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Notes from September 28

We spent a large portion of the first class meeting learning one another’s names
and covering administrative details. DEK took time briefly to explain certain es-
sential facts about the course. First, we’re working to solve problems together, not
competing to see who can come up with the cleverest ideas or most elegant programs.
Moreover, valuable as it is, even this joint problem-solving is not the main focus of
the course: it is a vehicle by which we hope to gain greater insight into the important
processes of problem-solving and research.

To this end, we’ll sometimes step back to look at our work on a problem, trying
to identify both the fruitful approaches we tried and the ones that led us nowhere,
to explain why they impress us that way, and to see in retrospect what we could
have done better.

These notes are intended to record our class discussions about the problems and
what we learn about problem-solving through them. Frequently, they will also dis-
cuss the solutions turned in for grading, mentioning particularly noteworthy efforts
and including a copy of one of the nicer solutions.

Here are questions that will be asked about your solutions:

Is the program correct?
Is it nicely structured and well-documented, hence easily understood?

Are the data structures and algorithms reasonable?
Did you use features of the SAIL language appropriately, or is there a much better

way to accomplish what you did?

e Does your writeup show careful reflection about the work you did leading up to
the solution, including results you ultimately discarded?

e Did you use features of the English language appropriately, or is there a much
better way to say what you said?

Observe that the writeups are not required just to make more work for you, but
to help you gain the above-mentioned insight into problem-solving. So, lavish some
care on them.



Problem 1. The camel of Khowarizm (warmup problem, due October 5)

Let == (14 \/5)/2 = 1.61803 39887 49894 84820 . . . be the “golden ratio.”

A legendary camel in the ancient Persian valley of Khowarizm used to walk
around and around on a circular road that was exactly one parathanha in circum-
ference. Every time this camel would travel a distance of precisely ¢ parathanhe,
it would deposit some beautiful dung that shone like gold. The golden dung was,
of course, bewitched; it was certain death to anyone who touched it or disturbed it
in any way. Thus, over the years a series of such deposit6 continued to be built up
along the road.

Everyone who passed that way noticed a strange thing-the golden cameldung
seemed to be almost equally spaced. One could practically use the heaps as mileposts.
In fact, at the time when there were n deposit6 on the road, the following condition
was true (although only a few mathematicians knew it): There was a point z,, on
the road such that if you started at z,, you would pass exactly one golden dung
heap during the time it took to travel one nth of a parathanha. Repeating this n
times until returning to z,, you would see only one heap per segment of your tour.
The mathematician6 of that time called this the “n-fold cyclic dung distribution
property.”

The magic camel never left the road, and it continued to make its enchanted
deposits for many years. Every time n would increase by one, the n-fold cyclic dung
distribution property remained valid. But one year, just ab a new deposit was about
to be made, a mysterious cloud appeared and enveloped the poor beast; and when
the cloud moved away, the camel was gone. The spell was broken, and the gold
could now be freely taken.

One of the mathematicians had anticipated this, since he knew that the n-fold
cyclic dung distribution property would fail at the time of the next deposit. This
brilliant sorceror had made preparations for the fateful moment, and his agents
immediately pounced on the gold when the enchantment was lifted. He became the
richest man in the valley, so he gave up mathematics and was assassinated two
months later.

The problem is to determine &, for n==1, 2, ,..; and to determine the final
value of n when the camel vanished,
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Notes from October 3

In the real world, the specifications for computer programs change and grow. To
demonstrate this, DEK added a second camel to Problem 1; this camel appears after
the first has disappeared and its n*® dung deposit is at position (lg(2n — 1)) mod 1,
where lg means logarithm to the base two. The sequence determined by these num-
bers has been studied by Lyle Ramshaw [On the Gap Structure of Sequences of
Points on a Circle, STAN-CS-77-637, November 1977). It is, in many respects, the
most uniform distribution of points you can achieve if you do not know beforehand
when you must stop placing points.

MH led off the discussion of Problem 1. He described his first stab at the problem
as “a little loop to print elements of the sequence”: to get a feeling for the general
appearance of the dung distribution, he looked at the first few members of the
sequence. Looking at the distribution, we digressed briefly to explore some of the
properties of the sequence {n¢ mod 1).

If we let y=¢— 1=1/¢ =¢mod | and draw the first few dung heap
locations, labelling lengths between heaps, here’s what we get:

¥ P2
I '/)3 I ¢2 ,¢,2
! V3 ! o ! Y3 T
| ¢3 ¢3 I .‘04 [ ¢3 I ¢4 ]
o5 | o ! o T Y3 "oy

Observe that each new dung heap falls into one of the longest intervals that
existed before its deposition; further, new dung heap8 cut the interval into which
they fall into piece6 whose lengths are in the golden ratio; finally, only three different
length6 of inter-heap interval exist at any stage. For some elaboration of these facts,
and further references, see the section on hashing (96.4) in Donald E. Knuth, Sorting
and Searching, Volume 3 of The Art of Computer Programming, Addison-Wesley,
1974. (See also the frontispiece facing page 1 of that volume for an extended picture.)

