October 1990 Report No. STAN-CS-90- 1340

Programming in QLisp

by

I. A. Mason, J. D. Pehoushek, C. Talcott, J. Weening

Department of Computer Science

Stanford University
Stanford, California 94305

REPORT DOCUMENTATION PAGE Ot npeed

OMB No. 0704-0188

ublic roponlng burden for thn coll of infe on 1y d 10 average | hour per response, including the time for mnwm‘g wearching anq, Am
athering g the data ded, and leting and reviewing the collection of information. Send comment, rt?t nhwdtnmmot um
oll«uon of m'omomn including tions for reducing this burden, to wwnnqton Neadquanen Services, Directorater_tonformation Qpers |z|sjm
Javis Highway, Sulte 1204, Arlington, VA 22202-4302. and to the Office of g Budget, Paperwork Reduction mm(oruolw thlngton a

I I. AGENCY USE 5NLY ELOOVO blank) 2. REPORIT DA'TE 3. REPORT TYPE AND DATES COVERED
. MLE AND SUBTITLE 5. FUNDING NUMBERS

Programming in QLisp

6. AUTHOR(S

Ian A. Mason, Joseph D. Pehoushek, Carolyn L. Talcott
Joseph S. Weening

I. PERFORMING ORGANIZATION NAMES AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Computer Science Department
Stanford University

9. SPONSORNG/ MONIMORNG AGENCY NAMES) AND ADDRESS(ES) 70. SPONSORING 7 MONITORING
AGENCY REPORT NUMBER
DARPA/ISTO

Il. SUPPLEMENTARY NOTES

|2a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISIRBUNON CODE

13. ABSIRACT (Maximum 200 words)

Qlisp is an extension of Common Lisp, to support parallel programming. It was
initially designed by John McCarthy and Richard Cabriel in 1984. Since then it

has been under development both at Stanford University and Lucid, Inc. and has been
implemented on several commercial shared-memory parallel computers. Qlisp is a
queue-based, shared-memory, multi-processing language. This report is a tutorial
introduction to the Stanford dialect of Qlisp.

14. SUBJECT TERMS 5. NOMBER OF PAGES |
parallel Lisp, queue based multi-processing, shared memory, 56
dynamic task spawning 16. PRICE CODE

17. SECURITY CLASSIHCATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRAC |
OF REPORT OF THIS PAGE OF ABSTRACT

= 1-280-5500 §_t—a‘r1'ﬁrd form 298 (Rev 2-89)

- e AMC: Cee 77010

Programming in Qlisp

Ian A. Mason
Joseph D. Pehoushek
Carolyn L. Talcott
Joseph S. Weening

October 24, 1990

Chapter 1

Introduction

Qlisp is an extension of Common Lisp, to support parallel programming. It was initially
designed by John McCarthy and Richard Gabriel [5] while they were affiliated with the Lawrence
Livermore National Laboratory’s S1 project in 1984. Since then it has been under development
both at Stanford University and Lucid, Inc. and has been implemented on several commercial
shared-memory parallel computers. Qlisp is a queue-based, shared-memory, multi-processing
language. A program must explicitly indicate where parallelism is possible by special language
. constructs. When such constructs are executed a collection of tasks are added to a queue for
subsequent evajuation. For more details concerning the rationale behind the languages design,
the reader is referred to [5]. The complete definition of Qlisp is in its reference manual [7]; this
report is a tutorial introduction to the Stanford dialect of Qlisp.

The reader of this report is expected to have a good working knowledge of Common Lisp, as
described in {10] or in textbooks on programming in Common Lisp. Most of the new constructs
of Qlisp are described here, but some will not be presented in their most general form; see the
Qlisp reference manual for full details.

This primer is organized as follows. Chapters 1 through 3 provide an introduction to the
basic Qlisp primitives and gives simple examples of their use. Chapters 4 through 7 contain
more substantial applications. Chapter 8 summarizes the main points.

1.1 Reasons for parallel programming

It is worthwhile to keep in mind one’s goals and reasons for using a parallel programming
language. Programming a parallel computer will probably never be as easy as programming a
sequential computer, just because parallel computers are more complicated. The main reason
for using a parallel computer is that it offers a potential speedup over sequential computers.

If your goal is to speed up a particular program (or to write a new program for a parallel
machine with speed as a primary goal), it is worthwhile to consider other methods of speedup in
addition to applying parallelism. Usually these can be found at both the high level (improving
the algorithms used by a program) and the low level. In preparing examples for this report,
we invariably found low-level speedups, such as reducing the allocation of memory, or replacing
linear access to list structures (via functions such as member and assoc) by the use of data
structures such as hash tables or trees.

When a parallel program runs on a machine with p processors, one usually expects a speedup
of at most p over a machine with one of the same kind of processor. A speedup close to p means

you are making efficient use of the machine, so further work on parallelizing the program is not
necessary. Qlisp tries to make it easy to achieve such speedup in as many cases as possible. A
speedup much less than p suggests that better performance is possible, but will require some
restructuring of your program, so you must decide whether it is worthwhile to do this. This is
obviously a tradeoff between your time and the machine’s time!

Occasionally you may be lucky enough to see speedup greater than p. At first thought
this appears impossible, but it can happen when a parallel program does less work than a
corresponding sequential program-this often happens in search algorithms-or if the parallel
program makes good use of hardware other than the additional processors. A parallel machine
generally has more memory, caches, I/O bandwidth, etc., than a sequential machine and in
some cases this additional hardware reduces a bottleneck in the program.

1.2 Overview of how to use Qlisp

In the following chapters we will introduce Qlisp by means of several example programs. Some of
these were originally written as ordinary Common Lisp programs, while others were developed
completely in Qlisp. A summary of the topics we will cover is as follows.

1. Correctness. The most important aspect of any program is that it be correct. This is just
as true for parallel programs, but the process of making a program correct, debugging, is
often harder in a parallel environment. So, you should do as much debugging as possible
using a single processor, and only then try to run the program in parallel. Some bugs
will not show up when a program is run sequentially; we will give examples of these and
show how to avoid them in writing parallel programs.

2. Things to avoid. Certain programming techniques make parallelism difficult to achieve.
Also, some algorithms are inherently more sequential than others and need to be avoided.
In our examples we will show what makes a program difficult to parallelize and how to
fix such programs.

3. Identifying parallelism. Even after the obstacles to achieving parallelism have been re-
moved, the computer may need some help in deciding what to do. Qlisp provides several
ways for the programmer to indicate which parts of a program should be run in parallel.

4. Limiting parallelism. Most programs have either too little parallelism, or more parallelism
than necessary, for the particular environment in which they are run. When there is too
little parallelism, you must either look for more, or use what parallelism there exists and
accept less than perfect efficiency. When there is too much, however, it often pays to limit
the amount of parallelism actually used, to avoid unnecessary overhead. Qlisp’s language
constructs are designed to make the expression of these tradeoffs straightforward, and
to make the necessary decisions at runtime, when the largest amount of information is
available about the program, its data, and the state of the runtime environment.

5. Dynamic Scheduling. Qlisp comes with a scheduling environment that automatically
decides when to limit parallelism, based on the runtime state of the machine. Qlisp’s
default scheduling heuristics work well on most programs, so we always try them first

before trying to come up with other runtime decisions that let a specific program control
its parallelism.

6. Profiling tools. Qlisp comes with several tools for measuring the performance of a program,
and indicating what parts of the program may be causing poor performance. Using these
tools is an effective way to “tune” a program until a desired level of performance is
reached. The major parameters estimated by the timing tool are idle time and scheduling
overhead. An effective way to use this information when developing a program will be
demonstrated in the following chapters.

1.3 Introduction to Qlisp

1.3.1 Creating parallel processes
The creation of parallel processes is expressed by qlet. Here is an example:

(qlet (spawnp) ((a (search u v1))
(b (search u v2)))
(append a b))

The effect of this expression is similar to the Common Lisp code:

(let ((a (search u v1))
(b (search u v2)))
(append a b))

except that in the glet form, the expressions (search u vl) and (search u v2) will be
executed in parallel if the expression (spawnp) returns a non-null value. The body of the qlet
form, (append a b) | is executed after the processes computing the calls to search have finished
and returned their values.

More generally, qlet forms have the following syntax.

(qlet control (Cvary expr,) . . . (var, erpr")) body)

This is like let except for the additional form control, which is called a control expression.
A control expression should be either a constant or an expression that returns nil, t or the
keyword : eager.

In most of our examples, control will be the form (spawnp). The initial definition of spawnp
18

(defmacro spawnp () ’(dynamic-spawn-p))

dynamic-spawn-p implements a control algorithm, to be described later, that works well on
a variety of programs. Using this extra level of indirection, instead of coding (dynamic-spawn-p)
directly into your program, will allow you to try other control algorithms without changing your
code.

When control evaluates to nil, qlet behaves just like ordinary let, i.e., there is no paral-
lelism. When control evaluates to t (or any other non-null value except : eager), Qlisp creates
processes to evaluate the expr, forms of the qlet in parallel, waits for these to finish, binds the
resulting values to the approapriate var; and then evaluates the body.

Evaluation of the body can begin before the expr; forms have finished, if control has the
value : eager. You might ask, what values are the variables var; bound to during the evaluation
of the body, since the expressions whose values they are supposed to contain have not yet been
evaluated? A new data type, called a future, is used for this purpose. It represents a. value

being computed by another process, and can be passed around like other Lisp data objects. (In
the implementation, it is a pointer with a special tag.) Certain Lisp functions, such as car,
cdr, atom, +, need the actual values of their arguments; when passed a future in Qlisp, they
will automatically wait for the process computing this value to finish, and then resume when
there is an available processor.

1.3.2 Synchronization

When parallel processes share data that can be modified, it is often necessary to add synchro-
nization in order to make the program correct. Qlisp’s basic form for this is qlambda. It has
the following syntax.

(qlambda control (vary . . . vary,) body)

This is just like lambda except for the control argument, which controls parallelism. Also like
lambda, you must use function around a glambda expression in the places where Common Lisp
requires it, or use the # ’ syntax of the Lisp reader, which is equivalent. The object returned
by #’(qlambda ...) is called a process closure and may contain free variables like an ordinary
closure.

In all cases (even if control is nil), Qlisp will allow only one process at a time to call a
process closure. If a process tries to call a process closure while another call is in progress, it
will be suspended; later it will be resumed and proceed to execute the forms in the glambda
body.

If control is nil, this is the only difference between glambda and lambda. If control is t,
the process closure returns immediately to its caller, with a future as the returned value. Thus
the callers of a (qlambda t . . .) process closure never wait, although the calls themselves are
performed sequentially by another process. The returned futures might cause suspension of a
process later on.

Note that the control argument of a glambda form is evaluated when the process closure is
created, not each time it is called. An elaborate example of the use of glambda may be found
in parallelizing the OPS5 Matching Algorithm [8]

1.3.3 Speculative computation

result is not needed. In this case the program can make better use of resources by terminating
the process rather than allowing it to continue execution. This is called speculative computation
because the program could have avoided starting such a process until it was certain to be needed.

Qlisp supports speculative computation by estending the meaning of Common Lisp’s catch
and throw forms. When a throw returns control to a corresponding catch, in addition to
performing any unwind-protect forms, Qlisp will kill processes, started within the catch that
are still executing. The exact definition of which processes are killed is in the Qlisp reference
manual.

The most common way of doing speculative computation is

(catch ‘found
((code to try multiple solutions in parallel)))

and when a. solution is found,

(throw ‘found (solution))

The throw returns control to the catch form, and any processes started by the code to try
multiple solutions in parallel that are still running will be killed. Thus, the solution returned
will be that of the first process that finds one.

Chapter 2

Writing parallel programs

Common Lisp is designed to allow a variety of programming styles. It allows both pure func-
tional programming and programming with effects; recursion and iteration; global and local
variables; global and local data; lexical and special binding, etc. In a sequential program, the
choice of which constructs to use is usually a matter of personal style or finding ones appro-
priate to the problem at hand. There are some efficiency considerations, but they are not too
significant, and vary from one implementation of Common Lisp to another.

In Qlisp, because of the need to use multiple processors effectively, some styles of program-
ming can lead to significant performance loss. We will discuss the most common cases of this
phenomenon, and explain how to write programs that have a good chance of running well in
parallel without significant additional effort.

2.1 High-level programming forms

The use of high-level programming styles such as iteration can make a program appear to have
constraints on the sequence of operations, when in actuality those constraints are unnecessary.
For example, a program may loop over the elements of a list or array, but the operations done
on each element are independent and can be done in any order, or in parallel.

For parallel programming, it is useful to have the program explicitly indicate that such
operations are safe to perform in parallel. Qlisp’s “parallel iteration forms,” along with other
ways of indicating parallelism, can then be used to build higher-level functioms that operate on
aggregate data objects.

Qlisp has functions and macros that parallelize the work done by the Common Lisp forms
dolist, dotimes, and the mapping functions mapc, mapcar etc. These are called gdolist,

gdotimes, gmapc, dgqmapcar etc. The syntax of these Qlisp forms is exactly like the corresponding
Common Lisp forms. For example, you can write

(gmapcar #’paint widgets colors)
and Qlisp will generate code equivalent to that for

(mapcar #’paint widgets colors)

except that it uses parallelism. The method that Qlisp uses for parallelizing iterations is

based on the (dynamic-spawn-p) control form; it is described in more detail in chapter 3 of
this report.

