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Chapter 1

Introduction

Qlisp is an extension of Common Lisp, to support parallel programming. It was initially

designed by John McCarthy and Richard Gabriel [5] while they were affiliated with the Lawrence
Livermore National Laboratory’s S1 project in 1984. Since then it has been under development
both at Stanford University and Lucid, Inc. and has been implemented on several commercial

shared-memory parallel computers. Qlisp is a queue-based, shared-memory, multi-processing

language. A program must explicitly indicate where parallelism is possible by special language

. constructs. When such constructs are executed a collection of tasks are added to a queue for

subsequent evaluation. For more details concerning the rationale behind the languages design,
the reader is referred to [5]. The complete definition of Qlisp is in its reference manual [7]; this
report is a tutorial introduction to the Stanford dialect of Qlisp.

The reader of this report is expected to have a good working knowledge of Common Lisp, as

described in [10] or in textbooks on programming in Common Lisp. Most of the new constructs
of Qlisp are described here, but some will not be presented in their most general form; see the

Qlisp reference manual for full details.

This primer is organized as follows. Chapters 1 through 3 provide an introduction to the

basic Qlisp primitives and gives simple examples of their use. Chapters 4 through 7 contain

more substantial applications. Chapter 8 summarizes the main points.

1.1 Reasons for parallel programming

It is worthwhile to keep in mind one’s goals and reasons for using a parallel programming

language. Programming a parallel computer will probably never be as easy as programming a

sequential computer, just because parallel computers are more complicated. The main reason

for using a parallel computer is that it offers a potential speedup over sequential computers.

If your goal is to speed up a particular program (or to write a new program for a parallel

machine with speed as a primary goal), it is worthwhile to consider other methods of speedup in

addition to applying parallelism. Usually these can be found at both the high level (improving

the algorithms used by a program) and the low level. In preparing examples for this report,

we invariably found low-level speedups, such as reducing the allocation of memory, or replacing

linear access to list structures (via functions such as member and assoc) by the use of data
structures such as hash tables or trees.

When a parallel program runs on a machine with p processors, one usually expects a speedup

of at most p over a machine with one of the same kind of processor. A speedup close to p means



you are making efficient use of the machine, so further work on parallelizing the program is not

necessary. Qlisp tries to make it easy to achieve such speedup in as many cases as possible. A

speedup much less than p suggests that better performance is possible, but will require some

restructuring of your program, so you must decide whether it is worthwhile to do this. This is

obviously a tradeoff between your time and the machine’s time!

Occasionally you may be lucky enough to see speedup greater than p. At first thought

this appears impossible, but it can happen when a parallel program does less work than a

corresponding sequential program-this often happens in search algorithms-or if the parallel

program makes good use of hardware other than the additional processors. A parallel machine

generally has more memory, caches, I/O bandwidth, etc., than a sequential machine and in

some cases this additional hardware reduces a bottleneck in the program.

1.2 Overview of how to use Qlisp

In the following chapters we will introduce Qlisp by means of several example programs. Some of

these were originally written as ordinary Common Lisp programs, while others were developed

completely in Qlisp. A summary of the topics we will cover is as follows.

1. Correctness. The most important aspect of any program is that it be correct. This is just

as true for parallel programs, but the process of making a program correct, debugging, is

often harder in a parallel environment. So, you should do as much debugging as possible

using a single processor, and only then try to run the program in parallel. Some bugs

will not show up when a program is run sequentially; we will give examples of these and

show how to avoid them in writing parallel programs.

2. Things to avoid. Certain programming techniques make parallelism difficult to achieve.

Also, some algorithms are inherently more sequential than others and need to be avoided.

In our examples we will show what makes a program difficult to parallelize and how to

fix such programs.

3. Identifying parallelism. Even after the obstacles to achieving parallelism have been re-

moved, the computer may need some help in deciding what to do. Qlisp provides several

ways for the programmer to indicate which parts of a program should be run in parallel.

4. Limiting parallelism. Most programs have either too little parallelism, or more parallelism

than necessary, for the particular environment in which they are run. When there is too

little parallelism, you must either look for more, or use what parallelism there exists and

accept less than perfect efficiency. When there is too much, however, it often pays to limit

the amount of parallelism actually used, to avoid unnecessary overhead. Qlisp’s language

constructs are designed to make the expression of these tradeoffs straightforward, and

to make the necessary decisions at runtime, when the largest amount of information is

available about the program, its data, and the state of the runtime environment.

5. Dynamic Scheduling. Qlisp comes with a scheduling environment that automatically

decides when to limit parallelism, based on the runtime state of the machine. Qlisp’s

default scheduling heuristics work well on most programs, so we always try them first

before trying to come up with other runtime decisions that let a specific program control

its parallelism.
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6. Profiling tools. Qlisp comes with several tools for measuring the performance of a program,

and indicating what parts of the program may be causing poor performance. Using these

tools 1s an effective way to “tune” a program until a desired level of performance is

reached. The major parameters estimated by the timing tool are idle time and scheduling

overhead. An effective way to use this information when developing a program will be

demonstrated in the following chapters.

1.3 Introduction to Qlisp

1.3.1 Creating parallel processes

The creation of parallel processes is expressed by qlet. Here is an example:

(qlet (spawnp) ((a (search u vi))
(b (search u v2)))

(append a b))

The effect of this expression is similar to the Common Lisp code:

(let ((a (search u vi1))
(b (search u v2)))

(append a b))

except that in the qlet form, the expressions (search u vl) and (search u v2) will be

executed in parallel if the expression (spawnp) returns a non-null value. The body of the qlet

form, (append a b) | is executed after the processes computing the calls to search have finished
and returned their values.

More generally, qlet forms have the following syntax.

(qlet control (( vary expr,) . . . (var, €xpr,) ) body)

This 1s like let except for the additional form control, which is called a control expression.

A control expression should be either a constant or an expression that returns nil, t or the

keyword : eager.
In most of our examples, control will be the form (spawnp). The initial definition of spawnp

1S

(defmacro spawnp () ’(dynamic-spawn-p))

dynamic-spawn-p implements a control algorithm, to be described later, that works well on

a variety of programs. Using this extra level of indirection, instead of coding (dynamic-spawn-p)

directly into your program, will allow you to try other control algorithms without changing your
code.

When control evaluates to nil, qlet behaves just like ordinary let, i.e., there is no paral-
lelism. When control evaluates to t (or any other non-null value except : eager), Qlisp creates

processes to evaluate the expr, forms of the qlet in parallel, waits for these to finish, binds the

resulting values to the approapriate var; and then evaluates the body.

Evaluation of the body can begin before the expr; forms have finished, if control has the

value : eager. You might ask, what values are the variables var; bound to during the evaluation

of the body, since the expressions whose values they are supposed to contain have not yet been

evaluated? A new data type, called a future, is used for this purpose. It represents a. value
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being computed by another process, and can be passed around like other Lisp data objects. (In

the implementation, it is a pointer with a special tag.) Certain Lisp functions, such as car,

cdr, atom, +, need the actual values of their arguments; when passed a future in Qlisp, they

will automatically wait for the process computing this value to finish, and then resume when

there is an available processor.

1.3.2 Synchronization

When parallel processes share data that can be modified, it is often necessary to add synchro-

nization in order to make the program correct. Qlisp’s basic form for this is lambda. It has

the following syntax.

(qglambda control (vary . . . vary) body)

This 1s just like lambda except for the control argument, which controls parallelism. Also like

lambda, you must use function around a lambda expression in the places where Common Lisp

requires it, or use the # ’ syntax of the Lisp reader, which is equivalent. The object returned

by #’(qlambda ...) is called a process closure and may contain free variables like an ordinary
closure.

In all cases (even if control is nil), Qlisp will allow only one process at a time to call a

process closure. If a process tries to call a process closure while another call is in progress, it

will be suspended; later it will be resumed and proceed to execute the forms in the glambda

body.

If control is nil, this is the only difference between lambda and lambda. If control is ft,

the process closure returns immediately to its caller, with a future as the returned value. Thus

the callers of a (gqlambda t . . .) process closure never wait, although the calls themselves are

performed sequentially by another process. The returned futures might cause suspension of a

process later on.

Note that the control argument of a gqlambda form is evaluated when the process closure is

created, not each time it is called. An elaborate example of the use of glambda may be found

in parallelizing the OPS5 Matching Algorithm [8]

1.3.3 Speculative computation

Sometimes a program may create a process and discover, before the process finishes, that its

result is not needed. In this case the program can make better use of resources by terminating

the process rather than allowing it to continue execution. This is called speculative computation

because the program could have avoided starting such a process until it was certain to be needed.

Qlisp supports speculative computation by estending the meaning of Common Lisp’s catch

and throw forms. When a throw returns control to a corresponding catch, in addition to

performing any unwind-protect forms, Qlisp will kill processes, started within the catch that

are still executing. The exact definition of which processes are killed is in the Qlisp reference
manual.

The most common way of doing speculative computation is

(catch ‘found

((code to try multiple solutions in parallel)))

and when a. solution is found,



(throw ‘found (solution))

The throw returns control to the catch form, and any processes started by the code to try

multiple solutions in parallel that are still running will be killed. Thus, the solution returned

will be that of the first process that finds one.



Chapter 2

Writing parallel programs

Common Lisp is designed to allow a variety of programming styles. It allows both pure func-

tional programming and programming with effects; recursion and iteration; global and local

variables; global and local data; lexical and special binding, etc. In a sequential program, the

choice of which constructs to use is usually a matter of personal style or finding ones appro-

priate to the problem at hand. There are some efficiency considerations, but they are not too

significant, and vary from one implementation of Common Lisp to another.

In Qlisp, because of the need to use multiple processors effectively, some styles of program-

ming can lead to significant performance loss. We will discuss the most common cases of this

phenomenon, and explain how to write programs that have a good chance of running well in

parallel without significant additional effort.

2.1 High-level programming forms

The use of high-level programming styles such as iteration can make a program appear to have

constraints on the sequence of operations, when in actuality those constraints are unnecessary.

For example, a program may loop over the elements of a list or array, but the operations done

on each element are independent and can be done in any order, or in parallel.

For parallel programming, it is useful to have the program explicitly indicate that such

operations are safe to perform in parallel. Qlisp’s “parallel iteration forms,” along with other

ways of indicating parallelism, can then be used to build higher-level functions that operate on

aggregate data objects.
Qlisp has functions and macros that parallelize the work done by the Common Lisp forms

dolist. dotimes, and the mapping functions mapc, mapcar etc. These are called gdolist,
gdotimes, gmapc, gmapcar etc. The syntax of these Qlisp forms is exactly like the corresponding
Common Lisp forms. For example, you can write

(gmapcar #’paint widgets colors)

and Qlisp will generate code equivalent to that for

(mapcar #’paint widgets colors)

except that it uses parallelism. The method that Qlisp uses for parallelizing iterations is

based on the (dynamic-spawn-p) control form; it is described in more detail in chapter 3 of

this report.



To use the parallel iteration functions, your program must work correctly no matter what

order the iterations are performed, or if they are performed in parallel. If the body of an

iteration form (or an argument function passed to a mapping function) performs side effects,

you should be careful before trying to execute it in parallel. The mapping functions that return

lists do guarantee that the result lists are in the right order, but they may be computed in a
different order.

2.2 Variables

The two types of variables in Common Lisp are lexical and special. In addition, we will some-

times talk about global variables; these are symbols that have been assigned values (by means

of setq, defvar and similar forms) but have not been bound as function parameters or by let

or lambda. Common Lisp treats global variables as special variables.

We also distinguish between two ways of using variables, which we will call shared and

private. Shared variables are those which may be used (their values read or changed) by more

than one process at a time. Private variables can only be used by a single process. Sometimes

we can’t tell whether a variable is shared or private, because we don’t have the whole program
in hand to make a determination.

Here are the ways in which we determine if a variable is shared or private. When in doubt,

we always take the conservative approach of saying that a variable might be shared if we cannot

prove that it is private.

1. Global variables are shared, since references to global variables can appear in any func-

tion. You must therefore be cautious when using global variables in a parallel program.

Legitimate uses of global variables are:

e Variables that are modified only while the program is not using parallelism, but that

may be read by concurrent processes. For example, you might have some “program

parameters” that are easier to handle this way than by passing them as arguments
to all the functions that need them.

e Variables that are used in conjunction with synchronization, to ensure that only

“safe” parallel references are possible. We will show how to do this later. Generally,

this requires making sure that only one process is using the variable at a time, and

so may reduce the amount of parallelism in your program. Thus it should be avoided

when possible.

2. Lexical variables can be shared or private. The lexical scope rules of Common Lisp make

it possible to determine, by inspection of the program, whether a variable is private. This

is the case if, inside the scope of the form where the variable is defined, there are no

forms that can possibly execute in parallel, and no forms that “capture” the binding of

the variable in a closure. (Because such a closure’.could then be called in more than one

process simultaneously.)

3. Special variables can also be shared or private. When a special variable is bound by a

process, the binding is only seen in that process and its descendants; there is no effect

on other processes that were previously sharing the variable’s binding. Thus, rebinding

a special variable can make it private during the extent of the binding, even though it is
otherwise shared.
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However, there are several reasons to avoid the use of special variables in Qlisp programs.

One is that, as with global variables, it is hard to tell whether a reference to a variable is

safe when it is not inside a binding form. Programs using special variables are therefore

often harder to maintain and modify, because you need to understand more of the program

than just the part you are modifying.

Another reason to avoid special variables is that they are somewhat slower, both to read

and write, than lexical variables. The difference is not very great, so this should not be

the primary consideration. But with other things being equal the use of lexical variables

should be preferred.

Here are some examples of the use of variables in Qlisp programs.

(let ((item (car objects)))
(qlet (spawnp) ((x (search item listi))

(y (search item 1list2)))
(cons x y)))

Here the variable itemis shared by the forms (search item listl) and (search item 1list2).
Since both of them simply pass the value of item as an argument to the function search, the
usage of this shared variable is safe.