Fascinating as these observations are, they don’t seem to help us much with the
problem of finding the value of n at which the n-fold cyclic dung distribution property
fails. And, they are even less likely to help us solve the problem for sequences other
than {n¢ mod 1}.
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RTB initiated discussion of the next approach. He noted that our search for the
zy satisfying the n-fold cyclic dung distribution property need only consider possible
values of z, that lie in an interval shorter than 1/n, since in some sense such intervals
are the hardest to fit. DMO mentioned what he called a “brute force” method for
finding an zy, if one exists: two nested loops, the outer loop cycling through possible
values of zy, from one endpoint of a shortest interval to the other, the inner loop
cycling around the circle checking whether each arc of length 1/n contains exactly
one dung heap.

The problem with such an approach, as NCR pointed out, is that the outer
loop can’t cycle through all possible values for zy: there is no way to choose a step
size small enough to eliminate the possibility that you step over a possible value for
zn. Hence, this method might have the camel vanishing before its time.

MES proposed that instead of shifting a point around the circle in steps of length
1/n we shift an interval around the circle. Since the shortest inter-heap interval is
always shorter than 1I/n, we will start with such an interval, and after each shift,
chop out parts of it that we know can’t contain z, because they don’t see one heap
each shift. Then, when the interval has come full circle, anything left is a possible
value for z,. This method has the advantage that it tells us the set of all possible
z,, rather than just one value.

At this point, DRM asked what kind of interval MES proposed shifting around
the circle, and how this interval was to be specified. MES's answer that the inter-
val was to be open, determined by its endpoints, prompted DCH to demand a
clarification of the problem: does seeing a dung heap at the closed endpoint of an
interval constitute passing it? In other words, if we started our z, at a dung heap,
and we passed or reached exactly one heap each 1/n parathanhae (the first having
been seen at the very beginning of the journey), would that constitute an acceptable
zn! We took a vote and decided that it wouldn’t, but then DCH pointed out that our
decision didn’t matter since if such a reference dung heap z, existed, there would be
an ¢ for which z,, — ¢ also had the n~fold cyclic dung distribution property, because
a half-open interval is non-empty if and only if the corresponding open interval is
non-empty. In any case, closed intervals won’t work; for example, ¢ ==1/8 is not
legitimate when there are three heaps {0, 1/8,5/8}.

DMO suggested a second method: imagine cutting the circle into n equal pieces
starting at some arbitrary point.  (This constitutes projecting each dung heap
modulo 1/n.) DMO claims that if an #, exists, one of the midpoints between two
consecutive projected dung heaps must be a possible value, but he offered only a
loose proof. DMO's process does suggest a nice picture for our task, though: imagine
a device like an apple slicer with evenly spaced blades radiating from the center;
placing the device on the circle and rotating it until each segment contain6 exactly

one dung heap, if possible, is precisely our job.



October 5........ . . .. . . . ... Problem 1 ............ ... ... ... ...... 7

DMO's idea also raises some interesting questions. Could one try just the mid-
point6 between each pair of consecutive dung heap6 on the original circle, and if none
satisfied the n~fold cyclic dung distribution property, be assured that no z,, exists?
CPP claimed that the answer is no, and attempted to offer a counterexample, though
he hadn’t sufficient detail to present it on the spot. (Note: one counterexample is
{0.0, 0.2,0.3,0.85} .) In hisd’iscussion, CPP used the term “live zones” for regions
of the circle that, so far as we know at a particular time, could contain a value for z,,.

A second interesting question is whether the actual live zone6 will always be
connected subintervals of the circle.

DEK offered a couple of observations at this point. Although we’d spent a
fair amount of time exploring conjectures not directly related to the problem, we
shouldn’t consider time so spent wasted, for two reasons: such digressions can offer
us insight6 into the problem that prompted them, and they can be quite interesting
in their own right. Research talent largely consists of the ability to ask interesting
questions, not only to answer them. CPP's coining the term “live zone” for a concept
that proves useful in talking about a problem is an excellent example of inventing
terminology to help our minds cope with the complexity of problems; such vivid
descriptive terms are often useful, and if our vocabulary is restricted to mathematical
terms, our problem-solving ability is limited.

DEK wondered whether it was critical to start with the shortest interval in MES’s
method, or whether we could start with any interval. WOL (among others) claimed
that it’s not, because we’ll eventually chop out any pseudo-live zones anyhow. A
harder question is whether starting with the shortest interval buy6 us anything in
the computation. In this connection, JJF pointed out that if we know the shortest
interval at time n, it’s easy to figure out which is shortest at time n<- 1, since each
new point breaks up an existing interval; thus, we needn’t search for the shortest
interval each time n increases. So, an apparent source of inefficiency (searching for
the shortest interval) may not be time-consuming if we have a suitable data structure.

DAS contributed another conjecture as the basis for his method of finding z,,. He
claims that the intersection of the projections modulo 1/n of all inter-heap intervals
that are shorter than 1I/n, if non-empty, is the live zone. However, others didn’t
believe this would be true.

Time was running out, so DEK recapitulated the questions that awaited answers:
(1) Is the set of all possible z, a connected interval modulo 1/n? (2) Is DAS’s con-
jecture true? He suggested that these questions be answered in the calm and privacy
of our study rooms.