To use the parallel iteration functions, your program must work correctly no matter what
order the iterations are performed, or if they are performed in parallel. If the body of an
iteration form (or an argument function passed to a mapping function) performs side effects,
you should be careful before trying to execute it in parallel. The mapping functions that return

lists do guarantee that the result lists are in the right order, but they may be computed in a
different order.

2.2 Variables

The two types of variables in Common Lisp are lexical and special. In addition, we will some-
times talk about global variables; these are symbols that have been assigned values (by means
of setq, defvar and similar forms) but have not been bound as function parameters or by let
or lambda. Common Lisp treats global variables as special variables.

We also distinguish between two ways of using variables, which we will call shared and
private. Shared variables are those which may be used (their values read or changed) by more
than one process at a time. Private variables can only be used by a single process. Sometimes
we can’t tell whether a variable is shared or private, because we don’t have the whole program
in hand to make a determination.

Here are the ways in which we determine if a variable is shared or private. When in doubt,

we always take the conservative approach of saying that a variable mighr be shared if we cannot
prove that it is private.

1. Global variables are shared, since references to global variables can appear in any func-
tion. You must therefore be cautious when using global variables in a parallel program.
Legitimate uses of global variables are:

e Variables that are modified only while the program is not using parallelism, but that
may be read by concurrent processes. For example, you might have some “program
parameters” that are easier to handle this way than by passing them as arguments
to all the functions that need them.

e Variables that are used in conjunction with synchronization, to ensure that only
“safe” parallel references are possible. We will show how to do this later. Generally,
this requires making sure that only one process is using the variable at a time, and

so may reduce the amount of parallelism in your program. Thus it should be avoided
when possible.

2. Lexical variables can be shared or private. The lexical scope rules of Common Lisp make
it possible to determine, by inspection of the program, whether a variable is private. This
is the case if, inside the scope of the form where the variable is defined, there are no
forms that can possibly execute in parallel, and no forms that “capture” the binding of
the variable in a closure. (Because such a closure’.could then be called in more than one
process simultaneously.)

3. Special variables can also be shared or private. When a special variable is bound by a
process, the binding is only seen in that process and its descendants; there is no effect
on other processes that were previously sharing the variable’s binding. Thus, rebinding

a special variable can make it private during the extent of the binding, even though it is
otherwise shared.

=1

However, there are several reasons to avoid the use of special variables in Qlisp programs.
One is that, as with global variables, it is hard to tell whether a reference to a variable is
safe when it is not inside a binding form. Programs using special variables are therefore
often harder to maintain and modify, because you need to understand more of the program
than just the part you are modifying.

Another reason to avoid special variables is that they are somewhat slower, both to read
and write, than lexical variables. The difference is not very great, so this should not be
the primary consideration. But with other things being equal the use of lexical variables
should be preferred.

Here are some examples of the use of variables in Qlisp programs.

(let ((item (car objects)))
(qlet (spawnp) ((x (search item list1l))
(y (search item list2)))
(cons x y)))

Here the variable itemis shared by the forms (search item listl) and (search item list2).
Since both of them simply pass the value of item as an argument to the function search, the
usage of this shared variable is safe.

(1let ((index 0))
(flet ((new-index ()
(incf index)))
(qlet (spawnp) ((x1 (make-object (new-index) yi))
(x2 (make-object (new-index) y2))
(x3 (make-object (new-index) y3)))
(1ist x1 x2 x3))))

This code is incorrect since the variable index is modified in an unsafe way, by processes
running in parallel. The Common Lisp form (incf index) is equivalent to (setq index (+ index 1)),
and when this is executed in parallel by multiple processes, it does not necessarily return a
unique value in each process. To fix it we must synchronize using qlambda, or we can use the
equivalent form ¢flet as follows:

(let ((index 0))
(gflet nil ((new-index ()
(incf index))) S—
(qlet (spawnp) ((x1 (make-object (new-index) y1))
(x2 (make-object (new-index) y2))
(x3 (make-object (new-index) y3)))
(1ist x1 x2 x3))))

Note that we have specified nil as the control form of the process closure defined by (flet.
This is because we only need the synchronization features of the process closure; having it
execute in parallel with the processes that call it would create more overhead (in the use of
futures) than it would gain in extra parallelism.

(defvar *color-list* ’(yellow))

(defun test-color (color)
(let ((*color-list* (cons color *xcolor-list#*)))
(check-color)))

0

(qlet (spawnp) ((x (test-color ’blue))
(y (test-color ’green))
(z (test-color ’'red)))

(append x y z))

This code is safe in its use of the special variable *color-list*. The function test-color,
called in three parallel processes, rebinds *color-list* in each process. These bindings
have no effect on each other, so the value of *color-list* seen by check-color is always
(blue yellow) in the first process, (green yellow) in the second process, and (red yellow)
in the third process, no matter how they execute.

Here are some other ways of writing test-color in the above program.

(defun test-color (color)
(push color *color-list*)
(check-color)

(pop *color-list*))

This is incorrect as a parallel program, even though it is correct as sequential code.” The
reason it doesn’t work is that (push color *color-list*) expands to

(setq *color-list* (cons color *color-list*))

and this code contains a critical region. In this version of test-color, the variable *color-list*
is shared by all of the processes.

We might try to create “atomic push” and “atomic pop” operations that add synchronization
around the critical region. However, this would still not fix the function as written above. The
reason is that with several processes doing push and pop to the same variable, *color-list*
may have a value such as (green blue yellow) when check-color is called. This does not
happen when the program is run sequentially.

(qdefun test-color (color)
(push color *color-listx*)
(check-color)

(pop *color-list#))

This adds synchronization at a high enough level to execute correctly. Calling a function
defined by qdefun, which performs the same synchronization as qlambda, ensures that only one
process at a time enters the code that does the push and pop. However, in doing this we have
removed all the parallelism from the program! This is why rebinding of special variables, as
done in the first version of test-color, is the best method to use.

2.3 Shared data

Even when private variables are used, it is possible for data to be shared between processes in a
program. If shared data is modified by one process, it may affect other processes in unintended
ways.

There is no problem with shared data as long as the program does not use destructive oper-
ations, since then the only time that words in memory are written is when they are allocated.
(For example, cons writes its two argument values into the slots of a newly-allocated cons cell.)

'If there is a possibility of a throw from inside check-color, then (pop *color-list*) should be contained
in an unwind-protect form.

All other references just read the data, and there is no problem with doing this concurrently in
several processes.

Destructive operations include rplaca, rplacd, setf and anything else that modifies storage
after it has been allocated. One approach to writing correct parallel code is to avoid entirely
the use of these forms. Often this is undesirable because it would sacrifice efficiency, or because
you are modifying a sequential program that already contains destructive code, and want to
make as few changes as possible.

If destructive operations are used, then, they must be used safely. To do this, you must either
prove that the program is correct when run in parallel in spite of the destructive operations,
or add synchronization code to the program where it uses shared data. In the latter case, it is
usually necessary to modify code that reads the shared data, as well as the code that writes it.

L0

Chapter 3
Using Qlisp

In this chapter, we illustrate the tools and techniques of Qlisp program development, debug-
ging and performance analysis that have been described. Our experiments were done with
‘an implementation of Qlisp, based on Lucid Common Lisp, running on an Alliant FX/8, a
shared-memory multiprocessor with eight processors.

3.1 Expressing parallelism

If the parallelism in your program is not easy to express with the high-level forms that Qlisp
provides, you will need to describe it more directly. In most cases this is done with qlet.

In order to write a qlet expression, you must decide which Lisp forms should be evaluated
in separate processes. Then create a local variable to receive the returned value of each of the
parallel forms, and use these variables in an expression. For example:

(qlet (spawnp) ((x (crunch ail b1))
(y (crunch a2 b2)))
(list x y))

performs two function calls to crunch in parallel, and then uses the returned values in an
ordinary sequential computation. The use of (spawnp) as a control expression was described in
section 1.3.1. If you decide that a particular qlet expression needs a different form of control
than others, you should give it a different control expression, which you can then redefine as
necessary.

When writing new code in Qlisp, the style just described is fairly natural and easy to write.

However, you may be converting an existing sequential program to Qlisp. It probably does not
contain a form like

(let ((x (crunch a1 b1))
(y (crunch a2 b2)))
(1ist x y))

since this is very verbose. Instead, normal Common Lisp style would be to write
(list (crunch a1l b1) (crunch a2 b2))

In order to convert this to Qlisp, you need to take the parallel forms (the calls to crunch
in this case) out of the expression they are contained in, replacing them by variables, and then
write a qlet form to create the parallel processes.

In this way, you can selectively decide what is to be done in parallel. For example, suppose
the original form was

11

(1ist (list al b1) (list a2 b2) (crunch al bi) (crunch a2 b2))

The expressions (list a1 b1) and (list a2 b2) are too small to benefit from running in
parallel with the calls to crunch. It would take longer to create processes for them, than to
simply execute them sequentially. But perhaps crunch performs a long computation and there
are no side effects that prevent running the two calls to crunch in parallel. In this case, an
appropriate qlet form would be

(qlet (spawnp) ((x (crunch al bil))
(y (crunch a2 b2)))
(1ist (1list al bi) (1list a2 b2) x y))

3 . 2 Abbreviated syntax

A pattern that comes up often is the evaluation of all of the arguments of a function call in
parallel, using the default control expression (dynamic-spawn-p). Converting such a form

(fun arg, . . . arg,)

into the corresponding qlet, although straightforward, requires a lot of editing and forces you
to come up with new variable names. Instead of this, you can write

#7 (fun arg, . . . arg,)

The #7? syntax is very convenient and we will use it in many of the examples below. You can
also write

! (funarg,...arg,)

to represent the corresponding (qlet t . . .) form, ie., a form that creates processes uncon-
ditionally. The #? and #! constructs can also be placed before a progn form, i.e.,

#7 (progn form, ... form,)

In this case, the values returned by all but the last form; are discarded, and the value of form,
is returned.

3.3 Dynamic Scheduling

A major feature of Qlisp is the ability to control, at runtime, the way in which processes are
created and distributed among the processors. There are two ways in which you can tell the
system how to manage processes.

e The control expressions of the forms that create processes determine whether or not a
process is actually created at each evaluation. This is the main way in which programs
interact with the Qlisp runtime environment.

e The scheduler determines which processes are run on which processors at any given time.
A default scheduler is supplied with Qlisp, but you can replace it with your own scheduler.
Before you do this, though, you should determine whether it is really necessary. Most
programs can easily be made to perform as well with the default scheduler as with any
other, and a specialized scheduler that you write may not work well if your code is
combined with other Qlisp code.

12

The default Qlisp scheduler is based around a set of process queues, one per processor.
These are actually double-ended queues (sometimes called “deques”), so that processes can be
added or removed at each end. When processes are created, they are placed in the “local”
queue (the queue of the processor that created the process), at a particular end. Let us call this
end of the queue the “head,” and the other end the “tail.” When there are several processes in
a queue, then, the one most recently created is at the head and the one least recently created
is at the tail.

When a processor becomes idle (because the process it was running has either finished or
suspended), it first tries to remove a process from its own queue by taking the most recently
created process, from the head of the queue. However, when the local queue is empty, it looks in
the queues of other processors. When it finds a non-empty queue, it takes the process at the tail
of the queue. These choices (head from one’s own queue, tail from another processor’s) are not
arbitrary; they have been shown both theoretically and experimentally to improve performance
for many programs. A phrase that we associate with this scheduling strategy is “locally LIFO,
globally FIFO.” Effectively, the local queue behaves like a stack of processes; tasks get pushed
onto and popped from the local queue (last in first out). When accessing other processors’
queues, the behavior is closer to standard, first in first out, queue-like behavior.

The (dynamic-spawn-p) control expression uses the state of the scheduler to control the
creation of processess. In the normal case, it tests whether the queue of the processor that it
is running on is empty. If so, it returns t and causes a process to be created, thus making the
queue non-empty for the next test (until the process is removed to be run on some processor).
If the queue is non-empty, (dynamic-spawn-p) returns nil and no process is created.

This form of control may appear somewhat strange, but, like the default scheduler, it has
been shown to perform well for many programs. In some cases, however, (dynamic-spawn-p)
may not create enough processes, and there is unnecessary idle time. An extension of the basic
idea is to look at the size of the local processor’s queue, and keep generating processes when it
is below some threshold. This is expressed by writing

(dynamic-spawn-p n)

as the control expression, where n is a small integer that gives the maximum process queue size.
Using n = 1 is equivalent to writing just (dynamic-spawn-p). You should try this form if you
discover your program has too much idle time. Try n = 2,3,. . . . If there is no improvement,
you must look elsewhere for the cause of the idle time. Usually there will be an improvement
up to a certain value of n, but for higher values of n the performance will start to degrade as
the program starts to create many unnecessary processes. To make such fine tuning as simple
as possible, the abbreviated syntax has been extended to include

#n7? (fun arg, ... arg,)

3 . 4 Using Qlisp

Let’s assume that you have written some Qlisp code and would like to test it. Running Qlisp
is very much like running ordinary Lisp. To start, type “qlisp,” to the Unix shell prompt.