(let ((index 0))

(flet ((new-index ()

(incf index)))

(qlet (spawnp) ((x1 (make-object (new-index) yi))
(x2 (make-object (new-index) y2))
(x3 (make-object (new-index) y3)))

(list x1 x2 x3))))

This code is incorrect since the variable index is modified in an unsafe way, by processes

running in parallel. The Common Lisp form (incf index) is equivalent to (setq index (+ index T)),
and when this is executed in parallel by multiple processes, 1t does not necessarily return a
unique value in each process. To fix it we must synchronize using qlambda, or we can use the
equivalent form qflet as follows:

(let ((index 0))

(qflet nil ((new-index ()
(incf index))) ——

(qlet (spawnp) ((x1 (make-object (new-index) yi1))
(x2 (make-object (new-index) y2))
(x3 (make-object (new-index) y3)))

(list x1 x2 x3))))

Note that we have specified nil as the control form of the process closure defined by qflet.

This is because we only need the synchronization features of the process closure; having it
execute in parallel with the processes that call it would create more overhead (in the use of
futures) than it would gain in extra parallelism.

(defvar *color-list* ’(yellow))

(defun test-color (color)
(let ((*color-list* (cons color *color-list*)))

(check-color)))
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(qlet (spawnp) ((x (test-color ’blue))
(y (test-color ’green))
(z (test-color ’red)))

(append x y z))

This code 1s safe in its use of the special variable *color-list*. The function test-color,

called in three parallel processes, rebinds *color-list* in each process. These bindings

have no effect on each other, so the value of *color-list* seen by check-color is always

(blue yellow) in the first process, (green yellow) in the second process, and (red yellow)

in the third process, no matter how they execute.
Here are some other ways of writing test-color in the above program.

(defun test-color (color)

(push color *color-list*)
(check-color)

(pop *color-list*))

This 1s incorrect as a parallel program, even though it is correct as sequential code.” The
reason it doesn’t work is that (push color *color-list*) expands to

(setq *color-list* (cons color *color-list*))

and this code contains a critical region. In this version of test-color, the variable *color-list*

is shared by all of the processes.
We might try to create “atomic push” and “atomic pop” operations that add synchronization

around the critical region. However, this would still not fix the function as written above. The
reason 1s that with several processes doing push and pop to the same variable, *color-list*
may have a value such as (green blue yellow) when check-color is called. This does not
happen when the program is run sequentially.

(qdefun test-color (color)

(push color *color-listx)
(check-color)

(pop *color-listx))

This adds synchronization at a high enough level to execute correctly. Calling a function

defined by qdefun, which performs the same synchronization as lambda, ensures that only one

process at a time enters the code that does the push and pop. However, in doing this we have

removed all the parallelism from the program! This is why rebinding of special variables, as
done in the first version of test-color, is the best method to use.

2.3 Shared data

Even when private variables are used, it is possible for data to be shared between processes in a

program. If shared data is modified by one process, it may affect other processes in unintended

ways.

There is no problem with shared data as long as the program does not use destructive oper-

ations, since then the only time that words in memory are written is when they are allocated.

(For example, cons writes its two argument values into the slots of a newly-allocated cons cell.)

If there is a possibility of a throw from inside check-color, then (pop *color-list#*) should be contained
in an unwind-protectform.

9



All other references just read the data, and there is no problem with doing this concurrently in

several processes.

Destructive operations include rplaca, rplacd, setf and anything else that modifies storage

after it has been allocated. One approach to writing correct parallel code is to avoid entirely

the use of these forms. Often this is undesirable because it would sacrifice efficiency, or because

you are modifying a sequential program that already contains destructive code, and want to

make as few changes as possible.

If destructive operations are used, then, they must be used safely. To do this, you must either

prove that the program is correct when run in parallel in spite of the destructive operations,

or add synchronization code to the program where it uses shared data. In the latter case, it is

usually necessary to modify code that reads the shared data, as well as the code that writes it.
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Chapter 3

Using Qlisp

In this chapter, we illustrate the tools and techniques of Qlisp program development, debug-

ging and performance analysis that have been described. Our experiments were done with

‘an implementation of Qlisp, based on Lucid Common Lisp, running on an Alliant FX/8, a
shared-memory multiprocessor with eight processors.

3.1 Expressing parallelism

If the parallelism in your program is not easy to express with the high-level forms that Qlisp

provides, you will need to describe it more directly. In most cases this is done with qlet.
In order to write a qlet expression, you must decide which Lisp forms should be evaluated

in separate processes. Then create a local variable to receive the returned value of each of the
parallel forms, and use these variables in an expression. For example:

(qlet (spawnp) ((x (crunch al b1))
(y (crunch a2 b2)))

(list x y))

performs two function calls to crunch in parallel, and then uses the returned values in an

ordinary sequential computation. The use of (spawnp) as a control expression was described in

section 1.3.1. If you decide that a particular qlet expression needs a different form of control

than others, you should give it a different control expression, which you can then redefine as

necessary.

When writing new code in Qlisp, the style just described is fairly natural and easy to write.
However, you may be converting an existing sequential program to Qlisp. It probably does not
contain a form like

(let ({(x (crunch a1 b1))

(y (crunch a2 b2)))
(list x y))

since this is very verbose. Instead, normal Common Lisp style would be to write

(list (crunch atl bi) (crunch a2 b2))

In order to convert this to Qlisp, you need to take the parallel forms (the calls to crunch

in this case) out of the expression they are contained in, replacing them by variables, and then

write a qlet form to create the parallel processes.
In this way, you can selectively decide what is to be done in parallel. For example, suppose

the original form was

1



(list (list a1 bi) (list a2 b2) (crunch al bi) (crunch a2 b2))

The expressions (list at bl) and (list a2 b2) are too small to benefit from running in
parallel with the calls to crunch. It would take longer to create processes for them, than to
simply execute them sequentially. But perhaps crunch performs a long computation and there
are no side effects that prevent running the two calls to crunch in parallel. In this case, an
appropriate qlet form would be

(qlet (spawnp) ((x (crunch al bil))
(y (crunch a2 b2)))

(list (list al bil) (list a2 b2) x y))

3 . 2 Abbreviated syntax

A pattern that comes up often is the evaluation of all of the arguments of a function call in

parallel, using the default control expression (dynamic-spawn-p). Converting such a form

(fun arg, . . . arg,)

into the corresponding qlet, although straightforward, requires a lot of editing and forces you

to come up with new variable names. Instead of this, you can write

#7 (fun arg, . . . arg,)

The #7? syntax is very convenient and we will use it in many of the examples below. You can
also write

#!(funarg,...arg,)

to represent the corresponding (qlet t . . .) form, i.e. a form that creates processes uncon-
ditionally. The #7? and #! constructs can also be placed before a progn form, i.e.,

#7 (progn form, ... form.)

In this case, the values returned by all but the last form; are discarded, and the value of form,
is returned.

3.3 Dynamic Scheduling

A major feature of Qlisp is the ability to control, at runtime, the way in which processes are

created and distributed among the processors. There are two ways in which you can tell the

system how to manage processes.

e The control expressions of the forms that create processes determine whether or not a

process is actually created at each evaluation. This is the main way in which programs

interact with the Qlisp runtime environment.

e The scheduler determines which processes are run on which processors at any given time.

A default scheduler is supplied with Qlisp, but you can replace it with your own scheduler.

Before you do this, though, you should determine whether it is really necessary. Most

programs can easily be made to perform as well with the default scheduler as with any

other, and a specialized scheduler that you write may not work well if your code is

combined with other Qlisp code.
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The default Qlisp scheduler is based around a set of process queues, one per processor.

These are actually double-ended queues (sometimes called “deques”), so that processes can be

added or removed at each end. When processes are created, they are placed in the “local”

queue (the queue of the processor that created the process), at a particular end. Let us call this

end of the queue the “head,” and the other end the “tail.” When there are several processes in

a queue, then, the one most recently created is at the head and the one least recently created
is at the tail.

When a processor becomes idle (because the process it was running has either finished or

suspended), it first tries to remove a process from its own queue by taking the most recently

created process, from the head of the queue. However, when the local queue is empty, it looks in

the queues of other processors. When it finds a non-empty queue, it takes the process at the tail

of the queue. These choices (head from one’s own queue, tail from another processor’s) are not

arbitrary; they have been shown both theoretically and experimentally to improve performance

for many programs. A phrase that we associate with this scheduling strategy is “locally LIFO,

globally FIFO.” Effectively, the local queue behaves like a stack of processes; tasks get pushed

onto and popped from the local queue (last in first out). When accessing other processors’

queues, the behavior is closer to standard, first in first out, queue-like behavior.

The (dynamic-spawn-p) control expression uses the state of the scheduler to control the

creation of processess. In the normal case, it tests whether the queue of the processor that it

is running on is empty. If so, it returns t and causes a process to be created, thus making the

queue non-empty for the next test (until the process is removed to be run on some processor).

If the queue is non-empty, (dynamic-spawn-p) returns nil and no process is created.

This form of control may appear somewhat strange, but, like the default scheduler, it has

been shown to perform well for many programs. In some cases, however, (dynamic-spawn-p)

may not create enough processes, and there is unnecessary idle time. An extension of the basic

idea is to look at the size of the local processor’s queue, and keep generating processes when it

is below some threshold. This is expressed by writing

(dynamic-spawn-p 7)

as the control expression, where n is a small integer that gives the maximum process queue size.

Using n = 1 is equivalent to writing just (dynamic-spawn-p). You should try this form if you

discover your program has too much idle time. Try n = 2,3,. . . . If there is no improvement,

you must look elsewhere for the cause of the idle time. Usually there will be an improvement

up to a certain value of n, but for higher values of n the performance will start to degrade as

the program starts to create many unnecessary processes. 10 make such fine tuning as simple

as possible, the abbreviated syntax has been extended to include

#n7? (fun argy. .. arg, )

3 . 4 Using Qlisp

Let’s assume that you have written some Qlisp code and would like to test it. Running Qlisp

is very much like running ordinary Lisp. To start, type “qlisp,” to the Unix shell prompt.

% qlisp

After some initial comments, Qlisp will print its prompt, and you are now in a Lisp read-eval-

print loop.
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; 33 Lucid Common Lisp, Qlisp version 1.1
>

At this point you can interact with Qlisp just as with an ordinary Lisp interpreter. Unless you

use the function geval, however, it will not create any parallel processes? Therefore, you must

type

(geval form >

in order to evaluate a form that uses parallelism.

Interpreted Lisp forms can use parallelism, but the speed gained by parallel processes is offset

by the relative slowness of interpreted code over compiled code. Therefore, you will usually want

to compile your Qlisp code as soon as it seems to be bug-free, before doing any performance

measurements. The functions compile and compile-file behave just as in Common Lisp.

The compiler itself is not (yet) a parallel program, so you should not try to compile in parallel.

The usual steps in developing a Qlisp program are therefore:

I. Make sure your program works as a sequential program. For debugging purposes, it is

often better to use the interpreter at this stage.

2. Test the parallel version of the program, either as interpreted or compiled code.

3. Run the parallel program with the default runtime environment (i.e., with (spawnp) forms

set to (dynamic-spawn-p). If this produces acceptable performance, you are done.

For performance measurement, Qlisp has a qtime form that works like Common Lisp’s time,

but uses geval automatically. Note that time and qt ime are macros that don’t evaluate their

argument forms, so you should not quote the form to be evaluated.

If the program’s performance after the steps above is not acceptable, you will need to decide

whether it has too little or too much parallelism. The statistics typed out by qtime indicate

whether there was a lot of idle time (indicating not enough parallelism to keep the processors

busy) or a lot of overhead caused by creating and scheduling processes.

Excessive idle time can happen when not enough parallelism has been identified, or when

the control algorithm is not creating enough processes. To distinguish between these, you can

temporarily substitute a control algorithm that creates all possible processes. This is easy to do

if you have used control expressions such as (spawnp) in our examples, which can be redefined

as functions or macros that always return t. If you have used the abbreviated form #7, replace

it with #!. In either case, you will need to recompile your code, since these control espressions

are partly processed at compile time by macro expansion.

Note that the parallel iteration functions qdotimes, gmapcar, etc. cannot be converted to

“spawn-always” forms. They cont rol their process creation in a way that will not improve by

spawning more processes.

If, after converting your expressions to create all possible processes, the program still has

a lot of idle time, then it does not have sufficient parallelism to run efficiently on the given

number of processors. You should look for more parallelism in the program, or a new algorithm

with more parallelism, in order to speed it up.

On the other hand, if the program now has very little idle time, then it is just a matter of

finding the right control expressions to avoid excessive overhead. Try redefining your control

"This may change in future versions of Qlisp.
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expressions to (dynamic-spawn-p n), with » a small integer. Recompile and test again to sce

if this improves the performance.

In the early stages of testing, you should allow for the. fact that your program may run a

lot slower than you would like. This is to be expected when you are testing it sequentially,

and may still be the case if there are performance problems. Therefore, it will be very helpful

to prepare test data that represents a simpler version of the problem that your program is

expected to solve, and that should run much faster. -Otherwise, the time you spend waiting

during debugging of you code may exceed the savings you achieve by parallelizing it!

3.5 A simple test program

Our first example program is very simple, so that we can concentrate on illustrating the us-
age of Qlisp. It computes numbers in the Fibonacci sequence: 0, 1, 1,2,3,5,8,13,21,. | .; each
Fibonacci number is the sum of the previous two. Here is a sequential version of the program:

(defun fib (n)

(if (< n 2)

bel

(+ (fib (- n 1)) (fib (- n 2)))))

This program uses an inefficient algorithm, since it computes many values of (fib n) more

than once. So in a real-life situation, we would use a new algorithm before attempting speedup

by using parallelism. Nevertheless, let us proceed to convert the above code directly into Qlisp.
Each call to (fib n) with n > 2 results in the two recursive calls (fib (- n 1)) and

(fib (=n 2) ). These can run in parallel since they are completely independent computations.
Since these forms make up the arguments to a function call (the call to +), we can use the
abbreviated syntax described in section 3.2 and rewrite the program as follows:

(defun fib (n)

(if (< n 2)

n

#7(+ (fib (= n 1)) (fib (- n 2)))))

There 1s no other obvious parallelism, so we are ready to test the program. The sequential

version of fib takes about 2.3 seconds to compute (fib 25), but only 0.2 seconds to compute

(fib 20). Let us use (fib 20) as our debugging test, and (fib 25) when we are done as the
“real data” test.