Notes from October 5

We began by considering DAS's conjecture that the intersection of the projec-
tions modulo 1/n of all inter-heap intervals shorter than //n is the live zone con-
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taining possible zn values. We had afairly lively discussion going when DAS arrived
and offered this proof:

Let the n pieces of dung be at road positions dj < dg < . .. <d, and say
2 = Tp, 2= (Tp+4)mod1,..., 2= (2,45 ) mod 1, ..., 2, = (z,+ 854) mod 1
are n points spaced equally around the circle. Now if § = d(; mod n)+1— di > I/n,
there is always at least one point 2; between these dung heaps; so we have at least
one point between every consecutive pair of heaps if we check this condition only
when & < I/n. Furthermore it suffices to check that there is at least one point
between heaps, since the complementary condition (“at most one point between”)
follows from the fact that there are n points and »n heaps.

Since the intersection of a finite set of intervals on the real line is again an
interval, we might think at first that DAS's theorem gives us a very neat way to
compute live zones. But JEB pointed out that since we’re working with intervals
on a circle, not a line, we might have to keep track of live zones composed of two
disjoint intervals, when one interval “wraps around” to intersect both endsof another.

Next, DEK asked people to present solutions they were particularly happy with.
CPP, CHT, and WOL were the first volunteers. If you recall that CPP coined the
term “live zones,” you should understand what he meant by saying that his team
worked by determining the dead zones of the circle. Using the above notation, we
can state their method this way: for each d;, with 1 <+ < n, all points between
(d(.-mod n)+1— 1/n) mod 1 and d; are marked “dead”; also, their images under shifts
by k/n are marked “dead.” The union of the dead zones for 1 <1 <n is the
“master dead zone” whose complement contains all possible values-for .

Since this method requires that the immediate predecessor and successor of
each dung heap around the circle be known, CPP, CHT, and WOL stored the heap
locations in a linked list. A couple of observations made the implementation quite
nice. We can do all the computation on the interval [0, 1/n), since that will tell us
about other dead zone6 around the circle implicitly: they’re the image of the dead
zone of [0,1/n) under shifting by some multiple of 1/n. Also, it turns out that the
dead zone only grows at either end, so it’6 easily represented by its endpoints.

The other team to present its method was WDG and DRR. Conceptually, their
method is akin to the “apple slicer” method mentioned last time: they attempt to
shift a comb with teeth 1/n apart around the circle until one heap lies between each
consecutive pair of teeth. To avoid trying torotatea circular comb they make two
copies of the list of dung heap locations, hooking the second copy onto the end of
the first. Then, they walk down the comb, noting conflicts (zero or more than one
heap per comb interval) and, for each conflict, noting the minimum distance the
comb must be shifted to repair the conflict. On reaching the end of the comb, they
shift it by the maximum shift that is necessary. This walk-down-and-6hift process
is repeated until the comb is positioned properly or the cumulative shift is greater
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than I/n, the latter implying that there is no value for zy,

DCH remarked that there’s also a maximum possible shift to repair conflicts,
and claimed that finding the minimum of the maximum possible shifts will give the
set of all possible answers in one walk-down-and-shift iteration.

Anyhow, everyone agreed that the camel of Khowarizm disappeared when ready
to make its fifteenth deposit, and the logarithmic camel vanished at the time of its
twelfth. DEK mentioned that he had expected the camels to last a lot longer than
they did and he posed the following question that is, as far as he knows, unsolved:
What sequence maximizes the n at which the n-fold distribution property first fails?
[The simpler question in which the distribution property is required to hold for
zn = (0 was solved by E. R. Berlekamp and R. L. Graham in J. Number Theory
2 (1970), 152-161: They showed that there is a sequence having the property with
zp == (0 for 1 <n < 17, but no sequence does this for 1 <n <18,

DRM asked about the programs’ sensitivity to round-off error. This question is
important because @ is irrational, hence not representable exactly on a finite digital
computer. CHC mentioned that he’d run his programs with both single- and double-
precision floating-point variables, and had noted no difference in the answers. While
this is reassuring, and often the only thing we can do to alleviate round-off worries
(at least with the available hardware), there is in this instance a way to avoid at-
tempts at floating-point representation of ¢ altogether. Since we need only answer
the question “Is a 4 b¢ > 0" when a and b are integers, we can use this formula
(derived by DRM):

. __Jsign(2a+-%), if a?4ab—b2 > 0;
sign(a + b9) {sign(b), if a2 4 ab— b3 < 0.

DEK asked JEB to talk a little about his attempt to find an analytic way to
determine the value of n at which the n-fold cyclic dung distribution property first
fails. Working from methods for deriving the best rational approximation to ¢ whose
denominator is bounded above by some number, he hoped to compose a predicate
of the form “|¢ — j/k| < ¢ implies that the property fails for some n between k and
2k." Although he didn’t succeed, and such a method would not help with sequences
that are not multiples of irrational numbers (like the logarithmic sequence), this
effort qualifies as a good example of not turning to the wmputer before thinking
enough about a problem ourselves. DEK remarked that the quality of research
at a university sometimes seems inversely proportional to the quality of available
computing resources.