% qlisp

After some initial comments, Qlisp will print its prompt, and you are now in a Lisp read-eval-

print loop.

13

;33 Lucid Common Lisp, Qlisp version 1.1
>

At this point you can interact with Qlisp just as with an ordinary Lisp interpreter. Unless you
use the function geval, however, it will not create any parallel processes? Therefore, you must
type

(geval form >

in order to evaluate a form that uses parallelism.

Interpreted Lisp forms can use parallelism, but the speed gained by parallel processes is offset
by the relative slowness of interpreted code over compiled code. Therefore, you will usually want
to compile your Qlisp code as soon as it seems to be bug-free, before doing any performance
measurements. The functions compile and compile-file behave just as in Common Lisp.
The compiler itself is not (yet) a parallel program, so you should not try to compile in parallel.

The usual steps in developing a Qlisp program are therefore:

1. Make sure your program works as a sequential program. For debugging purposes, it is
often better to use the interpreter at this stage.

2. Test the parallel version of the program, either as interpreted or compiled code.

3. Run the parallel program with the default runtime environment (i.e., with (spawnp) forms
set to (dynamic-spawn-p). If this produces acceptable performance, you are done.

For performance measurement, Qlisp has a qtime form that works like Common Lisp’s time,
but uses geval automatically. Note that time and qt ime are macros that don’t evaluate their
argument forms, so you should not quote the form to be evaluated.

If the program’s performance after the steps above is not acceptable, you will need to decide
whether it has too little or too much parallelism. The statistics typed out by qtime indicate
whether there was a lot of idle time (indicating not enough parallelism to keep the processors
busy) or a lot of overhead caused by creating and scheduling processes.

Excessive idle time can happen when not enough parallelism has been identified, or when
the control algorithm is not creating enough processes. To distinguish between these, you can
temporarily substitute a control algorithm that creates all possible processes. This is easy to do
if you have used control expressions such as (spawnp) in our examples, which can be redefined
as functions or macros that always return t. If you have used the abbreviated form #7, replace
it with #!. In either case, you will need to recompile your code, since these control espressions
are partly processed at compile time by macro expansion.

Note that the parallel iteration functions qdotimes, gmapcar, etc. cannot be converted to
“spawn-always” forms. They cont rol their process creation in a way that will not improve by
spawning more processes.

If, after converting your expressions to create all possible processes, the program still has
a lot of idle time, then it does not have sufficient parallelism to run efficiently on the given
number of processors. You should look for more parallelism in the program, or a new algorithm
with more parallelism, in order to speed it up.

On the other hand, if the program now has very little idle time, then it is just a matter of
finding the right control expressions to avoid excessive overhead. Try redefining your control

YThis may change in future versions of Qlisp.

13

expressions to (dynamic-spawn-p n), with n a small integer. Recompile and test again to see
if this improves the performance.

In the early stages of testing, you should allow for the. fact that your program may run a
lot slower than you would like. This is to be expected when you are testing it sequentially,
and may still be the case if there are performance problems. Therefore, it will be very helpful
to prepare test data that represents a simpler version of the problem that your program is
expected to solve, and that should run much faster. -Otherwise, the time you spend waiting
during debugging of you code may exceed the savings you achieve by parallelizing it!

3.5 A simple test program

Our first example program is very simple, so that we can concentrate on illustrating the us-
age of Qlisp. It computes numbers in the Fibonacci sequence: 0, 1, 1,2,3,5,8,13,21,. . ; each
Fibonacci number is the sum of the previous two. Here is a sequential version of the program:

(defun fib (n)
(if (< n 2)
n
(+ (fib (- n 1)) (fib (- n 2)))))

This program uses an inefficient algorithm, since it computes many values of (fib n) more
than once. So in a real-life situation, we would use a new algorithm before attempting speedup

by using parallelism. Nevertheless, let us proceed to convert the above code directly into Qlisp.

Each call to (fib n) with n > 2 results in the two recursive calls (fib (- n 1)) and
(fib (-n 2)). These can run in parallel since they are completely independent computations.
Since these forms make up the arguments to a function call (the call to +), we can use the
abbreviated syntax described in section 3.2 and rewrite the program as follows:

(defun fib (n)
(if (< n 2)
n
#7(+ (fib (- n 1)) (£fib (- n 2)))))

There is no other obvious parallelism, so we are ready to test the program. The sequential
version of £ib takes about 2.3 seconds to compute (fib 25), but only 0.2 seconds to compute
(fib 20). Let us use (fib 20) as our debugging test, and (fib 25) when we are done as the
“real data” test.

After compiling the code above, we test it and get the following output:

> (qtime (fib 20))
Parallel Time: 43 msecs on 8 processors

Processes: 1924

Overhead: 74.8 msecs, 21.7%
Idle : 31.7 msecs, 9.2%
6765

The value 6765, typed at the end, is the result of (fib 20). The interesting figures are the
percentage of time in overhead (process creation and scheduling) and idle time. Both of these
are rather high. In order to see if idle time can be reduced, we change the use of #7 to # ! |
recompile, and run it again:

15

> (gtime (fib 20))
Parallel Time: 63 msecs on 8 processors

Processes: 10946

Overhead: 277.2 msecs, 55.0%
Idle: 20.6 msecs, 4.1%
6765

The idle time has decreased somewhat, but not as much as the increase in overhead, so the
total running time is worse. We therefore make one more test, using #27, to see if it will make
an improvement:

> (qtime (fib 20))
Parallel Time: 39 msecs on 8 processors

Processes: 1874

Overhead: 54.8 msecs, 17.5%
Idle: 22.3 msecs, 7.1%
6765

This is slightly better than the original test with #7.

However, when the total running time is as short as in these tests (43, 63 and 39 millisec-
onds), you should beware of the significance of the timings. In our “real data” test of (fib 25),
the time becomes large enough to put more faith in the numbers.

With #7, we get:

> (gtime (fib 25))
Parallel Time: 367 msecs on 8 processors

Processes: 3673

Overhead: 112.2 msecs, 3.8%
Idle: 29.2 msecs, 1.0%
75025

Using # !, we get:

> (gtime (fib 25))
Parallel Time: 718 msecs on 8 processors

Processes: 121393

Overhead: 3023.1 msecs, 52.6%
Idle: 22.4 msecs, 0.4%
75025

Finally, with #2?, the running time is:

> (gqtime (fib 25))
Parallel Time: 367 msecs on 8 processors

Processes: 5268

Overhead: 141.9 msecs, 4.8%
Idle: 151.2 msecs, 5.2%
75025

These and other results are summarized in the following table.

16

(fib 25) (sequential 2.540)

para-macro | para-time |processes |overhead % {dle- time %
#7 2564 037 3673 1 0112200 0038 0092 1170 863 10
#27 0.367 5268 0.1419 48 0.1512 52
#37 0.402 15952 0.4092 12.7 0.0248 0.8
#47 0.471 36790 0.9251 24.6 0.0203 0.5
#! 0.718 121393 3.0231 526 0.0224 04
Best Speed-up (/ 2.540 0.367) =6.921

Creating all processes with # ! still gives the worst time, because of too much overhead. but
now the best times are achieved either by the default control algorithm #? or by #27. This
trend continues as n increases, as the following table of £ib 30 illustrates.

(fib 30) (sequential 28.249)
para-macro | para-time | processes |overhead % Qdle-time %
#? 28259 3850 10733 1 0307400 0010 | 19022 0019% 86701
#27 3.888 14515 0.3743 1.2 0.0178 0.1
#37 3.952 40329 1.0145 32 0.0130 0.0
#! 7.596 1346269 | 33.4049 55.0 0.0147 0.0
Best Speed-up (/ 28.249 3.850) = 7.34

in

Chapter 4

Theorem proving

This program is a Common Lisp version of the well known Boyer benchmark. Here is what
Bob Boyer said about the original program ([4]. p116).

J Moore and I wrote the rewrite program as a quick means of guessing how fast our
theorem-proving program would run if we translated it into some other Lisp system.
Roughly speaking, it is a rewrite-rule-based simplifier combined with a very dumb
tautology-checker, which has a three-place IF as the basic logical connective.

In the first section we describe the general structure of the program and its underlying algo-
rithms. Then we describe new-boyer, our implementation using abstract syntax and other high-
level programming constructs. In the second section we discuss how to parallelize new-boyer
and present a spectrum of experimental results. In the third section we give two levels of opti-
mization of new-boyer and corresponding experimental results. The final version is equivalent
to the original benchmark code, Gabriel [4], p.116, with the exception that global variables are
made local. Two observations about this set of examples are the following. Firstly, paralleliza-
tion of the optimized versions exactly corresponds to that of new-boyer-we haven’t changed
the algorithm, just the representation of structures. Secondly, certain optimizations not only
speed up the sequential version but also give improved speed-up in the parallel case. This is due
to the reduction of time spent locking and unlocking shared data structures. This phenomenon
is discussed further in the final chapter.

4.0.1 The Program

The benchmark consists of running the program tautp on a particular symbolic term. A
symbolic term is either an atomic term or a composite term consisting of an operator and a list
of arguments. tautp rewrites the term according to a long list,

REALLY-BIG-LIST-OF-LEMMAS,

of rewriting rules or lemmas as they are called by Boyer and Moore. The dumb tautology-
checker tautologyp is then applied to the rewritten term. In new-boyer the structure of terms
is expressed abstractly using the Common Lisp def struct mechanism. An atomic term simply
consists of a name (represented as a Lisp symbol), while a composite term is consists of an
operation together with a list of arguments, themselves terms.

18

(defstruct (term (:print-function term-print)))
(defstruct (atomic-term (:include term)) name)
(defstruct (composite-term (:include term)) op args)

An operation consists of a name (represented as a Lisp symbol) together with a list of lemmas
associated with it. The lemmas component of an operation is an annotation that allows us to
speed up the search for a lemma that applies to a give term. Given the name, <name>, of an
operation the corresponding operation is the value of (the-op <name>). This is to insure that
there is unique operation associated with each name, and hence a unique list of lemmas for
each operation.

(defstruct (op (:print-function op-print)) name lemmas)

(defun the-op (sym &optional symbol-table)
(if symbol-table
(get-op sym symbol-table)
(1et ((op (get sym (quote op))))
(if op
op
(let ((op (make-op :name sym)))
(setf (get sym (quote op)) op) op)))))

A lemma has three components: an operator, a list of arguments, and a right-hand term.
A lemma corresponds to an equation whose left-hand term is the term whose operation and
arguments are those of the lemma and whose right-hand term is the right-hand term of the
lemma.

(defstruct lemma op args rhs)

Since terms include annotations such as the list of lemmas associated with an operator we
also define a term equality test term-eq which only looks at the abstract term structure and
not at the annotations.

(defun atomic-term-eq (termi term2)
(eq (atomic-term-name termi) (atomic-term-name term2)))

(defun op-eq (opi op2) (eq (op-name opl) (op-name op2)))

(defun term-eq (termi term2)
(cond ((and (atomic-term-p termi) (atomic-term-p term2))
(atomic-term-eq terml term2))
((and (composite-term-p termi) (composite-term-p term2))
(and (op-eq (composite-term-op terml) (composite-term-op term2))
(term-list-eq (composite-term-args termi)
(composite-term-args térm2))))
(t nil)))

(defun term-list-eq (termsl terms2)
(if (and (null termsi) (null terms2))
t
(and (term-eq (car termsil) (car terms2))
(term-list-eq (cdr termsi) (cdr terms2)))))

19

In the original boyer benchmark symbolic terms are represented using Lisp symbols and
lists in the usual way, with no abstract syntax used in writting the program. Lemmas are terms
with operator EQUAL and left-hand side a composite term. In order to speed up the search for a
lemma matching a given term, the list of lemmas is partitioned according to the operator of the
left-hand term and the sublist for a given operator is stored on the property list of that operator.
The functions term-2-sexp, sexp-2-term, and sexp-2-lemma give the formal correspondence
between our representation of terms and lemmas and the representation used in the original
program. These allow us to translate the original lemma list into our representation and to
compare intermediate results of the two versions.

(defun term-2-sexp (term)
(cond ((atomic-term-p term) (atomic-term-name term))
((composite-term-p term)
(cons (op-name (composite-term-op term))
(mapcar #’term-2-sexp (composite-term-args term))))
(t (error "~Yterm-2-sexp did not understand the term: ~a" term))))

(defun sexp-2-term (sexp)
(if (atom sexp)
(make-atomic-term :name sexp)
(make-composite-term :op (the-op (car sexp))
:args (mapcar #’sexp-2-term (cdr sexp)))))

(defun sexp-2-lemma (sexp)
(make-lemma :op (the-op (caadr sexp))
:args (mapcar #’sexp-2-term (cdadr sexp))
:ths (sexp-2-term (caddr sexp))))

We provide printing functions for terms in order to be able to examine intermediate results
more easily.

(defun term-print (term stream pl) (pprint (term-2-sexp term) stream))
(defun op-print (op stream pl) (print (op-name op) stream))

Finally we provide special abstract syntax for conditional expressions: make-if, if p ,
if-test, if-then, if-else. Note that ifp assumes it is given a composite-term and the
selectors assume the argument is an if-term.