After compiling the code above, we test it and get the following output:

> (qtime (fib 20) )

Parallel Time: 43 msecs on 8 processors
Processes: 1924

Overhead: 74.8 msecs, 21.7%

Idle : 31.7 msecs, 9.2%

6765

The value 6765, typed at the end, is the result of (fib 20). The interesting figures are the

percentage of time in overhead (process creation and scheduling) and idle time. Both of these

are rather high. In order to see if idle time can be reduced, we change the use of #7 to # ! ,

recompile, and run it again:
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> (gtime (fib 20))

Parallel Time: 63 msecs on 8 processors

Processes: 10946

Overhead: 277.2 msecs, 55.0%

Idle: 20.6 msecs, 4.1%

6765

The idle time has decreased somewhat, but not as much as the increase in overhead, so the

total running time is worse. We therefore make one more test, using #27, to see if it will make

an improvement:

> (qtime (fib 20))

Parallel Time: 39 msecs on 8 processors

Processes: 1874

Overhead: 54.8 msecs, 17.5%

Idle: 22.3 msecs, 1.1%

6765

This is slightly better than the original test with #7,

However, when the total running time is as short as in these tests (43, 63 and 39 millisec-

onds), you should beware of the significance of the timings. In our “real data” test of (fib 25),
the time becomes large enough to put more faith in the numbers.

With #7, we get:

> (gtime (fib 25))

Parallel Time: 367 msecs on 8 processors

Processes: 3673

Overhead: 112.2 msecs, 3.8%

Idle: 29.2 msecs, 1.0%

75025

Using # ! , we get:

> (gtime (fib 25))

Parallel Time: 718 msecs on § processors LL
Processes: 121393

Overhead: 3023.1 msecs, 52.6%

Idle: 22.4 msecs, 0.4%

75025

Finally, with #27, the running time is:

> (gtime (fib 25))

Parallel Time: 367 msecs on § processors

Processes: 5268

Overhead: 141.9 msecs, 4.8%

Idle: 151.2 msecs, 5.2%

75025

These and other results are summarized in the following table.
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(fib 25) (sequential 2.540)

#7 2364 0.367 3673 1 0.112200 0038 00092 17700 86.3 10

#27 0.367 5268 0.1419 428 0.1512 5.2

#37 0.402 15952 0.4092 12.7 0.0248 0.8

#47 0.471 36790 0.9251 24.6 0.0203 0.5
#! 0.718 121393 3.0231 52.6 0.0224 04

Best Speed-up (/ 2.540 0.367) =6.921

Creating all processes with # ! still gives the worst time, because of too much overhead. but

now the best times are achieved either by the default control algorithm #7 or by #27. This

trend continues as n increases, as the following table of fib 30 illustrates.

(fib 30) (sequential 28.249)

#7 28.259 3.850 10733 1 0.3074 0.0 0010 | 19.022 0.019% 86.7 0.1

#27 3.888 14515 0.3743 1.2 0.0178 0.1

#37 3.952 40329 1.0145 3.2 0.0130 0.0
#! 7.596 1346269 | 33.4049 55.0 0.0147 0.0

Best Speed-up (/ 28.249 3.850) = 7.34
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Chapter 4

Theorem proving

This program is a Common Lisp version of the well known Boyer benchmark. Here is what

Bob Boyer said about the original program ([4]. p116).

J Moore and I wrote the rewrite program as a quick means of guessing how fast our

theorem-proving program would run if we translated it into some other Lisp system.

Roughly speaking, it is a rewrite-rule-based simplifier combined with a very dumb

tautology-checker, which has a three-place IF as the basic logical connective.

In the first section we describe the general structure of the program and its underlying algo-

rithms. Then we describe new-boyer, our implementation using abstract syntax and other high-
level programming constructs. In the second section we discuss how to parallelize new-boyer

and present a spectrum of experimental results. In the third section we give two levels of opti-

mization of new-boyer and corresponding experimental results. The final version is equivalent

to the original benchmark code, Gabriel [4], p.116, with the exception that global variables are
made local. Two observations about this set of examples are the following. Firstly, paralleliza-

tion of the optimized versions exactly corresponds to that of new-boyer-we haven’t changed

the algorithm, just the representation of structures. Secondly, certain optimizations not only

speed up the sequential version but also give improved speed-up in the parallel case. This is due

to the reduction of time spent locking and unlocking shared data structures. This phenomenon

is discussed further in the final chapter. LL

4.0.1 The Program

The benchmark consists of running the program tautp on a particular symbolic term. A

symbolic term is either an atomic term or a composite term consisting of an operator and a list

of arguments. tautp rewrites the term according to a long list,

REALLY-BIG-LIST-OF-LEMMAS,

of rewriting rules or lemmas as they are called by Boyer and Moore. The dumb tautology-

checker tautologyp is then applied to the rewritten term. In new-boyer the structure of terms

is expressed abstractly using the Common Lisp def struct mechanism. An atomic term simply

consists of a name (represented as a Lisp symbol), while a composite term is consists of an

operation together with a list of arguments, themselves terms.
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(defstruct (term (:print-function term-print)))
(defstruct (atomic-term (:include term)) name)

(defstruct (composite-term (:include term)) op args)

An operation consists of a name (represented as a Lisp symbol) together with a list of lemmas
associated with it. The lemmas component of an operation is an annotation that allows us to
speed up the search for a lemma that applies to a give term. Given the name, <name>, of an
operation the corresponding operation is the value of (the-op <name>). This is to insure that
there is unique operation associated with each name, and hence a unique list of lemmas for
each operation.

(defstruct (op (:print-function op-print)) name lemmas)

(defun the-op (sym &optional symbol-table)
(if symbol-table

(get-op sym symbol-table)
(let ((op (get sym (quote op))))

(if op

op

(let ((op (make-op :name sym)))
(setf (get sym (quote op)) op) op)))))

A lemma has three components: an operator, a list of arguments, and a right-hand term.
A lemma corresponds to an equation whose left-hand term is the term whose operation and
arguments are those of the lemma and whose right-hand term is the right-hand term of the
lemma.

(defstruct lemma op args rhs)

Since terms include annotations such as the list of lemmas associated with an operator we

also define a term equality test term-eq which only looks at the abstract term structure and
not at the annotations.

(defun atomic-term-eq (termi term2)

(eq (atomic-term-name termi) (atomic-term-name term2)))

(defun op-eq (opl op2) (eq (op-name opl) (op-name op2)))

(defun term—-eq (termi term2)

(cond ((and (atomic-term-p termi) (atomic-term-p term2))
(atomic-term-eq termi term2))

((and (composite-term-p termi) (composite-term-p term2))
(and (op-eq (composite-term-op terml) (composite-term-op term2))

(term-list-eq (composite-term-args termi)
(composite-term-args term2))))

(t nil)))

(defun term-list-eq (termsl terms2)
(if (and (null termsi) (null terms2))

t

(and (term-eq (car termsl) (car terms2))
(term-list-eq (cdr terms1) (cdr terms2)))))
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In the original boyer benchmark symbolic terms are represented using Lisp symbols and
lists in the usual way, with no abstract syntax used in writting the program. Lemmas are terms
with operator EQUAL and left-hand side a composite term. In order to speed up the search for a
lemma matching a given term, the list of lemmas is partitioned according to the operator of the
left-hand term and the sublist for a given operator is stored on the property list of that operator.
The functions term-2-sexp, sexp-2-term, and sexp-2-lemma give the formal correspondence
between our representation of terms and lemmas and the representation used in the original
program. These allow us to translate the original lemma list into our representation and to
compare intermediate results of the two versions.

(defun term-2-sexp (term)
(cond ((atomic-term-p term) (atomic-term-name term))

((composite-term-p term)
(cons (op-name (composite-term-op term))

(mapcar #’term-2-sexp (composite-term-args term))))
(t (error "~“Yterm-2-sexp did not understand the term: "a" term))))

(defun sexp-2-term (sexp)

(if (atom sexp)
(make-atomic-term :name sexp)

(make-composite-term :op (the-op (car sexp))
args (mapcar #’sexp-2-term (cdr sexp)))))

(defun sexp-2-lemma (sexp)
(make-lemma :op (the-op (caadr sexp))

args (mapcar #’sexp-2-term (cdadr sexp))
:ths (sexp-2-term (caddr sexp))))

We provide printing functions for terms in order to be able to examine intermediate results
more easily.

(defun term-print (term stream pl) (pprint (term-2-sexp term) stream))
(defun op-print (op stream pl) (print (op-name op) stream))

Finally we provide special abstract syntax for conditional expressions: make-if, if p ,
if-test, if-then, if-else. Note that ifp assumes it is given a composite-term and the

selectors assume the argument is an if-term.

(defun make-if (test-term then-term else-term)

(make-composite-term :op (the-op (quote if))
args (list test-term then-term else-term)))

(defun if-test (term) (car (composite-term-args term)))
(defun if-then (term) (cadr (composite-term-args term)))
(defun if-else (term) (caddr (composite-term-args term)))

(defun ifp (term) (op-eq (the-op (quote if)) (composite-term-op term)))

The rewrite program takes as input a term. If the term is atomic the program exits with
that term as its value. Otherwise the term is a composite term consisting of an operation, op,

and an list of argument terms. The argument subterms are first rewritten and then the resulting
whole term is rewritten via the first lemma of op that it matches. This is repeated until no more
rewriting can be done. The auxiliary function rewrite-with-lemmas does the actual lemma
matching and rewriting using the programs match-args and apply-subst, respectively.
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(defun rewrite (term)

(labels ((rewrite-with-lemmas (op args lemmas)
(if (null lemmas)

(make-composite-term :0p op :args args)
(multiple-value-bind (success? sublist)

(match-args args (lemma-args (car lemmas)) nil)
(if success?

(rewrite (apply-subst sublist (lemma-rhs (car lemmas))))

(rewrite-with-lemmas op args (cdr lemmas)))))))

(cond ((atomic-term-p term) term)
((composite-term-p term)
(let ((op (composite-term-op term)))

(rewrite-with-lemmas op

(mapcar #’rewrite
(composite-term-args term))

(op-lemmas op))))
(t (error "~“Yrewrite did not understand the term: "a" term)))))

apply-subst applies a substitution list to a term in the usual manner.

(defun apply-subst (sublist term)
(cond ((atomic-term-p term)

(let ((bind (assoc term sublist :test #’atomic-term-eq)))
(if bind (cdr bind) term)))

((composite-term-p term)
(make-composite-term :op (composite-term-op term)

rargs (mapcar #’(lambda (t1)
(apply-subst sublist t1))

(composite~term-args term))))

(t (error "~Y%apply-subst did not understand the term: "a" term))))

The main work in rewriting is matching the arguments of a term to the arguments of a

lemma (called match-args in our version and one-way-unify-1st in the original). The task

that match-args performs is to determine whether or not it its first argument is a substitution
instance of its second argument via a substitution (a map from variables to terms) that extends

its third argument. In other words whether there is a substitution sublist such that (term-eq

(mapcar #’ (lambda (x) (apply-subst sublist x)) args2) argsl) is t and sublist ex-
tends its third argument. So match-args must return two pieces of information. Firstly whether

or not such a match is possible, and secondly, when a match is possible, the substitution that

achieves this match. We use the Common Lisp multiple values feature to accomplish this.

(defun match-args (argsl args2 sublist)
(labels ((match (termi term2 sublist)

(cond ((atomic-term-p term2)
(let ((bind (assoc term2 sublist :test #’atomic-term-eq)))

(if bind

(if (term-eq termi (cdr bind))
(values t sublist)

(values nil nil))

(values t (cons (cons term2 termi) sublist)))))

((composite-term-p term2)
(cond ((atomic-term-p termi) (values nil nil))
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((composite-term-p termi)
(if (op-eq (composite-term-op termi)

(composite-term-op term2))

(match-args (composite-term-args termi)
(composite-term-args term2)
sublist)

(values nil nil)))

(t (error ""%match did not understand the term:
"a" termi))))

(t (error "~Ymatch did not understand the term: "a" term2)))))

(if (null argsi)
(values t sublist)

(multiple-value-bind (success? sublist)
(match (car args1l) (car args2) sublist)
(if success?

(match-args (cdr argsl) (cdr args2) sublist)
(values nil nil))))))

The dumb tautology checker is the program tautp. It is dumb simply because it only

works for terms correctly for terms which are in if-normal form. Where the set of if-normal

forms are defined to be the smallest set of terms containing the atomic propositions and closed

under the formation rule: if then and else are if-normal forms and test is an atomic propo-

sition then (make-if test then else) is an if-normal form. In the simplest case atomic

propositions are (boolean) variables. In practice atomic propositions also include terms whose

operation symbol is treated as an uninterpreted predicate symbol for the purposes of tautology

testing. tautologyp takes two additional arguments true-list and false-list. true-list

(false-1list) is a list of atomic propositions assumed true (false). The invariant assumption
is that the propositional term currently being considered is in the true branch of conditionals

with tests in true-list and the false branch of conditionals with tests in false-list. (See [1]
Chapter 4.) Except for the use of abstract syntax, our version of the tautology checker is the

same as the original.

(defun tautp (term) (tautologyp (rewrite term) nil nil))

(defun tautologyp (term true-lst false-1st)
(cond ((truep term true-lst) t) S—

((falsep term false-1lst) nil)
((atomic~term-p term) nil)

((composite-term-p term)

(when (ifp term)
(cond ((truep (if-test term) true-1lst)

(tautologyp (if-then term) true-1lst false-lst))
((falsep (if-test term) false-lst)
(tautologyp (if-else term) true-lst false-1lst))

(t (and (tautologyp (if-then term)
(cons (if-test term) true-lst)

false-1lst)

(tautologyp (if-else term)
true-lst

(cons (if-test term) false-1lst)))))))

(t (error "~%tautologyp did not understand the term: ~a" texrm))))
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(defun truep (term true-lst)

(cond ((atomic-term-p term) (member term true-lst :test #’term-eq))
((composite-term-p term)
(or (op-eq (composite-term-op term) (the-op (quote t)))

(member term true-lst :test #’term-eq)))

(t (error "~Y%truep did not understand the term: "a" term))))

(defun falsep (term false-lst)
(cond ((atomic-term-p term) (member term false-lst :test #’term-eq))

((composite-term-p term)
(or (op-eq (composite-term-op term) (the-op (quote f)))

(member term false-lst :test #’term-eq)))

(t (error "~Y%falsep did not understand the term: "a" term))))

The remaining code is for initializing the system and carrying out a standard test. The

setup procedure carries out the task of partitioning the list of lemmas and annotating each

operator with the appropriate sublist. The constant REALLY-BIG-LIST-OF-LEMMAS is defined in

[4] pp.118-126. The test term is constructed by applying a substitution to boolean expression.