Next, DEK presented his thoughts about a good solution; his solution was es-
sentially like that of CPP, CHT, and WOL. He remarked that it seems best to keep
the d; locations in a simple array. A clever data structure like a balanced binary
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tree shouldn’t be used unless it were clearly superior to a simple table, since the
overhead involved is quite substantial until n gets into the hundreds. He decided to
work in the following framework: (The left endpoint of the current live zone is b.)

current
current live interval dung
P < . heap
r | | |
b W X 1/n

Here is DEK's two-part loop invariant: up to position k, (1) all solutions z, are in
the interval (b, b 4= w) modulo 1/n; and (2) dx &= (b 4 x) (modulo I/n). At k =0,
this invariant holds for » = 0, w =1/n, and x = I/n. The following steps will

maintain this invariant, assuming that 0 = d < d)1 <. < dp= 1:

k +0;
while k <n do
begin
k+—k-+1;
O +— di — dge—1);
fH<l/n—z
then quit [live interval roo short for dung heaps so close together]
elseif <w-1/n—z
then z «— w « §— (1/n—x) [chop off right end of live interval]
else if (6 < 2/n—z
then x « & — (1/n—x) [move heap closer to origin]
else if 6 <2/n
then begin [chop off left end of live interval]
W = w = (0 — 2/n + z);
be=b=+(—2/n+x)
x —1/n
end
else quit  [heaps are further than 2/n apart ]
end

This can be made much more elegant by trying to combine cases so as to reduce
the nesting of conditional statements, For example, if we include “w > 0" in the
while-condition, we can ignore the first and last cases, since the arithmetic we’ll do

will make w negative and stop the loop next time around.
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Notes from October 10
DEK started off by explaining the significance of the name “Khowérizm": Abu
Ja‘far Mohammed ibn Misa al-Khowdrizmi was the Persian author of Kitab al jabr
w’al-muqabala, and our word “algorithm” was derived from his last name.
Next, DEK showed us JEB's one-line solution to Problem 1. We have a set of
points
Il=dg<d) < <dp1<d, =1,

and we want to know a value #, such that

n—1

1
d0<$n<dl<$n+;<d2<"‘<dn—l<zn+ n < dg,.
We can write this more compactly as
k
dk<zn+;<dk-i-h 0<k<n, (*)

and this set of inequalities can be stated succinctly as

k . k
0Sk<n (d - Z) << E2. (d"‘“ - Z)'

This solution is evidently quite a bit simpler than the method DEK showed
us last time. We can draw several lessons from this experience. One is that look-
ing at the detailed (algorithmic) structure of a problem may not lead to the most
elegant solution. We should stay on a higher level of abstraction when we can. A
more general observation is that we should try to have as many ways to look at
a problem as possible, since the larger perspective they give us can improve our
solution considerably.

DRF mentioned that for each k, only one of the inequalities in (L) gives us any
interesting information; that is, for each k, either dk—ﬁ < 0 or dg1— ﬁ =1, Thus
if dg—k/n > 0 we needn’t bother to update the current “min" while computing ().
WOL pointed out that the same number of comparisons is being made in this method
as in the interval-shrinking methods. This is true, but the algebraic formulation
increases the method’s perspicuity.

We finished off camel problems for this quarter with DEK presenting a method
for solving the inequalities (#) assuming one is given the locations h;, 1 <1 <n,
of n dungheaps. The interesting feature of this method is that it doesn't require
sorting; in fact, given any m > n, it will work in O(m) steps. For 0 <1 < m, we
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keep the following numbers:

a; = min{hy | [mhi) =1}
b; = max{hg | [mhg] =1}
ci = [|{he| [mhe] = s }i

di=co+c+-+ci—y1.

Then, using the di's to represent the sorted h; as before, we have

max (dk— E) == max(ma.x (a.- —_ 4+ 1),0)
0<k<n n ci740 n

(4 k M|, di1—1\
oénklgn( k+1—;)—mm(cr‘n;é% T ,;)

[Reference: Teofilo Gonzalez, Sartaj Sahni and W. R. Franta, “An Efficient Algorithm
for the Kolmogorov-Smirnov and Lilliefors Tests,” ACM Trans. on Mathematical
Software 3 (1977), 80-84.)

Notes on Solutions to Problem 1

People used three kinds of algorithm to solve this problem. Those who viewed
the problem as one of solving a system of 2n simultaneous inequalities generally
coded their programs more clearly than those who were shifting or trimming some
interval, even though both methods use the same algebraic operations.

Most people received an “A” on algorithm. Those who didn’t had gone to extra
trouble that was unjustified by the problem (e.g. using a fancy data structure), or
used a method that was inferior to either of the methods described above. No one
did worse than a ‘B" on algorithm.

Code style was generally good. (One person did turn in a solution with no
writeup and very few comments, though.) Most of you don’t need to be harangued
about documenting your programs, but it was pretty obvious who had structured
comments into their programs and who had tacked them on after getting the program
working. A careful approach to commenting is important; don’t write them just to
please the grader.

Most people made good use of procedures, passing parameters around to keep
pieces of the program independent. But when a procedure affects global variables, it
should be clear what it’s doing to them. Such steps need to be carefully commented
so they don’t appear mysterious to someone reading your program.