(defun make-if (test-term then-term else-term)
(make-composite-term :op (the-op (quote if))
:args (list test-term then-term else-term)))
(defun if-test (term) (car (composite-term-args term)))
(defun if-then (term) (cadr (composite-term-args term)))
(defun if-else (term) (caddr (composite-term-args term)))
(defun ifp (term) (op-eq (the-op (quote if)) (composite-term-op term)))

The rewrite program takes as input a term. If the term is atomic the program exits with
that term as its value. Otherwise the term is a composite term consisting of an operation, op,
and an list of argument terms. The argument subterms are first rewritten and then the resulting
whole term is rewritten via the first lemma of op that it matches. This is repeated until no more
rewriting can be done. The auxiliary function rewrite-with-lemmas does the actual lemma
matching and rewriting using the programs match-args and apply-subst, respectively.

20

(defun rewrite (term)
(labels ((rewrite-with-lemmas (op args lemmas)
(if (null lemmas)
(make-composite-term :0p op :args args)
(multiple-value-bind (success? sublist)
(match-args args (lemma-args (car lemmas)) nil)
(if success?
(rewrite (apply-subst sublist (lemma-rhs (car lemmas))))
(revwrite-with-lemmas op args (cdr lemmas)))))))
(cond ((atomic-term-p term) term)
((composite-term-p term)
(let ((op (composite-term-op term)))
(rewrite-with-lemmas op
(mapcar #’'rewrite
(composite-term-args term))
(op-lemmas op))))
(t (error "“Yrewrite did not understand the term: ~a" term)))))

apply-subst applies a substitution list to a term in the usual manner.

(defun apply-subst (sublist term)
(cond ((atomic-term-p term)
(let ((bind (assoc term sublist :test #’atomic-term-eq)))
(if bind (cdr bind) term)))
((composite-term-p term)
(make-composite-term :op (composite-term-op term)
:args (mapcar #’(lambda (t1)
(apply-subst sublist t1))
(composite-term-args term))))
(t (error "~Y%apply-subst did not understand the term: ~a" term))))

The main work in rewriting is matching the arguments of a term to the arguments of a
lemma (called match-args in our version and one-way-unify-1Ist in the original). The task
that match-args performs is to determine whether or not it its first argument is a substitution
instance of its second argument via a substitution (a map from variables to terms) that extends
its third argument. In other words whether there is a substitution sublist such that (term-eq
(mapcar #’(lambda (x) (apply-subst sublist x)) args2) argsl) is t and sublist ex-
tends its third argument. So match-args must return two pieces of information. Firstly whether
or not such a match is possible, and secondly, when a match is possible, the substitution that
achieves this match. We use the Common Lisp multiple values feature to accomplish this.

(defun match-args (argsl args2 sublist)
(labels ((match (terml term2 sublist)
(cond ((atomic-term-p term2)
(let ((bind (assoc term2 sublist :test #’atomic-term-eq)))
(if bind
(if (term-eq termi (cdr bind))
(values t sublist)
(values nil nil))
(values t (cons (cons term2 termi) sublist)))))
((composite-term-p term2)
(cond ((atomic-term-p termi) (values nil nil))

21

((composite-term-p termi)
(if (op-eq (composite-term-op termil)
(composite-term-op term2))
(match-args (composite-term-args termi)
(composite-term-args term2)
sublist)
(values nil nil)))
(t (error "“Ymatch did not understand the term:
“a" termi))))
(t (error "~Ymatch did not understand the term: “a" term2)))))
(if (null argsil)
(values t sublist)
(multiple-value-bind (success? sublist)
(match (car args1) (car args2) sublist)
(if success?
(match-args (cdr argsi) (cdr args2) sublist)
(values nil nil))))))

The dumb tautology checker is the program tautp. It is dumb simply because it only
works for terms correctly for terms which are in if-normal form. Where the set of if-normal
forms are defined to be the smallest set of terms containing the atomic propositions and closed
under the formation rule: if then and else are if-normal forms and test is an atomic propo-
sition then (make-if test then else) is an if-normal form. In the simplest case atomic
propositions are (boolean) variables. In practice atomic propositions also include terms whose
operation symbol is treated as an uninterpreted predicate symbol for the purposes of tautology
testing. tautologyp takes two additional arguments true-list and false-list. true-list
(false-1list) is a list of atomic propositions assumed true (false). The invariant assumption
is that the propositional term currently being considered is in the true branch of conditionals
with tests in true-list and the false branch of conditionals with tests in false-list. (See [1]
Chapter 4.) Except for the use of abstract syntax, our version of the tautology checker is the
same as the original.

(defun tautp (term) (tautologyp (rewrite term) nil nil))

(defun tautologyp (term true-lst false-1st)
(cond ((truep term true-lst) t) -
((falsep term false-1lst) nil)
((atomic~term-p term) nil)
((composite-term-p term)
(when (ifp term)
(cond ((truep (if-test term) true-lst)
(tautologyp (if-then term) true-1lst false-1st))
((falsep (if-test term) false-lst)
(tautologyp (if-else term) true-lst false-1lst))
(t (and (tautologyp (if-then term)
(cons (if-test term) true-lst)
false-1lst)
(tautologyp (if-else term)
true-lst
(cons (if-test term) false-1lst)))))))
(t (error "~Ytautologyp did not understand the term: ~a" term))))

22

(defun truep (term true-l1st)
(cond ((atomic-term-p term) (member term true-lst :test #’term-eq))
((composite-term-p term)
(or (op-eq (composite-term-op term) (the-op (quote t)))
(member term true-lst :test #'term-eq)))
(t (error "~Y%truep did not understand the term: “a" term))))

(defun falsep (term false-1lst)
(cond ((atomic-term-p term) (member term false-1lst :test #’term-eq))
((composite-term-p term)
(or (op-eq (composite-term-op term) (the-op (quote f)))
(member term false-lst :test #’term-eq)))
(t (error "~%falsep did not understand the term: "a" term))))

The remaining code is for initializing the system and carrying out a standard test. The
setup procedure carries out the task of partitioning the list of lemmas and annotating each
operator with the appropriate sublist. The constant REALLY-BIG-LIST-OF-LEMMAS is defined in
[4] pp.118-126. The test term is constructed by applying a substitution to boolean expression.

(defun add-lemma (sexp)
(let* ((lemma (sexp-2-lemma sexp))
(op (lemma-op lemma)))
(setf (op-lemmas op) (cons lemma (op-lemmas op)))))
(defun sbind-2-tbind (sbind)

(cons (sexp-2-term (car sbind)) (sexp-2-term (cdr sbind))))
(defun setup () (mapc #’add-lemma REALLY-BIG-LIST-OF-LEMMAS))
(defun test () (tautp (test-term)))

(defun test-term ()
(apply-subst
(mapcar #’sbind-2-tbind
(quote ((x foo (plus (plus a b)
(plus ¢ (zero))))
(y foo (times (times a b)
(plus ¢ 4)))
(z foo (reverse (append (append a b)
(nil))))
(u equal (plus a b)
(difference x y))
(w lessp (remainder a b)
(member a (length b))))))
(sexp-2-term (quote (implies (and (implies x y)
(and (implies y z)
(and (implies z u)
(implies u w))))
(implies x w))))))

4.0.2 Parallelizing the Program

In the benchmark test, the rewritten term is large (order of fifty thousand nodes) and hence
most of the work in evaluating (tautp term) is spent in rewriting the term and its subterms.
It seems an ideal place to start parallelizing. Fortunately this is a very simple task. There are

23

two obvious places where there is inherent parallelism in the rewrite program and its auxiliary
programs. These points are where the functional mapcar is used, in rewrite and apply-subst.
Here we can replace mapcar by one of several parallel versions gmapcar! , gmapcarl, gmapcar2,
gmapcar3 and gmapcar4.

These parallel versions of mapcar are most appropriate for short lists such as argument lists
for terms. They are all constructed from the same template, differing only in the dynamic
parallelism macro used. For example

(defun qmapcar! (f 1)

(if 1 #!(cons (funcall f (car 1)) (qmapcar f (cdr 1)))) nil)
(defun qmapcar<n> (f 1)

(if 1 #<n>(cons (funcall f (car 1)) (gmapcar f (cdr 1)))) nil)

Another possible point for introducing parallelism is where tautologyp calls itself recur-
sively on both branches of an if-term. Here we can prefix the conjunction with one of the
dynamic parallelism macros.

To summarize we have three sites for the addition of parallelism which we will call (A),
(R), and (T). (A) consists in replacing the call to mapcar in apply-subst by one of the par-
allel versions. (R) consists in replacing the call to mapcar in rewrite by one of the parallel
versions. (T) consists in prefixing the and expression in tautologyp by one of the dynamic par-
allelism macros. The first tests simply used unconstrained parallelism to see what the potential
parallelism is at each site, as always we are running on a machine with eight processors.

New-Bover (sequential 18.538)
R | T | A | para-time | processes | overhead | idle-t ime
- - - 20.210 1 0.0 | 137.9889
| # | #! 3.683 98626 2.5769 0.9364
- - #! 19.896 8550 0.6791 | 135.7723
#! |- #! 3.701 98612 2.5811 2.9396
#! - - 3.655 90062 2.3456 1.7393
#! | # - 3.444 90076 2.3513 0.9313

From these results we see that putting parallelism only in apply-subst has almost no effect,
while putting parallelism only in rewrite gives substantial speedup. This is due to the fact
that most of work in rewriting is finding a match. There are many more failures than successes
and hence many more matching tasks than applications of substitutions. Adding tautologyp
parallelism to rewrite parallelism decreases the idle time by a factor of two and produces a
small increase in parallelism. On the other-hand adding apply-subst parallelism to either (R)
or (R,T) increases the overhead and idle time and decrease the speedup. This is presumably due
to the fact that the tasks created by apply-subst parallelism are small. The next experiments
are testing the effects of various fine tunings in the parallelism.

24

New-Boyer (sequential 18.538)

R T A para-time |processes |overhead |idle-time
#? #? - 13.080 54788 4.4300 75.6937
#37 | #37 | - 3.363 14822 0.4833 1.0278
#7 | # - 12.913 54783 4.3974 74.2607
#27 | #! - 3.448 10599 0.4182 1.1196
#37 | #! - 3.291 12075 0.4217 1.0587
#47 | #! - 3.344 15649 0.5022 1.0511
#7 |- - 13.706 54474 4.3859 78.9108
#27 | - - 3.533 9492 0.3784 1.8355
#37 | - - 3.438 11569 0.3973 1.7265
#47 | - - 3.430 14766 0.4842 1.6686
#727 |- #7 13.562 60073 4.9065 78.4283
#27 | - #27 3.545 15204 0.6166 1.8917
#37 | - #37 3.450 14770 0.5151 1.6650
#47 | - #47 3.454 17678 0.5671 1.5985
Best Speed-up (/ 18.538 3.291) = 5.633

4.0.3 Optimizing

As already remarked, the original Boyer. benchmark program used lists and list operations
to represent composite terms and lemmas. Atomic terms and operations were represented as
Lisp symbols and lemmas relevant to a given operation were stored on the property list of
the corresponding symbol. We represented atomic terms, composite terms, operations and
lemmas as distinct structures and stored lemmas in the operation structure. The original code
for rewrite was different only in its failure to use either abstract syntax or the functional
mapcar. These are also the only differences between the original apply-subst and our version.
match-args must return two pieces of information. We use the Common Lisp multiple values
feature to express this. The original version returned t or nil depending on success, and if
successful set the value of a global variable to be the resulting substitution.

Although use of structure definitions and other high-level constructs results in elegant and
easy to understand code, these constructs are part of a rather complex machinery and may well
not produce the most efficient implementation of the underlying algorithm. The original pro-

gram can (essentially) be recovered by carrying out the simple set of transformations described
below.

o Step zero consists in replacing structures by lists. Common Lisp provides a mechanism
that allows the programmer to maintain the elegant look of the code with more efficient
implementation by using the :type option for structure definitions. By simply changing
the defstructs as shown below we force a representation close to that of the usual list
structure representation.

(defstruct (atomic-term (:type list) :named) name)
(defstruct (composite-term (:type list) :named) op args)
(defstruct (lemma (:type list) :named) op args rhs)
(defstruct (op (:type list) :named) name lemmas)

25

e Step one is to eliminate the atomic-term structure definition. This is achieved by omitting
the atomic-term defstruct and making the following definitions.

(defun make-atomic-term (x) x)
(defun atomic-term-name (x) x)
(defun atomic-term-p (x) (atom x))
(defun atomic-term-eq (x y) (eq x y))

e Step two consists in making the composite-term structure unnamed. This is achieved by
replacing the composite-term defstruct by

(defstruct (composite-term (:type list)) op args)

and redefining the (no longer defined) test function composite-term-p.

(defun composite-term-p (x) (consp x))
(defun term-eq (x y) (equal x y))

e Step three involves making the lemma structure unnamed. This consists of replacing the
original lemma defstruct by

(defstruct (lemma (:type list)) op args rhs)

e Step four consists in eliminating the operation structure. Here again we omit the op
defstruct and adding the following definitions.