(defun add-lemma (sexp)
(let* ((lemma (sexp-2-lemma sexp))

(op (lemma-op lemma)))
(setf (op-lemmas op) (cons lemma (op-lemmas op)))))

(defun sbind-2-tbind (sbind)

(cons (sexp-2-term (car sbind)) (sexp-2-term (cdr sbind))))
(defun setup () (mapc #’add-lemma REALLY-BIG-LIST-OF-LEMMAS))
(defun test () (tautp (test-term)))
(defun test-term ()

(apply-subst

(mapcar #’sbind-2-tbind
(quote ((x foo (plus (plus a b)

(plus c (zero))))
(y foo (times (times a b)

(plus c d)))

(z foo (reverse (append (append a b)
(nil))))

(u equal (plus a b)
(difference x y))

(w lessp (remainder a b)

(member a (length b))))))

(sexp-2-term (quote (implies (and (implies x y)
(and (implies y z)

(and (implies z u)
(implies u w))))

(implies x w))))))

4.0.2 Parallelizing the Program

In the benchmark test, the rewritten term is large (order of fifty thousand nodes) and hence

most of the work in evaluating (tautp term) is spent in rewriting the term and its subterms.

It seems an ideal place to start parallelizing. Fortunately this is a very simple task. There are
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two obvious places where there is inherent parallelism in the rewrite program and its auxiliary

programs. These points are where the functional mapcar is used, in rewrite and apply-subst.

Here we can replace mapcar by one of several parallel versions gqmapcar! , gmapcarl, gmapcar?2,

qmapcar3 and qmapcar4.
These parallel versions of mapcar are most appropriate for short lists such as argument lists

for terms. They are all constructed from the same template, differing only in the dynamic
parallelism macro used. For example

(defun gmapcar! (f 1)

(if 1 #!'(cons (funcall f (car 1)) (gmapcar f (cdr 1)))) nil)

(defun gmapcar<n> (f 1)
(if 1 #<n>(cons (funcall f (car 1)) (gqmapcar f (cdr 1)))) nil)

Another possible point for introducing parallelism is where tautologyp calls itself recur-

sively on both branches of an if-term. Here we can prefix the conjunction with one of the

dynamic parallelism macros.

To summarize we have three sites for the addition of parallelism which we will call (A),

(R), and (T). (A) consists in replacing the call to mapcar in apply-subst by one of the par-
allel versions. (R) consists in replacing the call to mapcar in rewrite by one of the parallel

versions. (T) consists in prefixing the and expression in tautologyp by one of the dynamic par-

allelism macros. The first tests simply used unconstrained parallelism to see what the potential

parallelism is at each site, as always we are running on a machine with eight processors.

R | T overhead | idle-t ime

- - - 20.210 I 0.0 | 137.9889

#! | #1] #! 3.683 98626 2.5769 0.9364

- - #! 19.896 8550 0.6791 | 135.7723

#! | - 7! 3.701 98612 2.5811 2.9396
#1! - - 3.699 90062 2.3456 1.7393

# | #1 - 3.444 90076 2.3513 0.9313

From these results we see that putting parallelism only in apply-subst has almost no effect,

while putting parallelism only in rewrite gives substantial speedup. This is due to the fact

that most of work in rewriting is finding a match. There are many more failures than successes

and hence many more matching tasks than applications of substitutions. Adding tautologyp

parallelism to rewrite parallelism decreases the idle time by a factor of two and produces a

small increase in parallelism. On the other-hand adding apply-subst parallelism to either (R)

or (R,T) increases the overhead and idle time and decrease the speedup. This is presumably due
to the fact that the tasks created by apply-subst parallelism are small. The next experiments

are testing the effects of various fine tunings in the parallelism.
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New-Boyer (sequential 18.538)

RT [A [para-time [processes [overhead [idle-tme
#7 | #7 13.080 54788 4.4300 | 75.6937

#7 | #! 12.913 54783 4.3974 | 74.2607

#27 | #] 3.448 10599 0.4182 1.1196

#37 | #! 3.291 12075 0.4217 1.0587

#47 | #! 3.344 15649 0.5022 1.0511

#7 13.706 54474 4.3859 78.9108

#27 3.533 9492 0.3784 1.8355

#37 3.438 11569 0.3973 1.7265

#47 3.430 14766 0.4842 1.6686

#7 #7 13.562 60073 4.9065 78.4283

#27 #27 3.545 15204 0.6166 1.8917

#37 #37 3.450 14770 0.5151 1.6650
#47 #47 3.454 17678 0.5671 1.5985

4.0.3 Optimizing

As already remarked, the original Boyer benchmark program used lists and list operations

to represent composite terms and lemmas. Atomic terms and operations were represented as

Lisp symbols and lemmas relevant to a given operation were stored on the property list of

the corresponding symbol. We represented atomic terms, composite terms, operations and

lemmas as distinct structures and stored lemmas in the operation structure. The original code

for rewrite was different only in its failure to use either abstract syntax or the functional

mapcar. These are also the only differences between the original apply-subst and our version.

match-args must return two pieces of information. We use the Common Lisp multiple values

feature to express this. The original version returned t or nil depending on success, and if

successful set the value of a global variable to be the resulting substitution.

Although use of structure definitions and other high-level constructs results in elegant and

easy to understand code, these constructs are part of a rather complex machinery and may well

not produce the most efficient implementation of the underlying algorithm. The original pro-

gram can (essentially) be recovered by carrying out the simple set of transformations described
below.

e Step zero consists in replacing structures by lists. Common Lisp provides a mechanism

that allows the programmer to maintain the elegant look of the code with more efficient

implementation by using the :type option for structure definitions. By simply changing

the defstructs as shown below we force a representation close to that of the usual list

structure representation.

(defstruct (atomic-term (:type list) :named) name)

(defstruct (composite-term (:type list) :named) op args)
(defstruct (lemma (:type list) :named) op args rhs)
(defstruct (op (:type list) :named) name lemmas)
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e Step one is to eliminate the atomic-term structure definition. This is achieved by omitting

the atomic-term defstruct and making the following definitions.

(defun make-atomic-term (x) x)

(defun atomic-term-name (x) x)

(defun atomic-term-p (x) (atom x))
(defun atomic-term-eq (x y) (eq x y))

e Step two consists in making the composite-term structure unnamed. This is achieved by

replacing the composite-term defstruct by

(defstruct (composite-term (:type list)) op args)

and redefining the (no longer defined) test function composite-term-p.

(defun composite-term-p (x) (consp x))
(defun term-eq (x y) (equal x y))

e Step three involves making the lemma structure unnamed. This consists of replacing the
original lemma defstruct by

(defstruct (lemma (:type list)) op args rhs)

oe Step four consists in eliminating the operation structure. Here again we omit the op

defstruct and adding the following definitions.

(defun make-op (x) x)

(defun op-name (x) x)
(defun op-lemmas (x) (get x (quote lemmas>>>
(defun op-p (x) (atom x))
(defun the-op (x) (atom x))
(defun op-eq (x y) (eq x y))

o Step five involves eliminating the use of multiple values. For this we replace occurrences
of (values nil nil) by ’fail, (values t <exp>) by <exp> and _

(multiple-value-bind (?success sublist) <bndexp> <body>)

by

(let ((sublist <bndexp>))

(let ((?success (if (eq sublist ’fail) nil t))) <body>))

e Step six consists in unfolding mapcar in apply-subst. For this we replace the call to
mapcar by (apply-subst-list (composite-term-args term) ) and add the definition

(defun apply-subst-1lst (alist 1st)
(cond ((null 1st)

nil)

(t (cons (apply-subst alist (car 1lst))

(apply-subst-1st alist (cdr 1lst))))))
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e Step seven step consists in unfolding mapcar in rewrite. For this we replace the call to
mapcar by (rewrite-args (composite-term-args term>> and add the definition

(defun rewrite-args (1st)
(cond ((null lst)

nil)

(t (cons (rewrite (car 1lst))
(rewrite-args (cdr 1st))))))

The program nlboyer is obtained by carrying out step zero of the transformations. The

major differences between nlboyer and that of the original bench-mark are the following.

Atomic terms are not atoms, operators are not atoms and lemmas are part of operator structure

rather than being on the property list of the corresponding symbol, the use of multiple values

rather than global variables for passing the substitution list, and the use of mapcar rather than

auxiliary functions for applying a function to a list of items.

nlboyer is roughly fifty percent faster than new-boyer and one gets roughly ten percent

better speed up. Clearly a win if speed is the goal. The data for nlboyer is summarized in the

following table.

nlboyer

Structures as Lists (sequential time 14.823)
R

Best Speed-up (/ 14.823 2.294) = 6.462

The program oboyer is obtained by carrying out all of the transformations. This differs from

the original boyer benchmark code, assuming a suitably smart compiler, only in the elimination

of global variables. Note that sexp-to-term and term-to-sexp are now identity functions

— hopefully we don’t need to redefine them explicitly. The timings oboyer are given in the

following table.

Original Boyer (sequential time 13.153)

R[T fara-ime frocesses fverhead [dle-time

#! 13.333 2.262 90062 0 2.341200 | 93.1092 1.1649

#37 1.997 13676 0.4773 1.2800

#27 | #! 1.954 10117 0.4207 0.6772

Best Speed-up (/ 13.153 1.954) = 6.731
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Chapter 5

The parallel iteration forms

In section 2.1 we presented parallel versions of the Common Lisp iteration forms:

eo dotimes,

oe dolist,

¢ mapcar, mapc, etc.

Now we will describe how the parallel forms are implemented. We would like gdotimes,

gmapcar, etc. to satisfy the following goals.

e Any number of iterations should be handled as efficiently as possible. When the number

of iterations is large, this means generating fewer processes than the number of iterations.

e The efficiency should depend as little as possible on the size of the computation that

is done in each iteration. l.e., the parallel forms should be able to handle fine-grained

iteration almost as well as coarse-grained iteration.

e The parallel forms should work well if they are called at the “top level” of a parallel

program, or when they are used inside other code that is already parallel. In the latter

case, it may not be necessary to create any processes, and doing so would be inefficient.

The last goal suggests using the dynamic-spawn-p control form, which will interact well with

other code in the program that uses dynamic-spawn-p. However, there is a problem in doing

this. Dynamic spawning works best when the processes are arranged in a fairly balanced

tree. The straightforward way to create processes from an iteration, however, results in an

unbalanced tree, and does not execute efficiently under dynamic-spawn-p, or under any other

form of parallelism control that we know about.

Our solution to this is to restructure the computation as a balanced tree whenever possible.

For dotimes, we can do this because the number of iterations is computed right at the beginning.

Let n be the number of iterations of a dotimes form. If we divide the whole problem into two

subproblems: (1) do iterations 0 to |n/2]; and (2) do iterations |n/2] to n — 1; then these
computations can be done in parallel, and they can in turn be subdivided. We repeat this

process until we create processes that perform a single iteration.
Here is some code that illustrates the above-described method. We convert a gdotimes

form such as:
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(qdotimes (i n) (body i))

to:

(labels ((do-range (low high)
(if (= low high)

(body low)

#7? (progn
(do-range low (ash (+ low high) -1)))
(do-range (+ 1 (ash (+ low high) -1)) high))))

(do-range 0 (1- n)))

The internal function do-range evaluates (body i) for the range of values between low and
high (inclusive). If the range contains more than one value, it is split into two smaller ranges.

The control form (spawnp) (called implicitly because of the #7? syntax) determines whether this

is done by means of parallel processes or ordinary function calls.

The above solution meets some of our criteria, but has significant overhead for small-grained

iteration. The reason is that we have added a function call (to do-range) for each iteration.

We would like to do an extra function call only when necessary, i.e., when a new process is

actually created by the (spawnp) control expression.

In order to do this, we modify our strategy slightly. The code above takes a range [low, high],

splits it in half, and then decides whether to do the two halves in parallel. Instead of this, we will

first call (spawnp) to see if a new process is needed. If it is not, we will perform one iteration

sequentially, and then call (spawnp) again. The range to be split is now [low+1,high].As long
as (spawnp) returns nil, we will avoid creating a process and we will avoid a function call for

the current iteration. The only overhead is therefore the calls to (spawnp). Each of these takes

less than a function call, if the default form (dynamic-spawn-p) is used, because it is a macro

that expands into a very small number of machine instructions.
Using this new strategy, our code becomes:

(labels ((do-range (low high)
(loop

(when (and (spawnp) (< low high))
#! (progn

(do-range low (ash (+ low high) -1))
(do-range (+ 1 (ash (+ low high) -1)) high))

(return-from do-range nil))
(when (> low high) (return nil))
(body low)
(inct low))))

(do-range 0 (1- n)))

Notice that if (spawnp) always returns nil, then all that is executed is a loop that computes

the dotimes body for each value in the desired range. .

The method we have just outlined does not extend directly to the parallel iteration functions

on lists: qdolist, gmapcar, etc. The reason is that we do not know the length of the list, so

we cannot easily split the range of iterations in half. Also, even if we knew the length of the

list to be n, it would take O(n) time to reach the beginning of the second half, while in the
code above it takes just constant time to start the two subprocesses. This extra time is spent

in a sequential computation and thus adds idle time, if there is nothing else for our processors
to do.
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Given a list mapping operation whose iterations are independent computations, our goal

is to execute this computation as efficiently as possible on a shared-memory multiprocessor.