No one received above a “B" on code style. This is partly because no one writes
code in exactly the same style as the grader does, but more importantly because
there’s plenty of room for everyone to improve his or her style. The grader tried to
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indicate things he found about your programs that could be improved. If you had
too few helpful comments or didn’t use procedures you didn’t get a “B," either,

The biggest concern is the quality of the writeups, Most people just handed in
a description of the solution method they’d chosen and how their programs worked.
The writeups are supposed to be more: they should describe your progress toward
solution. This includes false starts you made and blind alleys you followed. (Explain
these, don’t just mention them. At least two people said something like “We spent
a lot of time studying .... However, this was useless,” and dropped the subject.)
You should also explain why you tried a particular approach, even if your reason
was only a feeling or hope that it would work. Such introspection will help you to
learn research techniques in general (the main goal of this course).

Look at it this way: you can explain your answer to a problem to someone else,
and then he or she may be able to explain it to anyone. But only you can explain
how you arrived at the solution you did, So spend some time looking over your work
on the problem, then write a description of the main stages of thought you went
through on your way to the solution you hand in. Don’t be afraid: there’s no such
thing as a stupid approach to a problem. The difficulty is probably that you equate
being wrong with being stupid.

The writeups should also include any discoveries you made while working on the
problem. For example, one person remarked that round-off error caused him trouble
in representing the master dead interval. Another thing these writeups should in-
clude is questions that remain now that your work on the problem has, for the time
being, ended.

Here is a summary of the solutions people handed in. The short description of
methods tells the closest relative that a team’s approach had of methods shown in
class. The column of distinctive features tells one of the things that distinguished
a solution from the others; as you can see, some are good and others are not.

TEAM METHOD DISTINCTIVE FEATURES
RTB,AFB interval shifting presented two approaches

JEB,MH inequality solution presentation polished to a high gloss
DCH,ARR interval trimming humorous presentation

JIF interval trimming attempted proof of correctness
DRF interval trimming very short program

WDG,DRR rotating comb excellent writeup

MSK interval trimming external dung calculation procedure
MAI inequality solution mentioned ideas in writeup

NCR ? paucity of documentation

DMO,AMY interval trimming excellent writeup
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CPP,CHT,WOL interval complementation very careful presentation

MES interval trimming small bug
DAS interval complementation nice writeup

IAZ interval shifting nice code



Problem 2. Bit fiddling and image processing (due October 19)

In this problem we will be dealing with pictures represented on a discrete raster. We
have an n X n grid consisting of square “pixels,” each of which is white or black.
Using O to represent white and 1 to represent black, we will be able to represent
the picture compactly with 36 pixels per word (on the Al Lab computer), and the
computer’s Boolean operations will facilitate the manipulation of pictures. There
are two parts to this problem: first to “clean up” a picture, and second to do edge
following that describes the boundaries of the “objects” in a cleaned-up picture.

A. The cleaning-up phase is intended to change stray black pixels to white and vice
versa, as well as to remove sharp turns of more than 90° at the edges of black areas.

For purposes of discussion, a picture P will be regarded as the set of all black
pixels in some image, and the complementary set P~ will be the set of all white
pixels. We define the closure P€ of P to be the smallest picture containing P such
that every white pixel (i.e., every element of PS~)is part of a 3 X 3 square of white
pixels. A picture is closed if it is equal to its closure, The interior PP of P is defined
to be the largest picture contained in P such that every black pixel is part of a 3 X 3
square of black pixels. A picture is open if it is equal to its interior.

Examples: (Imagine infinitely many white pixels surrounding these diagrams)

110011 111111 011110
110010 111110 011110
P=011110 P°=011110 P°=g11110
011100 011100 011100
001000 001000 000000

The first subproblem is to replace a given picture P by P9, the interior of its
closure. We will say that a picture is clean if it equals P€© for some P. Write a
program that finds P€9, given a 72 X 72 picture P.

While solving this problem you may wish to develop a theory along the following
lines. Let us write

z=<y if row(x) < row(y) < row(x) =+ 2 and col(z) < col(y) < col(z) + 2;
z>y if row(x) — 2 < row(y) < row(x) and ecol(z) — 2 < col(y) < col(z).
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Furthermore we define

P<={z|z<yforsomeyinP};
P> = {z|z > yforsome yin P}.

In these terms, prove or disprove the following statements:

(1) P~C— = P°,

(2) P9 is the union of all 3 X 3 square black pictures contained in P.

(3) x =< y if and only if y > z.

(4) P=1is open.

(5) PO = p—=<—>,

(6) If P is a picture such that every black pixel is included in a set of 3 consecutive
black pixels in the same row and in a set of 3 consecutive black pixels in the
same column, then P is open.

(7) If P is a clean picture and if x, y, z are three consecutive elements of a row,
where x € P,y & P, and z € P, then the pixels immediately above and below
y are not in P.

(8) If P is a clean picture and if w, x, y, z are four consecutive elements of a row,
where w EP, x @ P, y & P, and & € P, then the pixels immediately above and
below x and y are not in P.

(9) A clean picture is both open and closed.

B. The edge-tracing phase is going to provide a description of a clean picture that
grows linearly (instead of quadratically) with the resolution of the raster.

