s required to be an involution object, and an object [X — A] 1s interpreted as a
type of X-accepting continuations.

The intuitionistic formula analogous to an object SX 1s =X = X, which 1n classical logic 1s
abbreviated as X V X. A morphism SX — X can be interpreted as evaluating a computation

that might produce a value of type X in two different ways, either by a direct evaluation,

ignoring the continuation argument, or by invoking the argument continuation. The analogy

with a disjunctive formula of logic hints that SX may be related to a disjoint sum, X + X.

This 1s indeed the case, provided there 1s added to the set of monad morphisms a constructor

Ax : A — X, called ‘abort’ [4]. Then we can define

inl = n = Az. Ac.x

inr = Az.Ac.A(cz)

The discriminator is

case(s,f,g) = Xe.f(s(Az.c(gzC)))C
in which s : SX, f : X = Y and g : X — Y. Notice the similarity in form between the
discriminator and the natural extension of a function in the monad S,

f* = As.case(s, f, f).

It 1s informative to compare this formulation with Griffin’s construction of disjunctive types

[5] in the CPS monad. That construction requires the explicit addition of both the operator
A and of Felleisen’s control operator [4], C, while in the monad S we need add only A as an

42

explicit operator. However, since A 1s conventionally defined in terms of C, an independent

axiom 1s needed for A if we are to define it without C. The necessary axiom 1s

(Vx: X) (Ve, : X= A) d(Ax(cz)) = cx

Abbreviating Xs.case(s, f,g) AS[f,g],® # is now easy to check that the axioms of a coproduct
hold:

[f,gloinl = f [f,9]0 inr = g [id, inr] = id

Thus, types SX indeed become coproducts if the met a-language includes the abort operator
Ax.

~ Additionally, one can simply postulate a constructor that injects expressions of type SX
into a X-calculus. The introduction rule 1s

I's: 5X

[t-call/ceys : X

The explanation of call/ cc 1s that when applied to an abstraction expression, Ac.e, binds the

abstraction variable, ¢, to the current continuation. Any subexpression of the form c e’ is
interpreted as a ‘throw’ of the value of expression €’ to the bound continuation.

But what if the value of ¢€’ is itself constructed with call/ cc? The semantics of composite

expressions in this monad are explained by the Kleisli composition, i.e. by using the natural

extension in the monad S of functions that may either produce normal values (the arrows

proper for the monad) or values constructed with call/ cc (the non-proper arrows).

In Scheme, call/ cc has been lifted from its status as a semantic operator of the meta-
language to become a syntactic operator of the programming language. The Kleishi interpreter

for the monad S can be extended to account for this language construct:

lcall/ec Az.M] p = Ae.(|M] plz — ¢])

To complete the analogy with formulae of logic, note that the logical formula (=X = X) =
X 1s Peirce’s law, also sufficient to yield full classical logic when added to intuitionistic logic

as an axiom scheme. This formula corresponds to the type of call/ecy : SX — X.

1.5 The pre-monad of composable contexts

The third structure 1s intended to provide a complete foundation for a semantics of logic

programs, or of a language with the prompt and control primitives introduced by Felleisen

[3] (or the reset and shift primitives of [1]). This structure is a composite of the two previous
ones, with constituents:

RX =T(SX) =((X—=4) =-X)—- A)—4

nx = Mex °M%x = Az.Ah.A(Ac.z)
f* = Ar.Ahor(rs.f(s(Az.fzh))h)

where f : X = RY

43

This structure is not a monad, as the left identity law (K1) fails, but it is a right pre-monad. The
left identity law would be provable if elements of type SX were restricted to those constructed

by application of n%,but then the monad R would be isomorphic to the CPS monad. We
conjecture that the left identity law may also be provable in a category without fixpoints, which

would imply that it 1s connected with the uniform termination problem for R-computations.

An object RX 1s a space of computations that take SX-expecting continuations to final

results. We call an SX-accepting continuation an X-expecting context. A context supplies its

SX-typed argument with both an X-expecting continuation for a result produced by normal

evaluation and a second continuation of the same type for use if the evaluation aborts. Thus

an aborted computation need not escape to the ‘top level’, but may backtrack. Aborting

a computation with an alternate continuation 1s equivalent to continuing the computation

in another context. This intuition is summarized in the CPS transformation of SX-typed
expressions:

linlzfr h = h(inl x)

lint zjr 1 = ho(inl x)

where hg 1s a context constant, or initial context. (There is no closed X-term of type SX — A.)

A semantics of either applicative or relational expressions built with this monad allows

contexts to be composed incrementally. Incremental composition of continuations was not

possible in either of the monads T or S, because continuations do not compose as ordinary

functions. It 1s possible in R, because higher-order continuations are available as contexts.

The Kleisli composition in R allows context abstractions to occur as arguments of functions,

in effect subsuming higher-order CPS transformations.

A morphism RX — X can be interpreted as evaluating a latent computation that uses

an SX-accepting continuation to produce an X-typed result. A morphism of this monad is

eval/ccy : RX — X (evaluate-in-current-context), which is defined by the rule:

eval/cc(r) = eval(Ae.r(As.c(sc)))

where eval is the morphism that supplies the immediate continuation to a computation of type
TX.

The formula of propositional logic analogous to the type of eval/ cc, namely ==(-X =
X) = X, also yields classical logic when added to intuitionistic logic as an axiom.

1.6 A hierarchy of monads

The monad T provides a semantics in which sequential computation is made explicit. It allows

the definition of first-class suspensions. If e is an expression, then Ac.ce is a suspension, where

Cc 1s a continuation variable, and e contains no free occurrence of c. To evaluate a suspension,

a current continuation is supplied by eval, by forming an expression eval(Ac.ce). In a call-
by-value language, suspensions are made explicit when delayed evaluation 1s specified. In

a non-strict programming language, the notation for suspensions and for their evaluation 1s

implicit.

44

In the monad S, the restriction that e contains no free occurrence of a continuation variable

is lifted. A continuation abstraction is evaluated by call/cc(Ac.e) which binds the continuation
. variable to the current continuation. An expression Ac.e is not considered to be a suspension,

but one that may depend upon an alternate continuation. The normal result continuation 1s

implicitly furnished whenever an expression 1s evaluated.

The pre-monad R 1s a CPS monad of control alternatives. It subsumes both suspended

computations and backtracking control. In it, expressions may be abstracted on variables of

types X — RX which represent context transformations. Application of such a variable to

an argument expression can represent a backtrack with that expression or the raising of an

exception or the extension of the current context with a previously specified context fragment.

We conjecture that the monad R will provide a framework suitable for the semantics of logic

languages as well as functional languages with explicit control primitives.

As an example, in Section 2 we give a semantics in the monad RX to the Scheme-like

language enriched with shift and reset that was used by Danvy and Filinski. We shall see

that these primitives can be realized with eval/ cc. .

2 Semantics of applicative expressions with shift and reset

The shift/reset (S/R) language we consider here is essentially that given in [1], except for a
minor variation in the definition of the shift operator. It is a language of lambda expressions

augmented with (strict) operator symbols, a conditional expression, and control operations that

allow an alternate context for control to be specified, invoked, or composed with a bounded

context segment. There are three explicit control primitives: .

e reset sets a contextual control point. A reset is indicated by angle brackets. When

an expression 1s bracketed, ... (E) .:-, the context outside the brackets 1s marked as

accessible. Evaluation of the bracketed expression may depend upon this context in

interesting ways, if it contains occurrences of either of the other two control primitives.

If E does not refer to these primitives, it 1s evaluated in the surrounding context just as

if the reset brackets were not present. A top-level program 1s implicitly bracketed by a
reset that marks an initial context.

e abort 1s an abstraction operator that binds a variable to the immediate context of the

abstraction. When a variable bound to an abort 1s applied to an argument expression,

the argument is evaluated in the bound context, ignoring the immediate context of the

application.

e shift 1s an abstraction operator that binds a variable to the bounded context segment

found between the immediate context and the context mark set by the enclosing reset

brackets. Application of a variable bound to a shift extends the current context of the

application with the bounded context segment. Repeated applications iterate the ex-
tension. A shift abstraction 1s trivial if there 1s no occurrence of the bound variable in

the body. Then the body of the abstraction is evaluated in the current context just as

45

if the abstraction were not present. Thus elaboration of a shift abstraction duplicates

the bounded context segment one or more times. In the version of the S/R language
presented in [1}, a trivial shift abstraction is equivalent to an abort with the body of the
abstraction, thus elaboration of a shift abstraction duplicates the bounded context zero
or more times.

A semantics of the S/R language 1s given below. The meaning function 1s

El-1: Expr —» Env = R(Value)

where Env = Identifier — Value. Variables appearing in the formulae are typed as:

hhh" SX —> Aor SY — A

8,81,82 : So, where a ranges over types,
c,e’ : X—=AorY- A

T,v :X

© : X = Y, a strict operator

f,f/ : X—> RY

The semantic equations for applicative expressions with shift and reset are:

(unit) Elz]ph =h(hep) x)

(pt) Elr]lph = h(Ae. Av. AR R(X .7v))

(If) ENif(Eo, Er, Ex) ph = EE) Eo] p(As.h(Ac.s(Abb =true—=E|Ey|ph; E|E2]ph))

let ff - si (Af.E|Ey|p(As.f(s(Az.fzh))h))
in f(z (Az.f'z h)) h))

(abs) EJAz.E]ph = h(AcXv.E]| E]pllz] ~ v])

(abort) Elek. Eph = EE] p[]k [| Av. AR.h(Ac.v)] h

(shift) EN€k.E|ph = E|E]p[lk | Av. AR.A'(Ac.eval/cc(Ah".h(Ac'v)))] A

(reset) EN(EY|ph = h(Ac.eval/ce(E|E]p))

Expressions like Av.AR".R/(Ac’.x v), which occurs in (pi) and Av.E | E | p[] k | — v], which occurs
in (abs), represent normal values that have functional types, X — RY. Formulas (unit), (abs)
and (app) are calculated directly from the definition of the Kleisli interpreter for this monad.

Formulas (pi) and (if) are similarly obtained from an extension of the intepreter. The formula
(abort) 1s a straightforward formalization of the informal description of the abort operator.

46

We shall not attempt to give an operational interpretation of the (shift) and (reset) seman-

tics, but note that each uses the eval/cc operator in a different way. In (shift) the argument

expression given to eval/cc discards its context argument. Thus eval/ce is used here simply
to coerce to a value a computation that uses the context of the shift abstraction as an imme-

diate context. The value so produced is then injected by the unit of the monad to continue

computation in a context surrounding an application of the bound variable. The use of eval/cc

in (reset) distributes the normal continuation of the immediate context of the reset brackets

as both the normal and the alternate continuation to be used in evaluating E. This is how a

surrounding context is made accessible.

The reader may wish to contrast these semantic equations with those given in [1]. There
the semantics is obtained by iterating the CPS transformation twice. Thus we might expect

meanings to have types T(TX) and indeed they do, up to an isomorphism of Cartesian closed
categories. The authors point out that the CPS transform can be further iterated if one wishes

to accommodate nested reset brackets in a language. The semantic equations then become

rather unwieldy, although orderly. This is because T? is not a monad. By giving semantics in
the monad R, iteration of the CPS transform is rendered unnecessary.

3 Acknowledgements

We wish to thank the program committee for the interest shown in this work by several pages of

technical comments. We are particularly grateful to Olivier Danvy for helpful and stimulating
discussions.

References

[1] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proc. 1990 ACM Conference
on Lisp and Functional Programming, pages 151-160, June 1990.

[2] Olivier Danvy, Jirgen Koslowski, and Karoline Malmkjser. Compiling monads. Technical
Report CIS-92-3, Kansas State University, Manhattan, Kansas, December 1991.

[3] Matthias Felleisen. The theory and practice of first-class prompts. In Conference Record
ofthe Fifteenth Annual ACM Symposium on Principles of Programming Languages, pages

180-190, January 1988.

[4] Matthias Felleisen, Daniel Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactic
theory of sequential control. Theoretical Computer Science, 52(3):205-237, 1987.

[5] Timothy Griffin. A formulae-as-types notion of control. In Conference Record of the
Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages

47-58, January 1990.

[6] Hagen Huwig and Axel Poigné. A note on inconsistences caused by fixpoints in a Cartesian
closed category. Theoretical Computer Science, 73:101-112, 1990.

47

[7] Richard B. Kieburtz and Borislav Agapiev. What is an abstract machine? Technical
Report CSE-91-011, Department of Computer Science and Engineering, Oregon Graduate

Institute, 1991.

[8] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[9] Narciso Marti-Oliet and Jose Meseguer. Duality in closed and linear categories. Technical
Report SRI-CSL-90-01, SRI International, February 1990.

[10] Eugenio Moggi. Notions of computations and monads. Information and Computation,
93(1):55~92, July 1991.

[11] Philip Wadler. Comprehending monads. In Proc. 1990 ACM Conference on Lisp and
Functional Programming, pages 61-78, 1990.

48

Control Operators, Hierarchies, and Pseudo-Classical Type

Systems:
: *

A-Translation at Work

Chetan R. Murthy!
Projet FORMEL

INRIA-Rocquencourt

B.P. 105

78153 Le Chesnay Cedex, FRANCE

murthyQmargaux.inria.fr

April 20, 1992

Abstract

Control operators are an important programming language feature, and are being incorpo-

rated into more and more functional programming languages. It is becoming clear that such
operators permit beautiful, elegant solutions to many difficult programming problems. Unfor-

tunately, it is difficult to statically type-check these operators. In this paper, we focus on a

particular hierarchy of control operators [DF90] and point out how this hierarchy can be given
an expressive type system via A-tra.nsla.tion. The type system is expressive in that one can

give types to programs which intuitively model their operational behaviour, and do not restrict

their usage in order to achieve type-safety. We define the hierarchy of control operators and

delimiters, as in [DF90], and present a monomorphic simple type system. We proceed with a.
set of local reduction rules which capture the global evaluator, in the manner of [FFIKD86], and
discover the evaluator also. With the A-translated type-system, we prove a subject reduction

theorem, showing that reduction, as well as program-contraction, indeed preserves typing. This

work highlights the importance of A-translation in providing accurate type systems for complex

control-operakor languages.

1 Introduction

Control-operator languages [FFKDS86, Fel87, CRS6] are becoming more and more popular, both
for the users of programming languages, and for designers. Hence, it becomes important, to have

efficient., versatile systems for reasoning about programs written in such languages, and. secondly,

to have useful, genera&purpose techniques for constructing such reasoning systems. In this paper,

we consider a particular control-operakor language - the hierarchy of Danvy & Filinski [DF90].
This hierarchy is defined by a semantic interpreter, written in estended continuation-passing-stvle.

* An expanded version of this paper, containing full proofs, can be had (at least until the end of 1992) via anonymous
FTP at ftp.cs.cornell.edu:pub/murthy/cw92-big-version.dvi.

P' Supported in part by an NSF graduate fellowship and NSE grant CCR-8616552 and ONR grant NOOO 4-88-15-0:109
and ESPRIT Basic Research Action “Logical Frameworks”

49

Control & A-Translation

As a result, it is sometimes difficult to understand what a program written in the hierarchy does.

Further complicating matters is the fact that the “intuitive semantics” (for many people) of control-

. operator languages is based on C-rewriting machine technology [FF86]. Thus, when we write down
a C-rewriting machine for the hierarchy, there rests the immediate problem of verifying adequacy

| between the two semantics.

To ameliorate these problems, we use A-translation techniques [Fri78, Mur91], and devise a
type system for the language which accurately reflects the runtime behaviour of terms. The type

system is operationally sound, in that evaluating a well-typed program in the semantic interpreter

produces a well-typed result. Using this type system as a guide, we then construct a set of local

rewrite rules, in the spirit of Felleisen’s. Each is verified by the semantic interpreter, but it becomes

obvious that the type system is an indispensable guide to finding the rules.