The following variables characterize our parallel machine. Those that represent time are all

multiples of some basic time unit, whose exact value is not important.

p 1s the number of processors.

s 1s the amount of time needed to create (“spawn”) a process.

d 1s the amount of time needed to evaluate the cdr function.

We use the following to describe a specific instance of the use of a mapping function.

n 1s the length of the list being mapped over.

c is the time needed to apply the function to each list element. (We assume c is

constant .)

The above descriptions combine some of the primitive operations needed to evaluate a

mapping function. All of the work done in stepping from each iteration to the next (testing for

the end of the list, calling cdr, and whatever else is needed) is subsumed in the parameter d,

and all of the work needed to create and schedule a process is contained in s.

Our potential speedup is limited by Amdahl’s Law, which predicts a maximum speedup on
any parallel program based on its inherently sequential component, In our case, the list data

structure requires n cdr operations to be performed in order, since each cons cell contains the

pointer to the next one. So the minimum time for any parallel mapping function is nd, the

time needed to perform the n cdr operations.

A straightforward sequential version of the mapping function takes time n(c + d) since we

perform one function application on each element of the list, and step from each element to the

next. Therefore Amdahl’s Law limits the speedup to

Tsey _ ncrd) cH+d

Unless we change the list data structure to something else, there is no way to overcome this
limitation.

(defun gqmapa (fn list) oo
(if (null list)

nil

#!(progn (funcall fn (car list))
(qmapa fn (cdr list)))))

A simple way to parallelize the computation is shown in the function gmapa. The main loop

of this function creates a new process for each iteration of the loop; this process will perform

the ¢ units of work required to apply the function to one element of the list. Even if enough

processors are available to handle the processes that are created, the minimum time for gmapa

is n(s + d), and by the argument above, its maximum speedup is now (¢ + d)/(s + d) instead
of (¢ + d)/d. If the spawning time s is large, this is a significant loss.

The function gmapa has other problems. If there are not enough processors to handle all of

the processes as they are created, then proper scheduling of the processes becomes important.
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Also, the amount of memory needed to hold data structures describing the waiting processes
can become a serious obstacle.

Our experience in Qlisp programming has shown that programs that work by top-down
recursive splitting (such as the Quicksort algorithm for sorting) are easy to parallelize. Such

computations can be viewed as a tree of processes, where the root represents the entire compu-

tation, and each process’s children are subcomputations that may be executed in parallel. We

have studied in some depth the particular case where each node in the tree has two children,

the work performed at each node is roughly constant, and a “dynamic partioning” method is

used to avoid creating many more processes than are necessary to keep the parallel machine

busy [11].
Dynamic partitioning, in its simplest form, uses a separate queue of processes for each of

the p processors. When the program allows a new process to be created, a processor does

so only if its own queue is empty, as indicated by the function dynamic-spawn-p. Processes

are inserted only into a processor's own queue. When it is idle, a processor first tries to take

work from its own queue; if the queue is empty, it cycles among the other processors’ queues,

removing a process from the first non-empty one that it finds. If there are p processors and the

computation tree has height h, this results in O(p?h*) processes being created.

(defun gmapb (fn list)
(labels

((map-loop (k list)
(cond ((or (null list) (= k 0))

nil)

((not (dynamic-spawn-p))
(funcall fn (car list))

(map-loop (1- k) (cdr list)))
((= k 1)

(funcall fn (car list)))

(T (let ((k2 (halve k)))

#!(progn (map-loop k2 list)
(map-loop (- k k2)

(nthedr k2 1list))))))))

(map-loop (length list) list))
list)

(defun halve (k) (ash k -1))

(defun double (k) (ash k 1))

Function gmapb uses a modified divide-and-conquer method, dividing only when it spawns

a process. Initially, gmapb computes the length of the list n. It is the job of the inner function

map-loop to perform the actual calls to the function being mapped, as well as to check to see

if it 1s reasonable to split the task into two equal sub-tasks. The answer to the latter question

is provided by a call to dynamic-spawn-p. This predicate returns T if the local task queue (the

current processor's queue of things to do) is empty, and NIL otherwise.

When the predicate causes a partition, the algorithm divides the list into two parts of

sizes |n/2| and [n/2], creates subprocesses to perform the mapping function on these sublists,
and combines the results of these processes. There is also a test prior to spawning, insuring

non- trivial processes.

Dynamic partitioning applied to qmapb yields a significant reduction in the overhead due

to process spawning, compared to gmapa, which spawned n processes. The height h of the
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computation tree is O(log n), so for a fixed number of processors p, the number of processes

spawned is at most O(log* n), in the worst case, using the analytical result previously mentioned.
In practice, the average number of spawns is O(log? n), but in either case, this function grows
much more slowly than n.

However, there is still a problem-idle time. We divide idle time into three components.

e At the beginning of the computation, only one processor is busy. Other processors remain

idle until enough processes have been created to make them busy.

e Once all of the processors become busy, the machine reaches a “steady state” where there

is very little idle time. (This is true for the algorithms we are describing, but it is not

true in general for all programs.)

oe The steady state ends when the computation has passed the point when any new processes

can be created, and all of the queues used by the dynamic scheduler are empty. Then,

once a processor becomes idle it remains idle for the rest of the computation. This is

because no new process can be created for it, and whenever another processor finishes a

process, allowing its parent to resume, that processor is available to run the parent.

Of the three components of idle time in gmapb, the first is the most significant. To compute

the length of the list requires n cdr operations, which takes time nd. All of this is done on

one processor, while the others wait, since this cannot be parallelized. Additionally, the time

until all p processors are busy is O(ndlogp), due to the large number of calls to cdr near the
beginning of the computation. Even if the rest of the computation is done in the fastest possible

time, which we observed above to also be nd, the minimum time for the parallel algorithm is

at least n(2d + dlogp), and hence the potential speedup is less than half of the limit imposed
by Amdahl’s Law.

The idle time at the end is not as large. During the “steady state” period, all p processors

remain busy. (Here we assume that p is not more than (¢ + d)/d, the speedup limit imposed
by Amdahl’s Law.) As long as some of the processes are performing the mapping operation on

lists of length greater than 1, the steady state continues, since such processes can be partitioned

whenever needed to provide work for a processor that has become idle. After the steady state

period, therefore, all processors are either idle, are applying the function to lists of length 1, or

are combining the results of subcomputations.

Only c¢ time units (a constant number) can be spent in finishing the work on lists of length 1.
The combination of subcomputations takes time proportional to the height of the computation

tree, which is O(log n). Therefore the idle time at the end of the computation is O(log n). As

n increases, this becomes insignificant compared to both the idle time at the beginning (which

is at least nd) and the overall runtime (at least n/p).

The function qmapb eliminated one obstacle to achieving the optimal speedup given by
Amdahl’s Law, namely the overhead of process creation, but the excessive idle time at the

beginning of the computation still stands in the way. We now describe an improved function

gmapc that reduces this idle time.

Rather than precompute the length, n, of the list, we use a parameter k£ as an initial estimate,

and divide the work into two tasks. The first task applies the function to the first £ elements

of the list, while the second task is a recursive call with the length estimate k doubled. The

repeated doubling of k insures that the end of the list is reached after log n tasks have been

spawned. This virtually eliminates the idle time at the beginning of the computation (assuming
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the initial value of k is small). However it does not insure that the machine reaches a steady

state, in particular the last task spawned is as large as all the others combined. By using the

dynamic partioning method within each of these logn tasks we can insure that a steady state

is reached, and maintained as long as possible. Each of these tasks divides into equal sized

subtasks whenever the dynamic partitioning predicate is true. While the predicate is false each

task simply performs the desired mapping operations.

(defun gmapc (fn list)
(macrolet

((*map-apply* (fn list) ‘(funcall ,fn (car ,list))))
(labels

((map-loop (k list)
(cond ((or (null list) (= k 0))

nil)

((not (dynamic-spawn-p))
(*map-apply* fn list)
(map-loop (1- k) (cdr list)))

((= k 1)

(*map-apply* fn list))
(T (let ((k2 (halve k)))

#!(progn (map-loop k2 list)
(map-loop (- k k2)

(nthedr k2 list)))))))

(map-rest (k list)
(when list

#!(progn (map-loop k list)
(map-rest (double k)

(nthedr k 1list))))))

(map-rest 1 list)))
list)

We begin by describing the simpler non-value accumulating mapping functionals gmapc and

gmapl, concentrating on the former for ease of exposition. The gmapc program has two local

functions map-loop and map-rest. The function map-rest spawns the first logn tasks. Each

of these tasks consists of a call to the second local function map-loop, which is identical to

map-loop in gmapb. In this version of the program we take 1 to be our initial estimate of the

length of the list to be processed.

The qmapc function is written using macrolet to capture the uniformities between this

function and the related function qmapl. The definition of gmapl is obtained by modifying the

macro *map-apply* so that it expands to (funcall fn list).

To extend this technique to the value returning mapping functionals, mapcar, mapcan,

mapcon and maplist, we need to accumulate and pass along the values of the respective calls

to the function. To do this efficiently we use cyclic lists in the following way. Rather than have

map-loop return the list of accumulated values that would then have to be cdr-ed down to be

attached to the remaining result. The program map-loop is written so as to return the last

cell in this list, modified so that the cdr points to the first cell of the list. We shall call such a

cyclic representation (or modification) of a list a cycle. The transformations from lists to cycles,

list-2-cycle, and from cycles to lists, cycle-2-1ist, explicitly explains this representation.

(defun list-2-cycle (list)
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(when list

(let ((cycle (last 1list))) (setf (cdr cycle) list) cycle)))

(defun cycle-2-list (cycle)
(when cycle

(let ((first-cell (cdr cycle))) (setf (cdr cycle) nil) first-cell)))

The functions map-loop and map-rest are modified so as to return cycles, which in the

case of map-loop entails adding a new argument, cycle, representing the cycle up to the
current point in the loop. This also entails that the cycles returned by spawned tasks must be

remembered and linked together. This linking is performed by the function link-cycles. It

takes two cycles as arguments and links them toget her to form a third cycle. The resulting cycle

encodes the list obtained by nconc-ing the list encoded by the first cycle onto the list encoded

by the second cycle. In other words a call to (link-cycles cycle-l1 cycle-2) is equivalent

to a call to (1ist-2-cycle (nconc (cycle-2-list cycle-1) (cycle-2-1list cycle-2))).

Similarly when map-loop applies the function to the appropriate argument it must splice

the resulting list into the cycle accumulated so far, i.e. the value of cycle. This is accomplished

by the program splice-cycle which takes a cycle, and a list and returns the same cycle that

would result from a call to (link-cycles cycle-1 (list-2-cycle list)).

(defun link-cycles (cycle-1 cycle-2)
(cond ((and cycle-1 cycle-2)

(Let ((temp (cdr cycle-1)))
(rplacd cycle-1 (cdr cycle-2))
(rplacd cycle-2 temp)
cycle-2))

(cycle-1 cycle-1)
(cycle-2 cycle-2)))

(defun splice-cycle (cycle list)
(cond ((and cycle list)

(let ((new-cycle (last list))

(temp (cdr cycle)))
(rplacd cycle list)

(rplacd new-cycle temp)
new-cycle)) ——

(cycle cycle)
(list (let ((new-cycle (last 1list)))

(rplacd new-cycle list)
new-cycle))))

(defun gmapcar (fn list)
(macrolet

((*map-apply* (fn list cycle)
‘(splice-cycle ,cycle

(cons (funcall ,fn (car ,list)) nil))))

(labels

((map-loop (k list cycle)
(cond ((or (null list) (= k 0)) cycle)

((not (dynamic-spawn-p))

(map-loop (1- k)
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(cdr list)

(*map-apply* fn list cycle)))
((= k 1) (*map-apply* fn list cycle))
(T

(let ((k2 (halve k)))

(multiple-value-bind (second third)

(qvalues (map-loop k2 list nil)

(map-loop (- k k2)
(nthedr k2 list)

nil))

(link-cycles cycle
(link-cycles second third)))))))

(map-rest (k list)
(when list

(multiple-value-bind (first second)

(qvalues (map-loop k list nil)
(map-rest (double k) (nthcdr k list)))

(link-cycles first second)))))
(cycle-2-list (map-rest 1 list)))))

These modifications result in the function qmapcar. The parallelism is expressed by us-

ing the Qlisp form qvalues, which creates processes for each of its argument forms, waits
for them to finish, and returns their values. Again the actual program is written using

macrolet so as to capture the uniformities between this program, mapcar, and its sister pro-

grams mapcan, maplist and mapcon whose definitions are obtained by modifying the macro

*map-apply* suitably. In particular for mapcan the macro definition expands to (splice-cycle

cycle (funcall fn (car list))), for maplist it expands to (splice-cycle cycle (cons

(funcall fn list))), and for mapcan it expands to (splice-cycle cycle (funcall fn
list)).

5.1 Analysis of gmapc

The function gmapc outperforms gmapb in several respects. Here we will show that the idle

time at the beginning of the computation, which was the main source of overhead in gmapb,

becomes negligible as n increases.

The key idea is to show that enough work to keep p processors busy is found in O(plogp)
time, instead of the O(n logp) that we needed for gmapb. If the lowest-level processes are large

enough, the first p iterations of the function provide this work, and our method of doubling

the process size at the beginning of the computation ensures that these processes are created

in O(plogp) time.
It may happen that some of the initial processes finish before the steady state is reached,

and in that case the initial idle time is longer. Eventually, though, the doubling of the segment

size produces a process large enough so that all p processors remain busy while the beginning

of the next segment is found. The size of this segment is some constant multiple of p, so the

time needed to reach it is O(p), and the time to partition it into p processes is O(p log p). This

is the initial idle time of the computation.

For small values of n, the input list may be exhausted before the situation described above

holds. The result is therefore true asymptotically as n increases. In the next section. oul
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experimental results show how large n needs to be as a function of the work performed in each

iteration of the mapping function.

5.2 Experimental results

Each experiment consisted of mapping the function

(defun work (m) (if (<= m 0) 0 (work (i- m))))

over a list containing n copies of a number m. Thus m represents the granularity and nr the

problem size for a more general list mapping operation.