Let P be a clean picture. We call the black pixel x a boundary peint of P if at
least one of x’s four neighbors (above, below, left, or right) is white. The problem
in this phase is to group the boundary points into “closed cycles of king moves.” In
other words, if there are m boundary points, we want to arrange them intop sequences

ZI1H %12y ¢ 0y Tim,

Zply Tp2y+++ ) Tpm,

such that my ++++ + mp = m and each &(;41) is & king move away from &;; also
;1 is a king move away from %;m,. A king move is 8 move one step up, down, left,
right, or diagonally. In the example above, all eleven of the boundary points belong

to a single cycle
o0

&
=



of king moves, but in general we will have several cycles if there are several discon-
nected areas of black, or if there are “holes.”

The cycles of king moves can be still further refined, since it turns out that
a clean picture has cycles with the following property: After a diagonal move, the
path either stays in the same direction or branches 45° to the left or right of its
current direction. After a rectilinear move, the path either stays moving in the same
direction or branches 45° or 90° to the left or right of its current direction. Thus we
can encode each cycle as a compact sequence of instruction pairs “(number, turn)®,
meaning to continue in the same direction for the given number of steps and then
to turn in the specified way. When moving diagonally, the next turn will either be
L or R (45° left or right); otherwise it will be either LL or LR or RL or RR (90° left,
45° left, 45° right, 90° right). We may assume that the path begins in the upward
direction in the leftmost column of the cycle; thus, the example boundary above
can be encoded by the sequence of king-move instructions

(3,RR), (3,RR), (2,RL), (LR), (2,RR).

(The final turn “RR” is redundant and could be omitted.) Together with the coor-
dinates of the starting point, this sequence of instructions completely defines the
cycle.

You are to write a program that produces such instruction sequences for the
boundary cycles of the clean 72 X 72 pictures produced by your first program. You
should also prove (informally) that your program will handle all clean pictures.

Input to your programs will be from a file of 72 lines each of 72 characters (“0”
or “1"). To compute with these in your programs you should try to use 144 36-bit
words (integers).

Hans Moravec’s graphic display routines will be used to display your programs’
output. Screen dimensions 504 X 504 allow you to display each black (resp. white)
pixel as a black (resp. white) 7 X 7 rectangle. You should show the border-tracing
king moves by drawing lines that darken light areas and lighten dark areas of the

picture between the centers of rectangles.

Your solutions will be run on a data file that you cannot see beforehand, al-
though a test data set is supplied. The grader will expect to be able to look at (1)
the original picture, (2) its closure, (3) the interior of its closure, and (4) the king
moves.
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Notes from October 5

DEK introduced the second problem as a good opportunity to develop a theory
before sitting down to write a program. He also pointed out that at least one of the
statements to prove or disprove is false. So, we see that the process of developing
a theory can profit from a healthy skepticism about any statement alleged to be
true: in fact, it’s often better to try first to disprove a statement by looking for
counterexamples. This searching may help us understand the question better, hence
give us ideas about how to prove the statement if it is true.

Notes from October 10

DEK remarked that he had tried to state his definitions in analogy with topologi-
cal notions of openness and closedness. This analogy was designed to help, not
confuse, people thinking about the problem.

We started off trying to prove conjecture (1) P9~ = P°, People took essen-
tially two approaches: some tried to reason about the white and black pixels, while
others approached the problem in a purely algebraic framework, In this instance,
it proved more fruitful to look only at the symbols and not be concerned with
their meanings in terms of bits. For example, NCR observed that the definitions
of “interior” and “exterior” are complementary: the closure PC of P is the smallest
Q =2 P such that every element of @ is part of a 3 X 3 square in P~ If we change
“smallest” to “largest” and invert the subset and complementation operators, we
arrive at the definition of the interior of P as the largest picture Q € P such that
every element of Q is part of a 3 X 3 square in P.

This observation offers a way to follow SOY’s suggestion that we try to prove
PP— = P—C,  (If we can do that, complementing both sides gives the result we
seek,) We know PO~ is the complement of the largest @ C P such that every
element of Q is part of a 3 X 3 square in P; let’s write P°~ as @ . Inverting as in
the definitions, we can say P9~ is the smallest @~ 2 P~ such that every element
of Q is part of a 3 X 3 square in P. But this says precisely that @ is the closure
of P-, so P°— = p—C,

Applying the definitions very carefully and using standard methods from logic,
we have deduced a relationship that might not have been apparent if not expressed
this way. An imagination for pictures is often helpful, but formulas can reveal
patterns to us that we wouldn’t see otherwise, Part of the way they do this is
by suppressing details about the particular problem (e.g., just what is meant by
“smallest” and “largest”). Our experience with camel dung revealed one such blind
spot.

DREF pointed out that the above relationship is false if the plane of pixels is
bounded (Le., if P~ really means F (YP— where F is some finite frame). DEK
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apologized for implying that all pixels outside the frame of reference are white; they
all might also be black, The important point was that our formula P° = P—C— has
been proved on the infinite plane, and we are free to use it to derive other formulas
valid in finite frames. This led to the question: under what circumstances can we
conclude that P C F implies P° C F? Before answering this question, we came
face to face with the fact that P€ might not be well defined; what is the “smaller”
of two incomparable sets?