With the rules, and the type system, in hand, we already have a considerable improvement

- over the original situation. The type system provides intuitive information about the runtime

behaviour of terms. We then apply the techniques of Felleisen and Friedman [FF86], and define an
abstract machine for the hierarchy ! in the spirit of the CEK machine [Rey72], and then proceed to
concretize it completely, yielding a C-rewriting machine. This machine is then proven equivalent to

the original continuation semantics. Moreover, a slight variation of the presentation of the machine

yields the intuitive C-rewriting semantics.

Plan

The plan of this paper is as follows. We begin by presenting a quick overview of Danvy & Filinski’s

hierarchy, esplaining its connections with other hierarchies, and why we chose this particular system

of control operators for our study. The following sections discuss pseudo-classical typing in the case

of A + C, the extension with a “prompt” operator, pseudo-classically typing the entire hierarchy,

discovering local reduction rules, and discovering a C-rewriting machine. Then we conclude. ,

Preliminaries

For want of a better place, we introduce here a few basic definitions. We define a value as a

basic constant, pair, injection of values, or a X-abstraction. A concrete value is one devoid of

A-abstractions. A concrete type is one whose values are devoid of A-abstractions.

2 Danvy & Filinski’s Hierarchy of Control Operators

Danvy & Filinski’s hierarchy is a natural estension of the call-by-value language A+C, discovered by
Felleisen, Friedman, and their co-workers at Indiana [FFKDS6]. Thus, we begin with the language
A+ C:

Definition 1 (A +C) Term Set: To the CBV A-calculus, add two new unary term-forming oper-
ators. A neither binds nor creates free variables; C binds a. free variable, and creates no new ones.

Terms V (resp. M. N). perhaps subscripted, are values (resp. arbitrary expressions).

Evaluation (denoted beu(LR)):

'To give credit where credit is due, we constructed this abstract machine only after private com munication with
Danvy, who assured that such was possible.

50

Control & A-Translation

Program Contraction Rules:

E[Az.b)V] bi EPB[V/z]
E[Ck.M] >; M[(\z.AE[z])/k]
EAM] by M

Evaluation Contexts (Call-by-Value, Left-to-Right):

E=[11 E(N) V(E)

Thus, the action of a C-term is to grab the evaluation context, and package it up into a procedure-

like object, which is substituted for the bound variable in its subterm argument. When this

procedure-like object is applied to some value, the then-current evaluation context is erased, in

favor of the saved context. One puzzling thing about this operator, though, is that the transitions

for C and d are defined with respect to the entire program being evaluated; hence, it is difficult to

produce observational congruences which capture these transitions. The essential difficulty is that

the “limit” of the effect of the control operator-is the “top” of the program, and there is no way of

denoting this except for a complete program.

So one solution (there are others) to this problem is to introduce a kind of “delimiter” for the

action of control operators, dubbed “prompt” by Felleisen [Fel88], by analogy with the “prompts”
in programming-language interpreter top-levels. Thus, we have the following modification to our

language:

Definition 2 (A +C + #) Term Set: To A + C add another unary term-forming operator, #,
neither binding nor creating variables. V are values.

Evaluation (denoted bea#v(LR)) ;
Program Contraction Rules:

EV[Eo[Ck.M]] by E[M[(Azx.AEp[z])/k]]
F\[Eo[AM]] © Ey [M]
Ey [Eo[#V]] > 1 E\[Eo[V]]

Evaluation Contexts (Call-by-Value, Left-to-Right):

Eo =1[]1 Eo(N)|V (Ep)
Ey =] 1 Ex[Eo[#[]]
E = EE]

This evaluator specifies that the “extent?” of action of a. control operator is delimited by the

“prompt.” Thus. code which is run “inside” a. prompt cannot abortively esit, and, in particular.

when t hat code computes a concrete value, the evaluation proceeds as if it were purely functional
- no side-effects can be observed.

Now, naturally, one might ask: is there a way to “jump over” the delimiters? This would lead us

to invent. a. new control-operator, which could jump over the prompts. and grab a.11 of the evaluation

context, to the top of the program. And after that, we migh t want to delimit the action of { his

opera tor. too. And so on. Thus, we come to the hierarchy of Felleisen & Sitaram [FS90]. which is
expressed as a. set of definitions, on top of the operators F. a nd prompt. using side-effects.

51

Control & A-Translation

Danvy & Filinski’s hierarchy is another way of doing this, and has the wonderful property
that its semantics is not expressed via side-effects, but rather via iterated CPS-translation. Here,

we present first the “standard” semantic interpreter for the language, and then, a version where

n-redexes have been removed. Both interpreters are found in [DF90], and are reproduced here for
completeness. Finally, we will work with the CPS-translation version of the semantics, which is

omitted, as it, can be trivially inferred from the interpreter presented below.

Definition 3 (Danvy & Filinski’s Hierarchy) Let the integer m > 1 be a fixed parameter for

the rest of this paper. Moreover, stipulate that all control operators are of “height” less than m — 1.

Term Set: To the CBV X-calculus, add two new families of term-forming operators indexed

syntactically by n > 0, S,k.M, which binds k in M, and #,(M), which neither binds nor creates
free variables. Define the “height” of a control operator as its numeric subscript.

Semantic Interpreter: Suppose that a closed program P contains operators of “height” m — 2

or less. Let (0 <1 <m):

0; = AVKip1 Em Kig1UKi42 Km

and 0, = Az.zx.
Interpretation Function:

| [z]pk1 + km = 00(p(x))Ky + Km | |
[Az. Mp1 km = 0p(Au dey -- kl, [M](p[z = u])&} Kk! Ki Km |

[Shh .M]pr, "rr hnKnglRp42 chm = [M1 (plk — pl): ne Onknt1Knt2 hm
(where p = Avil -- RpKny1 Knya Kh, ov) + Ky (Awky 1q “Kp Bows + KnKng1fngo Ko) Rng Ky)
[#a(M)]pr1 --- Enkagibingr Km = [M]py 0, (Avk], oo Kin BoUKL «+ BakingKn pg oo Kip) nga = Km

Interpretation of Programs: The interpretation of P is (recall 8,, = Azv.z):

[#m - 1 (P)]pinitth © Om—-10m .

The stipulation that. a.11 control-operators have height less than m — 1 allows us to safely enclose
the entire program in a prompt of height m — 1. This allows us to not concern ourselves with the

interaction of control-operators and the “top” of the program.

This a.11 looks rather complicated, and perhaps too complicated. But there are several simplifi-

cations we can make. First, we can note that there are many n-redexes to be eliminated. Removing

these yields:

0; = Avk.k(v) (t <m)
6, = Az.x

[z]pr1 = bo(p(2))ki
[Ae.M]pr; = Oo(Au.[M] (plz — u]))r,
[M(N)]pry = [M]p(Am.[N]p(An.m(n)k;))
[Suk Mpry «kn = [M](plk — p])8y---0,

(where p = Avk] + KK] BovKy - + - Kp (Aw.Opwk] - + KI KL)

Nest, we can notice that the semantics of shift is rather complex, and seems to contain

instances of reset. So. we are lead to simplify shift, which yields a. new control operator. C, . the

hierarchy’s counterpart of [Felleisen’s C:

IC.kApr ny = [M](p[k = Avr] +k] Opry ---k,])0 +8,

52

Control & A-Translation

The two operators, §, and C,, are interdefinable in the presence of reset:

Spe.M = Cok.M[Av.#,(kv)/c]
Cok -M = Spc.M[Iv.S,_.(cv)/k]

Indeed, the way to discover C, is to expand the definition of Spc.M[Av.S,__.(cv)/k], and perform
all possible reductions. However, we are still a long way from a simple understanding of this

semantics. We are still at the stage of reasoning only about CPS-translated programs. To have a

better understanding, we would like:

e A C-rewriting machine evaluator, in the style of Felleisen and Friedman

e A set of local rewrite rules, which characterize evaluation

e A type system, which guarantees type-safety

We will find these things in the opposite order, discovering the type system by an analysis of

typings of CPS-translated programs, and using typings to help us discover reductions, and so on.

Let us, for the record, state what we wish to find:

We wish to find a type system for source programs of the hierarchy, such that, under :

CPS-translation, well-typed source-programs always yield well-typed result-programs.

2.1 An Informal Operational Semantics

To help understand the terms of the hierarchy, it is useful to. have some sort of informal notion of

how they compute. In the end, we will find that this informal notion coincides with the forma.l one

we develop, but a priori, we can develop some sort of very general idea of how programs execute.

Intuitively, we think of a. program (in which all control operators are of “height” less than m — 1)

as being either values, or composed of an evaluation context, within which resides a term of one of

the following forms:

(Az. MV #,(V) S.k.M

In the first case, we have a. simple &contraction. In the second, the term is replaced by V. In the

third, the evaluation contest may be devoid of reset’s of height greater than n — 1. If this is the

case, then the evaluation contest Ef] is wrapped in Az.#,(E[z]), k is bound to this expression,
and the current evaluation contest is set empty. If there is a. reset of height n or greater, then the

evaluation contest up to that point is removed, and wrapped up as before, but that part of the

evaluation contest comprising the reset, and that code outside it, is preserved.

Now, such a. description is quite informal, but essentially parallels the explanation fou nd

in [DF90]. One of our tasks (the easiest) will be to verify that this description of evaluation is
indeed correct. To begin with, we can write it out a little more explicitly:

Definition 4 (“Intuitive” C-Rewriting Machine) Evaluation Contexts:

C<n = []| CN) | VCS) | #n(C<P)
Ceny = [] | Crm (IN) | V(Ceny) | #; (Con)

czro= [TC [#a((])]

oe #..,([]) is an instance #;([]), where i < IL. Similarly with #>, ([])

53

Control & A-Translation

e (C<™ is a context which contains no prompts of level n or greater.

oe (*MW is a context which contains prompts of any level.

e C2" is either an empty context, or can contain anything, as long as its innermost frame is a
prompt of level at least n.

Transitions:

C*[(Az.B)V] by C*™¥[B[V/z]] (8,)
CMC [Suk M]] Dy C2M[M[Az.#a (C<[z]) /K]] (8)

CM[#n(V)] D1 CoV] (#)

3 Pseudo-Classical Typing of C

The first task we must complete is to discover a type system for programs in the hierarchy, such

that well-typed programs, under CPS-translation, yield well-typed purely functional programs. As

a warm-up, we will show the equivalent development, for the call-by-value language A+C, yielding a

pseudo-classical type system. We have already given the operational semantics of the call-by-value

version of this language. We can also give a continuation semantics,

[clox = x(p(x))

[Az. Mp = k(AuwAs.[M](p[z— u])&’)
[M(N)lpe = [Mlp(Am.[N]p(An.m(n)k))
[Ck.M]pro = [M](p[k— Av. AKko(v)])(A2.2)

| which is provably equivalent to the call-by-value (left-to-right) operational semantics. (By
partial evaluation, we could find a continuation-passing-style (CPS) translation, but this would be

a waste of space, as it is evident.) Nest, we would like to discover a type system for this language.

In a certain sense, if we wish a type system which directly speaks about the process of evaluation,

then, since the contraction rules for control-operators manipulate the entire program, we must

expect that the type system will somehow at least mention the type of the entire program. And

this is exactly what happens:

Definition D. (Pseudo-Classical Typing)

Ck:P=> 1k M:L MH Mo: L
IH CEM: P Ey MA

Th AML “°° TF AM. T “ore
'FM:B=(CI'h N:B

Tk M(N):C =-b
be:BH M:C | |

[FH AM: B=>C =" Coe:Th ao:T ID

The intended meaning of a sequent I' 4 A : T is that under the typing assumptions I’, in a.

complete program of type A, espression M has type T. Complete programs always have tvpe
Fr MT.

The important theorem we can prove is that this typing, under CPS-translation, yields an
appropriately typed t ranslated term:

| 54

Control & A-Translation

Definition 6 (Double-Negation/A-Translation) For ¢ an atomic type, define S(T) =T = ¢.
CBV Translation on Types:

ik = ¢
) a’ = A (A atomic)

D5? — 5% 9%

¢¢

CBV Translation on Sequents:

zy: Th, xn Tabg MT
——

Ti Ta, Tor M: ~~(T*
- ¢¢

Theorem 7 (Type-Translation)

IfI' Fg M : T, then Tt M : =—~(T").
Proof: By induction on the typing proofs. 0

In addition, the evaluator enjoys subject-reduction in this type system.

Theorem 8 (Subject Reduction) Every program contraction rule of >>cu(LR), Preserves pseudo-
classical typing of programs 7 M : T.

Proof: Mechanical checking. The only interesting cases are the program-contraction rules for A
and C.

Case C: Since E[Ck.M] by M[(Ax.AFE[z])/k], we have the following typings:

k:T=>1kFyM: 1 x:Tty Elz]: ¢

x: Th Elz]: ¢ bord
x: Th AE[z]: L !
5 reAEE] 1) =!

FTo1lhM1 FEToslhM.15

Case A: Cases, depending on whether the control-string is typed with abort; or aborty. In both

cases, the contraction step is F[AM] > M.
Case abort; : Since the typing rule is abort, it follows that AM : ¢.

Case abort: Since the typing rule is abort,, it. follows that M : J-; hence, M : © by J--T. 0

In a. like manner, Felleisen’s equational theories of control [FI'IKD86] also enjoy subject reduction
in this type system.

3.1 Extended to Prompt/Reset

To extend this development to the operator reset, we simply examine the CPS-translation of
reset:

55

Control & A-Translation

Let us assume that we wish to produce a typing for the source terms, by analysis of the typings

of the result terms. Further, suppose that the term M has type ——(T), where ¢, T are atomic.
®P

Then Az.z will have type T = ¢ (hence ¢ = T). Thus, we can infer that 7 M : T will be the

typing judgment for M (like a “top” of program - which is what a “prompt” is for). Next, we note

that M(Az.z) will have type T; hence #(M) will have type 22), for any 9. Thus, Fy #(M) : T
is (one) proper typing of the entire term. But if M contains free variables, then these could perhaps

only be well-typed when the type under the turnstile was 7. Hence, we must restrict I' to contain

only concrete types, since these will be invariant under translation:

Definition 9 (Pseudo-Classical Typing of Reset)

Lr M:T
——reset (I' concrete

TF ao) 1)
We could also prove type-translation and subject reduction theorems, but since this is only the

first stage of the hierarchy, we delay them until later.

3.2 An “Effect” Version of the Type System

Intuitively, the type under the turnstile in a judgment I' 4 M : T is the type of the entire program
in which M 1s embedded. Thus, any abortive terms in M must abort with expressions of this

type, in order to have type-safety. In a case like I'y, f : A — By #(M) : T, if we allowed M to use
f, then ‘the sub-sequent would be I', f : A = B Fp M : T. But this says that if f, when applied
to a value of type A, can abort with an espression of type ¢, then it is well-typed in a contest

where aborts should be with espressions of type T. Clearly, type-safety has been lost; hence the

restriction that the hypothesis list should be concrete.

But perhaps there will be times when we actually do want this extra expressive power - to

construct a function which aborts with an espression of type 7, and then pass it to a. place where

the function cannot be used in a well-typed manner, which will in turn pass it onwards, to a. place

where it can be used. To give typings to these situations, we can always type CPS-terms directly.

But this, as always, is cumbersome and awkward.