The function work runs in roughly 6m microseconds on input m. We examined the behavior

of gmapa, gmapb and gmapc on a variety of lists of various lengths, L, ranging from 10 to 100000,

the problem size, N, ranging from (work 0), which takes a few microseconds per element, up

to (work 160), which takes nearly 1 millisecond per element.

(QMAP WORK 0)
pure |serial |parallel number |overhead idle

10A 0 | 0.000 | 0.000 0.001 11 0.000 8.1 | 0.004 47.3

10B 0 | 0.000 | 0.000 0.001 8 0.000 10.0 | 0.004 50.4

10C 0 | 0.000 | 0.000 0.001 11 0.001 13.5 | 0.004 56.5

100A 0 | 0.001 | 0.004 0.005 101 0.007 18.3 | 0.028 70.9

100B 0 | 0.001 | 0.002 0.001 32 0.001 14.3 | 0.006 54.1

100C 0 | 0.001 | 0.002 0.001 45 0.003 26.4 | 0.005 40.1

1000A 0 | 0.016 | 0.046 0.048 1001 0.073 189 | 0.271 704

1000B 0 | 0.016 | 0.020 0.008 110 0.006 9.7 | 0.028 45.2

1000C 0 | 0.016 | 0.017 0.005 154 0.010 23.3 | 0.007 16.5

10000A 0 | 0.161 | 0.484 0.651 10001 0.728 14.0 | 3.867 74.2

10000B 0 | 0.161 | 0.202 0.061 318 0.014 29 | 0.230 47.6

10000C 0 | 0.161 | 0.176 0.031 433 0.021 8.5 | 0.009 34

100000B 0 | 1.619 | 2.045 0.586 609 0.025 0.5] 2.278 48.6

100000C 0 | 1.619 | 1.758 0.275 991 0.042 1.9 | 0.010 0.5
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(QMAP WORK 10)
pure |serial |parallel number [overhead idle

10A 10 | 0.000 | 0.001 0.001 11 0.000 89 | 0.004 52.9

10B 10 | 0.000 | 0.001 0.001 8 0.000 9.6 | 0.004 47.7

10C 10 | 0.000 | 0.001 0.001 10 0.001 13.3 | 0.004 59.0

100A 10 | 0.007 | 0.010 0.005 101 0.007 18.2 | 0.023 56.2

100B 10 | 0.007 | 0.008 0.002 33 0.001 9.9 | 0.006 36.0

100C 10 | 0.007 | 0.008 0.002 48 0.004 23.8 | 0.005 31.6

1000A 10 | 0.076 | 0.107 0.047 1001 0.073 19.5 | 0.205 54.9

1000B 10 | 0.076 | 0.080 0.015 125 0.007 5.7] 0.029 23.6

1000C 10 | 0.076 | 0.077 0.013 169 0.010 10.4 | 0.006 6.2

10000A 10 | 0.758 | 1.117 0.547 10001 0.728 16.6 | 3.014 68.9

10000B 10 | 0.758 | 0.798 0.134 291 0.014 1.3 1 0.234 21.8

10000C 10 | 0.758 | 0.772 0.106 462 0.023 2.7 | 0.009 1.0

100000B 10 | 7.569 | 7.998 1.323 551 0.023 0.2 | 2.274 21.5 |

100000C 10 | 7.569 | 7.710 1.011 890 0.038 0.5 0.010 0.1

(QMAP WORK 40)
pure | serial |parallel number | overhead idle

10A 40 | 0.002 | 0.003 0.001 11 0.000 9.2 | 0.005 61.1

10B 40 | 0.002 | 0.003 0.001 8 0.000 8.7 | 0.005 64.8

10C 40 | 0.002 | 0.003 0.001 10 0.001 12.3 | 0.005 60.4

100A 40 | 0.025 | 0.028 0.007 101 0.007 12.3 | 0.022 38.5

100B 40 | 0.025 | 0.026 0.005 34 0.002 54 | 0.007 19.0

100C 40 | 0.025 | 0.026 0.005 49 0.004 10.1 | 0.006 15.1

1000A 40 | 0.254 | 0.284 0.066 1001 0.069 13.0 | 0.189 35.7

1000B 40 | 0.254 | 0.259 0.038 129 0.007 24 | 0.029 95

1000C 40 | 0.254 | 0.256 0.035 181 0.011 4.0 | 0.007 2.5

10000A 40 | 2.544 | 2.901 0.709 10001 0.700 12.3 | 2.236 394

10000B 40 | 2.544 | 2.585 0.358 332 0.016 0.6 | 0.232 8.1

10000C 40 | 2.544 | 2.558 0.329 472 0.024 09 | 0.010 04

100000B 40 | 25.446 | 25.856 3.552 561 0.024 0.1 | 2.276 8.0

100000C 40 | 25.446 | 25.572 3.238 870 0.038 0.1 | 0.011 0.0
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(QMAP WORK 160)

pure | serial [parallel number | overhead idle

10A 160 | 0.009 | 0.010 0.002 11 0.000 3.9 | 0.009 47.38

10B 160 | 0.009 | 0.010 0.002 8 0.000 3.6 | 0.010 53.9

10C 160 | 0.009 | 0.010 0.002 10 0.001 4.7 | 0.009 46.7

100A 160 | 0.097 | 0.100 0.016 101 0.007 5.3 | 0.025 19.8

100B 160 | 0.097 | 0.097 0.014 35 0.002 2.0 | 0.012 10.2

100C 160 | 0.097 | 0.097 0.005 51 0.004 34 | 0.010 84

1000A 160 | 0.968 | 0.999 0.155 1001 0.067 5.4 | 0.189 15.3

1000B 160 | 0.968 | 0.973 0.128 136 0.008 0.7 | 0.033 3.2

1000C 160 | 0.968 | 0.970 0.125 182 0.012 1.2 | 0.011 1.1

10000A 160 | 9.684 | 10.015 1.639 10001 0.678 5.2 | 2.078 15.9

10000B 160 | 9.684 | 9.726 1.250 315 0.015 02] 0236 24

10000C 160 | 9.684 | 9.701 1.224 435 0.022 0.2 0.014 0.1

100000B 160 | 25.446 | 25.856 3.552 561 0.024 0.1 | 2.276 8.0

100000C 160 | 25.446 | 25.572 3.238 870 0.038 0.1 | 0.011 0.0
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Chapter ©

Backtracking search

The N-Queens problem entails counting the number of distinct placements of N queens on a

chessboard such that no queen attacks any other queen. Recall that queens attack all squares

in the same row, column, and the two diagonals. The most common algorithms for solving

the problem use backtracking; queens are placed in feasible locations until either a solution is

obtained or no more queens can be placed. In either case, the program “backs up” to the last

queen placement and tries the next possibility. There are many possible heuristics which can

reduce the search space, but we simply use the straightforward column numbering scheme, and

build the solutions from left to right.

The following function serial-column solves the serial N-Queens problem. serial-column

tries to place a queen in each row of the specified column. It succeeds in placing the queen
when the specified row, and both diagonals are free of attack. It then recursively tries to place

a queen in the next column, until reaching the last column. The function returns the total
number of solutions that were found.

(defun serial-column (column row-state left-diag right-diag N)
(let ((count-solutions 0))

(dotimes (row N)

(when (free-p row row-state)

(when (free-p (left-diagonal column row) left-diag)
(when (free-p (right-diagonal column row n) right-diag)

(if (= column (- n 1))

(incf count-solutions)

(incf count-solutions

(serial-column (next-column column) (add-attack row row-state)

(add-attack (left-diagonal column row) left-diag)
(add-attack (right-diagonal column row n) right-diag)
n)))))))

count-solutions))

These macros make the code more legible. free-p uses an index to test a bit in a bit-vector.

add-attack turns on a bit in a bit-vector. left and right-diagonal compute the appropriate

diagonal index from the row, column, and N. To find the number of placements on an empty

NxN board, we use (serial-column 0 0 0 0 N).

(defmacro free-p (index state) ‘(not (logbitp ,index ,state)))
(defmacro add-attack (index state) ‘(+ ,state (ash 1 ,index)))
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(defmacro left-diagonal (column row) ‘(+ ,column ,row))
(defmacro right-diagonal (column row n) ‘(- (+ ,column ,n -1) ,row))
(defmacro next-column (column) ‘(+ 1 ,column))

This backtracking algorithm has an abundance of potential parallelism. The individual iter-

ations of the dotimes are almost completely independent; if they were completely independent,

we could parallelize the program by changing the dotimes to qdotimes. the only difficulty is

that the count-solutions counter could be updated in any single iteration; since Qlisp does

not assume atomic read-modify-write operations, modifying the count-solutions variable is

a critical region, in a parallel version of the program.

6.0.1 Two Solutions

We will present a synchronous solution, using locks, and an asynchronous solution, using a

distributed variable. Both solutions use gdotimes to express the parallelism.

Synchronous Solution

To implement the synchronous solution, we use a lock structure and the with-lock macro.

Each incf of the count-solutions variable is wrapped in a with-lock, to protect it as a

critical region. Note that the (incf count-solutions) form is critical, because all of the

processes share the variable. We use the temp variable to avoid locking the recursive call to

synch-column.

(defun synch-column (column row-state left-diag right-diag N)
(let ((count-solutions 0)

(lock (make-lock :type :spin)))
(qdotimes (row XN)
(when (free-p row row-state)

(when (free-p (left-diagonal column row) left-diag)
(when (free-p (right-diagonal column row n) right-diag)

(if (= column (- n 1))

(with-lock lock (incf count-solutions))

(let ((temp
(synch-column (next-column column) (add-attack row row-state)

(add-attack (left-diagonal column row) left-diag)
(add-attack (right-diagonal column row n) right-diag)
n)))

(with-lock lock (incf count-solutions temp))))))))
count-solutions))

There are some disadvantages to this synchronous solution,” however. When the number of

solutions (and number of processors) is large, then the lock may be a significant bottleneck,

even though the increment operation is itself quite tritial. The make-lock operation is also

non-trivial. Although this code could be modified to pass a lock, it would be better to avoid

using locks at all, via the asynchronous method.

An Asynchronous Solution

The asynchronous solution uses a distributed counter. During the computation, each processor
updates its “own” number of solutions independently of a.ll other processors. At the end, the
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total number of solutions is the sum of all processors number of solutions. It has a small

disadvantage, in that the pre-processing and post-processing require time proportional to the

number of processors. However, since the backtracking algorithm is exponential, this overhead

1s not significant.

Solve first creates a vector with length *number-of -processors*. Then it calls asynch-column,

passing the vector as an argument. When asynch-column finds a solution, it increments the

appropriate vector element as indexed be (get-processor-number), instead of incrementing

a local variable. This asynchronous version works primarily by side-effectine the vector, and

does not return any useful value.

(defun solve (n)

(let ((distributed-counter (make-array *number-of-processors*
zinitial-element 0)))

(asynch-column 0 0 0 0 n distributed-counter)
(let ((solutions 0))

(dotimes (i *number-of-processors¥)
(incf solutions (svref distributed-counter i)))

solutions)))

(defun asynch-column (column row-state left-diag right-diag N
distributed-counter)

(qdotimes (row N)
(when (free-p row row-state)

(when (free-p (left-diagonal column row) left-diag)
(when (free-p (right-diagonal column row n) right-diag)

(if (= column (- n 1))

(incf (svref distributed-counter (get-processor-number)))
(asynch-column (next-column column) (add-attack row row-state)

(add-attack (left-diagonal column row) left-diag)
(add-attack (right-diagonal column row n) right-diag)
n distributed-counter)))))))

The only disadvantages of this met hod are the overhead of gqdot imes, and the passing of an

extra argument, the distributed-counter. In the current implementation, qdotimes expands

into a labels form, which causes a closure to be created upon each qdotimes entry. Once

entered, gdotimes is quite inexpensive and highly parallel, but the initial entry causes a closure

to be consed up. In the case of N-Queens, N is usually small enough for this particular source of

overhead to matter. (As a technical aside, if downward funargs could be declared and compiled

effectively in common lisp, qdotimes would benefit.) This leads us to the depth cutoff solution;

generally, we like to avoid cutoff types of solutions, but in this case the closure creation overhead

is just too high, and it is fairly easy to do a depth cutoff.

6.1 The Solution

The most effective solution combines the asynchronous parallel code for the first few columns

and the serial version for the rest of the board. This method is typical of depth-cutoff ap-

proaches.

Solve calls depth-column with a depth of 2, which means the first 2 columns will be done

in parallel, and the rest serially.
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(defun solve-depth (n)

(let ((distributed-counter (make-array *number-of-processors*
:initial-element 0)))

(depth-column 2 0 0 0 0 n distributed-counter)
(let ((solutions 0))

(dotimes (i *number-of-processors*)
(incf solutions (svref distributed-counter 1i)))

solutions)))

(defun depth-column (d column row-state left-diag right-diag N
distributed-counter)

(if (> column d)

(incf (svref distributed-counter (get-processor-number))
(serial-column column row-state left-diag right-diag N))

(qdotimes (row N)
(when (free-p row row-state)

(when (free-p (left-diagonal column row) 1left-diag)
(when (free-p (right-diagonal column row n) right-diag)

(depth-column d (next-column column) (add-attack row row-state)
(add-attack (left-diagonal column row) left-diag)
(add-attack (right-diagonal column row n) right-diag)
n distributed-counter)))))))

6.1.1 Results

The results show that we have succeeded in parallelizing a fast N-Queens program. In all three

versions of the program, there is very little idle time or scheduling overhead as N increases.
There 1s, however, a noticeable difference in the amount of serial work done in each of the three

versions. In the final version, there is virtually no time difference between the pure serial code,

and the serial final version; when coupled with virtually zero idle overhead and zero scheduling

overhead, the implication is that the final version gets nearly perfect speed-up.