(defun make-op (x) x)

(defun op-name (x) x)

(defun op-lemmas (x) (get x (quote lemmas>>>
(defun op-p (x) (atom x))

(defun the-op (x) (atom x))

(defun op-eq (x y) (eq x y))

o Step five involves eliminating the use of multiple values. For this we replace occurrences
of (values nil nil) by ’fail, (values t <exp>) by <exp> and _ __

(multiple-value-bind (?success sublist) <bndexp> <body>)
by

(let ((sublist <bndexp>))
(let ((?success (if (eq sublist ’fail) nil t))) <body>))

e Step six consists in unfolding mapcar in apply-subst. For this we replace the call to
mapcar by (apply-subst-list (composite-term-args term)) and add the definition

(defun apply-subst-lst (alist 1lst)
(cond ((null 1st)
nil)
(t (cons (apply-subst alist (car 1lst))
(apply-subst-1lst alist (cdr 1lst))))))

26

o Step seven step consists in unfolding mapcar in rewrite. For this we replace the call to
mapcar by (rewrite-args (composite-term-args term>> and add the definition

(defun rewrite-args (1lst)
(cond ((null 1lst)
nil)
(t (cons (rewrite (car 1lst))
(rewrite-args (cdr 1st))))))

The program nlboyer is obtained by carrying out step zero of the transformations. The
major differences between nlboyer and that of the original bench-mark are the following.
Atomic terms are not atoms, operators are not atoms and lemmas are part of operator structure
rather than being on the property list of the corresponding symbol, the use of multiple values
rather than global variables for passing the substitution list, and the use of mapcar rather than
auxiliary functions for applying a function to a list of items.

nlboyer is roughly fifty percent faster than new-boyer and one gets roughly ten percent
better speed up. Clearly a win if speed is the goal. The data for nlboyer is summarized in the
following table.

nlboyer
Structures as Lists (sequential time 14.823)
R T para-time processes ¢verhead jdle-time
#37 | #! 1542229 13590 0 04783 0.0 | 119.052 0855
Best Speed-up (/14.823 2.294) = 6.462

The program oboyer is obtained by carrying out all of the transformations. This differs from
the original boyer benchmark code, assuming a suitably smart compiler, only in the elimination
of global variables. Note that sexp-to-term and term-to-sexp are now identity functions
- hopefully we don’t need to redefine them explicitly. The timings oboyer are given in the
following table.

Original Boyer (sequential time 13.153)
R T para-time processes ¢verhead Jdle-time
#! |- 133552262 90062 0 2347200 | 930092 L1649
#37 | - 1.997 13676 0.4773 1.2800
#27 | #! 1.954 10117 0.4207 0.6772
#37 | #! 1.976 11739 0.4101 0.9977
Best Speed-up (/13.153 1.954) = 6.731

27

Chapter 5

The parallel iteration forms

In section 2.1 we presented parallel versions of the Common Lisp iteration forms:
o dotimes,
e dolist,
e mapcar, mapc, efc.

Now we will describe how the parallel forms are implemented. We would like qdotimes,
gmapcar, etc. to satisfy the following goals.

e Any number of iterations should be handled as efficiently as possible. When the number
of iterations is large, this means generating fewer processes than the number of iterations.

e The efficiency should depend as little as possible on the size of the computation that
is done in each iteration. L.e., the parallel forms should be able to handle fine-grained
iteration almost as well as coarse-grained iteration.

e The parallel forms should work well if they are called at the “top level” of a parallel
program, or when they are used inside other code that is already parallel. In the latter
case, it may not be necessary to create any processes, and doing so would be inefficient.

The last goal suggests using the dynamic-spawn-p control form, which will interact well with
other code in the program that uses dynamic-spawn-p. However, there is a problem in doing
this. Dynamic spawning works best when the processes are arranged in a fairly balanced
tree. The straightforward way to create processes from an iteration, however, results in an
unbalanced tree, and does not execute efficiently under dynamic-spawn-p, or under any other
form of parallelism control that we know about.

Our solution to this is to restructure the computation as a balanced tree whenever possible.
For dotimes, we can do this because the number of iterations is computed right at the beginning.
Let n be the number of iterations of a dotimes form. If we divide the whole problem into two
subproblems: (1) do iterations 0 to |n/2|; and (2) do iterations |n/2] to n — 1; then these
computations can be done in parallel, and they can in turn be subdivided. We repeat this

process until we create processes that perform a single iteration.
Here is some code that illustrates the above-described method. We convert a qdotimes
form such as:

o
o8]

(qdotimes (i n) (body i))
to:

(labels ((do-range (low high)
(it (= low high)
(body 1low)
#7(progn
(do-range low (ash (+ low high) -1)))
(do-range (+ 1 (ash (+ low high) -1)) high))))
(do-range 0 (1- n)))

The internal function do-range evaluates (body i) for the range of values between low and
high (inclusive). If the range contains more than one value, it is split into two smaller ranges.
The control form (spawnp) (called implicitly because of the #7? syntax) determines whether this
is done by means of parallel processes or ordinary function calls.

The above solution meets some of our criteria, but has significant overhead for small-grained
iteration. The reason is that we have added a function call (to do-range) for each iteration.
We would like to do an extra function call only when necessary, i.e., when a new process is
actually created by the (spawnp) control expression.

In order to do this, we modify our strategy slightly. The code above takes a range [low, high],
splits it in half, and then decides whether to do the two halves in parallel. Instead of this, we will
first call (spawnp) to see if a new process is needed. If it is not, we will perform one iteration
sequentially, and then call (spawnp) again. The range to be split is now [low+1,high]. As long
as (spawnp) returns nil, we will avoid creating a process and we will avoid a function call for
the current iteration. The only overhead is therefore the calls to (spawnp). Each of these takes
less than a function call, if the default form (dynamic-spawn-p) is used, because it is a macro
that expands into a very small number of machine instructions.

Using this new strategy, our code becomes:

(labels ((do-range (low high)
(1oop
(when (and (spawnp) (< low high))
#! (progn
(do-range low (ash (+ low high) -1))
(do-range (+ 1 (ash (+ low high) -1)) high))
(return-from do-range nil))
(when (> low high) (return nil))
(body low)
(inct 1low))))
(do-range 0 (1- n)))

Notice that if (spawnp) always returns nil, then all that is executed is a loop that computes
the dotimes body for each value in the desired range. .

The method we have just outlined does not extend directly to the parallel iteration functions
on lists: gdolist, gmapcar, etc. The reason is that we do not know the length of the list, so
we cannot easily split the range of iterations in half. Also, even if we knew the length of the
list to be n, it would take O(n) time to reach the beginning of the second half, while in the
code above it takes just constant time to start the two subprocesses. This extra time is spent
in a sequential computation and thus adds idle time, if there is nothing else for our processors
to do.

29

Given a list mapping operation whose iterations are independent computations, our goal
is to execute this computation as efficiently as possible on a shared-memory multiprocessor.
The following variables characterize our parallel machine. Those that represent time are all
multiples of some basic time unit, whose exact value is not important.

p is the number of processors.
s is the amount of time needed to create (“spawn”) a process.

d is the amount of time needed to evaluate the cdr function.

We use the following to describe a specific instance of the use of a mapping function.

n is the length of the list being mapped over.

c is the time needed to apply the function to each list element. (We assume c is
constant .)

The above descriptions combine some of the primitive operations needed to evaluate a
mapping function. All of the work done in stepping from each iteration to the next (testing for
the end of the list, calling cdr, and whatever else is needed) is subsumed in the parameter d,
and all of the work needed to create and schedule a process is contained in s.

Our potential speedup is limited by Amdahl’s Law, which predicts a maximum speedup on
any parallel program based on its inherently sequential component, In our case, the list data
structure requires n cdr operations to be performed in order, since each cons cell contains the
pointer to the next one. So the minimum time for any parallel mapping function is nd, the
time needed to perform the n cdr operations.

A straightforward sequential version of the mapping function takes time n(c 4+ d), since we
perform one function application on each element of the list, and step from each element to the
next. Therefore Amdahl’s Law limits the speedup to

Tseg _ n(crd) c+d

min Thpep nd T d

Unless we change the list data structure to something else, there is no way to overcome this
limitation.

(defun gqmapa (fn list)
(if (null list)
nil
#!(progn (funcall fn (car list))
(gmapa fn (cdr list)))))

A simple way to parallelize the computation is shown in the function qmapa. The main loop
of this function creates a new process for each iteration of the loop; this process will perform
the ¢ units of work required to apply the function to one element of the list. Even if enough
processors are available to handle the processes that are created, the minimum time for gmapa
is n(s + d), and by the argument above, its maximum speedup is now (¢ + d)/(s + d) instead
of (¢ + d)/d. If the spawning time s is large, this is a significant loss.

The function gmapa has other problems. If there are not enough processors to handle all of
the processes as they are created, then proper scheduling of the processes becomes important.

30

Also, the amount of memory needed to hold data structures describing the waiting processes
can become a serious obstacle.

Our experience in Qlisp programming has shown that programs that work by top-down
recursive splitting (such as the Quicksort algorithm for sorting) are easy to parallelize. Such
computations can be viewed as a tree of processes, where the root represents the entire compu-
tation, and each process’s children are subcomputations that may be executed in parallel. We
have studied in some depth the particular case where each node in the tree has two children,
the work performed at each node is roughly constant, and a “dynamic partioning” method is
used to avoid creating many more processes than are necessary to keep the parallel machine
busy [11].

Dynamic partitioning, in its simplest form, uses a separate queue of processes for each of
the p processors. When the program allows a new process to be created, a processor does
so only if its own queue is empty, as indicated by the function dynamic-spawn-p. Processes
are inserted only into a processor’s own queue. When it is idle, a processor first tries to take
work from its own queue; if the queue is empty, it cycles among the other processors’ queues,
removing a process from the first non-empty one that it finds. If there are p processors and the
computation tree has height h, this results in O(p*h*) processes being created.

(defun gmapb (fn list)
(1abels
((map-loop (k list)
(cond ((or (mull list) (= k 0))
nil)
((not (dynamic-spawn-p))
(funcall fn (car list))
(map-loop (1- k) (cdr 1list)))
((= k1)
(funcall fn (car list)))
(T (let ((k2 (halve k)))
#!(progn (map-loop k2 list)
(map-loop (- k k2)
(nthedr k2 1ist))))))))
(map-loop (length list) list))
list)

(defun halve (k) (ash k -1))
(defun double (k) (ash k 1))

Function gmapb uses a modified divide-and-conquer method, dividing only when it spawns
a process. Initially, gmapb computes the length of the list n. It is the job of the inner function
map-loop to perform the actual calls to the function being mapped, as well as to check to see
if it is reasonable to split the task into two equal sub-tasks. The answer to the latter question
is provided by a call to dynamic-spawn-p. This predicate returns T if the local task queue (the
current processor’s queue of things to do) is empty, and NIL otherwise.

When the predicate causes a partition, the algorithm divides the list into two parts of
sizes |n/2| and [n/2], creates subprocesses to perform the mapping function on these sublists,
and combines the results of these processes. There is also a test prior to spawning, insuring
non- trivial processes.

Dynamic partitioning applied to gqmapb yields a significant reduction in the overhead due
to process spawning, compared to qmapa, which spawned n processes. The height h of the

31

computation tree is O(log n), so for a fixed number of processors p, the number of processes
spawned is at most O(log* n), in the worst case, using the analytical result previously mentioned.
In practice, the average number of spawns is O(log? n), but in either case, this function grows
much more slowly than n.

However, there is still a problem-idle time. We divide idle time into three components.

o At the beginning of the computation, only one processor is busy. Other processors remain
idle until enough processes have been created to make them busy.

e Once all of the processors become busy, the machine reaches a “steady state” where there
is very little idle time. (This is true for the algorithms we are describing, but it is not
true in general for all programs.)

o The steady state ends when the computation has passed the point when any new processes
can be created, and all of the queues used by the dynamic scheduler are empty. Then,
once a processor becomes idle it remains idle for the rest of the computation. This is
because no new process can be created for it, and whenever another processor finishes a
process, allowing its parent to resume, that processor is available to run the parent.

Of the three components of idle time in qmapb, the first is the most significant. To compute
the length of the list requires n cdr operations, which takes time nd. All of this is done on
one processor, while the others wait, since this cannot be parallelized. Additionally, the time
until all p processors are busy is O(ndlogp), due to the large number of calls to cdr near the
beginning of the computation. Even if the rest of the computation is done in the fastest possible
time, which we observed above to also be nd, the minimum time for the parallel algorithm is
at least n(2d + dlogp), and hence the potential speedup is less than half of the limit imposed
by Amdahl’s Law.

The idle time at the end is not as large. During the “steady state” period, all p processors
remain busy. (Here we assume that p is not more than (¢ + d)/d, the speedup limit imposed
by Amdahl’s Law.) As long as some of the processes are performing the mapping operation on
lists of length greater than 1, the steady state continues, since such processes can be partitioned
whenever needed to provide work for a processor that has become idle. After the steady state
period, therefore, all processors are either idle, are applying the function to lists of length 1, or
are combining the results of subcomputations.

Only c time units (a constant number) can be spent in finishing the work on lists of length 1.
The combination of subcomputations takes time proportional to the height of the computation
tree, which is O(log n). Therefore the idle time at the end of the computation is O(log n). As
n increases, this becomes insignificant compared to both the idle time at the beginning (which
is at least nd) and the overall runtime (at least n/p).