As class drew to a close, we polished off a proof of property (2): PO is the union
U of all 3 X 3 square black pictures contained in P.  (This property assures us
that interiors are well defined, hence by (1) the closure is also well defined.) AFB
observed that P DU is easy: any pixel z that is part of a 3 X 3 black square
contained in P is in P by definition. DMO offered this proof of the other inclusion:
if # € PO, then z is in a 3 X 3 black square contained in P (otherwise we could
delete x and get a smaller set satisfying the criterion), so x € U.

Returning to our frame question, when can we conclude that P_C Fimplies
that P€ C F? MSK observed that this is true if F is closed. WOL noted that
rectangles are closed.  (After class, DEK noted further that the implication fails
for-P = Fif F is not closed; hence the implication is valid for all P if and only if
Fis closed.)

Finally, let’s observe that we can prove the above implication as a special case
of the more general rule P C @ implies P€ C Q°. Property (2) makes it clear that
P C O implies P° C @@ since the squares in the union for P° are in the union for
QC. Now P C Q implies P~ 2D @ implies P~° D @9 implies P9~ C Q—°—,
i.e., P° C QF°.

DEK posed a final question: Is the intersection of closed pictures closed?

Notes from October 12

This problem is motivated by the need to compute for high resolution graphic
display devices: How can we represent a picture so that doubling the resolution
doesn’t quadruple the number of bits we need? At first, this question might not seem
to make much sense: If any pixel in an m X n raster can be “0” or “1” independent
of the others, won’t we need mn bit6 t o distinguish the 2™" possible patterns?

One answer is that the pictures we represent will be large compared to the size
of one pixel. This leads us to hope that the pictures are relatively smooth, so that
a pattern like
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101010

010101

101010

010101

101010

010101
is far less likely to occur in the pictures than large areas of ones or zeros. Our
definitions of closure and interior are intended to capture this notion of smoothness.
Using them, we can clean up our pictures by removing stray white or black pixels;
then, since we can represent clean pictures fairly compactly by specifying only the
boundaries of the regions, we hope that the number of bits we need will increase
only linearly with the resolution of the raster, rather than quadratically.

DMO asked if we’d ever need to make 90° left turns if we followed the directions
in the problem statement and traced around the boundary in the clockwise direction.
This question is prompted by the fact that the starred bit in the example below is
not on the boundary: we’ll take two 45° left turns negotiating that corner.

000111

000111

000111

11111

111111

111111
CHT pointed out that we’ll have to make 90° left turns if we have “holes” in our
pictures. For example, there’ll be one at the starred position below. On the other
hand, we’ll never need to make 90° right turns when tracing the boundary of a hole
inside a region.

000000111111
000000111111
000000111111
000111111111
000111100011
000111100011
11111100011
111100000011
111100000011
0000011

11110
111111111111
111111111111
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We discussed briefly the idea of changing the definition of boundary point, but
two facts dissuaded us from doing so. One was DEK's admonition that we should try
to get away with as few boundary points as we can. The other was MSK's example,
where the starred point, if considered to be on the boundary, makes trouble for our
cycles of king moves: they could intersect themselves, violating the specifications of
the problem.

11100
11100
11«11
00111
00111

DEK asked at this point whether anyone knew of an example of a picture with two
different legal sequences of king moves that describe it. No one answered, but notice
that the last example is such a picture! [One of the sequences was made illegal on
October 17.]

The first fact we proved today was (3) x =<y if and only if y > x. NCR called
his pictorial argument for this a proof “by exhaustion,” Since x =< y means that z
lies in the upper left of a 3 X 3 square containing y, while y > x means y lies in the
lower right of a 3 X 3 square containing x we have:

Tyy zzz
z<y YYyY y>=z: 22T
yyy zzy

If you look at the pictures, it does seem to be belaboring the obvious to try to prove
this. Nevertheless, DEK did point out that if (3) weren’t true, we’d have chosen a
horrible notation, bound to cause us trouble.

MES proved (4) P= is open by rewriting P, If we define L(y) = {x|x <y },
we have P==J,pL(y). Notice that each L(y) is an open 3 X 3 square, s0
P~ is the union of such squares, hence is itself open (by (2)). Incidentally, using
complementation we can show that the intersection of closed pictures is closed.

MES pointed out that P~ consititutes a smearing of P toward the top and
the left. This means that we can compute P in place if we proceed through the
picture from top to bottom and left to right. DCH observed that the smearing may
cause P~ to have fewer components than P: separate regions in P may be smeared
together in P,
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We forged ahead to a proof of (5) PO = P—=">", Severcl people contributed
to this, including WDG and JEB. Once again, we let the formal logical operations
do a large amount of the work for us.

P=={z|3yeP:z <y}
= |J LW

yEP—
P~ = {z|VyEP iz Ay)
{z|VyyEgP=zAy}
{z|Vy:z<y=yEP}
{z|Vy: yER(z)=yE P}
= {z|R(z) S P},

where R(x) ={y|x <y} Thus

P=—>={z|32€P=<"iz>1z}
={z|32:R(s) CPAz >z}
={2|32:R(z) CP A2 ER(z)}
— U R(z)

z:R(z)C P
= F°.