Instead, we can note that the call-by-value CPS-translation we have been using wraps a. ole)
(a “dou ble-¢-ation”) around the conclusion, and around the righ t- hand-side of every fu nc tion- type
in the program. This looks very much like a computational effect, and so we might. try to build an

“effect” typing system, where we annotate function-types, and the type of the conclusion:

Definition 10 (“Effect” Version of Pseudo-Classical Typing) For ¢ an atomic tvpe, define
Kas|T| = (1).oT] = 21)

Cok: P= Kyle EM: Kyld]
TFCk.M : P mob

I' FM: K4[A] bor FFM: K [4] bor
CRAM :Kalg] “°F TRAM (Ka) 00

CEM(N) : KA[C] ="

C.a: BEM: KA[C) ; 0D
[FAx. MK 4[B = Ka[C]] =" Coe: T Fa: KAT)

© TRAC Kp[T)
CR#(M): KI] 0

56

|

Control & A-Translation

We can prove that this typing is simply a “wrapping/hiding” of the CPS-typing; note that CPS-

translating the conclusion of a control-effect typed proof yields a valid typing; that is, if I' I- M : T

in the effect-typing, then

'-M:T

also holds (when the “effect’‘-definitions have been unfolded, of course). Now, we have no restriction

on the types of hypotheses in the typing of reset. However, we have an increase in the complexity

of the types. This is to be expected, though, since possibly every hypothesis of functional type

could be well-typed in a different context. Another way to look at this typing is as a close relative

to the monad of continuations [Mog91].
It is once again not too difficult to show that this alternative typing is sound with respect to

evaluation, as well as Felleisen’s reduction rules. Again, we omit these proofs, as this system is a

fragment of the hierarchy we will now consider.

The treatment of L in this last version is different from that of our original pseudo-classical

typing - in particular, the “effect” typing of C does not mention 1. This can be ameliorated, at

the expense of some extensionality arguments (essentially, showing that M : I — ¢) — ¢ implies

M : (¢ — ¢) — ¢, which follows by extensionality, and noticing that anything of type ¢ — ¢ is also
of type L — ¢).

We make one last comment about the rule reset. Notice that ¢ is free in the conclusion, and

instead of K,[T], we could have written (K[T], taken to mean the intersection over a.ll © of
Y

K4[T]. This type cannot even be expressed in the original classical logic; nevertheless, it expresses
the intuitive meaning of a reset.

4 Pseudo-Classical Typing of the Hierarchy

At this point, we are ready to give a typing for the hierarchy, using the same mechanisms we used
before.

4.1 Intuition

Before we give the type system, let's try to get some intuition for what is going on. In the case of

A + C, we found that the process of CPS-translation induced a double-negation/A-translation on

typings of programs. In particular, if M : A — B, and N : A, yielding M(N) : B, then (for any ¢):

—h —

M : =A" —- (BB

Mos Eo RE
N : -—(A
N oA)

M(N) = A.M(Am.N(An.m(n)k))
HP?

M(N) : -—(B(N) : —=(B")

Since the CPS-translations of applications in the hierarchy g-reduce to the same term, our first

attempt to give translations to terms in the hierarchy would be to simply duplicate the work for

A + (C. But if we consider for a moment terms which have no! been g-reduced. then we can see

57

. Control & A-Translation

immediately that a simple double-negation/A-translation does not suffice. Suppose that m = 2:

IM(N)] = Aske [M])(Amkh[N](Ankld.m(n)k16Y)Kh) ke
M] : ((a=2b—=cod)—oe—f)—=g—oh)
IN] : ((a—>c—d)—e—f)

[IM(N)] : b—o>g—h

Moreover, when we look at the “top” of the program:

IM] © ((a=(a—=b)—=Db)=(c>c)—=d)

and at the semantics of a constant value,

Cc : a

[cl] = Akik2.6pckik2
: (a=b—oc)oboc

we find that

e Kj; expects to be passed a value, and something of the same type as ks.

e The result type of kK; is the same as that of Kj.

If we repeat this for m = 3, we find:

e kK; expects to be passed a. value, and two other arguments, of the same types as kg and ks.

e Ko expects to be passed a value, and something of the same type as kj.

e The result types of all three continuations are the same.

Thus, in the general case, where we have a program phrase, M, applied to 772 continuations,

[M}ri---km, we find that each continuation k; expects to be applied to a value, and then to
arguments of the types of each of the continuations x;4; . - + K,,, and finally, to return a. final answer.

In other words, suppose [M] is applied to 1 . . - Ky, respectively of types Ty . . . Tp, and produces
a result of type a. Then each 7; takes as arguments a value of some type, and values of types

Ti41°* Tm, and produces a. result of type «. So, the type of [M] can be written:

(T = (19Tm =a) >To Ty =

This should immediately remind the reader of double-negation/A-translation, and indeed, if we look
at the typing of application, with these remarks in mind, we find that the typing above, generated
by ML, can be simplified, to

[M(N)] = Akira [MI(Amel [NJ (Anky.m(n)k1&Y)Kh) Ka
iM} © (n= (Db —=0)—>0))o0)—>0
IN] © (e—=0)->0

(M(NY] © (b—oo)>o0

where 0’ = (¢c = d) — d. It should be obvious now that what happened to application was that

instead of performing an A-translation with some atomic type ¢, we did it with a type (¢c — d) — d.
If we were to experiment some more. with, say, m = 3, we would find that d was in turn replaced

by some dou ble-negated /A-translated type. The sizes of these types explode exponentially wit h m:
nevertheless, the amount of information used to construct them is linear, and the construction is

systematic; hence, we can invent some notation to help us wri te down the types:

58

_ Control & A-Translation

Notation 11 (Iterated A-Translated Types) Define some abbreviations for sequences of type

expressions/variables, and then the operator K, which summarizes an iterated double-negation/A-
translation.

a : a sequence of type-expressions, of fixed, but unspecified, length.

B™ . sequence of n identical type-expessions, f3.

a™ : sequence of n different type-expressions.

Kyl(T] = T
Kz [T] = (T = Kz[r]) -— Kz{7]

And with this notation, we can rewrite the typing of application:

| [IM(N)] = Arik. [M](Amib[N)(Ankd.m(n)k165)rb) Ke

[M] Kory a — Kram [0]
| [N} : Kanna]
[M(N)] : Krpr, [0]

4.2 The Type System

Finally, we have a.ll the tools we need to write down a type system for the hierarchy. Before we do

so, we ought to say a word or two about intersection types. We will use the notation (Ta) for the
(84

intersection over a.l1 monomorphic types a, of Ta]. We will only instantiate such intersections with
concrete types (that is, free of implications). In the rule for intersection-elimination, we identify

one subscripted type, 3, for elimination. There might be other types which are quantified also, e.g.

we might eliminate (3, in MN K3,3,5,[T], without changing the quantification of 33, 3.
B3B251

Definition 12 (Type System for the Hierarchy) The type system has two kinds of judgments:

M:T and T concrete. The first is a judgment of membership of a program in a type, and the

second, of the concreteness of a type. Likewise, there are two kinds of assumptions, of the same

form. We do not go into details of how to prove that a type is concrete; essentially, a type variable

declared to be concrete is thus, as are conjunctions, disjunctions, and primitive concrete types.

-_———— yar

Toa:Th 2: Kapa [1]

Da: Aby MK,a, |B] I
[hy Ae.M Ka,oi [A = Kapooo, [B]] 7044

Phy Mo: Kayooo[A = Kapoor [Bl] FN: Kgppoo [A]
— TT aoorapply

'H M(N):Kq,,a, [B]

I'by M: Kappan 1878] T hy B concrete
———————————————————————— reset

Seedy

59

Control & A-Translation

[6:T = [| Kameoangim-mBe M2Kapay 16715]
InN .

——ashift

Lb SoiM Kapoor5s 51 [7] /

[by B:concrete Thy Mi \Kapmanpifmorvi T]

[by M: Koam-ant1 Bai [T]

I, 3: concretely M : Kzpz[T] ;
by M : \Kass(T]

Bs

) Notice, that in N — E, B is a new type, which we substitute in for 3, and not a type-variable.

And, again, the type system enjoys a type-translation theorem with respect to the CPS-

translation. Since this proof is what actually says that our type system makes sense, we do it

in rather great detail. First, a few useful lemmas:)

Lemma 13 (K-X-Intros) A term Ak, . :*Kn.M (n < m) has type Kq,,..a,[T] iff, under the as-
sumptions:

An 1 T 2 Kapang[00]

Ki 0 aio = Kogpeaig,4]

Km © Op] — Oy,

M has type op.

Proof: Direct calculation. First step is that Ko,,..anlT] = (T = Kopmangs [0n]) = Kapeang: [05]
0

Lemma 14 (K-A-Elims) A term M(N,) . . - (Ny) (n < m) has type «,, when:

M Kaan [Cn-1]

N, Dp — K tm ans { [vn]

Ni; ancy = Kapeapy [On]

Np 0 amo = op

Proof: Direct calculation, with some induction, and some tests at the extrema. 0

Lemma 15 (8; Typing) 8; (i < m) (= Avk.k(v)) has type T = Ka, can TIT]

Proof: The desired type unfolds to T' = (T = Kaan L]) = Kameangy [T1 If v0 Tk:
T = KNapoany, [T] then £(v) has the desired type. 0

60

|

Control & A-Translation

Lemma 16 (8; Application I) For any types Om ---Qn, Oni, (mn < m), 0,1M(N,)---(Np)
has type «,, when:

M . On_1

N, . Qn-1 ~ Kam any on)

N, : om_1— an

Proof: Since n < m, 8,1; = Azk.k(z). Thus, 0, MN, has type Ka,,..an;; [0]. The conclusion
follows by Lemma 14. cl

Corollary 17 (8; Application II) If M : Ko pany 806], then MO : Ky...[8].

Proof: By Lemma 15. 0

Theorem 18 (Type-Translation) If I? Fy A4 : T then I' I- [M] : T (i.e. with all abbreviations
expanded.)

Proof: By induction on proofs: [Note: This proof is found in the expanded version of the report] ‘|

However, since we have neither a C-rewriting machine evaluator, nor a set of local rewrite rules,

there is really nothing else we can prove. Type-translation guarantees that evaluating well-typed

programs by first translating them, and then running the translated programs, will never produce

type errors. But it says nothing about, more direct means of understanding the evaluation process.

To do this, we need a C-rewriting machine, and a calculus.

9 Local Reduction Rules

In this section, we find a sound equational reasoning system for our language. In the case of A + C,

Felleisen took the CPS-translation/abstract machine as a guide, and produced various reduction
rules, which he then verified. But this process is essentially one of guesswork, and for a CPS-

translation as large as the hierarchy, it seemed intractably difficult. However, by observing that all

the reduction rules should preserve pseudo-classical typing, we can “cut down” the search space,

and thus discover the following reduction rules:

Definition 19 (Reduction Rules for the Hierarchy)

(Sp.MY(N) —1 S161.82¢2. + -Snen-MA fF nu (cn(--#H2(c2(#F{cn (NI) 6] SL
(VY(SukN) —1 S161.82¢2--SnenN[Aa.# (cn #2(c2(#1(ca(Va) x] She

| AF (M —¥ az(iny (MM#:(SjkM) —y #i(M[Az.a/k]) Scgpj <i id }) = Fanti) (M) #5
Bi (Sk MY = S:k.M Sop | = | FLV) mV reANE bond ># | (A.M) (V) = M[V/a] 3,

This ruleset enjoys soundness, both with respect to the CPS-translation, and with respect to

the pseudo-classical type system. First! we need a. few lemmas:

Definition 20 (S-Telescoping) The reduction § 1, the telescoping of §, is defined as:

Sok. M—=81¢1.89¢9. +800 ME = Av,(cc Fa(ca(#1 (er (2))))]

61

Control & A-Translation

While we do not add this rule to our set of reductions, we might want to, since it in a sense is

already present, in the rules Sz and Sg,. If we were to add S 1, we could simplify the other two
rules significantly - they would only have to account for the case n = 1. We do not do this, only

because our chosen ruleset seems easier to standardize. However, we will feel free to use S 1, as a

simplifying device only, while pointing out how to remove it, in favor of &r, Spy.

Lemma 21 (S-n) The two terms S,k.M and Spc.M[k — Az.#,(c s)] are denotationally equiva-
lent.

Proof: Direct calculation. The essential idea is that an abstracted context is going to already

contain a reset, so adding another one will not change anything. a

Lemma 22 (S-Telescope-Step) The two terms

Spe. M[k — Az.C[#,(c2)]] Sn—16n-1-Sncn-M[k = Az.Cl#(ca#n-1(cn-12))]]

and (where C[] is an arbitrary term-context) are denotationally equivalent.

Proof: Again, direct calculation. The essential idea is that a n-level abstracted context can be

replaced by a tower of its n — l-level component, and the remainder at level n, in any place where
the n-level context was used. O

Lemma 23 (S-Telescoping: Soundness Under Translation) The reduction S { is sound in
the seman tics.

Proof: This one is now simple. Use the §-1 lemma to unfold S,k.M into Spc.M[k — Az.#, (cz),
and then use the telescope-step lemma to unfold the captured context, Az.#,(cz) into
Az. Fn(en(-- #alea(#1(a1(2))))))- cl

Lemma 24 (S-Telescoping: Typing) The rule S 1 enjoys subject-reduction.

Proof: We do this in detail. [Note: This proof is found in the expanded version of the report] a

Theorem 25 (Type-Soundness of Reductions) The reductions above are a.ll type-sound; if

the left-hand-side is a. well-typed program, then the right-hand-side is also, and of the same type.

Proof: By cases on the reduction rules. Again, since this says a lot about our programming

language, we do it in detail. [Note: This proof is found in the expanded version of the report] a

Theorem 26 (Semantic Soundness of Reductions) The reductions above are all semantically

sound; in the semantic interpretation, the two sides of each reduction are equal.

Proof: Another proof by cases: [Note: This proof is found in the expanded version of the report] CO

62

|

Control & A-Translation

6 A C-Rewriting Machine Evaluator

In order to show that our reduction ruleset is reasonable, we must show a C-rewriting machine, to

which it can be compared. Since such has not been published, we give one here. It is constructed

in essentially the same way as Felleisen’s machine for A+C - by a concretization of the continuation

semantics, followed by a process of simplifying the abstract machine, until it became a rewriting

system on source-code programs. We produce the development below. To give credit where credit

is due, before we worked out this means of arriving at the correct C-rewriting machine, Danvy had

informed us of his work in this same direction. [Dan92].
We show the machine because:

e It exists, and provides justification for the informal operational semantics

e More importantly, it becomes clear that even though we have this machine, to discover re-

duction rules for a calculus is far from simple, and indeed having the machine around does

not (surprisingly) help very much.

We begin with the continuation semantics, and construct a series of machines, mimicking faith-

fully the development of Felleisen & Friedman [FF86]:

e a CFEK™*-machine (control-string, environment, and list of one or more continuation codes)-

e a (C'Kt-machine (replacing the environment manipulation with direct substitution)

e a CC+-machine (replacing the continuation codes with marked Sk-contexts)

e a CC-machine (collapsing the several continuation codes into only one)

e a “rigorous” C-rewriting machine in the standard style of Felleisen & Friedman, but with a

more complex definition of evaluation context,

e finally, an “intuitive” C-rewriting machine, with the same transitions as the previous machine,
but with a more natural definition of evaluation contexts.

Since this process is relatively systematic, and space-consuming, we simply give the CFE K*-

machine, and the “rigorous” C-machine (the “intuitive” C-machine has already been given).

Definition 27 (CEK*-Machine) The CEt-machine is an extension of Felleisen & Friedman's
CEIK-machine, with extra continuation-strings. The original three components retain their original
form:

e a control-string, which is either empty (f), or contains a term,

e an environment, which is either empty, or contains a mapping from variables to either pairs

of (term,environiment), or continuation-context (to be defined later)

e a continuation-string, which is a list of frames, representing a. com bination of the argument
and control stacks.

We add m — 1 more continuation strings:

e the second continuation string stores a. list of’ first-level continuation strings.

63

Control & A-Translation

eo the third continuation string stores a list of pairs, of first- and second-level strings

e the n-th continuation string stores a list of n — 1-tuples, of 1, . . -, n — I-level continuation-

strings.