N-Queens Synchronous Solution

pure | serial |parallel number [overhead idle

J 0.013 | 0.019 0.006 96 0.008 154 | 0.018 37.0

6 0.043 | 0.063 0.013 224 0.012 11.6 | 0.018 16.7
I 0.159 | 0.226 0.040 403 0.018 5.8 | 0.027 8.5
8 0.656 | 0.914 0.139 644 0.027 24 10.032 29

9 2.904 | 3.975 0.554 1173 0.045 1.0 | 0.069 1.6

10 | 13.512 | 18.117 2.498 2060 0.069 0.3 | 0.045 0.2
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pure | serial |parallel number | overhead idle

J 0.013 | 0.020 0.007 95 0.007 12.6 | 0.019 32.2

6 0.043 | 0.071 0.015 238 0.014 11.6 | 0.024 20.2

I 0.159 | 0.265 0.043 384 0.018 5.1 | 0.021 6.0

8 0.656 1.093 0.159 781 0.033 2.6 | 0.047 3.7

9 2904 | 4.787 0.687 1244 0.049 0.9 | 0.062 1.1

10 | 13.512 | 22.100 3.036 1217 0.045 0.2 | 0.053 0.2

N-Queens Depth Cutoff Solution

pure | serial |parallel number | overhead idle

5 0.013 | 0.014 0.006 51 0.004 9.1 | 0.019 44.2

6 0.043 | 0.045 0.009 80 0.005 7.1 | 0.018 24.6

I 0.159 | 0.162 0.025 103 0.006 2.8 | 0.023 11.5

8 0.656 | 0.662 0.092 131 0.007 1.0 | 0.041 5.6

9 2904 | 20910 0.385 173 0.009 0.3] 0.074 2.4

10 | 13.512 | 13.510 1.763 224 0.012 0.1 | 0.239 1.7
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Chapter 7

Polynomial GCD

In this section we develop a parallel version of an algorithm for computing the greatest common

divisor (gcd) of two polynomials. It is simple to compute polynomial gcds using the euclidian

algorithm. The problem is that in the case of polynomials, intermediate coefficients often

become quite large. A standard solution to this problem is to compute gcds modulo a suitable

set of primes and combine the results using an algorithm based on the Chinese remainder

theorem. Our algorithm is a variant on a standard solution that combines the results in a

tree-like fashion rather than sequentially. For details on the underlying mathematics the reader

is referred to Collins [3], or Lauer [6].
In this example we restrict our attention to polynomials in one variable over the integers.

The main phenomena observed here are the effects of very coarse grained parallelism and a

trade-off between opportunities for parallelism and amount of work required. The main source

of parallelism is the independent gcd computation for each prime. In the case of 8 processors,

if there are 7 primes, we get very good speed up. While if there 9 primes, then 8 primes get

processed in parallel, leaving the last one to be shared (not very efficiently) by the 8 processors.

There is finer grain parallelism within the processing of each of the primes, but it is fairly flat.

7.1 The Program

A polynomial in single variable x over the integers can be thought of as a formal sum P =

> 0<i<d c;z* where each ¢; is an integer and cq # 0. d is the degree of P and cq is the leading
coefficient. The poly-gcd program uses a simple representation of univariate polynomials as
lists of monomials, where a monomial consists of an coefficient (an integer in our case) and

an exponent (a natural number). The list with monomials (ck, ex) for £ < n represents the
polynomial whose degree d is the largest e; such that ci is non-zero. The degree is 0 if there

are no non-zero coefficients. The coefficient of z* is the sum of the cp such that ex = ¢. For

example, the empty list represents the O polynomial and the list

( #mono( : exp 2 :coef 1) #mono(:exp 1 :coef -2) #mono(:exp 0 :coef 1))

represents the polynomial commonly written x2 — 2x + 1. For efficiency, we require that the
exponents of a monomial list form a strictly decreasing sequence and that first element of a
non-empty monomial list has non-zero coefhicent. In particular, the zero polynomial is uniquely
represented by the empty list, and an allowed non-empty list represents a non-zero polynomial
whose degree is the exponent of the first monomial and whose leading coefficient is the coefficient
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of the first monomial. The basic polynomial structure is implemented by the following code.
The operation poly-extend adds a monomial to a polynomial. It is used only in the case that
exp is greater than degree of poly .

(defstruct (mono (:print-function mono-print)) exp coef)

(defun mono-print (mono stream pl)

(pprint (list :c (mono-coef mono) :e (mono-exp mono)) stream))

(defun pair2mono (pair) (make-mono :exp (car pair) :coef (cdr pair)))

(defun deg (poly) (mono-exp (car poly)))

(defun lead-coef (poly) (mono-coef (car poly)))

(defun poly-extend (coef exp poly)

(if (zerop coef) poly (cons (make-mono :exp exp :coef coef) poly))))

We need some arithmetic operations on polynomials. Multiplication of a polynomial by a

monomial is defined by | |
CTC * > c;x' = > (Cc  *c)ite

O<i<d e<i<d+e

(mono*poly coef exp poly) multiplies poly by the monomial with coefficient coef and ex-
ponent exp.

(defun mono*poly (coef exp poly)

(mapcar
#’ (lambda (mono)

(make-mono :exp (+ (mono-exp mono) exp)
:coef (* (mono-coef mono) coef)))

poly))

Division of a polynomial by a scalar is defined by

> rt + c= > (¢; + ¢)xt
0<:<d 0<1:1<d

This operation is only applied if ¢ is non-zero and divides each ¢;. (poly-div-scalar poly
coef ) divides poly by coef.

(defun poly-div-scalar (poly coef)
(mapcar
#’ (lambda (mono)

(make-mono :exp (mono-exp mono) :coef (/ (mono-coef mono) coef)))
poly))

Addition of two polynomials is defined by

Yo de +) clzt = ) (2 + chr?

voly-add adds two polynomials.
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(defun poly-add (polyl poly2)
(cond ((null polyl) poly2)

((null poly2) polyl)
((< (deg polyl) (deg poly2))
(cons (car poly2) (poly-add polyi (cdr poly2))))

((< (deg poly2) (deg polyl))
(cons (car polyl) (poly-add (cdr polyl) poly2)))

(t (let ((coef (+ (lead~coef polyl) (lead-coef poly2)))
(rest (poly-add (cdr polyi) (cdr poly2))))

(poly-extend coef (deg polyl) rest)))))

Polynomial multiplication is defined by

Yoo fz ox YC crt = > | > cd + cp)a’.
0<1<dp 0<:i<d, 0<i<do+dy 7,k|j<dp,k<d; ,j+k=1

poly-mul multiplies two polynomials.

(defun poly-mul (polyl poly2)
(if (null poly1l)

nil

(poly-add (poly-mul (cdr polyl) poly2)
(mono*poly (lead-coef polyl) (deg polyl) poly2))))

gcd-poly-coef computes the gcd of the coefficients of a polynomial.

(defun gcd-poly-coef (poly)
(apply #’gcd (mapcar #’mono-coef poly)))

The polynomial gcd algorithm also requires modular arithmetic for polynomials. Operations

modulo a prime are only carried out on polynomials whose leading coefficient is not divisible

by that prime, thus preserving the requirement for allowable monomial lists.
(mod-inv n p) computes the inverse of n modulo p for n and p relatively prime.

(defun mod-inv (n p)
(labels

((m-inv (j k)

(if (= j1)1(/ (-1 (x k (m=inv (mod k j) 3))) j)) —
))

(mod (m-inv n p) p)))

(mod-scalar*poly coef poly prime) multiplies each coefficient of poly by the scalar
coef modulo prime. This operation is only applied when coef is non-zero modulo prime.

(defun mod-scalar*poly (coef poly prime)
(mapcar
#’ (lambda (mono)

(make-mono :coef (mod (* coef (mono-coef mono)) prime)
:exp (mono-exp mono)))

poly))

(mod-mono*poly coef exp poly prime) multiplies poly by the monomial with coefficient
coef and exponent exp, reducing the resulting coefficients modulo prime. This operation is
only applied when coef is non-zero modulo prime.

46



(defun mod-mono*poly (coef exp poly prime)
(mapcar
#’ (lambda (mono)

(make-mono :coef (mod (* coef (mono-coef mono)) prime)

exp (+ exp (mono-exp mono))))
poly))

(mod-add polyl poly2 prime) adds the polynomials polyl and polyZ2, reducing the re-
sulting coefficients modulo prime.

(defun mod-add (polyl poly2 prime)

(cond ((null polyl) poly2)
((null poly2) polyl)

((< (deg polyl) (deg poly2))
(cons (car poly2) (mod-add polyl (cdr poly2) prime)))

((< (deg poly2) (deg polyl))
(cons (car polyl) (mod-add poly2 (cdr polyl) prime)))

(t (let ((coef (mod (+ (lead-coef polyl) (lead-coef poly2)) prime))
(rest (mod-add (cdr polyl) (cdr poly2) prime)))

(poly-extend coef (deg polyl) rest))) ))

(mod-rmd polyl poly2 prime) computes the remainder of polyl divided by poly2 modulo
prime. If poly 1, poly2 represent polynomials Pj, P, with P; non-zero and prime is a prime
m then (mod-rmd polyl poly2 prime) represents a polynomial Py of degree less than Pa such
that for some polynomial Q P, = Q * P, + Fy modulo 7.

(defun mod-rmd (polyl poly2 prime)
(cond ((null polyl) nil)

((< (deg polyl) (deg poly2)) polyil)
(t (let ((d1 (deg polyt))

(c1 (lead-coef polyl)))
(mod-rmd (mod-add (mod-scalar*poly (lead-coef poly2) polyl prime)

(mod-mono*poly (- ci)
(- d1 (deg poly2))
poly2

prime)

prime)

poly2

prime)))))

(mod-poly-gcd polyl poly2 prime) is a polynomial of greatest degree dividing polyl
and poly2 modulo prime.

(defun mod-poly-gcd (polyl poly2 prime)
(let ((r (mod-rmd polyl poly2 prime)))

(if (null r) poly2 (mod-poly-gcd poly2 r prime))))

The basic algorithm for computing polynomial gcds involves computing local polynomial

gcds, each one modulo some prime number, and then joining these intermediate results using

the Chinese remainder theorem. More precisely, given a pair of polynomials: (i) choose a set of

primes and form a binary tree whose leaves are these primes; (ii) transform the tree of primes

into a tree whose leaves are pairs consisting of the corresponding prime and the gcd of the given

polynomials modulo that prime; (iii) for each pair of leaves combine the leaves according to the

Chinese algorithm to obtain a new leaf consisting of a product of primes and a polynomial; (iv)
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repeat (iil) until only one leaf is left. The polynomial part will be the desired gcd, provided that

the product of the primes we use is sufficiently large and that none of the primes are unlucky

(see Collins [3] for details).

The Chinese algorithm combines two local gcds to produce a new local ged. A local ged is

represented as a pair consisting of a produce of primes and a polynomial (the gcd modulo that

product of primes). The primes of the two pairs must be disjoint. Let Ip; = (7; , 2_i<d, c] zt)
for j € {1,2} and let d = maz[d;, ds] then

chinese(lpy, lpg) = (m1 * m2, y ch(my, 72, ci, el);
i<d

where ch(my, Tg, 1, C2) = cg + ( mg * c3) modulo 7; * Tp and ¢3 = mod-inv( m2, 7) * (c; — ¢2)
modulo 7.

(defun chinese (pi p2)
(let* ((polyl (cdr pi1))

(poly2 (cdr p2))
(ppl (car p1))
(pp2 (car p2))
(ppl-times-pp2 (* ppl pp2))
(inv (mod-inv pp2 ppl)))

(labels

((chin (polyl poly2)
(cond ((null poly1l)

(mapcar #’(lambda (mono)
(make-mono :coef (chin-eq 0 (mono-coef mono))

:eXp (mono-exp mono) ))

poly2))
((null poly2)
(mapcar #’ (lambda (mono)

(make-mono :coef (chin-eq (mono-coef mono> 0)
:exp (mono-exp mono)))

poly1))
((= (deg polyl) (deg poly2))
(let ((coef (chin-eq (lead-coef polyl) (lead-coef poly2)))

(rest (chin (cdr polyl) (cdr poly2))))
(poly-extend coef (deg polyl) rest)))

((< (deg polyl) (deg poly2))
(let ((coef (chin-eq 0 (lead-coef poly2)))

(rest (chin polyl (cdr poly2))))

(poly-extend coef (deg poly2) rest)))
((< (deg poly2) (deg polyl))
(let ((coef (chin-eq (lead-coef polyil) 0))

(rest (chin (cdr polyl) poly2)))
(poly-extend coef (deg polyl) rest)))))

(chin-eq (c1 c2)

(mod (+ c2 (* pp2 (mod (* inv (- ci c2)) ppl)))

ppl-times-pp2)))
(cons ppi-times-pp2 (chin polyl poly2)))))

Now for the toplevel code. 1ist2tree takes a list and returns a balanced binary tree whose
fringe is the input list. find-primes constructs a tree of primes suitable for the given pair

48



of polynomials. It uses a global list of candidate primes *primes®*. Bad primes are those
dividing the leading coefficient of either polynomial. They are detected by bad-prime and
rejected. The optional argument prime-floor determines where in the list of candidates to
begin accumulating primes, and the accumulation stops when the product of the accumulated
primes exceeds the estimated maximum coefficient.

(defun list2tree (1)

(labels

((12t (1 n)

(if (=n 1)

(car 1)

(let ((nleft (ash n -1)));; n ge 2 size of left partition
(cons (12t 1 nleft)

(12t (nthcdr nleft 1) (- n nleft)))))))

(if (null 1) 1 (12t 1 (length 1)))))

(defun find-primes (polyl poly2 &optional (prime-floor 1))

"estimate maximal coef of gcd"

(let ((primes #*primes*))

(do () ((>= (car primes) prime-floor)) (setf primes (cdr primes)))
(let ((estimate (* 2 (max (max-coef polyl) (max-coef poly2)))))

(do ((working-primes nil)
(rest-of-primes primes (cdr rest-of-primes))

(prod 1))
((> prod estimate) (list2tree working-primes))

(unless (bad-prime (car rest-of-primes) polyl poly2)
(push (car rest-of-primes) working-primes)
(setq prod (* prod (car rest-of-primes))))))))

(defun bad-prime (prime polyl poly2)
(or (eq 0 (mod (lead-coef polyl) prime))

(eq 0 (mod (lead-coef poly2) prime))))

(defun max-coef (1)

(if (null 1) 0 (max (abs (lead-coef 1)) (abs (max-coef (cdr 1))))))

poly-gcd computes prime-tree using find-primes. Then for each leaf it computes the
gcd modulo the prime at that leaf and normalizes the result to have leading coefficient equal to
the gcd of the leading coefficients of the input polynomials (modulo the given prime). Finally
Chinese is applied to each internal node and the resulting ‘raw’ gcd is normalized by dividing
out common factors of coefficients.