The function qmapb eliminated one obstacle to achieving the optimal speedup given by
Amdahl’s Law, namely the overhead of process creation, but the excessive idle time at the
beginning of the computation still stands in the way. We now describe an improved function
gmapc that reduces this idle time.

Rather than precompute the length, n, of the list, we use a parameter k as an initial estimate,
and divide the work into two tasks. The first task applies the function to the first k elements
of the list, while the second task is a recursive call with the length estimate & doubled. The
repeated doubling of k insures that the end of the list is reached after log n tasks have been
snawned. This virtually eliminates the idle time at the beginning of the computation (assuming

32

the initial value of k is small). However it does not insure that the machine reaches a steady
state, in particular the last task spawned is as large as all the others combined. By using the
dynamic partioning method within each of these logn tasks we can insure that a steady state
is reached, and maintained as long as possible. Each of these tasks divides into equal sized
subtasks whenever the dynamic partitioning predicate is true. While the predicate is false each
task simply performs the desired mapping operations.

(defun gmapc (fn list)
(macrolet
((*map-apply* (fn list) ‘(funcall ,fn (car ,list))))
(labels
((map-loop (k list)
(cond ((or (null 1list) (= k 0))
nil)
((not (dynamic-spawn-p))
(*map-apply* fn list)
(map-loop (1- k) (cdr 1list)))
(k1)
(*map-apply* fn list))
(T (let ((k2 (halve k)))
#!(progn (map-loop k2 list)
(map-loop (- k k2)
(nthedr k2 1ist)))))))
(map-rest (k list)
(when list
#!(progn (map-loop k list)
(map-rest (double k)
(nthedr k 1list))))))
(map-rest 1 1ist)))
list)

We begin by describing the simpler non-value accumulating mapping functionals qmapc and
gmapl, concentrating on the former for ease of exposition. The gmapc program has two local
functions map-loop and map-rest. The function map-rest spawns the first logn tasks. Each
of these tasks consists of a call to the second local function map-loop, which is identical to
map-loop in gqmapb. In this version of the program we take 1 to be our initial estimate of the
length of the list to be processed.

The gmapc function is written using macrolet to capture the uniformities between this
function and the related function gqmapl. The definition of gmapl is obtained by modifying the
macro *map-apply* so that it expands to (funcall fn list).

To extend this technique to the value returning mapping functionals, mapcar, mapcan,
mapcon and maplist, we need to accumulate and pass along the values of the respective calls
to the function. To do this efficiently we use cyclic lists in the following way. Rather than have
map-loop return the list of accumulated values that would then have to be cdr-ed down to be
attached to the remaining result. The program map-loop is written so as to return the last
cell in this list, modified so that the cdr points to the first cell of the list. We shall call such a
cyclic representation (or modification) of a list a cycle. The transformations from lists to cycles,
list-2-cycle, and from cycles to lists, cycle-2-1ist, explicitly explains this representation.

(defun list-2-cycle (list)

33

(when list
(let ((cycle (last list))) (setf (cdr cycle) list) cycle)))

(defun cycle-2-1list (cycle)
(when cycle
(let ((first-cell (cdr cycle))) (setf (cdr cycle) nil) first-cell)))

The functions map-loop and map-rest are modified so as to return cycles, which in the
case of map-loop entails adding a new argument, cycle, representing the cycle up to the
current point in the loop. This also entails that the cycles returned by spawned tasks must be
remembered and linked together. This linking is performed by the function link-cycles. It
takes two cycles as arguments and links them toget her to form a third cycle. The resulting cycle
encodes the list obtained by nconc-ing the list encoded by the first cycle onto the list encoded
by the second cycle. In other words a call to (link-cycles cycle-1 cycle-2) is equivalent
to a call to (1ist-2-cycle (nconc (cycle-2-list cycle-1) (cycle-2-1list cycle-2))).

Similarly when map-loop applies the function to the appropriate argument it must splice
the resulting list into the cycle accumulated so far, i.e. the value of cycle. This is accomplished
by the program splice-cycle which takes a cycle, and a list and returns the same cycle that
would result from a call to (link-cycles cycle-1 (list-2-cycle list)).

(defun link-cycles (cycle-1 cycle-2)
(cond ((and cycle-1 cycle-2)

(let ((temp (cdr cycle-1)))
(rplacd cycle-1 (cdr cycle-2))
(rplacd cycle-2 temp)
cycle-2))

(cycle-1 cycle-1)

(cycle-2 cycle-2)))

(defun splice-cycle (cycle list)
(cond ((and cycle list)
(let ((new-cycle (last list))
(temp (cdr cycle)))
(rplacd cycle list)
(rplacd new-cycle temp)
new-cycle)) -
(cycle cycle)
(list (let ((new-cycle (last list)))
(rplacd new-cycle list)
new-cycle))))

(defun gqmapcar (fn list)
(macrolet
((*map-apply* (fn list cycle)
‘(splice-cycle ,cycle
(cons (funcall ,fn (car ,list)) nil))))
(1labels
((map-loop (k list cycle)
(cond ((or (null 1list) (= k 0)) cycle)
((not (dynamic-spawn-p))
(map-loop (1- k)

34

(cdr list)
(*map-apply* fn list cycle)))
((= k 1) (*map-apply* fn list cycle))
(T
(let ((k2 (halve k)))
(multiple-value-bind (second third)
(qvalues (map-loop k2 list nil)
(map-loop (- k k2)
(nthcdr k2 list)
nil))
(link-cycles cycle
(link-cycles second third)))))))
(map-rest (k list)
(when list
(multiple-value-bind (first second)
(qvalues (map-loop k list nil)
(map-rest (double k) (nthecdr k 1list)))
(link-cycles first second)))))
(cycle-2-1list (map-rest 1 list)))))

These modifications result in the function qmapcar. The parallelism is expressed by us-
ing the Qlisp form gqvalues, which creates processes for each of its argument forms, waits
for them to finish, and returns their values. Again the actual program is written using
macrolet so as to capture the uniformities between this program, mapcar, and its sister pro-
grams mapcan, maplist and mapcon whose definitions are obtained by modifying the macro
map-apply suitably. In particular for mapcan the macro definition expands to (splice-cycle
cycle (funcall fn (car list))), for maplist it expands to (splice-cycle cycle (cons

(funcall fn list))), and for mapcan it expands to (splice-cycle cycle (funcall fn
list)).

5.1 Analysis of gmapc

The function gmapc outperforms gmapb in several respects. Here we will show that the idle
time at the beginning of the computation, which was the main source of overhead in gmapb,
becomes negligible as n increases.

The key idea is to show that enough work to keep p processors busy is found in O(plogp)
time, instead of the O(n logp) that we needed for gmapb. If the lowest-level processes are large
enough, the first p iterations of the function provide this work, and our method of doubling
the process size at the beginning of the computation ensures that these processes are created
in O(plogp) time.

It may happen that some of the initial processes finish before the steady state is reached,
and in that case the initial idle time is longer. Eventually, though, the doubling of the segment
size produces a process large enough so that all p processors remain busy while the beginning
of the next segment is found. The size of this segment is some constant multiple of p, so the
time needed to reach it is O(p), and the time to partition it into p processes is O(p log p). This
is the initial idle time of the computation.

For small values of n, the input list may be exhausted before the situation described above
holds. The result is therefore true asymptotically as n increases. In the next section. oul

35

experimental results show how large n needs to be as a function of the work performed in each
iteration of the mapping function.

5.2 Experimental results

Each experiment consisted of mapping the function
(defun work (m) (if (<= m 0) 0 (work (i~ m))))

over a list containing n copies of a number m. Thus m represents the granularity and n the
problem size for a more general list mapping operation.

The function work runs in roughly 6m microseconds on input m. We examined the behavior
of gmapa, qmapb and gmapc on a variety of lists of various lengths, L, ranging from 10 to 100000,
the problem size, N, ranging from (work 0), which takes a few microseconds per element, up
to (work 160), which takes nearly 1 millisecond per element.

(QMAP WORK 0)

pure [serial |parallel number |overhead idle
L X | serial | time time |processes time % | time %
10A 0 | 0.000 | 0.000 0.001 11 0.000 8.1 | 0.004 473
10B 0 | 0.000 | 0.000 0.001 8 0.000 10.0 | 0.004 504
10C 0 | 0.000 | 0.000 0.001 11 0.001 13.5 | 0.004 56.5
100A 0 | 0.001 | 0.004 0.005 101 0.007 183 | 0.028 70.9
100B 0 | 0.001 | 0.002 0.001 32 0.001 143 | 0.006 54.1
100C 0 | 0.001 | 0.002 0.001 45 0.003 26.4 | 0.005 40.1
1000A 0 | 0.016 | 0.046 0.048 1001 0.073 189 | 0.271 704
1000B 0 | 0.016 | 0.020 0.008 110 0.006 9.7 | 0.028 452
1000C 0 | 0.016 | 0.017 0.005 154 0.010 233] 0.007 16.5
10000A 0 | 0.161 | 0.484 0.651 10001 0.728 14.0 | 3.867 74.2
10000B 0 | 0.161 | 0.202 0.061 318 0.014 29 0.230 47.6
10000C 0 | 0.161 | 0.176 0.031 433 0.021 851 0.009 34
100000B 0 | 1.619 | 2.045 0.586 609 0.025 0.5 2.278 48.6
100000C 0 | 1.619 | 1.758 0.275 991 0.042 191 0.010 0.5

36

(QMAP WORK 10)
pure [serial |parallel number [overhead idle

L N | serial | time time [processes time % | time %

10A 10 | 0.000 | 0.001 0.001 11 0.000 89 [0.004 529
10B 10 | 0.000 | 0.001 0.001 8 0.000 9.6 | 0.004 47.7
10C 10 | 0.000 | 0.001 0.001 10 0.001 13.3 | 0.004 59.0
100A 10 | 0.007 | 0.010 0.005 101 0.007 182 | 0.023 56.2
100B 10 | 0.007 | 0.008 0.002 33 0.001 99| 0.006 36.0
100C 10 | 0.007 | 0.008 0.002 48 0.004 238 | 0.005 31.6
1000A 10 | 0.076 | 0.107 0.047 1001 0.073 195 | 0.205 54.9
1000B 10 | 0.076 | 0.080 0.015 125 0.007 5.7 0.029 23.6
1000C 10 | 0.076 | 0.077 0.013 169 0.010 104 | 0.006 6.2
10000A 10 | 0.758 | 1.117 0.547 10001 0.728 16.6 | 3.014 68.9
10000B 10 | 0.758 | 0.798 0.134 291 0.014 1310234 218
10000C 10 | 0.758 | 0.772 0.106 462 0.023 2.7 | 0.009 1.0
100000B 10 | 7.569 | 7.998 1.323 551 0.023 02| 2274 215
100000C 10 | 7.569 | 7.710 1.011 890 0.038 05| 0.010 0.1

(QMAP WORK 40)
pure | serial [parallel number | overhead idle

L N | serial time time |processes time % | time %

10A 40 | 0.002 | 0.003 0.001 11 0.000 9.2 |10.005 61.1
10B 40 | 0.002 | 0.003 0.001 8 0.000 8.7 | 0.005 64.8
10C 40 | 0.002 | 0.003 0.001 10 0.001 123 | 0.005 60.4
100A 40 | 0.025 | 0.028 0.007 101 0.007 12.3 | 0.022 385
100B 40 | 0.025 | 0.026 0.005 34 0.002 54] 0.007 19.0
100C 40 | 0.025 | 0.026 0.005 49 0.004 10.1 | 0.006 15.1
1000A 40 | 0.254 | 0.284 0.066 1001 0.069 13.0 | 0.189 357
1000B 40 | 0.254 | 0.259 0.038 129 0.007 24 10.029 95
1000C 40 | 0.254 | 0.256 0.035 181 0.011 4.0 | 0.007 25
10000A 40 | 2.544 | 2.901 0.709 10001 0.700 123 | 2.236 394
10000B 40 | 2.544 | 2.585 0.358 332 0016 0.6 | 0232 8.1
10000C 40 | 2.544 | 2.558 0.329 472 0.024 09| 0010 04
100000B 40 | 25.446 | 25.856 3.552 561 0.024 0.1] 2276 8.0
100000C 40 | 25.446 | 25.572 3.238 870 0.038 0.1 | 0.011 0.0

37

(QMAP WORK 160)

pure | serial [parallel number | overhead idle
L N | serial time time [processes time % | time %
10A 160 | 0.009 | 0.010 0.002 11 0.000 3.9 | 0.009 47.8
10B 160 | 0.009 | 0.010 0.002 8 0.000 3.6 | 0.010 53.9
10C 160 | 0.009 | 0.010 0.002 10 0.001 4.7 | 0.009 46.7
100A 160 | 0.097 | 0.100 0.016 101 0.007 5.3 |0.025 19.8
100B 160 | 0.097 | 0.097 0.014 35 0.002 2.0 | 0.012 10.2
100C 160 | 0.097 | 0.097 0.005 51 0.004 3.4 | 0010 84
1000A 160 | 0.968 | 0.999 0.155 1001 0.067 54 | 0.189 153
1000B 160 | 0.968 | 0.973 0.128 136 0.008 0.7 | 0.033 32
1000C 160 | 0.968 | 0.970 0.125 182 0.012 1.2 | 0.011 1.1
10000A 160 | 9.684 | 10.015 1.639 10001 0.678 52| 2078 159
10000B 160 | 9.684 | 9.726 1.250 315 0.015 02] 0236 24
10000C 160 | 9.684 | 9.701 1.224 435 0.022 0.2 0.014 0.1
100000B 160 | 25.446 | 25.856 3.552 561 0.024 0.1 | 2276 8.0
100000C 160 | 25.446 | 25.572 3.238 870 0.038 0.1 | 0.011 0.0

38

Chapter 6

Backtracking search

The N-Queens problem entails counting the number of distinct placements of N queens on a
chessboard such that no queen attacks any other queen. Recall that queens attack all squares
in the same row, column, and the two diagonals. The most common algorithms for solving
the problem use backtracking; queens are placed in feasible locations until either a solution is
obtained or no more queens can be placed. In either case, the program ‘“backs up” to the last
queen placement and tries the next possibility. There are many possible heuristics which can
reduce the search space, but we simply use the straightforward column numbering scheme, and
build the solutions from left to right.