Finally, a continuation-context is a pair of a natural number n, and a list of continuation-strings,

of levels 1,- +, n, written [n, Ky, . * + Ky].
The transitions of the machine are given in two parts: the first part are those transitions which

it shares with the CEK-machine. For these, the “extra” continuation-strings are not affected, and

are simply passed along. Thus they are not displayed. For the other transitions, since they affect

the extra continuation-strings, we display the complete machine-state:

=» W(t, 0, sretp())
(A>; p, kK) —(F, 0 ,kret (Az.M,p))

(M(N),p, K) — (M, P Kk arg (N, p))
(1 0, «Kk arg (N,p)ret F) — (N, p k fun F)
(1 0,6 fun (Az.M,p) ret V) — (M plz — V], K)

(1,0,0,---0,,-1,0,, ret V) — V

(Snk.M p K1 +e Koy Kong om)
—(M Polk — (mn, K1, oy Kal] Uy. On Kng cK)

(3 : 0 , Ky fun (n,Ky-- Kp) ret VoRG KL KL oR)
—(% 0 , Kp ret V, kg. Kn, kj then (K}---K}) --K],)

(#n(M), P) Ki Khphpnt1hn42.. Kom)
—(M) P ’ 0, te Uy, Kn+1 then (K1 tee Kn), Rpn42 Km)

(%) 0 9 0, JER Fo EF ret V, Ki Km)
— (1 , 0 , Op 0;-2,0i-1,k; Tet Vi Rig1 + hm)

—(} ’) y Kp ret Vv, Ka" hn, Kol ’ R142 Te Km)

In the process of going from the (EK T-machine to the “rigorous” C-machine, we end up

encoding the continuation-contexts, [n, kK; . . -Kn], as a. A-abstraction. But this is operationally
sound, and causes no problems.

Definition 28 (“Rigorous” C-Rewriting Machine for the Hierarchy) Evaluation Contexts:

Cl = [| CN) | V(CY
cro = [IrIerenHt --CH#n-a (Dl

Transitions:

Cm CHe. BY]] by CCB] (30)
cCm(-..omtierenCHSak MY] by CTE CMP Mag(CCCa) IDR (8)

64

Control & A-Translation

Lemma 29 (Equivalence of C-Machines) The “intuitive” and “rigorous” C-machines are iden-

tical rewriting machines.

Proof: Since every program is either a value, or outermost a prompt of level m — 1, it follows

- that every “rigorous” C-machine context “stack”, C™[---C*H[C?[C~1[...C[]-.]]]--] divides
naturally into an “intuitive” C-machine context, C2*[C<"[]], where C*[C"~1[. . -C'[]- . -]] = C<"[].
Also, the stack is already a C®™¥[]. Since both definitions are unique - given a program phrase,
there is only one way of producing either, and since the transition rules are identical, it follows that
the two machines are identical. 0

We delay proofs of subject reduction for the machines, since the representation theorems (that

we can represent the course of computation of the C-rewriting machines by series of well-typed,

sound, reduction rules), will immediately imply subject reduction.

Lemma 30 (Well-Typed Programs are not Wrong) Well typed programs in the hierarchy

are either values, or contain C-machine redexes.

Proof: This proof is rather trivial, since every possible term in the hierarchy is either a value or a

redex. We have not included constants; hence there are no cases of wrong. Nevertheless, even in

the presence of function and basic constants, the proof still goes through. 0

Theorem 31 (Semantic Equivalence) The semantic interpreter and the “intuitive” C-machine

compute the same results when restricted to programs of concrete type. Formally, the [M]6, . . -0,,
evaluates to some concrete value b, if and only if the intuitive C-machine evaluates the program

to the same value. This proof does not depend on the stipulation that all control-operators in the

program have height less than m — 1, nor on the program being “wrapped” in a prompt of height
m— 1.

Proof: We use the method of Felleisen & Friedman [FF86]. One shows that the CEK*+, CK,
CCT, and CC-machines all compute in lockstep. We then prove a unique context lemma, and

show that one step of the CC-machine induces one or zero steps of the rigorous C-machine. Since

the CC-machine is in lockstep with the semantics, this means that each step of computation

semantics becomes zero, one, or two steps of the C-machine. (The case of two steps occurs when a

continuation-context: coded as a A-abstraction, is applied.) Termination of the semantic interpreter

implies termination of the C-machine.

To get the other direction, we use the fact that the rigorous C-machine enjoys subject reduction)

and that well-typed programs are either values, or have C-machine redeses. Hence, if the rigorous
C-machine terminates, it will be with a value. This value maps back to a. final state of the C'C-

machine. Finally, the equivalence of the intuitive and rigorous C-machines finishes the job. Cl

6.1 Representation (Standardization/Correspondence?)

So now we know that the reductions preserve typing, and that they are semantically sound. a nd

we have an evaluator. The logically next obligation is some sort of standardization/correspondence
theorem. Jt seems intuitively clear that this ruleset contains enough reductions to standardize. for

the same reasons that. Felleisen’s ruleset was enough. However, just as with Felleisen’s calculi, the

ruleset does not contain enough reductions to prove a. direct correspouclence theorem, again. [or

the same reasons as for control-operator calculi - the process of lifting a control-operator out of a

65

Control & A-Translation

context introduces many J-redexes, which are not contracted by the standard reduction sequence,

and are not even f,-redexes.

Thus, here, we will add a few other reductions, and prove a representation theorem. We make

no attempt to prove a standardization theorem, even though that should be technically feasible,

essentially since it would be a great waste of time and space. Even more of a waste would be

a correspondence theorem, as it would be another (even more complex) rendering of Felleisen’s

analysis of encoded contexts. Nevertheless, three facts:

e the reductions we add are simple

e their use is very controlled

e The lack of these reductions was essentially what caused problems with a direct correspon-

dence theorem for Felleisen’s investigation of C (on the other hand, related reductions appear

in work of Talcott [Tall)

lead us to believe that correspondence is a “mere” technical matter. The proofs in this section

depend on the stipulation that all control-operators are of height less than m — 1, since this allows

us to finesse issues of the “top” of a program. First, some definitions and technical details:

Definition 32 (Extra Reductions: fg) Define the reductions 8g by:

#1((Az.#1(eN))M) —=1 #1(MN)

#n((Az.2)M) —1 #.(M)

#Hn((AT Fn(Vadtno1(Va-1+ #1(Viz) =)Hat(M)) = #a(Vat#n-1(Vacr#1(Vida—1 (M))))

Lemma 33 (Bg Soundness) The fg reductions are type-sound, as well as being sound under
CPS- translation.

Proof: Direct calculation. O

Notation 34 (SS) The notation §§;...;¢c; -+-¢;.M (i < j) is shorthand for Sic;. - . -Sjc;.M.

Theorem 35 (Representation) The ruleset already given, along with 8g, suffices to represent
the “intuitive” C-rewriting machine exactly. By the correspondence between the intuitive and

rigorous machines, we thus have representation of the rigorous machine also.

Proof: By cases on the program-contraction rules. [Note: This proof is found in the expanded version

of the report] 0

It is interesting that the reductions we discovered here were not simple generalizations of

Felleisen’s ruleset. Indeed, we first tried such simple generalizations, and found that they were

type-unsound; hence we were forced to search further. Upon finding these rules, calculating their
denotations told us that we had indeed succeeded; but without the pseudo-classical typing to guide

us, it would have been a much longer process.

As can be seen from the proof, the reductions Fg are used in very specific places, to “clean up”

the estra redexes produced by “lifting” a. § up to its corresponding reset. We find four recurring

patterns of “gar bage”, produce by lifting a. & from the left. and right, sides of application nodes, past
a. lower-numbered reset, and finally, when we actually arrive at our destination. It seems clear that

these patterns could be characterized, and a. correspondence theorem such as obtained by Felleisen
& Friedman could be obtained here also.

66

Control & A-Translation

7 An Example

For our example, we will type a program which decides if one list is a suffix of another. This

program 1s surely taken from one of Danvy’s publications, though we first learned of it directly

from him [Dan91].

fun flip OO = Sic. (c tt) or (c ff)
fun rec suffix 1 = if 1 = nil = nil

[£lip() = true — 1
| else — suffix(edr 1)

fun suffix-p ly lo = #1; = suffix Ip)

So with a few definitions of primitive operators:

~~.... nil

I-nil : (Kallist]
a

———truth

t- tt, ff :[)Kz[bool]
EE—.
Fe =e: \Kz[T = Kz[T — Kzlbool]]]
I————

eo ore: Kz[bool = Kz[bool — Kz[bool]]]

FB: Kafbool] t-u: Kg[T] FV: KT].‘
if (B;U; V) : K&[T]

fA Kg[Bl,2: AFM : K5[B]
Ffiz(f, z.M) : KalA = Ka[B]] °°

we can type our program, and find that suffiz-p has the type

(Klist = Kz{list = Kz[bool]]]

F flip: Kpeat[unit = Kpeor[bool]]
[- Sic. (c tt) or (c ff) : Kpoot[bool]

c:bool — (K+ [bool] t- (c tt) or (c ££) : Kpoor[bool]

t- (c tt), (c ff): Kpoo[bool]

[- suffix: Kpooi{list = Kpoot|l2t]]
1:1ist F if(1=nil;nil;if(£1ip();1;cdr(1))): Kpoo[list]

[- 1=nil:Kpoei[bool]
[- £lip() : Kpeot [bo0l]
Fo Kpoot| list]
Foedr (1) : Kpooiflist]

FH osuffix-p © Ky[list = Kyflist = Ki[bool]]]
ly, lp: #0 = suffix) : K,[bool]

EF (ly = suffix 3) © Kpeot[bool]
suffix ly © Kyoor [bool]

67

| Control & A-Translation

~~ 8 Is This A-Translation?

In the literature, Friedman's A-translation [Fri78] is characterized in two ways. First, one can
begin with a double-negation translation from classical to intuitionistic logic, and then, disjoin

every atomic formula with a fresh constant, A. Other variants exist, for instance, disjoining every

proposition (everywhere) with A. But another, and equivalent, way to do this is to stipulate

that the double-negation translation is from classical to minimal logic, and then, the A-translation

becomes the replacement of falsehood with some fresh constant A. [Lei85]
When we look at the relation with denotational semantics, we see that a double-negation trans-

lation to minimal logic, when considered along with a compatible translation on proofs, induces

easily a denotational semantics of classical logic. (On the other hand, a double-negation translation

into intuitionistic logic which is not into minimal logic also does not induce such a semantics - the

Kuroda negative translation is such a counter-example).

In the setting, then, of double-negation translations into minimal logic, the choice of the A, is

nothing more, and nothing less, than the choice of an answer-type for the denotational semantics.

Now all of this works well for simple double-negation translation, which corresponds with the

standard CPS-translations, and maps classical logic into minimal logic. What happens when we

consider the type system of the hierarchy, and the undeniably complex semantic interpreter? Quite

simply, this semantic interpreter effects an iterated double-negation/ A-translation. Consider the

types of elements of an application, under a standard call-by-value double-negation/PI-translatioui

and assume that U, V are atomic types:

fo. M(N) : —==(V)
M(N) : V bd N

| M : UsV — M : =U= (VV)
bd $¢

N : U N = (U).

So far, so good. The type ¢ is our fresh constant in the A-translation. Now, suppose we were to
use the first level in the hierarchy to translate these programs. That is, we want the hierarchy’s

semantic interpreter, where m = 2. Then the types become:

[M(N)] Kooy [V] |
[M] 2 Kp,[U = Kipp, [V1]

[NV] Koo [U]

And if we unwind the definition of K,4, [], we find:

- which is exactly

oa (TY
Kg, [011Kgs, [41]

That is,

| e Already we know that to get. the second level of the semantic interpreter from the standard
CBV CPS-translation, it suffices to do some 7-expansions.

o At the level of types, this corresponds to replacing ¢ by K,, [1] - and that is all.

| 68

Control & A-Translation

Thus, we can see that the operators K are really iterated double-negation/A-translations. They

hide this mess, since in reality the structure being computed over is much simpler - a linear-length

stack of contexts, and not an exponential-size type.

Indeed, this is where the essential simplification in the type system for the hierarchy arises -

in noticing that instead of replacing L by ¢ in double-negation/A-translation, if we replace it by

i($1), we can:
o specify ¢y, which specifies a result-type for the first level of contexts,

e repeat the process, allowing us to give types for higher-level contexts,

e or terminate, by assigning a concrete type, which allows + to give the type of the entire

program.

Thus, while our translation from the hierarchy’s type system into a purely intuitionistic type

system 1s not a standard double-negation/A-translation, we feel that it deserves the name A-

translation, in the sense that, just as for the original A-translation, we are replacing an indetermi-

nate answer-type in a typed denotational semantics, by a defined one, which can itself contain yet

another indeterminate type, and so on.

9 Related Work

Obviously, our work is related to that of Danvy & Filinski [DF90], which it extends. Our typ-

ing also extends that of Danvy & Filinski [DF89] to a hierarchy, and also seems to simplify the
meanings of various typings even for the first-order hierarchy case (though this has not been ver-

ified in detail). We use many techniques first invented by Felleisen, Friedman, and the team

at Indiana. [FF86, FFKDS86, Fel§7], and also further researched by Felleisen and his team at
Rice [Fel88, FS90]. 0 ur work on typing the hierarchy estends that of Griffin [Gri90], and is a.
direct outgrowth of our work on program extraction from classical proofs [Mur91]. There has been
other work on typing control-operators in higher-order functional/imperative languages: Harper

et. al. [BD91] gave typings in monomorphic languages, and Harper and Lillibridge found that
the standard methods of giving typings to control-operators did not work under erasure polymor-

phism [HL91]. 0 ne distinguishing feature of most work on typing control operators is that it has
dealt with continuations as essentially single-ended objects - an input, but no output. When we

consider the hierarchy, though, the standard way of abstracting a context produces a two-ended

continuation - indeed, we must explicitly wrap the abstracted context in an abort in order to

mimick the behaviour of C. Thus, it becomes crucial to deal with the types of the output-ends of

continuations. Another close relative of our work is that of Moggi and others on monads [Mog91]
- in particular, there seem to be strong correspondences between our “wrappings” and the monad
of continuations.

Our work on the reduction system appears to have close parallels in the computational lambda-

calculus [Mog91], and Talcott’s work on IOCC [Tal], in that their “extra” reductions, and ours, are
motivated by the saline concerns - recapturing the evaluator directly as a sequence of rewrite steps.

| 10 Conclusions and Directions for Future Work

This paper has focused on how. applving standard techniques, one can take a. new control-operator

| language, and discover the standard reasoning systems for it. We began with a. continuation

69

Control & A-Translation

semantics for Danvy & Filinski’s hierarchy of control operators, and found a type system for the

language which enjoyed the appropriate relationship with the continuation semantics, viewed as a

+ translation from the hierarchy into a pure functional language.

Next, we took the pseudo-classical type system, and, using it as a guide, discovered operationally

- sound observational congruences - enough of them to represent the evaluator, and of these, a subset
which were intuitively enough to standardize. The importance of pseudo-classical typing here was,

again, that it gave us a powerful tool in the search for valid equivalences - since checking equivalences

by translation is difficult, being able to check them by typing them was a significant aid.

We then proceeded to develop a C-rewriting machine evaluator, using Felleisen & Friedman’s

methods of syntactifying abstract machines. Their method also renders the semantic equivalence

proof routine, though tedious.

For future work, it seems that standardization and Church-Rosser theorems are de rigueur for

~ the reduction system. Likewise, for the type system, extensions to polymorphism (perhaps not

Milner-style polymorphism, of course!), recursive types, fixpoints, etc., seem tenable and necessary.

Moreover, further work will be necessary to see if the reduction system proposed is indeed the ideal

one. Unlike C, there is great room to maneuver in the construction of the calculus; for instance, we

noted that instead of the complex rules Sy, Sry, we could have used the telescoping rule, S 1, and

first-level versions of the two lifting rules.

Another avenue of research is to experiment with a call-by-name version of this hierarchy. While

this direction seems rather theoretically motivated, one interesting reason to do this would be to

integrate control operators directly into lazy functional languages, rather than thru the standard

uses of monads, which normally produce call-by-value control. On the other hand, a call-by-

name version of the hierarchy could be coded into a lazy functional language, by using monad-like

techniques. Even a “Reynolds”-interpreter - that is, a. language which admits either call-by-name

or call-by-value functions, seems possible, and even easily achievable. Of course, the value of

call-by-name control languages has y’et to be conclusively established.