(defun mod-poly-normalize (poly prime n)
(mod-scalar*poly

(* (mod-inv (lead-coef poly) prime) n) -
poly

prime)))

(defun normalized-mod-poly-gcd (prime polyl poly2 lead)

(mod-poly-normalize (mod-poly-gcd polyl poly2 prime) prime lead))

(defun poly-gcd (polyl poly2 &optional (prime-floor 2))
(let ((lead (gcd (lead-coef polyl) (lead-coef poly2))))
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(labels

((gcd-tree (prime-tree)
(cond ((atom prime-tree)

(cons prime-tree

(normalized-mod-poly-gcd prime-tree poly! poly2 lead)))
(t (chinese (gcd-tree (car prime-tree))

(gcd-tree (cdr prime-tree)))))))
(let ((raw-gcd (gcd-tree (find-primes polyl poly2 prime-floor))))

(poly-div-scalar (cdr raw-gcd) (gcd-poly-coef (cdr raw-gcd)))))))

The algorithm as implemented above is a heavy consumer of space. The main work and

space consumption is in the computation of the initial gcds at the leaves. Each ged computation
involves repeated application of mod-rmd, which in turn repeatedly subtracts a multiple of its
second argument from its first. Each subtraction conses up a list of newly created monomials. It
is easy to see that if the first argument to mod-rmd is not shared then the result can be computed
by updating that polynomial thus saving space needed for repeated copying. To do this we define

inplace-mod-scalar*poly, a destructive version ‘of mod-scalar*poly that reuses the input
polynomial. nmod-rmd is obtained from mod-rmd by replacing the call to mod-scalar*poly
by a call to nmod-scalar*poly. nmod-poly-gcd is obtained from mod-poly-ged by replacing
mod-rmd by nmod-rmd. nmod-poly-normalize is obtained from mod-poly-normalize by re-
placing mod-scalar*poly by inplace-mod-scalar*poly and mod-poly-gcd by nmod-poly-gcd.
Finally normalized-mod-poly-gcd is redefined, replacing mod-poly-normalize by nmod-poly-normaliz
and mod-poly-gcd by nmod-poly-gcd applied to fresh copies of the input polynomials.

(defun inplace-mod-scalar*poly (coef poly prime)
(mapc #’(lambda (mono)

(setf (mono-coef mono) (mod (* coef (mono-coef mono)) prime)))

poly)

poly)

(defun nmod-rmd (polyl poly2 prime)
(cond ((null polyl) nil)

((< (deg polyl) (deg poly2)) polyl)
(t (let ((d1 (deg polyl))

(c1 (lead-coef polyi)))
(nmod-rmd

(mod-add (inplace-mod-scalar*poly (lead-coef poly2) polyl prime)
(mod-mono*poly (- ci)

(- d1 (deg poly2))
poly2

prime)

prime)

poly2

-prime)))))

(defun nmod-poly-gcd (polyl poly2 prime)
(let ((r (nmod-rmd polyl poly2 prime)))

(if (null r) poly2 (nmod-poly-gcd poly2 r prime))))

(defun nmod-poly-normalize (poly prime n)
(inplace-mod-scalar*poly

(* (mod-inv (lead-coef poly) prime) n)
poly
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prime)))

(defun copy-poly (poly) (mapcar #’copy-mono poly))

(defun normalized-mod-poly-gcd (prime polyl poly2 lead)
(nmod-poly-normalize

(nmod-poly-gcd (copy-poly polyl) (copy-poly poly2) prime)
prime
lead))

By similar reasoning we can also replace the first conditional branch of Chinese

(mapcar #’(lambda (mono)
(make-mono :coef (chin-eq 0 (mono-coef momno))

:exp (mono-exp mono)))
poly2))

by

(mapc #’ (lambda (mono)
(setf (mono-coef mono)

(chin-eq 0 (mono-coef momno))))
poly2))

and similarly for the second branch, but this is less important as these branches are rarely
taken.

7.2 The Parallelism

By organizing the primes as the leaves of a tree, we obtain a degree of large grained parallelism.

The amount of parallelism depends on how many primes we use, which depends on the size of

the largest coefficients of the polynomials and the list of candidate primes. To avoid bignum

arithmetic, the largest prime should be not greater than the largest f ixnum. If we use too

many small primes, then the tree may be unnecessarily large. To implement the large grained

parallelism we surround the call to Chinese in poly-gcd by #! . In the tables below this source
of parallelism is indicated by the presence of an “A” in the variant column.

A second source of parallelism is in the Chinese algorithm itself. In the case that neither

input polynomial is null, the construction of the resulting polynomial can be parallelized by

replacing the let by qlet t. In the tables below this source of parallelism is indicated by the

presence of a “B” in the variant column.

Finally there is fine grained parallelism the initial gcd computations at the leaves of the

prime tree. The arguments to mod-add in nmod-rmd can be computed in parallel by wrapping

the call in #! . In addition, the mapping functions in mod-scalar*poly and mod-mon*poly can

be replaced by their parallel versions. In the tables below this source of parallelism is indicated

by the presence of a “C” in the variant column.
The test polynomials are constructed as follows.

(defvar pO

(mapcar #’pair2mono
'((8 . 8) (7 .7)(6 .6) (5.5) (3.3.2) 1.1) @.100N

(defvar pi
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(mapcar #’pair2mono
'((8 . 8) (T.T7)(6.6) (5.54 .4B.3) (2.2) .1)0.10))))

(defvar p2

(mapcar #’pair2mono
'((8 .8) (7 .7)(6.6)(5.5)(4.8) (3.3 (2.20.1) (.100)

(defvar p00 (poly-mul pO p0))
(defvar pil (poly-mul pi pil))

(defvar p22 (poly-mul p2 p2))

(defvar qi (poly-mul pi1 p00))
(defvar q2 (poly-mul p22 p00))
(defvar g3 (poly-mul qt q1))

(defvar g4 (poly-mul q2 q2))
(defvar q5 (poly-mul ¢3 qi1))
(defvar q6 (poly-mul q4 q2))
(defvar q7 (poly-mul g5 q1))
(defvar q8 (poly-mul 96 g2))
(defvar q9 (poly-mul q7 qi1))

The global variable *primes* is an increasing list of primes. In the tables below, we sum-

marize results for two values of prime-floor, 100 and 1000.

When prime-floor is 100, more primes are used to compute the gcd. This provides more

opportunity for parallelism, but also increases the amount of work required. A smaller number

of primes gives better overall performance.

Type “A” parallelism alone generates a process for each leaf in the tree of primes. Since

this tree is relatively small there is no need to constrain this source of process generation. The

opportunity for parallelism is not a smooth function of the number of primes when this number

is small. For example, if there are 7 primes, we get very good speed up, while if there 9 primes,

then 8 primes get processed in parallel, leaving the last one to be shared (not very efficiently)

by the 8 processors. Adding type “B” parallelism has little or no effect in running or idle time,

although the number processes created is an order of magnitude greater. Again there seems to

be no need to constrain this source of parallelism. Adding type “C” parallelism increases the
number of processes by three orders of magnitude over type “A” only, and produces at most

a modest improvement. Replacing #! by #27 in the type “C” parallelism does not decrease

the number of processes created. This is because the source of parallelism is “flat”, i.e. the

calling tree is essentially a list and each pair of parallel calls is completed _before the nest pair

1s generated.



*

ql,q2 | serial 825 | .000 0.0 5.828 88.3
A 298 3 .000 0.0 1.529 64.2

AB 295 37 003 0.1 1.529 64.8TEE | J EE 607 33.6
ql, q4 | serial 5.491 I .000 0.0 39.084 89.0

A 904 I 001 0.0 1.549 21.4

AB 884 109 008 0.1 1.480 20.9

ABC 927 6178 205 2.8 679 9.2

q3, q4 | serial | 9.593 000 0.0 68.724 89.5
A 1.722 7 001 0.0 3.386 24.6

AB 1.590 205 015 0.1 2.708 21.3

ABC 1.413 6399 207 1.8 720 6.4

ql, q6 | serial 13.115 I .000 0.0 94.045 89.6
A 2.858 10 001 0.0 9.473 41.4

AB 2.995 163 012 0.0 10.492 43.8

ABC 2.431 16966 762 3.9 3.737 19.2

qd, qb | serial 26.962 I 000 0.0 | 209.950 97.3
A 6.382 10 001 0.0 22.063 43.2

AB 6.078 451 030 0.1 20.173 41.5

ABC 5.210 20544 939 2.3 7.827 18.8

q2, q9 | serial 36.793 I .000 0.0 264.000 89.7
A 5.390 15 001 0.0 5.658 13.1

AB 5.287 253 016 0.0 5.402 12.8

ABC 5.481 35216 1.010 2.3 1.789 4.1

q7, q8 | serial 59.479 000 0.0 | 433.553 91.1
A 10.607 13 001 0.0 22.549 26.6

AB 10.045 793 045 0.1 17.570 21.9

ABC 9.849 36546 1.397 1.8 5.334 6.8

q3, q6 | serial | 71.088 000 0.0 | 501.553 88.2
A 14.368 10 001 0.0 42.296 36.8

AB 14.725 307 020 0.0 42.574 36.1

ABC 10.350 18805 798 1.0 4.616 5.6

q4, q7 | serial 167.906 I 000 0.0] 1250.776 93.1
A 28.990 12 001 0.0 61.431 26.5

AB 30.330 375 024 0.0 62.635 25.8

ABC 23.461 29473 1.111 0.6 3.459 1.8
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Polynomial GCD, prime-floor 1000

Je time %

ql, q2 [serial .706 I .000 0.0 4.961 87.9
A 370 2 .000 0.0 2.793 94.3

AB 398 19 0010.0 2.469 77.6

ABC 221 1620 123 7.0 839 47.4

ql, g4 |serial 4.083 I .000 0.0 28.127 86.1
A 391 5 0000.0 2.990 42.0

AB .896 73 005 0.1 3.008 42.0

ABC 792 6592 321 5.1 1.035 16.3

q3, q4|serial 6.647 1 .000 0.0 50.181 94.4
A 1.749 5 .000 0.0 6.492 46.4

AB 1.552 137 009 0.1 5.738 46.2

ABC 1.189 7475 361 3.8 1.176 12.4

ql, q6 [serial 8.756 I .000 0.0 63.993 91.4
A 1.475 I .000 0.0 2.303 19.5

AB 1.495 109 008 0.1 2.402 20.1

ABC 1.550 10153 341 2.7 1.356 10.9

q5, qb6| serial 21.016 I .000 0.0 147.279 87.6
A 3.598 I .000 0.0 8.628 30.0

AB 3.258 301 021 0.1 5.322 20.4

ABC 3.177 11071 358 1.4 2.152 8.5

q2, q9 [serial 27.016 .000 0.0 199.059 92.1

or A 5.313 11 0010.0 14.331 33.7AB 5.604 181 0130.0 15.869 35.4

ABC 4.767 37334 1.726 4.5 3.375 8.9

q7, q8 [serial 42.623 I .000 0.0 330.264 96.9
A 10.718 9 001 0.0 40.515 47.3

AB 9.868 529 396 0.0 34.120 43.2

ABC 8.575 23898 996 1.5 17.859 26.0

q3, 6] serial 55.478 I .000 0.0 390.997 88.1
A 8.744 7 .000 0.0 12.596 18.0

AB 8.489 205 014 0.0 11.182 17.3

ABC 7.794 11522 416 0.7 1.479 2.4

q4, q7| serial 138.732 I .000 0.0]1079.731 97.3
A 32.369 9 0010.0 116.027 44.8

AB 31.451 273 0190.0 106.643 42.4

ABC 20.322 22157 9300.6 11.445 7.0

Hd



Chapter 8

Caveats and Conclusions

It 1s relatively simple to realize inherent parallelism using the dynamic spawning primitives.

One simple, but effective, approach is to start with a high-level abstract description of the

underlying algorithm. Using this description, determine the likely points for introducing par-

allelism, and determine the degree of parallelism at each point that produces the best results.

Likely points for introducing parallelism include non tail-recursive function calls and various

forms of iteration and structure traversal. To determine the optimal degree of parallelism one

starts with unconditional parallelism at each point, and introduces dynamic control at those

points that generate excessive numbers of tasks. In this process the main guidelines are provided

by the overhead, idle time and task creation data.

The abstract description may well not provide an efficient implementation of the underlying

algorithm. One can easily refine the description into a more efficient program as for the sequen-

tial case. This refinement can be carried out without significantly altering the fine-tuning of the

parallelism. In particular, the points of parallelism and their degrees will remain unchanged,

and the speedup will be similar, possibly better if synchronization bottlenecks are removed in

the process. Two examples of useful refinements are:

1. Rerepresentation of abstract data types — rerepresenting composite structures as lists

and omitting structure definitions for variables and operations.

2. Elimination of overly general program abstractions — replacing typecase by conditional

and multiple-values by cons.

The programmer should be aware that because Qlisp processes exist in a single Lisp envi-

ronment they share the data bases that the Lisp implementation maintains. Various definitions

and other events update these data bases and hence in the parallel version they may need to

be locked when accessed. In particular this may cause certain primitive operations to impair

speed up due to locking. For example rerepresentation of structures as lists generally yields

an increase in performance due to a decrease in locking. A spectacular example of this is the

typecase problem. Our first version of boyer used defstructs and typecase dispatch. The code

was elegant but the program was ten times slower than the original. This is due to the fact

that typecase expands into calls to typep, which is very expensive. Worse yet we observed a 60

second (fifty percent) slow down when the sequential program was run in parallel mode. After

some detective work we discovered that this was due to the fact that typep locks the structure
data base.
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