The following function serial-column solves the serial N-Queens problem. serial-column
tries to place a queen in each row of the specified column. It succeeds in placing the queen
when the specified row, and both diagonals are free of attack. It then recursively tries to place
a queen in the next column, until reaching the last column. The function returns the total
number of solutions that were found.

(defun serial-column (column row-state left-diag right-diag N)
(let ((count-solutions 0))
(dotimes (row N)
(when (free-p row row-state)
(when (free-p (left-diagonal column row) left-diag)
(when (free-p (right-diagonal column row n) right-diag)
(if (= column (- n 1))
(incf count-solutions)
(incf count-solutions
(serial-column (next-column column) (add-attack row row-state)
(add-attack (left-diagonal column row) left-diag)
(add-attack (right-diagonal column row n) right-diag)
n)))))))

count-solutions))

These macros make the code more legible. free-p uses an index to test a bit in a bit-vector.
add-attack turns on a bit in a bit-vector. left and right-diagonal compute the appropriate
diagonal index from the row, column, and N. To find the number of placements on an empty
NxN board, we use (serial-column 0 0 0 0 N).

(defmacro free-p (index state) ‘(not (logbitp ,index ,state)))
(defmacro add-attack (index state) ‘(+ ,state (ash 1 ,index)))

39

(defmacro left-diagonal (column row) ‘(+ ,column ,row))
(defmacro right-diagonal (column row n) ‘(- (+ ,column ,n -1) ,row))
(defmacro next-column (column) ‘(+ 1 ,column))

This backtracking algorithm has an abundance of potential parallelism. The individual iter-
ations of the dotimes are almost completely independent; if they were completely independent,
we could parallelize the program by changing the dotimes to qdotimes. the only difficulty is
that the count-solutions counter could be updated in any single iteration; since Qlisp does
not assume atomic read-modify-write operations, modifying the count-solutions variable is
a critical region, in a parallel version of the program.

6.0.1 Two Solutions

We will present a synchronous solution, using locks, and an asynchronous solution, using a
distributed variable. Both solutions use qdotimes to express the parallelism.

Synchronous Solution

To implement the synchronous solution, we use a lock structure and the with-lock macro.
Each incf of the count-solutions variable is wrapped in a with-lock, to protect it as a
critical region. Note that the (incf count-solutions) form is critical, because all of the
processes share the variable. We use the temp variable to avoid locking the recursive call to
synch-column.

(defun synch-column (column row-state left-diag right-diag N)
(let ((count-solutions 0)
(lock (make-lock :type :spin)))
(qdotimes (row N)
(when (free-p row row-state)
(when (free-p (left-diagonal column row) left-diag)
(when (free-p (right-diagonal column row n) right-diag)
(it (= column (- n 1))
(with-lock lock (incf count-solutions))
(let ((temp
(synch-column (next-column column) (add-attack row row-state)
(add-attack (left-diagonal column row) left-diag)
(add-attack (right-diagonal column row n) right-diag)
n)))
(with-lock lock (incf count-solutions temp))))))))
count-solutions))

There are some disadvantages to this synchronous solution,” however. When the number of
solutions (and number of processors) is large, then the lock may be a significant bottleneck,
even though the increment operation is itself quite tritial. The make-lock operation is also
non-trivial. Although this code could be modified to pass a lock, it would be better to avoid
using locks at all, via the asynchronous method.

An Asynchronous Solution

The asynchronous solution uses a distributed counter. During the computation, each processor

13 E2]

updates its “own” number of solutions independently of a.ll other processors. At the end, the

40

total number of solutions is the sum of all processors number of solutions. It has a small
disadvantage, in that the pre-processing and post-processing require time proportional to the
number of processors. However, since the backtracking algorithm is exponential, this overhead
is not significant.

Solve first creates a vector with length *number-of -processors®*. Then it calls asynch-column,
passing the vector as an argument. When asynch-column finds a solution, it increments the
appropriate vector element as indexed be (get-processor-number), instead of incrementing
a local variable. This asynchronous version works primarily by side-effectine the vector, and
does not return any useful value.

(defun solve (n)
(let ((distributed-counter (make-array *number-of-processors*
:initial-element 0)))
(asynch-column 0 0 0 0 n distributed-counter)
(1let ((solutions 0))
(dotimes (i *number-of-processors*)
(incf solutions (svref distributed-counter i)))
solutions)))

(defun asynch-column (column row-state left-diag right-diag N
distributed-counter)
(qdotimes (row N)
(when (free-p row row-state)
(when (free-p (left-diagonal column row) left-diag)
(when (free-p (right-diagonal column row n) right-diag)
(if (= column (- n 1))
(incf (svref distributed-counter (get-processor-number)))
(asynch-column (next-column column) (add-attack row row-state)
(add-attack (left-diagonal column row) left-diag)
(add-attack (right-diagonal column row n) right-diag)
n distributed-counter)))))))

The only disadvantages of this met hod are the overhead of qdot imes, and the passing of an
extra argument, the distributed-counter. In the current implementation, qdotimes expands
into a labels form, which causes a closure to be created upon each gdotimes entry. Once
entered, qdotimes is quite inexpensive and highly parallel, but the initial entry causes a closure
to be consed up. In the case of N-Queens, N is usually small enough for this particular source of
overhead to matter. (As a technical aside, if downward funargs could be declared and compiled
effectively in common lisp, qdotimes would benefit.) This leads us to the depth cutoff solution;
generally, we like to avoid cutoff types of solutions, but in this case the closure creation overhead
is just too high, and it is fairly easy to do a depth cutoff.

6.1 The Solution

The most effective solution combines the asynchronous parallel code for the first few columns
and the serial version for the rest of the board. This method is typical of depth-cutoff ap-
proaches.

Solve calls depth-column with a depth of 2, which means the first 2 columns will be done
in parallel, and the rest serially.

41

(defun solve-depth (n)
(let ((distributed-counter (make-array *number-of-processorss
:initial-element 0)))

(depth-column 2 0 0 0 0 n distributed-counter)

(let ((solutions 0))
(dotimes (i *number-of-processorsx)

(incf solutions (svref distributed-counter i)))

solutions)))

(defun depth-column (d column row-state left-diag right-diag N
distributed-counter)
(if (> column d)
(incf (svref distributed-counter (get-processor-number))
(serial-column column row-state left-diag right-diag N))
(qdotimes (row N)
(when (free-p row row-state)
(when (free-p (left-diagonal column row) left-diag)
(when (free-p (right-diagonal column row n) right-diag)
(depth-column d (next-column column) (add-attack row row-state)
(add-attack (left-diagonal column row) left-diag)
(add-attack (right-diagonal column row n) right-diag)
n distributed-counter)))))))

6.1.1 Results

The results show that we have succeeded in parallelizing a fast N-Queens program. In all three
versions of the program, there is very little idle time or scheduling overhead as N increases.
There is, however, a noticeable difference in the amount of serial work done in each of the three
versions. In the final version, there is virtually no time difference between the pure serial code,
and the serial final version; when coupled with virtually zero idle overhead and zero scheduling
overhead, the implication is that the final version gets nearly perfect speed-up.

N-Queens Synchronous Solution
pure | serial |parallel number |overhead idle
N serial time time |processes time % time %
5 0.013 | 0.019 0.006 96 0.008 154 | 0.018 37.0
6 0.043 | 0.063 0.013 224 0.012 11.6 | 0.018 16.7
7 0.159 | 0.226 0.040 403 0.018 58]0.027 85
8 0.656 | 0.914 0.139 644 0.027 2410032 29
9 2904 | 3.975 0.554 1173 0.045 1.0 | 0.069 1.6
10 | 13.512 | 18.117 2.498 2060 0.069 03] 0.045 02

42

N-Queens Asynchronous Solution

pure serial |parallel number | overhead idle
N serial time time |[processes time % time %o
5 0.013 | 0.020 0.007 95 0.007 12.6 | 0.019 322
6 0.043 | 0.071 0.015 238 0.014 11.6 | 0.024 20.2
7 0.159 | 0.265 0.043 384 0.018 5.1 | 0.021 6.0
8 0.656 | 1.093 0.159 781 0.033 2.6 0.047 3.7
9 2904 | 4.787 0.687 1244 0.049 0.9 | 0.062 1.1
10 | 13.512 | 22.100 3.036 1217 0045 020053 02

N-Queens Depth Cutoff Solution

pure | serial |parallel number | overhead idle
N serial time time | processes time % | time %
5 0.013 | 0.014 0.006 51 0.004 9.1 | 0.019 44.2
6 0.043 | 0.045 0.009 80 0.005 7.1 | 0.018 24.6
7 0.159 | 0.162 0.025 103 0.006 2.8 | 0.023 11.5
8 0.656 | 0.662 0.092 131 0.007 1.0 | 0.041 5.6
9 2904 | 2910 0.385 173 0.009 0.3 | 0.074 2.4
10 | 13.512 | 13.510 1.763 224 0.012 0.1 | 0.239 1.7

43

Chapter 7

Polynomial GCD

In this section we develop a parallel version of an algorithm for computing the greatest common
divisor (ged) of two polynomials. It is simple to compute polynomial gcds using the euclidian
algorithm. The problem is that in the case of polynomials, intermediate coefficients often
become quite large. A standard solution to this problem is to compute gcds modulo a suitable
set of primes and combine the results using an algorithm based on the Chinese remainder
theorem. Our algorithm is a variant on a standard solution that combines the results in a
tree-like fashion rather than sequentially. For details on the underlying mathematics the reader
is referred to Collins (3], or Lauer [6].

In this example we restrict our attention to polynomials in one variable over the integers.
The main phenomena observed here are the effects of very coarse grained parallelism and a
trade-off between opportunities for parallelism and amount of work required. The main source
of parallelism is the independent gcd computation for each prime. In the case of 8 processors,
if there are 7 primes, we get very good speed up. While if there 9 primes, then 8 primes get
processed in parallel, leaving the last one to be shared (not very efficiently) by the 8 processors.
There is finer grain parallelism within the processing of each of the primes, but it is fairly flat.

7.1 The Program

A polynomial in single variable x over the integers can be thought of as a formal sum P =
So<ica Cizt where each ¢; is an integer and ¢q # 0. d is the degree of P and cq is the leading
coefficient. The poly-gcd program uses a simple representation of univariate polynomials as
lists of monomials, where a monomial consists of an coefficient (an integer in our case) and
an exponent (a natural number). The list with monomials (cg,ex) for k£ < n represents the
polynomial whose degree d is the largest e such that cg is non-zero. The degree is O if there
are no non-zero coefficients. The coefficient of z! is the sum of the ¢ such that ex = i. For
example, the empty list represents the O polynomial and the list

(#mono(: exp 2 :coef 1) #mono(:exp 1 :coef -2) #mono(:exp 0 :coef 1))

represents the polynomial commonly written z? — 2x + 1. For efficiency, we require that the
exponents of a monomial list form a strictly decreasing sequence and that first element of a
non-empty monomial list has non-zero coefficent. In particular, the zero polynomial is uniquely
represented by the empty list, and an allowed non-empty list represents a non-zero polynomial
whose degree is the exponent of the first monomial and whose leading coefficient is the coefficient

44

of the first monomial. The basic polynomial structure is implemented by the following code.
The operation poly-extend adds a monomial to a polynomial. It is used only in the case that
exp is greater than degree of poly .

(defstruct (mono (:print-function mono-print)) exp coef)

(defun mono-print (mono stream pl)
(pprint (list :c (mono-coef mono) :e (mono-exp mono)) stream))

(defun pair2mono (pair) (make-mono :exp (car pair) :coef (cdr pair)))
(defun deg (poly) (mono-exp (car poly)))
(defun lead-coef (poly) (mono-coef (car poly)))

(defun poly-extend (coef exp poly)
(if (zerop coef) poly (cons (make-mono :exp exp :coef coef) poly))))

We need some arithmetic operations on polynomials. Multiplication of a polynomial by a

monomial is defined by
czt * Z c;zt = Z (¢ *c)ztte
o<i<d e<i<d+e

(monoxpoly coef exp poly) multiplies poly by the monomial with coefficient coef and ex-
ponent exp.