What we find most striking about our entire development is that at every step along the way, we

were lead by the type system. The type system gave us our first intuitions about the operational

behaviour of terms, in a way which we could then reinforce by discovering reduction rules, and

afterwards, a C-rewriting machine. Again, we discovered our reduction rules by searching for

patterns which preserved typing.

Finally, perhaps the most important (and also the most intracta.ble) task is to extend this

type system to encompass some of the patterns of usage of the hierarchy. We have seen that we

can provide non-dependent typings for programs, but it would be even more satisfying to have

total-correctness typings also. This seems intractable, since the hierarchy can be used to simulate

assignable variables. Nevertheless, the pa&tern of usage of the hierarchy in programming suggests

that such a. typing is indeed possible.

To sum up, we have attempted in this paper to explain how a new technique for giving type

systems to control-operator languages - pulling back type systems thru denotational semantics -

yields type systems for Danvy & Filinski’s hierarchy. The obtained type system illuniinates the

operational behaviour of the hierarchy, aiding us in constructing the standard reasoning tools fo:

understanding this programming language.

Acknowledgments

I thank Olivier Danvy and Andrzej Filinski, and .J ulia Lawall, for long discussions, electronic and

personal, about t he hierarchy. Olivier also provided t lie C'PS-converter which was used to verify

70

Control & A-Translation

guesses for reduction rules. Thanks also go to Carolyn Talcott, for spotting many last-minute

problems in presentation.

References

[BD91] D. MacQueen B. Duba, R. Harper. Typing first-class continuations in ML. In Conference Record
of the Eighteenth Annual ACM Symposium on Principles of Programming Languages, pages 163—
173, 1991.

[CRS86] W. Clinger and J. Rees. The revised’ report on the algorithmic language scheme. SIGPLAN
Notices, 21(12):37-79, 1986.

[Dan91} 0. Danvy. Personal communication, 1991.

[Dan92] 0. Danvy. Personal communication, 1992.

[DF89] 0. Danvy and A. Filinski. A functional abstraction of typed contexts. Technical report, DIKU,
1989.

[DF90] 0. Danvy and A. Filinski. Abstracting control. In Proceedings of the 1990 ACM Conference on
Lisp and Functional Progmmming, pages 151-160, 1990.

[Fel87] Matthias Felleisen. The Calculi of Ay-CS conversion: A Syntactic Theory of Control and State
in Imperative Higher-Order Progmmming Languages. PhD thesis, Indiana. University, 1987.

[Fel&8] M. Felleisen. The theory and practice of first-class prompts. In Conference Record of the Fifteenth
Annual A CM Symposium on Principles of Programming Lartguages, pages 180-190, 1988.

[FF86) M. Felleisen and D. Friedman. Control operators, the SECD machine and the X-calculus. In
Formal Description of Programming Concepts Ill, pages 131-141. North-Holland, 1986.

[FFKD86] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. Reasoning with
continuations. In Proceedings, Symposium on Logic in Computer Science, pages 131-141. IEEE
Computer Society, 1986.

(Fri78] Harvey Friedman. Classically and intuitionistically provably recursive functions. In Scott, D. S.
and Muller, G. H., editor, Higher Set Theory, volume 699 of Lecture Notes in Mathematics, pages
21-28. Springer-Verla.g, 1978.

[FS90] M. Felleisen and D. Sitaram. Control delimiters and their hierarchies. Lisp and Symbolic Com-
putation, 3:67-99, 1990.

(Gr190] Timothy G. Griffin. A formulae-as-types notion of control. In Conference Record of the Seven-
teenth Annual ACM Symposium on Principles of Programming Languages, 1990.

[HLO1] Harper, Robert and Lillibridge, Mark. ML with callcc is unsound, 1991. Electronic mail from
types@theory.lcs.mit.edu.

[Le185] D. Leiva.nt. Syntactic translations and provably recursive functions. Journal Of Symbolic Logic,
50(3):682-688, 1985.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55-
92, July 1991.

[Mur91] Chet Murthy. An evaluation semantics for classical proofs. In Proceedings of the Fifth Annual
Symposium on Logic in Computer Science, 199 1.

[Rev72] J. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings of
the 25th A CM National Conference, pages 7 1 7-740. ACM. 1972.

[Tall C. Talcott. A theory for program and data type specifica tion. Theoretical Computer Science. To
appear in the DISCO 1990 special issue.

71

On Pailisp Continuation and its Implementation

Takayasu Ito and Tomohiro Seino

Department of Information Engineering

Faculty of Engineering

Tohoku University

Sendai, Japan 980

Abstract

PaiLisp continuation 1s an extension of Scheme continuation, introduced in

a Scheme-based parallel Lisp language Pailisp. Unlike Multilisp continuation

an vocation of Pailisp continuation can change the flow of control in another

process, since for each process Pailisp continuation packages up its process-

1d and continuation as a functional object. Actually the PailLisp continuation

can be used to kill a process. As in Scheme and Multilisp the Pailisp con-

tinuations are denoted as (call/cc f) , where f must be a procedure of one

argument. A continuation captured by call/cc may be invoked many times,

but multiple-use continuations often incur some troublesome semantic problems

In concurrent interactions between continuations and concurrency constructs.

PaiLisp provides a new construct (call/ep f), a. restricted PaiLisp call/cc

for the single-use continuation. Some details of PaiLisp call/cc and call/ep
are explained, using several examples.

A Pailisp interpreter is implemented on a shared memory parallel machine

Alliant FX/80. Examples of using PaiLisp call/cc on this interpreter are given
to demonstrate its behaviors, and some evaluations of Pailisp call/cc are also

given.

1 Introduction

PaiLisp continuation is an estension of Scheme continuation, introduced in a Scheme-

based parallel Lisp language PaiLisp [[toM90, [to91]. Multilisp [Hals84, Hals90] is
another Scheme-based parallel Lisp, and it adopts Scheme continuation in a straight-

forward manner. An invocation of Multilisp continuation closure does not give any

effect to other processes. Unlike Multilisp continuation an invocation of a PaiLisp

continuation can change the flow of control in another process, since for each pro-

cess PaiLisp continuation packages up its process-id and continuation as a functional

object. Pailisp continuation is a natural extension of Scheme continua&ion into con-

currency. The process continuation of Hieb-Dybvig [HieD90] also offers another
interesting extension of continuation in to concurrency, but it iS based on so-called

F-continuation of Felleisen et. al. [FeWFDSS, Tell88]. Halstead's excellent. survey
[Hals90] contains some nice comparative remarks on these continuations.

In this paper we discuss

1. PaiLisp continuation, call/cc and its restricted version call/ep

73

2. how to use Pailisp call/cc and call/ep

3. an implementation of Pailisp continuation and its evaluations

2 PaiLisp Continuation

PailLisp continuation was introduced in a parallel Lisp language Pailisp and its

kernel Pailisp-Kernel as an extension of Scheme continuation. Pailisp-Kernel is a

small subset of Pailisp, defined to be Scheme with four concurrency constructs. Pai-

Lisp continuation was demonstrated its usefulness in describing Pailisp constructs

by use of PaiLisp-Kernel. This was shown in [ItoM90]. See [ItoM90] and [Ito91] for
more details of Pailisp and PaiLisp-Kernel.

Before discussing on PailLisp continuation we briefly explain about Scheme con-

tinuation and Multilisp continuation.

2.1 Scheme continuation

The notion of continuation was originally introduced in Denotational Semantics to

model the rest of computation following from a point of the computation [Stoy81,
Sch86]. Continuations are known to be powerful to denote semantics of various
control structures in traditional programming languages. Scheme is a dialect of

Lisp to provide continuation as a basic construct. In Scheme the continuations de-

noted as call-with-current-continuation are the procedures that programmers

can manipulate directly as a first class object of Scheme. The Scheme procedure

call-with-current-continuation is usually abbreviated as call/cc. It has the

following syntax:

(call/cc proc)

where proc must be a procedure of one argument. A continuation created by call/cc

packages up the current continuation as an escape procedure of one argument and
passes it as an argument to proc. When the escape procedure is applied to its argu-
ment. its current continuation will be discarded. Instead the continuation that the

escape procedure was created will become in effect. Intuitively speaking continua-

tion” behaves just like a control stack of an interpreter.

In the style of denotational semantics we may write as

plcall/cc] = Aex.€(Ae'k .ke')k

where p is an environment such that p € Env . I — Val. This may be read as
follows:

call/cc receives a. procedure ¢ of one argument and a continuation x,

then apply € to a continuation closure (Ae'k’.xe’). When this contin-
uation closure (Ae'x’.ne’) is applied to €¢ with the continuation x’ the
continuation «’ will be discarded. and the continuation x will be exe-

cuted with ¢, where x 1s the continuation at the time of creating the

con tin uation closure (Ae'n’. ke’).

2.2 Multilisp continuation

Multilisp adopted Scheme continuation into parallel Lisp in a straightforward man-

| ner. In case of Multilisp continuation the content of the control stack that executes

call/cc will be kept in the continuation closure, and when its continuation closure

is invoked the content of the control stack will be copied into the control stack of

the process that invokes the continuation. The continuation captured by Multilisp

call/cc will be executed by a process that invokes the continuation. Hence in case

of Multilisp continuation there is no chance that an invocation of a continuation

closure gives any effect to other processes.

Remark: Single-use and multiple-use continuations

N A continuation captured by call/cc may be invoked many times. But, as is dis-

cussed in [Hals90] it is useful to distinguish between single-use and multiple-use
continuations from the standpoint of efficiency and concurrent process interactions.

According to our Scheme programming experiences Scheme continuations are used

in the “single-use” style in most of actual Scheme programs. call/ep proposed by

the first author is such a restricted call/cc based on the single-use continuation

with the following syntactic definition:

(call/ep proc)

where proc must be a procedure of one argument as in (call/cc proc). An ex-

perimental sequential Scheme with this call/ep was implemented by 0. Hishida

(a former student of the first author) [HisI8S] and it was adopted and estended in
PaiLisp [[toM90].

2.3 PailLisp continuation

Pailiisp continuation was introduced in the course of designing PaiLisp-Kernel.

PaiLisp-IKernel is a small subset of PailLisp, defined to be Scheme with four con-

currency constructs; that is,

Pailisp-Kernel = Scheme + {spawn, suspend, exlambda, call/ cc}

where call/ cc is an estension of call-with-current-cant inuat ion to denote

Pailisp continuation. PaiLisp continuation played an essential role in describing

Pailisp constructs by use of Pailisp-Kernel.

A PaiLisp continuation is defined for each process; that is, a. PaiLisp continuation

of a. process packages up its process-id and continuation. In another words, a. PaiLisp
continuation records

the content of the control stack that executes call/cc

and the identity of the process that captured the continuation.

In PaiLisp and Pailisp-IKernel a Pailisp continuation can be captured using call/ cc

| as in Scheme and Multilisp. When a. Pailiisp con tinuation is invoked by the same
process that. captured it. the resulting behavior is same as in Scheme and Multilisp.

| 75

When a Pailisp continuation is invoked by a different process, the process to execute

the rest of computation denoted by the continuation is the process that captured

the continuation, discarding its current continuation, and the process that invoked

the continuation continues its execution without any disturbance.

With this definition of Pailisp continuation a Pailisp program that uses Pailisp

call/cc but no other concurrency constructs produces the same results as in a

sequential Scheme. But when a Pailisp continuation is invoked by a process different

from one that captured it, it can be used to give an effect to other processes. Actually

it can be used to kill a process to be explained below, and this ability to kill other

processes was especially important to define parallel-OR, parallel-AND and other

constructs of Pailisp by use of PailLisp-Kernel.

2.4 Use of PaiLisp continuation to give an effect to other processes

With the Pailisp continuation it is possible to give an effect to other processes.

Actually we can write a PailLisp-Kernel program to kill a process. After giving a

brief description of PaiLisp-Kernel we explain how to initiate, suspend, resume and

kill processes; then we give an example to use Pailisp continuation to kill processes.

More programming examples of Pailisp and Pailisp-Kernel will be given in the nest
section.

[PaiLisp-Kernel]

PaiLisp-Kernel is defined as Scheme with four concurrency constructs {spawn, suspend,

exlambda, call/ cc}, where call/ cc is Pailisp’s call-with-current-continuation,

explained in the preceding paragraph 2.3. Assuming the reader’s familiarity on

Scheme [Rees86, Sprk'89] we explain only four concurrency constructs here.

(spawn €): (spawn €) creates a process to compute e, and the parent process cap-

tured this statement will be executed concurrently with this newly-created

process.

(suspend) : When (suspend) is encountered in the course of esecution of a process

its esecution will be suspended, and the execution will be resumed when the

continuation creaked by the process is invoked.

(exlambda (ay . . . 2,) €1 . . . ey) : This statement creates a new queue and an ex-

clusive closure. When the exclusive closure created by this statement is usec

by a. process, another process that invokes this closure will be suspended in

the queue until this closure is released.

(call/ cc e): € must be a. procedure of one argument. (call/ cc e) creates a. pro-

cedure of one argument to denote its current continuation with its process-id.

and e will be applied to this procedure. When the continuation is invoked the

| process that captured it behaves as in the way explained in 2.3.

In order to describe a. concurrent process we usually must know how to ‘initiate’.

‘suspend’, ‘resu me’ a nd “kill” processes. The initiation will be realized by (spawn

76

e) to create a process. to compute e and initiate its execution. The temporary

suspension of a process will be realized by use of (suspend), and a suspended

process will be resumed by invoking a continuation. In order to resume a process

suspended by (suspend) its continuation must be created by call/cc and passed to

other processes before the suspension. Killing of a process created by (spawn e) will

be done by invoking the continuation of e. When the continuation of e is invoked,

the process falls into the killed state. The following PailLisp-Kernel program is an

esample to kill and resume processes.

(let ((kill (call/cc (lambda (resume)

(spawn (call/cc (lambda (k)
(resume k)
ce)

(suspend)))))
AAA)

In this program the variable resume will be bound to the continuation that the body

of the let construct is executed after assigning a value into kill. The parent process

that executes spawn will be temporarily suspended by (suspend), and the created

child-process captures its continuation. Then the value of k will be the continuation

which forces the process to terminate. The invocation of resume resumes the exe-

cution of the parent process. The variable kill can be used to kill a child-process
in execution of AAA.

This ability to kill processes by Pailisp continuation played an essentially im-

portant role to define parallel-OR, paralle]l-AND and other Pailisp constructs by

use of PaiLisp-Kernel [ItoM90].

2.5 call/ep —A construct for single-use continuation

Concurrent interactions between continuations and concurrency constructs yield

some troublesome semantic problems, and it is useful to distinguish between single-

use and multiple-use continuations as is discussed in [Hals90].
PailLisp provides a. new construct (call/ep e) which is the PailLisp call/cc

restricted to the single-use continuation. e€ must be a procedure of one argument,

called a receiver, which receives an escape procedure as its argument.

Firstly, we explain call/ep in a. sequential Scheme setting.

Following Halstead [Hals90] we can give an operational explanation of call/cc in
the following way. A continuation may be viewed as the stack and register contents

that espress the current state and the rest of computation. call/cc captures those

stack and register contents, and it copies them into a. continuation object. Whenever

the continuation object is applied to a. value v, the saved stack and register contents

are re-installed as the current, stack and register contents, and v is installed in the

appropriate result register, continuing the computation from that state. Then, a re-

turn from the original invocation of call/cc occurs, with v being the value returned.
In this way each invocation leads to a new return from the invocation of call/cc

that captured the continuation. In the standard Scheme call/cc the multiple-use

continuations are allowed and they leads to several returns from a procedure call.

However. call/ep allows only a single-use of continuation in invocation and return.

77

In case of call/ep there is no need to copy the control stack information, for safe-

keeping of the working stack. This call/ep was installed into a sequential Scheme

by 0. Hishida and it has been exhibited that the execution costs of call/ep can be

reduced about 10%, compared to those of call/cc.
This call/ep has been imported into Pailisp as a restricted version of Pailisp

call/cc, keeping its single-use style feature of continuation.

Usually (call/cc e) is used in the following form:

(call/cc (lambda (k) e(. . .k.. .)))

which means that the continuation captured by call/cc is bound to the variable

k, and it may be accessed possibly many times from the inside and outside of

e(.. k..).
Likewise (call/ep e) can be used in the following form:

(call/ep (lambda (k) e(. . k.. .)))

which means that the continuation captured by call/ep is bound to the variable k,

and it may be accessed at most once within e(. . . k. . .).

According to our experiences to describe Pailisp using Pailisp-Kernel and Scheme

programming most cases of using call/cc could be replaced by call/ep.

[Behaviors of call/cc and call/ep]

In order to explain more details of Pailisp call/cc and call/ep we give several

esamples of using call/cc and call/ep.

(Example 1) [Continuations used in the downward and single-use style]

Consider the following PaiLisp program [Hals90]:

(call/cc
(lambda (k)

(+ (future 1)
(future (k (x 23))))))

where future is the concurrency construct introduced in Multilisp by Halstead

[Hals84], and it is imported into PaiLisp [ItoM90].
In this program the continuations are used in the downward and single-use style.

In this case call/cc can be replaced by call/ep.

N.B. The “downward” use of continuation means that the continuation is

passed deeper into the computation to be used. The “upward” use of continuation

means that the continuation is passed out of the context in which it was captured

and invoked from elsewhere. This terminology comes from [Hals90].
The future construct has the following meanings: (future e) immediately

returns a. future-value for e and creates a task to evaluate e. The use of the future-

value and the evaluation of e may be concurren tly executed. When the evaluation

of ¢ produces an actual value that value replaces the future-value.

78

(Example 2) The following receiver-tester program [SprF89] uses the continua-
tions in the upward and multiple-use style.

(define receiver

(lambda (cont inuat ion)
(continuation continuation)))

(define tester
(lambda (continuation)

(print “beginning”)
(call/cc continuation)

(print “middle”)
(call/cc continuation)

(print “end”)))

1. Consider (tester (call/cc receiver)). In this case the continuation re-

ceived by receiver will be invoked at execution of the first (call/cc continuation)

of tester, and the continuation of the first (call/cc continuation) will be

sent to tester. This continuation can be invoked once again at execution of

the first (call/cc continuation). At this point the variable cont inuation

is bound to the continuation received by receiver.

Then the second (call/cc continuation) of tester will be executed, and

the continuation of the second (call/cc continuation) will be sent to tester.

This continuation will be invoked again at esecutiou of first (call/cc continuation).

Thus, the result of (tester (call/cc receiver)) is

beginning
beginning
middle

beginning
end

2. Consider (tester (call/ep receiver)). In this case, the escape procedure
sent to receiver will be invoked within receiver, and after then no invocation

will become in effect, so that (tester (call/ep receiver)) produces

beginning
middle

end

3. Next, we change tester as follows:

(define testerl (define tester?
(lambda (continuation) (lambda (cont inuat ion)

(print “beginning”) (print “beginning”)
(call/ep continuation) (call/cc continuation)
(print “middle”) (print “middle”)
(call/cc continuation) (call/ep continuation)
(print “end”))) (print “end”)))

In case of testerl the first call/cc of tester is changed to call/ep. and in

case of tester2 the second call/cc of tester is changed to call/ep.

79

Consider (testeril (call/cc receiver)). After the escape procedure has

been sent to tester 1 no invocation to the continuation will take place. The
result of (testerl (call/cc receiver)) is

beginning
beginning
middle

end

Consider (tester2 (call/cc receiver)). In this case, after call/ep is ex-

ecuted and the escape procedure is sent to tester2 no invocation to the con-

tinuation will take place. The result of (tester2 (call/cc receiver)) is

beginning
beginning
middle

beginning
middle

end

3 Implementation of PaiLisp Continuation and its Eval-
uat ions

An interpreter of Pailisp has been implemented on Alliant FX/80 with eight pro-
cessor units. The PaiLisp interpreter has been tested and evaluated using the bench-

mark programs of [MaPTW90], and it has been used in implementation of an alge-
braic Petri net manipulation system by S. Kawamoto at our group. In this section

we esplain how Pailisp continuations are implemented in this Pailisp interpreter,

and then we give several esamples to show how they work. (More details of PaiLisp

interpreter and its applications will be discussed and published elsewhere.)

3.1 Outline of PailLisp interpreter

The Pailiisp interpreter is implemented on the CONCENTRIX-OS of Alliant FX/80,
and it has been programmed in C. The PaiLisp interpreter uses the following registers
and the control stacks:

1. general registers: exp, val, fun, argl, unev

2. environment register: env

3. continuation register: cont

The continua&ions are stored in the control stack.

The interpreter reads an expression! evaluates it and prints its result repeatedly.

In order to carry out these interpretive processes the following three routines are
implemented:

reader: read an expression into val, then jump to a. label denoted by cont

eval _dispat ch: eval uate an expression in exp under an environment env, and set.

its value into val, then jump to a. label denoted by cont

80

printer: print the espression in val, then jump to a label denoted by cont

The C program of eval dispatch is as follows:

int eval_dispatch(void){
if self _evaluatingp (exp)

go(ev_self_eval);
i f variablep(exp)

go (ev,variable) ;
i f (length(exp) <= 0)

go (unknown,exp) ;
fun = car(exp);
if syntaxp(fun)

go(sym_syntax(fun));
if macrop (fun)

go (expand-macro) ;
if (cdr(exp) == Nil)

go (ev,no,args) ;
go(ev_application);

3

3.2 PailLisp process and continuation

In Pailisp interpreter a process is defined as an object with

its process name
its current value

its current state

its current continuation

the information on the exclusive resources used by the process

A PaiLisp process is actually realized as a process object with the following structure:

| current continuation |
list of continuations to be resumed at termination of esecution

the final value of the process

[pointers to other processes

A Pailisp continuation is realized as an object with the following structure:

pointer to the process which the continuation belongs to

pointer to the control information that denotes the content
of the stack at execution of continuation

| return value |

3.3 On executions of PaiLisp processes

A process esecution means an esecution of its current. continuation. In an idea.l case

that an infinite number of processors are available the state transitions of PaiLisp

processes will become as in Figure |. However, in an actual case that only a. finite

number of processors are available the state transitions will become as in Figure 2.

81 |

suspended [_1 running [1 waiting

killed |

Figure 1: The state transitions in an ideal case.

That is, an executable continuation resides in the queue, and an available non-busy

processor executes a continuation in the queue. When a continuation is executed
the control information of its continuation will be moved into the stack area and

the return value will be stored in the val register. The processor allocation of a

resumed continuation has higher priority than that of a newly-created continuation.

The current continuation of a process may be altered by invoking continuations of

other processeés invoked continuation will be esecuted only when a processor

is allocated to it. An invoked continuation will be eventually esecuted unless it is

hampered by other processes.

queued

suspended running : waiting
killed

Figure 2: The state transitions in an actual case.

3.4 Realizations of spawn, suspend, and call/cc

The basic concurrency constructs of PaiLisp-IKernel{ spawn, suspend, exlambda,
call/cc) are realized as the C programs. The C programs of spawn, suspend

82

and call/cc are given in Figure 3, but the C program of exlambda is omitted here,

since it is rather complicated and lengthy.

[spawn]

int ev_spawn(void){
cons (exp, Term, cdr(exp));
allocp(val, Nil, Nil, Nil, PROCESS);
create_cont(argl,exp, env, val);
add-new-cont (argl);

return-value;

}

int terminate_process(void){
lock(p_lock(process));
killed-state (process);

unlock(p_lock(process));
go(take_cont);

}

[suspend]

int suspend(void){
go(take_cont);

+

[call/cc]

int cwecc_apply(void){
fun = car(argl);
stack_to_list(argl);
allocate-cont(exp, process, argl, Nil);

cons(argl, exp, Nil);
go(apply_dispatch);

J

intinvoke_cont(void){

tmp = k_p(fun);
val = car(argl);
lock(p_lock(tmp));
allocate-cont(fun, tmp, k_stk(fun), val);
p_cc(tmp) = fun;
if (p_stat(tmp) & RUNNING)

run_cont (fun);

unlock(p_lock(tmp));
popcont; .

return-value;

+

Figure 3: The C programs of spawn, suspend, and call/cc.

3.5 Evaluations of PaiLisp continuation

| With the above implementations of PaiLisp and PaiLisp continuation we consider

| the overheads of Pailisp continuation. In execution of (call/cc ¢) the result of

| 83

evaluating the argument e must be a function of one argument and a new continua-

tion will be created. The copy of the content of the control stack will be set into the

newly-created continuation, together with the process name that captured call/cc.
The list of the resultant continuations will be sent to the function e. On invocation

of continuation invoke,cant that invokes the continuation will be executed, receiv-

ing its argument, and invoke-cant returns the value of its argument. If the process

to which the continuation belongs is not in the killed state the current continuation

will be changed to the newly-invoked continuation, discarding the previous contin-

uation. Thus the pointer of the current continuation must be the pointer to the

newly-created continuation object. The invocation of a continuation will be checked

by a processor which execute a continuation of a process, whenever the eval routine

eval dispatch returns a value. If the process state indicates several occurrences

of invocations, the processor will be allocated to another executable continuation.
These behaviors of capturing and invoking Pailisp continuations may be illustrated

as in Figure 4.

current new current, invoked
continuation rocess continuation continuation process continuation

copy)
new |

continuation

stack list control stack stack list stack list stack list

Figure 4: Behaviors of capturing and invoking Pailisp continuation.

From these behaviors of Pailisp call/cc we can see

1. the cost of capturing a Pailisp continuation is same as Scheme continuation.

2. when a PaiLisp continuation is invoked by the same process that captured it,

the cost of invoking the PaiLisp continuation is essentially same as in Multilisp.

3. when a PailLisp continuation is invoked by a different. process, the cost of

invoking the Pailisp continuation may be high because of

e checking process states

e switching continuations

e allocating processors to processes

However the actual cost, of PaiLisp continuations is not high according to oui

experiences to be explained below.

84

Let us consider the following simple program:

(let ((¢c <number-of-iterations>))
(loop (cond ((zero? c) (exit))

(else (set! ¢ (=c 1))))))

where <number-of -iterations> means the number of looping.

Using call/cc we can write the following program to perform an essentially

same looping computation.

(let ((c <number-of-iterations>) (tag ’init))
(call/cc (lambda (k) (set! tag k)))
(cond ((zero? c) (exit))

(else (set! c¢ (- c¢ 1)) (tag ‘dummy))))

Changing <number-of-iterations> we obtained the following experimental results

of executing the above programs on the Pailisp interpreter.

Giff process] oor)
1000 1.13 sec 1.03 sec 0.76 sec

10000 11.22 10.28 7.62

100000 112.19 102.82 77.07

where [different-process] means that the continuation was invoked by a different pro-

cess, [same-process] means that the continuation was invoked by the same process

that captured it, and [loop] means the above program of using the loop construct.

The results of [same-process] are essentially same with those of using Scheme con-

tinuations. This shows that the execution overheads of PailLisp continuations are

about 10%, compared to Scheme continuations.

3.6 Running PailLisp continuations on PailLisp interpreter

In this section we give several Pailisp programs of using Pailisp call/cc. All these

programs were actually executed on Pailisp interpreter.

(Example 3) [downward and single-use style continuation]

This is the example mentioned in [Hals90].
(call/cc (lambda (k) (+ 1 (k (+ 2 3)))))

— 5

Next we insert future into this program.

(call/cc (lambda (k) (future (+ 1 (k (+ 2 3))))))

— [future-value]

— 5

(call/cc (lambda (k) (+ 1 (future (k (+ 2 3))))))

— 5

These three prograins produce the same result according to the Pailisp interpreter.

83

(Example 4) [upward and single-use style continuation]

(define a
(let ((s *()) (xr *0)))

(lambda ()
(set! r (call/cc (lambda (k) (set! s k) #£)))
(print "This is a. ")
(cond (r (r #£))

(else (b s))))))

(define b
(let ((s ’()) (xr 2)

(lambda (c)
(set! r (call/cc (lambda (k) (set! s k) #t)))
(print "This is b.")
(cond (r (c s))

(else (print "That's all."))))))

(a)
This 1s a.

This is b.

This 1s a.

This is b.

That's all.

(Example 5) [upward and multiple-use style continuation]

(let ((c 0) (tag *()))
(set! c¢ (call/cc (lambda (k) (set! tag k) 3)))
(print c)
(if (zero? c) 0 (tag (- c 1))))

3

2

I

0

Inserting future in front of call/ cc we get the following program.

(let ((c 0) (tag 20)
(set! ¢ (future (call/cc (lambda (k) (set! tag k) 3))))
(print c)
(if (zero? c) 0 (tag (- c 1))))

3

At execution of (tag (= c¢ 1)) the future-value is determined already and the pro-
cess that created continuation is terminated, so that the invocation of its continua-

tion will give no effect.

(Example 6) [parallel-OR]
Originally the PaiLisp continuation was invented to describe the PaiLisp constructs

like-parallel-OR, parallel-AND, etc. by use of Pail.isp-Isernel. The parallel-OR is

defined in PaiLisp as follows:

syntax: (par-or €; €; . . . €,)

86

semantics: The expressions €; , eg, . . . , €, Will be executed in parallel.

Whenever one of e; , €2,..., e, gives non-NIL par-or returns this non-NIL

value as its result, and the executions of other expressions must be killed for

termination. If none of ey, e2, . . . , é, becomes non-NIL, then par-or returns

| false as its value.

A complete Pailisp-Kernel program to describe par-or is given in Appendix.

| In this description the actions of killing processes are realized by use of PailLisp
continuation. However in the Pailisp interpreter par-or is directly realized as a C

| program. It is possible to compare par-or of PaiLisp interpreter and the PaiLisp-

| Kernel program of par-or, since both of them are executable on Pailisp interpreter.
|

| Table 1 gives the result of running (OR (fib ey) (fib eq) (fib e3))
| using 1) sequential or
| 2) par-or of PailLisp

and 3) k-par-or which is the PailLisp-Kernel program in Appendix.

i where (fib e) is the following Scheme program to compute a Fibonacci number of e.

(define fib
(lambda (n)

(if (<n 2)
I

(+ (fib (-n 1)) (fib (-n 2))))))

| (eq, €2, es)
| OR (10, 15, 20) | (15, 10, 20) | (20, 10, 15)

or 0.1s sec |2.05 sec | 225 sec

par-or | 0.19 0.1s 0.19

k-par-or | 0.21 0.21 0.21

Table 1: The result of running (OR (fib ¢;) (fib ep) (fib e3))

From this result we can see that the overhead of k-par-or is about 0.02 sec,

compared to par-or: and the sequential or depends on the order of arguments of

OR-operation.

4 Concluding Remarks

[1] The PaiLisp continuation was introduced as an extension of Scheme continu-
ation into concurrency. Pailisp continuation can be created by use of call/cc in

Pailisp, and its restricted version call/ep serves as a. construct of a. single-use style

continuation. They have been implemented in [PPailLisp interpreter, but it remains

to find good and efficient implementation strategies of Pailisp continuations. Also
there are some possibilities to extend Pailisp continuation further. For example we

may be able to imagine an extended call/cc which allows multiple capturings and
invokings of continuations in multi-threads of parallel computation.

87

[2] PaiLisp continuation may be called a parallel continuation, in short, P-continuation.
In this paper we explained the operational meanings of P-continuation informally.

There are at least three directions to give formal semantics of P-continuation:

1. Plotkin’s structural operational semantics of P-continuation

We gave a structural operational semantics for a subset of PailLisp-Kernel,

called mini-Pailisp-Kernel, with the following syntactic definition:

E ::= KII|(E E¥)| (lambda (I*) E Ex*x)|(lambda (I*.I) E Ex)

| af Eo Ej E;) | af Eo Ei) | (set! I E)

| (spawn E) | (suspend) | (exlambda (I1*) E E#)|(call/cc E)

where K is the set of constants and I is the set of identifiers. However our SOS

semantics for the above language became complicated to treat P-continuation
although a complete SOS semantics of mini-PaiLisp-Kernel is reported in M.S.

thesis of M. Umemura(March, 1990). A clean SOS style formal semantics of
P-continuation and mini-PaiLisp-Kernel is open for future study.