(defun mono*poly (coef exp poly)
(mapcar
#’ (lambda (mono)
(make-mono :exp (+ (mono-exp mono) exp)
:coef (* (mono-coef mono) coef)))
poly))

Division of a polynomial by a scalar is defined by

Z izt e = Z (c; + c):ci

0<i<d 0<i<d

This operation is only applied if ¢ is non-zero and divides each ¢;. (poly-div-scalar poly
coef) divides poly by coef.

(defun poly-div-scalar (poly coef)
(mapcar
#’ (lambda (mono)
(make-mono :exp (mono-exp mono) :coef (/ (mono-coef mono) coef)))
poly))

Addition of two polynomials is defined by

Z c?:c‘ + Z c}xi = Z (c?-}-c})xi

O_<i<do 0_<i<d] Ogigmaz‘[do,dl]

poly-add adds two polynomials.

4.5

(defun poly-add (polyl poly2)
(cond ((null polyl) poly2)
((null poly2) polyl)
((< (deg polyl) (deg poly2))
(cons (car poly2) (poly-add poly1l (cdr poly2))))
((< (deg poly2) (deg polyl))
(cons (car polyl) (poly-add (cdr polyl) poly2)))
(t (let ((coef (+ (lead-coef polyl) (lead-coef poly2)))
(rest (poly-add (cdr polyl) (cdr poly2))))
(poly-extend coef (deg polyl) rest)))))

Polynomial multiplication is defined by

Z c?xi * E c}xi = Z (Z c?+c}v):1:".

0<i<dg 0<i<d, 0<i<do+dy j,k|j<do,k<d; ,j+k=i
poly-mul multiplies two polynomials.

(defun poly-mul (polyl poly2)
(if (null polyl)
nil
(poly-add (poly-mul (cdr polyl) poly2)
(mono*poly (lead-coef polyl) (deg polyl) poly2))))

gcd-poly-coef computes the ged of the coefficients of a polynomial.

(defun gcd-poly-coef (poly)
(apply #’gcd (mapcar #’mono-coef poly)))

The polynomial gcd algorithm also requires modular arithmetic for polynomials. Operations
modulo a prime are only carried out on polynomials whose leading coefficient is not divisible

by that prime, thus preserving the requirement for allowable monomial lists.
(mod-inv n p) computes the inverse of n modulo p for n and p relatively prime.

(defun mod-inv (n p)
(labels
((m-inv (j k)
(if (=3 1)1 (/ (-1 (k (m=inv (mod k j) 3j))) 3)) -
)
(mod (m-inv n p) p)))

(mod-scalar*poly coef poly prime) multiplies each coefficient of poly by the scalar
coef modulo prime. This operation is only applied when coef is non-zero modulo prime.

(defun mod-scalar*poly (coef poly prime)
(mapcar
#’ (lambda (mono)
(make-mono :coef (mod (* coef (mono-coef mono)) prime)
:exp (mono-exp mono)))
poly))

(mod-mono*poly coef exp poly prime) multiplies poly by the monomial with coefficient
coef and exponent exp, reducing the resulting coefficients modulo prime. This operation is
only applied when coef is non-zero modulo prime.

46

(defun mod-mono*poly (coef exp poly prime)
(mapcar
#’ (lambda (mono)
(make-mono :coef (mod (* coef (mono-coef mono)) prime)
:exp (+ exp (mono-exp mono))))
poly))

(mod-add polyl poly2 prime) adds the polynomials polyl and poly2, reducing the re-
sulting coefficients modulo prime.

(defun mod-add (polyl poly2 prime)

(cond ((null polyl) poly2)
((null poly2) polyl)
((< (deg polyl) (deg poly2))
(cons (car poly2) (mod-add polyl (cdr poly2) prime)))
((< (deg poly2) (deg polyl))
(cons (car polyl) (mod-add poly2 (cdr polyl) prime)))
(t (let ((coef (mod (+ (lead-coef polyl) (lead-coef poly2)) prime))

(rest (mod-add (cdr polyl) (cdr poly2) prime)))
(poly-extend coef (deg polyl) rest)))))

(mod-rmd polyl poly2 prime) computes the remainder of polyl divided by poly2 modulo
prime. If poly 1, poly2 represent polynomials P;, P2 with P, non-zero and prime is a prime
7 then (mod-rmd polyl poly2 prime) represents a polynomial Py of degree less than P, such
that for some polynomial Q P; = Q * P, + Py modulo 7.

(defun mod-rmd (polyl poly2 prime)
(cond ((null polyl) nil)
((< (deg polyl) (deg poly2)) polyl)
(t (let ((d1 (deg polyl))
(c1 (lead-coef polyl)))
(mod-rmd (mod-add (mod-scalar*poly (lead-coef poly2) polyl prime)
(mod-mono*poly (- c1)
(- d1 (deg poly2))
poly2
prime)
prime)
poly2
prime)))))

(mod-poly-gcd polyl poly2 prime) is a polynomial of greatest degree dividing polyl
and poly2 modulo prime.

(defun mod-poly-gcd (polyl poly2 prime)
(let ((r (mod-rmd polyl poly2 prime)))
(if (null r) poly2 (mod-poly-gcd poly2 r prime))))

The basic algorithm for computing polynomial gcds involves computing local polynomial
gcds, each one modulo some prime number, and then joining these intermediate results using
the Chinese remainder theorem. More precisely, given a pair of polynomials: (i) choose a set of
primes and form a binary tree whose leaves are these primes; (ii) transform the tree of primes
into a tree whose leaves are pairs consisting of the corresponding prime and the gcd of the given
polynomials modulo that prime; (iii) for each pair of leaves combine the leaves according to the
Chinese algorithm to obtain a new leaf consisting of a product of primes and a polynomial; (iv)

47

repeat (iii) until only one leaf is left. The polynomial part will be the desired gcd, provided that
the product of the primes we use is sufficiently large and that none of the primes are unlucky
(see Collins [3] for details).

The Chinese algorithm combines two local geds to produce a new local ged. A local ged is
represented as a pair consisting of a produce of primes and a polynomial (the gcd modulo that
product of primes). The primes of the two pairs must be disjoint. Let Ip; = (7; , Z,'de cfa:')
for j € {1,2} and let d = maz[d;, da] then

chinese(lpy, Ipy) = (71 % T2, Z ch(my, ma, C}> C?)zi
i<d

where ch(my, g, ¢1, €2) = ¢2 + (T2 * ¢3) modulo 7y * T2 and ¢z = mod-inv(72, m1) * (€1 — ¢2)
modulo 7.

(defun chinese (pi p2)
(let* ((polyl (cdr pil))
(poly2 (cdr p2))
(pp1 (car p1))
(pp2 (car p2))
(ppl-times-pp2 (* ppl pp2))
(inv (mod-inv pp2 ppl)))
(labels
((chin (polyl poly2)
(cond ((null poly1)
(mapcar #’(lambda (mono)
(make-mono :coef (chin-eq 0 (mono-coef mono))
:exp (mono-exp mono)))
poly2))
((null poly2)
(mapcar #’(lambda (mono)
(make-mono :coef (chin-eq (mono-coef mono> 0)
:exp (mono-exp mono)))
poly1))
((= (deg polyl) (deg poly2))
(let ((coef (chin-eq (lead-coef polyl) (lead-coef poly2)))
(rest (chin (cdr polyl) (cdr poly2))))
(poly-extend coef (deg polyl) rest)))
((< (deg polyl) (deg poly2))
(let ((coef (chin-eq 0 (lead-coef poly2)))
(rest (chin polyl (cdr poly2))))
(poly-extend coef (deg poly2) rest)))
((< (deg poly2) (deg polyl))
(let ((coef (chin-eq (lead-coef polyl) 0))
(rest (chin (cdr polyl) poly2)))
(poly-extend coef (deg polyl) rest)))))
(chin-eq (c1 c2)
(mod (+ c2 (* pp2 (mod (* inv (- ci c2)) ppi)))
ppi-times-pp2)))
(cons ppl-times-pp2 (chin polyl poly2)))))

Now for the toplevel code. 1ist2tree takes a list and returns a balanced binary tree whose
fringe is the input list. find-primes constructs a tree of primes suitable for the given pair

48

of polynomials. It uses a global list of candidate primes *primes*. Bad primes are those
dividing the leading coefficient of either polynomial. They are detected by bad-prime and
rejected. The optional argument prime-floor determines where in the list of candidates to
begin accumulating primes, and the accumulation stops when the product of the accumulated
primes exceeds the estimated maximum coefficient.

(defun list2tree (1)
(1abels
((12t (1 n)
(if (=n 1)
(car 1)
(let ((nleft (ash n -1))) ;; n ge 2 size of left partition
(cons (12t 1 nleft)
(12t (nthedr nleft 1) (- n nleft)))))))
(if (null 1) 1 (12t 1 (length 1)))))

(defun find-primes (polyl poly2 &optional (prime-floor 1))
“estimate maximal coef of gcd"
(let ((primes *primes*))
(do () ((>= (car primes) prime-floor)) (setf primes (cdr primes)))
(let ((estimate (* 2 (max (max-coef polyi) (max-coef poly2)))))
(do ((working-primes nil)
(rest-of-primes primes (cdr rest-of-primes))
(prod 1))
((> prod estimate) (list2tree working-primes))
(unless (bad-prime (car rest-of-primes) polyl poly2)
(push (car rest-of-primes) working-primes)
(setq prod (* prod (car rest-of-primes))))))))

(defun bad-prime (prime polyl poly2)
(or (eq 0 (mod (lead-coef polyl) prime))
(eq 0 (mod (lead-coef poly2) prime))))

(defun max-coef (1)
(if (null 1) 0 (max (abs (lead-coef 1)) (abs (max-coef (cdr 1))))))

poly-gcd computes prime-tree using find-primes. Then for each leaf it computes the
gcd modulo the prime at that leaf and normalizes the result to have leading coefficient equal to
the gcd of the leading coefficients of the input polynomials (modulo the given prime). Finally
Chinese is applied to each internal node and the resulting ‘raw’ gcd is normalized by dividing
out common factors of coefficients.

(defun mod-poly-normalize (poly prime n)
(mod-scalar*poly
(* (mod-inv (lead-coef poly) prime) n) -
poly
prime)))

(defun normalized-mod-poly-gcd (prime polyl poly2 lead)
(mod-poly-normalize (mod-poly-gcd polyl poly2 prime) prime lead))

(defun poly-gcd (polyl poly2 &optional (prime-floor 2))
(let ((lead (gcd (lead-coef polyl) (lead-coef poly2))))

49

(labels
((gcd-tree (prime-tree)
(cond ((atom prime-tree)
(cons prime-tree
(normalized-mod-poly-gcd prime-tree polyi poly2 lead)))
(t (chinese (gcd-tree (car prime-tree))
(gcd-tree (cdr prime-tree)))))))
(let ((raw-gcd (gcd-tree (find-primes polyl poly2 prime-floor))))
(poly-div-scalar (cdr raw-gcd) (gcd-poly-coef (cdr raw-ged)))))))

The algorithm as implemented above is a heavy consumer of space. The main work and
space consumption is in the computation of the initial gcds at the leaves. Each ged computation
involves repeated application of mod-rmd, which in turn repeatedly subtracts a multiple of its
second argument from its first. Each subtraction conses up a list of newly created monomials. It
is easy to see that if the first argument to mod-rmd is not shared then the result can be computed
by updating that polynomial thus saving space needed for repeated copying. To do this we define
inplace-mod-scalar*poly, a destructive version ‘of mod-scalar*poly that reuses the input
polynomial. nmod-rmd is obtained from mod-rmd by replacing the call to mod-scalar*poly
by a call to nmod-scalar*poly. nmod-poly-gcd is obtained from mod-poly-gcd by replacing
mod-rmd by nmod-rmd. nmod-poly-normalize is obtained from mod-poly-normalize by re-
placing mod-scalar*poly by inplace-mod-scalar*poly and mod-poly-gcd by nmod-poly-ged.
Finally normalized-mod-poly-gcd is redefined, replacing mod-poly-normalize by nmod-poly-normaliz
and mod-poly-gcd by nmod-poly-gcd applied to fresh copies of the input polynomials.

(defun inplace-mod-scalar*poly (coef poly prime)
(mapc #’(lambda (mono)
(setf (mono-coef mono) (mod (* coef (mono-coef mono)) prime)))
poly)
poly)

(defun nmod-rmd (polyl poly2 prime)
(cond ((null polyl) nil)
((< (deg polyl) (deg poly2)) polyl)
(t (Let ((d1 (deg polyl))
(c1 (lead-coef polyl)))
(nmod-rmd
(mod-add (inplace-mod-scalar*poly (lead-coef poly2) polyl prime)
(mod-mono*poly (- c1)
(- d1 (deg poly2))
poly2
prime)
prime)
poly2
‘prime)))))

(defun nmod-poly-gcd (polyl poly2 prime)
(let ((r (nmod-rmd polyl poly2 prime)))
(if (null r) poly2 (nmod-poly-gcd poly2 r prime))))

(defun nmod-poly-normalize (poly prime n)
(inplace-mod-scalar*poly
(* (mod-inv (lead-coef poly) prime) n)
poly

prim<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>