2. Process calculus description of P-continuation

There have been proposed a number of powerful process calculi like w-calculus

of Milner-Parrow-Walker, CHOCS of Thomsen and y-calculus of Berry-Boudol.

According to our preliminary experiences it seems that all of them are rather

weak to describe semantics of P-continuation and mini-Pailisp-Kernel. The

first author is currently working to use a-calculus to give a semantics of P-

continuation. The a-calculus introduced by the first author is the sum of

CHOCS and an extended y-calculus with n-ary cooperation operators. In an-

other words the a-calculus is a process calculus with the associative parallel

composition and the non-associative parallel compositions to treat processes

as the first class objects of the calculus.

3. Logical approach for formal semantics of P-continuation

There are several interesting logical approaches to give formal semantics of

sequential continuations by T. Griffin, C. Murthy, and S. Nishizaki. Is there

any powerful logical framework to give a formal semantics of P-continuatiou

in a logical setting?

[3] Halstead [Hals90] proposes the criteria for “continuation”. Halstead’s criteria
are designed to check fitness for Multilisp. His criteria, are as follows:

I. Programs that use call/cc but no concurrency constructs should yield the

same results as In a sequential Scheme.

2. Programs that use continuations exclusively in the single-use style should yield

the same results as in a sequential Scheme.

3. Programs should yield the same results as in a sequential Scheme. even if

future is wrapped around arbitrary subexpressions, with no rest ric {ions on
how con tin uations are used.

88

He states that Katz-Weise approach to change the definition of future is the best

for Multilisp [Hals90].
The following questions on P-continuation arise:

e Can we think of any good criteria for P-continuation?

e Should we change the definitions of concurrency constructs for semantic safe-

keeping with P-continuation?

e Should we change the meanings of P-continuation to meet semantics of con-

currency constructs?

Similar questions may be raised to PaiLisp call/ep. In case of call/ep we may
have the following additional question.

eo Can we give an algorithm to detect which call/cc can be replaced to call/ep?

References

[Fell88] M. Felleisen, The theory and practice of first-class prompts, 15th An-
nual ACM Symp. on Principles of Programming Languages, San Diego,

Ca., pp. 180-190(Jan. 1988)

[FeWFDS8S8] M. Felleisen, M. Wand, D. Friedman, B. Duba, Abstract continuations:
A mathematical semantics for handling full functional jumps, ACM

Conference on Lisp and Functional Programming, pp. 52-62 (1988)

[Hals84] R. H. Halstead, Jr., Implementation of Multilisp: Lisp on a multipro-
cessor, Conf. Record of 1984 ACM Symposium on Lisp and Functional

Programming, pp. 9-17(1984)

[Hals90] R. H. Halstead, Jr., New ideas in parallel Lisp: Language, implemen-
tation, and programming tools, Springer LNCS, 441, pp. 2-57(1990)

[HieD90] R. Hieh, R. Ii. Dybvig, Continuations and concurrency, 1990 ACM
Conf. Principles and Practice of Parallel Programming, pp. 128-

136(1990)

[HisISS] 0. Hishida., T. Ito, On importing non-local esit, structure and pack-
age into Scheme, Proceedings of 5th Conference of Japan Society for

Software Science and Technology, pp. 325-328(September 1988) (in
Japanese)

[[to91] T. Ito, Lisp and parallelism, in “Artificial Intelligence and Mat hematical
Theory of Computation”, pp. 187-206, Academic Press(1991)

[[toM90] T. Ito, M. Matsui. A parallel Lisp language PaiLisp and its kernel spec-
ification: Springer LNC’S, 441. pp. 53-100(1990)

[MaPTW90] I. A. Mason, J. D. Pehoushek, C. Talcott, J. Weening, Programming
in QLisp. Stanford University, STAN-CS-90-1340(1990)

89

[Rees86] J. Rees, W. Clinger(Eds.), The revised’ report on the algorithmic lan-
guage Scheme, ACM SIGPLAN Notices, 21, pp. 37-79(1986)

[Sch86] D. Schmidt, Denotational Semantics: A Methodology for Language De-
velopment, Allyn and Bacon, Newton, Mass. (1986)

[SprF89] G. Springer and D. Friedman, Scheme and the Art of Programming,
The MIT Press, pp. 516-578(1989)

[Stoy81] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to
Programming Languages, The MIT Press, Cambridge, Mass.(1981)

This work was partially supported by Grant-in-Aid for Scientific Re-

| cu (A)01420029 and (A02)02249102, under The Ministry ors |tion, Science and Culture, Japan.

Appendix: PailLisp-Kernel program of par-or

(macro k-par-or
(lambda (form)

'"(call/cc (lambda (*return*)

(let* ((*process-list*’())
(*kill-lock* (exlambda (e) (e)))

(*1% ,(length (cdr form)))
(*1-unlock*

(exlambda ()

(1f (= *1* 1)

(*return™ #f£)
(set! *1* (= *1% 1))))))

(letrec ((*kill-all*

(lambda (k pl)
(cond ((null? pl) 'dummy)

((eq? k (car pl)) (*kill-all* k (cdr pl)))
(else ((car pl) 'dummy)

(*kill-all* k (cdr pl)))))))

; (let ((*start-process*
(lambda (e)

(*kill-lock*

(lambda ()

(call/cc (lambda (r)

(spawn

(call/cc (lambda (k)

(set! *process-list* (cons k *process—-list¥*))

(r 'dummy)

(let ((res (e)))
(cond (res (*kill-lock*

(lambda ()

(*return* res)

(*kill-all* k “*process-list*))))

(else (*1l-unlock*)))))))

(suspend))))))))
,0(map (lambda (x) '(*start-process* (lambda () ,x)))

(cdr form))

(suspend))))))))

90

Graph Reduction and Lazy Continuation-Passing Style

Chris Okasaki Peter Lee David Tarditi

School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213

1. Introduction

Some implementations of lazy functional programming languages compile programs into graphs [25]. The use of
graphs makes it easy to express normal-order evaluation and the sharing of bindings, thus providing a simple and
relatively efficient method for implementing lazy evaluation. Augusteijn and van der Hoeven [2] and Koopman and
Lee [16] have shown how self-modifying code can model directly and efficiently the self-reducing nature of such
graphs. In these approaches, graphs are compiled into threaded code in which reductions of the graph are accomplished
by modifying the code stream.

In a different arena of programming language implementation, interest has steadily increased during the past fifteen
years in the use of continuation-passing style (CPS) as a compiler intermediate representation [24, 17, 1]. Techniques
for converting both applicative-order X,-terms and normal-order A,-terms are well known [23, 22, 7], but to the best
of our knowledge CPS-conversion has never previously been described for lazy X-terms. In this paper we present a
lazy CPS transformation and examine its relationship to graph reduction.

We begin by reviewing the basic concepts of graph reduction. We then present in more detail self-modifying
graph reduction and show how graphs resemble continuations. Looking at this resemblance from the other direction,
we modify Plotkin’s CPS transformation for the normal-order A-calculus to account for laziness, and then show how
the result resembles graph reduction, especially the self-modifying approaches. Finally, we describe where graph
reduction and lazy CPS fit into the broader landscape of implementation techniques for lazy evaluation.

2. A Brief Review of Graph Reduction

Turner proposed the use of graph reduction to implement lazy functional programming languages [25]. He described
what is referred to as combinator-graph reduction, which is based on the well-known fact that any closed X-expression
can be transformed into an expression involving only applications and combinators.

Such a combinator expression is easily represented as a binary tree, where the interior nodes represent the
applications and the leaves represent the combinators. Furthermore, by moving to a binary directed graph, the

This research was partially supported by the National Science Foundation under PYT grant #CCR-9057567, with matching funds from Bell
Northern Research. David Tarditi is supported by an AT&T PhD Scholarship. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or implied, of the National Science Foundation, the
US Government, or AT&T.

1A combinator is simply (the name of) a closed A-expression [4]. In addition to being closed, there is typically the stipulation that &abstractions
not occur in the argument position of an application.

91

| @ @

ye KN K S
SN

S K

Figure 1: Representation of the graph for ((S KK) (K S)).

occurrence of common subexpressions can be represented by subgraph sharing and recursion by cycles. The (possibly
cyclic) path of left-branches starting from the root node is referred to as the spine of the graph.

In combinator graphs, the definitions of the combinators denote graph-rewriting rules, and executing programs

becomes a process of graph reduction. The spine of the graph is traversed and the spine nodes are pushed onto the
“spine stack.” When a combinator is encountered, the graph is rewritten according to the corresponding rewrite rule.
This process is repeated on the new graph. Program execution terminates if and when an irreducible graph is produced.
The consistent reduction of the spine corresponds to the “leftmost outermost” rule of normal-order reduction. This, in
conjunction with the sharing and destructive update of pointers to subgraphs, leads to the so-called “lazy” evaluation
of functional programs.

As an example, consider the reduction of the graph shown in Figure 1, corresponding to the combinator expression,
((S KK) (K S)). Here we can see that the graph is implemented as a collection of application nodes (depicted by “@”)
and combinator nodes. Application nodes contain references to other nodes, whereas the combinator nodes contain a
token denoting a graph-rewriting action.

When a graph is reduced, the spine nodes are pushed onto the spine stack, The spine stack provides references to
the arguments required by a combinator, and a combinator consumes part of the spine stack in addition to rewriting a
graph node. The result of such a rewrite is depicted in Figure 2. Note in this figure that a node has been destructively
updated by this rewriting. This allows the result of the reduction to be shared by several parts of the program, thereby
leading to “lazy” behavior.

To make things more concrete, consider the following representation of combinator graphs:*

stack = Node list

Answer = program answers (unspecified)

Node = Comb of Stack — Answer
| Appof Node x Node

Note that we use a list to represent the spine stack and that combinators are represented by “code” that computes a
program answer from a spine stack. A graph is reduced byforcing it with the empty stack, where the force function is

2We ignore the issue of strict combinators which might be used, for instance, for arithmetic on integer baseconstants. Hence for the purposes
of this paper there arc no nodes that contain base-constant values.

3Throughout this paper, code exampks will be presented in a notation loosely based on Standard ML.

92

@, @;

. @: @,4 @:s @s

yd K K S = K K
@;

/ vo @;
S K /

@; K @4

| / \ / \
S K kK S

Figure 2: The original and rewritten graphs. Note that node 1 has been destructively updated and node 4 is now shared.
Nodes 2 and 3 are now garbage (unless referred to by some other unshown node). Nodes 5 and 6 were created by this
rewrite.

defined by
forcegs = casegof Combc => CS

App(m,n) = forcem(n :: 3)

The notation, “n :: s” denotes the cons of n and s, that is, the result of pushing the argument node onto the spine stack.

The above definitions are incomplete in that they fail to account for the need to share and update nodes destructively
during graph rewrites. For this, we borrow Standard ML'’s [19] notation for references to provide a mechanism for
destructive updates’ and modify the representation as follows:

stack = (Node ref) list
Node = Comb of Stack — Answer

| App ofNode ref x Noderef

Then the force function is given by

forcegs = case!g of Combc = CS
App (m.n) = forcem(g::s)

The reason g is pushed onto the stack instead of n is so that it can serve as the target for an update. The value of n

‘Standard ML uses the following notation for references:

o “7 ref” denotes the type of references to objects of type 7,

o “ref v" denotes the creation of a ref cell with value v,

* “In” denotes the extraction of a value from a ref cell (a “dereference” operation),

oe “n :=1” denotes the assignment of v to the ref cell n, and

o ‘“” denotes sequencing.

93

BN EC IV

EE AVE gee, 1

| Jsb |sb Cy lyie

Figure 3: A graph as self-modifying code.

may be extracted from g when needed by an operation referred to as fetch, where

fetch (ref (App(-,n))) = n

Now the S combinator (which corresponds to the graph rewrite rule S fg x = (f x) (g x)) can be defined as
follows:

S = Comb(As.case sof ny::my:inyirs’ =

ns := App(ref App(fetch ny, fetch ns), ref App(fetch n,, fetch n3));
force nz s’)

This code assumes that there will always be enough arguments on the stack. If not, the graph is irreducible and program
execution terminates.

3. Graphs as Self-Modifying Code

A number of techniques for compiling programs into graphs [3, 12] and efficiently reducing them [8, 14] have been
proposed. Of particular interest are those approaches that use self-modifying code to model the self-reducing nature
of combinator graphs [2, 16]. In these approaches, the key observation made is that the spine stack is actually
the subroutine return stack for a threaded program. Thus, the left-hand-side field of each application node can be
implemented by a subroutine call. As these subroutine calls are executed, the “return addresses” that are saved on the
subroutine-return stack are references to the right-hand-side fields of the spine-which is exactly the desired behavior.
Combinators can be represented as pointers to code sequences that perform graph rewrites by consuming return-stack
elements and modifying the code stream in an appropriate manner. Figure 3 shows the representation of our example
graph in this scheme. Note that j sb is the VAX mnemonic for the “jump to subroutine” instruction, which stacks the
value of the address following the 3 sb instruction and then transfers control.

Architectures that allow self-modifying code and provide a subroutine-call instruction, such as older VAX com-
puters, allow a direct implementation of this approach. Great efficiency is gained from the use of the native hardware’s
instruction-decoding mechanism to implement the case analysis on graph nodes. Unfortunately, in practice self-
modifying code is seldom feasible, especially on modem architectures that enforce a separation of cache memories
for instructions and data [16]. Furthermore, many RISC architectures do not provide a subroutine-call instruction, and
may further complicate matters by introducing branch delays.

94

4. Graphs as Continuations

It is natural to think of self-reducing graphs as self-modifying programs. Doing so gives rise to a notion of “direct
execution”: graphs are no longer interpreted as described in Section 2, but rather executed directly as shown in
Section 3. The benefit in execution time comes from the fact that explicit case analysis on graph nodes is no longer
necessary.

A similar effect is also obtained by viewing graphs as continuations. In this view, a graph (and hence each graph
node) is a continuation which takes a stack and performs the remainder of the computation. This is reflected in the
following representation:

Node = (Stack — Answer) ref

(The ref simply allows continuations to be destructively updated.) Again, there is no case analysis but instead of
performing a subroutine call to a node, one “throws” (a spine stack) to a continuation. The continuation for an
application stacks both itself and the argument continuation and throws the result to the left-branch continuation:

appmn = fixr.ref (As.forcem ((r,n)::s))

where

Stack = (Node x Node) list

forcegs = g s

Both the application continuation itself and the argument continuation must be stacked because in this representation,
application nodes are opaque-we can no longer “look inside” the application to extract the argument like the fetch
operation does in Section 2. The fix is required for the continuation to know its own “location.”

With this representation, the S combinator is defined as follows:

S = ref(As.casesof (-.ny):(.,m)(g.n3)ns =
update g (app n1n3) (app na n3);
force gs’)

where

updategmn = g := As.forcem ((g, n) 5)

Note that update is just like app except that it overwrites an existing cell instead of allocating a new one.

Looking again at the self-modifying code approach, we can now view the use of subroutine calls as a shorthand,
or optimization. The VAX j sb instruction has the convenient effect of stacking the current node and then “throwing”
to the left branch. (Actually, the address of the right subnode is stacked, but simple address arithmetic allows us to
compute the address of the node itself from this.) There is no need to stack both the current node and the argument
node because of course, at the machine level, the latter may be extracted from the former

5. Lazy Continuation-Passing Style

Having noted that graphs are continuations, it is natural to wonder if graph reduction can be written in continuation-
passing style. We answer in the affirmative but first we must describe CPS-conversion for lazy programs.

Plotkin’s transformation of (normal-order) A,-terms into CPS (see [22]) is given by the following rules:

[x] =>
Az. M] = Mk. k (AX. [M))
[MN] = Me. [M] (Am. m [N]k)

Before modifying this transformation for laziness, we first examine more closely how Plotkin’s transformation
actually works by isolating the essential operations in the generated programs and encapsulating those operations

95

within auxiliary functions with (hopefully) more descriptive names. Modifying the transformation then consists of
redefining the relevant auxiliaries.

The evaluation of an expression is delayed by packaging the expression into a thunk. In this context, a thunk is
a function that takes a continuation, evaluates the expression, and throws the result to the continuation. A thunk is
forced by applying it to a continuation. We make each force explicit by rewriting the rule for application as follows:

[M N]= Ak. force [M] (Am. force (m [N]) k)

where

forcemk = mk

Inside the application rule, the thunk in the function position is forced with a continuation that accepts a function
value and applies it to the argument thunk. This continuation is given the name arg. Inside the lambda-abstraction
rule, the continuation is applied to a value. This is given the name return. The transformation may then be rewritten

[2] =z
(Az. M] = retum (XX. [M))
[MN] = Ak.force [M] (arg [N]k)

= force [M] o arg [N]

where

reeurnv = Ak.kv

argnk = Am.force(m n) k

Finally, we give the names fun and app to the right-hand-sides of the lambda-abstraction and application rules,
respectively, and write the final version of Plotkin’s transformation as follows:

[x] => 2
Az. M] = fun (XX. [M])
[MN] = app [M][N]

where

funf = returnf

appmn = force [M]o arg [N)

Now, in order to obtain a lazy transformation, we must arrange that when a thunk is forced for the first time, the
result is saved so that it may immediately be returned whenever the thunk is subsequently forced This is accomplished
by physically replacing the thunk with a new thunk that immediately returns the desired result. But before we can do
this, we must first make the thunks mutable. Only the auxiliary functions fun, app, and force need be modified.

fun f = ref (return f)
app mn = ref (force [M]o arg [N])
forcemk = !'m k

Next, we must specify the actual update. This could be associated with the force operation, but we do not wish
to update thunks every time they are forced nor do we wish to require an explicit test to determine whether the thunk
has been previously forced. Instead, we add to each thunk a continuation which captures the result, updates the
thunk, and passes on the result to the next continuation. Note that we do not need to save the results of evaluating a
lambda-abstraction, since thunks for such expressions are already in the desired form, that is, they immediately return
a value. Only the auxiliary function app need be modified.

appmn = fix r. ref (force [M]o arg [N] o update r)

where

update rk = Av.(r := retumnv; kv)

96

[x] =>
[Az.M] = fun(Az. [M])
[M NJ = app [M][N]

fun f = ref (retumn f)

appmn = fix r.ref (force m o argn o updater)
for;temk = tm k

retumv = Xk. kv

argn k = Am. force(mn)k
updaterk = Av.(r := retumv; kv)

Xx. M} = ref (Xk. k (Az.[M]))
[MIv] = fixr.ref ({[M] (Am. Ym [N]) (Av. (r= ARR vs kv)

Figure 4: The lazy CPS transformation (with auxiliaries and in expanded form)

This completes the moditktions for laziness. The entire transformation is shown in Figure 4.

An important theoretical property of Plotkin’s normal-order CPS transformation is independence of evaluation
order; it does not matter whether the the resulting programs are evaluated using call-by-value or call-by-name [22].
Unfortunately, this property no longer holds for the lazy CPS transformation. The way that assignments are used to
model laziness restricts the resulting programs to a call-by-value discipline. In practice, this is not a difficulty since
the resulting programs are usually evaluated using call-by-value anyway. The same problem arises, for example, with
assignment conversion in the CPS transformation used by the Orbit compiler[17].

Finally, note that we could easily modify other normal-order CPS transformations for laziness in a similar manner.
In particular, the optimal transformation of Danvy and Filinski [7] could be so modified.

6. Lazy CPS as Graph Reduction

We are now in a position to compare lazy CPS and graph reduction. Doing so, we find a strong similarity the two,
especially between lazy CPS and self-modifying graph reduction.

Consider first the following minor modification to the lazy CPS transformation in which the functionality of fun
and app has been “pushed” into force.

Node = Fun of Value — Node ref

| App of Node ref x Node ref

fun f = ref(Fanf)
appmn = ref (App(m,n))
force r = case!rof Funf = returnf

App(m,n) = forcem o argn o updater
updaterk = Av.(r : = Funv; kv)

(Note that the Fun constructor appears in the update function only because the current language is limited to functional
values. However, it is not difficult to extend the language with other types of values, such as integers or lists.)

A comparison with the code in Section 2 reveals a clear similarity to graph reduction. The same resemblance
exists between lazy CPS programs and self-modifying graph reduction, as described in Section 4. The only substantial

07

[2] => I
[Azy...zn. M] = fun, (Az;...z,.[M])
[M My... M,] = app, [M][M]...[M,]

. fun, f = ref(fix f'.As.casesof my... impr s’ = force (fmy...my,)s
otherwise = retumf’s)

> app, mmy...m, = fixr.ref (As.forcem(m;::...:: m,:: nil) o updaters)
force msk = Imsk

return f s k = k (As AK. f (s@s')k')
update rs k = Av.(r = v;vsk)

Figure 5: The lazy CPS transformation extended with a spine stack. Standard ML list notation is used for stacks: nil
is the empty list, :: is right-associative infix cons, and @ is infix append. The case-statement in the definition of fun,,
corresponds to the argument satisfaction check.

differences between the CPS programs and graph reduction are the absence of a spine stack, a different strategy for
updates, and a more permissive treatment of functions. We address each of these points in turn.

The most glaring difference from the code in Sections 2 and 4 is the lack of a spine stack. In the-current framework,

arguments are captured in continuations instead of on a stack. However, an examination of the way argument
continuations occur in lazy CPS programs reveals a stack discipline, so it is sensible to use a concrete stack (the spine
stack) to represent these continuations.’ Figure 5 shows how this stack may be added to the lazy CPS transformation.
There are several things to note about this stack-based transformation. The first is that the use of a stack allows an
efficient implementation of curried functions that consumes all of a function’s arguments at once, rather than one at a
time. However, it also requires an additional test, called the argument satisfaction check, which determines if there
are enough arguments on the stack for the given function. When this test fails, a closure is returned which contains

the partial stack.

Another significant difference between the two models is the strategy used for updates. Simple graph reducers
update the graph after every reduction (see for example the update that occurs in the code presented for the S combi-
nator). Unfortunately, under this approach a node may be updated many times with intermediate results before being
updated with its final value. A more efficient approach, which we adopt here, is to perform only the final update. The
use of continuations makes it obvious when this should occur. Several other graph reducers adopt a similar strategy,
notably the Spineless G-machine [6] and the Spineless Tagless G-machine [13]. This update strategy also simplifies
the treatment of the spine stack. In the current framework, an application stacks its argument but in the code presented
earlier, the application node itself is stacked and the argument must be extracted separately when required. This is
because the updates that appear in the combinator rewrite rules need to know the location in the graph that is to be
overwritten. By separating the updates from the reductions, the need to stack the application node is obviated.

A final (minor) difference between the two models is that in the earlier model, functions were restricted to be

combinators, while no such restriction appears in the current model. (This restriction greatly simplifies the treatment of
the environment.) Note, however, that this is not a restriction upon source programs; arbitrary functions are allowed in
the source programs but they are converted into combinator form via a separate pass known as lambda-lifting [10, 11].
A similar phase appears in CPS-based compilers, where it 1s known as closure-conversion [1], but it is not shown here
because it typically occurs after CPS-conversion.

5The non-argument continuations also obey a stack discipline and may also be represented with a concrete stack, either interleaved with the
| argument stack or stored separately. However, we will not make use of this fact in this paper.

98

7. Related Work

Having described the relationship between graph reduction and lazy CPS, we now place the two in the broader landscape
of implementation techniques for lazy evaluation. Of course, such techniques may vary along such dimensions as the
presence of a stack or whether functions are restricted to be combinators, but these issues are really irrelevant to the
question of laziness. The key issues are the representation of thunks (i.e., delayed expressions) and the mechanism for
Updates.

Bloss et al. [5] describes two implementation techniques for lazy evaluation, called closure mode and cell mode.
In closure mode, a thunk is simply a nullary closure (i.e., a closure that takes no arguments) which is forced by
entering the closure, that is, transferring control to the code of the closure. The environment of the closure contains
a status flag that tells whether this thunk has been evaluated before. If so, the environment contains the value of the
thunk; othenvise, the environment contains whatever information will be required to determine that value. The code
checks the status flag and then either evaluates the associated expression or returns its value. When the expression
is evaluated, the status flag is set and the value is written to the environment. Cell mode is similar except the status
flag 1s exposed to outside perusal, and status-checking is made the responsibility of the force operation rather than the
code within the closure. This strategy enables a set of optimizations whereby the status check is bypassed if a thunk
is forced in a context where it is definitely known to be evaluated or unevaluated.

Peyton Jones [13] describes a variant of closure mode, called self-updating mode, which avoids status checks
altogether. A thunk is again represented by a nullary closure, but the status of the thunk is not made explicit. Instead,
the status 1s implicitly represented by the code within the closure. The thunk is initialized to contain code that evaluates
the delayed expression and then replaces itselfwith code that simply returns the result value. Subsequent attempts to
force the thunk thus immediately return the desired result. Usually the code within a closure is physically represented
by a code pointer, so replacing the code is accomplished simply by modifying the code pointer However, if the code is
small enough, it is efficient to represent the code directly in the closure rather than indirectly via a code pointer In this
case, replacing the code is accomplished by physically overwriting it with new code. Such self-modifying approaches
are described in [2] and [16].

Graph reduction may be seen as either cell mode or self-updating mode, depending on the representation of tags. In
either case, graph nodes are simply closures while graph edges are the free variables in the environments of closures.
Nodes also contain a tag that distinguishes between interior nodes and leaf nodes (and furthermore between the
different kinds of leaf nodes such as combinators or integers). This tag serves essentially the same purpose as the status
flag which determines if a thunk has been evaluated or not. Interior (application) nodes and leaf nodes correspond to

unevaluated and evaluated thunks respectively. Graph reducers which represent the tag explicitly (and branch on its
value) may be seen as implementations of cell mode, while so-called ‘tagless” reducers [13] which represent the tag
implicitly as code (or code pointers) correspond to self-updating mode. Self-modifying graph reducers of course fall
into the latter category.

The CPS equivalent of a nullary closure is a closure that takes just a single argument, a continuation. It is

natural to consider corresponding continuation-passing modes for each of the modes mentioned above. Wang [18]
describes implementations of closure continuation-passing mode, cell continuation-passing mode, and self-updating
continuation-passing mode using call/cc in Scheme. Josephs [15] presents a continuation-based denotational
semantics for a lazy functional language, using cell continuation-passing mode. Both approaches use continuations,
but not continuation-passing style. Lazy CPS, as presented in this paper, may be seen as a description of self-updating
continuation-passing mode in the context of CPS.

§. Conclusions and Future Work

In this paper we have made an observation about the connections between self-modifying graph reduction, continua-
tions, and continuation-passing style. There are a number of possible directions for further work.

It has been suggested to us that the presentation of the lazy CPS transformation might be better made through the use

99

of monads [20]. This seems like a good idea, though we have not yet worked out the details. An interesting approach
would be to express Plotkin’s transformation as a monad. Then, it might be possible to use monad transformers to
capture the modifications that are required to obtain the lazy CPS transformation.

Another subject for future investigation is the use of the lazy CPS transformation in implementations of lazy
programming languages. CPS has become an increasingly popular intermediate representation in compilers [24, 17, 1].
One possibility, which we are currently investigating, is using a single CPS-based compiler back-end to support front-
ends for both lazy and eager languages (or even languages with both lazy and eager features). A preliminary
investigation indicates that this framework 1s also convenient for expressing optimizations based on semantic analyses
such as strictness analysis [21] and sharing analysis [9]. Our early experience with implementations of the techniques
presented here gives us reason to believe that this approach is viable.

Acknowledgements

The authors wish to thank Mark Leone for many detailed and useful comments on earlier drafts of this paper.

References

[1] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing style. In Sixteenth ACM Symposium
on Principles of Programming Languages, pages 293-302, 1989.

[2] A. Augusteijn and G. vander Hoeven. Combinatorgraphs as self-reducing programs. Unpublished workshop
presentation, 1984.

[3] Lennart Augustsson. Compiling Lazy Functional Languages, Part II, PhD thesis, Department of Computer
Sciences, Chalmers University of Technology, 1987.

[4] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier, New York, 1981.

[5] Adrienne Bloss, Paul Hudak, and Jonathan Young. Code optimizations for lazy evaluation. Lisp and Symbolic
Computation, 1:147-164, 1988.

[6] Geoffrey L. Burn, Simon L. Peyton Jones, and John D. Robson. The Spineless G-Machine. In Proceedings of
the ACM Conference on Lisp and Functional Programming, Snow bird, pages 244-258, 1988.

[7] Olivier Danvy and Andrzej Filinski. Representing control. Technical Report TR-CS-91-2, Department of
Computing and Information Sciences, Kansas State University, February 1991.

[8] Jan Fairbaim and Stuart Wray. TIM: A simple, lazy abstract machine to execute supercombinators. In Gilles
Kahn, editor, Proceedings of the Conference on Functional Programming and Computer Architecture, Portland,
pages 34-45. Springer-Verlag, 1987.

[9] Benjamin Goldberg. Detecting sharing of partial applications in functional programs. In Gilles Kahn, editor,
Proceedings of the Conference on Functional Programming and Computer Architecture, Portland, pages 408-
425. Springer-Verlag, 1987.

[10] John Hughes. The Design and Implementation of Programming Languages. PhD thesis, Oxford University,
1983.

[11] Thomas Johnsson. Lambda lifting: transforming programs to recursive equations. In J.-P. Jouannaud, edi-
tor, Conference on Functional Programming Languages and Computer Architecture, Nancy, pages 190-203.
Springer-Verlag, September 19835.

[12] Thomas Johnsson. Compiling Lazy Functional Languages. PhD thesis, Department of Computer Sciences,
Chalmers University ofTechnology, 1987.

100

[13] Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware: the Spineless Tagless
G-machine. To appear in the Journal of Functional Programming, January 1992.

[14] Simon L. Peyton Jones and J. Salkild. The Spineless Tagless G-machine. In The Fourth International Conference
on Functional Programming Languages and Computer Architecture, London, pages 184-201, September 1989.

[15] Mark B. Josephs. The semantics of lazy functional languages. Theoretical Computer Science, 68: 105-1 11,1989.

[16] Philip J. Koopman, Peter Lee, and Daniel Siewiorek. Cache behavior of combinator graph reduction. ACM
Transactions on Programming Languages and Systems, 14(2):265-297, April 1992.

[17] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and Norman Adams. Orbit: An
optimizing compiler for Scheme. In Proceedings of the SIGPLAN ‘86 Symposium on Compiler Construction,

pages 219-233, July 1986.

[18] Ching lin Wang. Obtaining lazy evaluation with continuations in Scheme. Information Processing Letters,
35:93-97, 1990.

[19] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT Press, Cambridge,
Massachusetts, 1990.

[20] Eugenio Moggi. Computational lambda-calculus and monads. In Symposium on Logic in Computer Science.
IEEE, June 1989.

[21] A. Mycroft. The theory and practice of transforming call-by-need into call-by-value. In Proceedings of the 4th
International Symposium on Programming, volume 83 of LNCS, pages 269-28 1. Springer-Verlag, 1980.

[22] Gordon D. Plotkin. Call-by-name, call-by-value and the X-calculus. Theoretical Computer Science, 1:125-159,
1975.

[23] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings of the ACM
National Conference, New York, New York, pages 7 17-740, 1972.

[24] Guy L. Steele. Rabbit: a compiler for Scheme. Technical Report AI-TR-474, MIT, 1978.

[25] David A. Turner A new implementation technique for applicative languages. Software — Practice and Experi-

ence, 9(1):3 1-49, January 1979.

101