DEK made two observations. We should all be comfortzble with the logical
notation and operations used above, As we’ve said many times tciore, it’s important
to be able to look at a problem from many different perspectives. Another thing
to notice is that we haven’t used the fact that the definitions cre stated in terms
of 3 X 3 squares of pixels as the basic clean units. So, our preof is valid for any
definition that satisfies the more abstract notions embodied in (1) to (5).

DEK mentioned that he could have chosen a more symmeciric relation like

yyy
T~y Yyzy
YYY

whose corresponding operation on a picture P smears points in P out in all directions.
Using similar operations to the ones above, we can show PP = P~"~"", then use
fact (1) to obtain P = P~~~ One problem with this definition is that it can’t
be extended to use squares of even dimensions as the basic cleaa elements. Another
is that it’s probably not as amenable to computation in place as the asymmetric
relations =< and >-.
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As class ended, MES asked if we could reduce the size of the pictures to 70 X 70
since the =< operation may smear pixels out of the 72 X 72 frame given. DEK
suggested that we look instead for a way to compute P~ without using the extra
border rows; is it possible?

Notes from October 17

JJF showed us this counterexample to (6) if P is a picture such that every black
pixel is included in a set of 3 consecutive black pixels in the 6ame row and in a set of
3 consecutive black pixel6 in the same column, then P is open. The starred (black)
cell meet6 the row and column criterion, but this picture is not open, since that cell
is not in a 3 X 3 square of black cells.

111000
11100
111111
000111
000111

This was a sobering reminder that conjectures we make are usually false; textbooks
give a misleading impression. We should always make conjectures, but give them a
jaundiced eye, Our work trying to disprove conjectures is usually not wasted, since
it give6 our mind useful exercise in the problem area.

What about (7)? “If P is a clean picture and if X, y, # are three consecutive
element6 of a row, where X € P, y &€ P, and 2 € P, then the pixels immediately
above and below y are not in P.” We took a vote: four believed it, five were opposed,
and twelve abstained. ARR asked whether the hypotheses could be satisfied, since
if they couldn’t, (7) would be vacuously true, JEB offered this example of a clean
picture with three element6 in the black-white-black pattern:

1110000
1110000
1110111
0000111
0000111

Here is JEB's proof of (7). Assume we have a configuration like this where the
color of x’s is not yet specified:
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XXX
101,
zlz

We know that for the picture to be open, each 1 must be part of a line of three
consecutive 1’s, so we have

XXXXXXX
1110111
zzzlzzz,
XXX1xxx
zzzlzzz

We can argue that one of the columns on either side of the central column must
be black, again since this picture is open; without loss of generality, we assume the
right side:

XXXXXXX
1110111
xxxllxx:.
xxxllxx
xxxllxx

Finally, we must add another column of I’s on either side of the central column.
In either location, thie column makes the 0 an element of a 3 X 3 square of black
pixels, so it would have been blackened by the closure operation used to clean the
picture, and not whitened again by taking the interior.

Our proof of (8) was similar. Assuming that P contains the configuration

X X X X
1001,
xx1x

we can offer a very similar sequence of steps to show that the 0 above the 1 must
actually be a 1.

DRM asked if we knew that some finite sequence of closure and interior opera-
tions would terminate, i.e. after taking closures and interiors for a while, would we
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sfop changing fhe picture? JEB proved fthat the sequence always terminates very
quickly: (Q€9)%9 =@%°. (Laundering a clean picture doesn’t make it any cleaner.)

JEB's proof for this again relied exclusively on algebraic manipulations. We
start with the fact fhat Q€9 C QC. Taking the closure of both side6 we have
QC°C C Q°C; we certainly hope that QPC = Q°, and if we assume it we can fake
inferiors on both side6 to obtain Q€CCC C Q<0,

IAZ proved fhe inclusion in fhe opposite direction: We know that Q€° C @€OC
since closures grow. Hence Q€O C Q€OC0, This fime we assume fhaf the desirable
relation Q9° = QO is frue, and we have our result.

Now, all we need is to prove the lemma that Q9 = @° for any Q. We caught
ourselves already assuming this in several arguments, without proof,  (By com-
plementafion, Q99 = @° will give us Q°C = @€ as well.) Buf now we can appeal
to (2) to write @Q%C = U,.piycoR(¥). If R(x) C @ then R(x) C Q% by definition,
and R (x) C Q° clearly implies R (x)_C @, so we can rewrite fhe condition on the
union as Q%€ = J,.pe,ycqR(z) = @°

DEK observed that we now have proved thaf a given picture lead6 to at mosf 14
pictures under the operations of —, O, and C: P, P9, p9—, po—0, pO0—0— — pOC,
POCO’ POCO—, P, P—-q pP—0— _ PG, PCO’ PCO—, PCO-—O, PCoc, Applying —,
0, or C to any of these gives another in the set, Thus the “Kuratowski complement
problem” in topology ha6 its analog in our system. [C. Kurafowski, “Sur 'opération
A de I’analysis situs,” Fundamenta Math 3 (1922), 182-199,)

DRM suggested that we might like to define a point in P€\ P° to be grey, since
we seemed to need to refer to such points fairly often in these arguments.

Fact (9), “aclean picture is both open and closed” turned ouf to be false too.
Today’6 second example is a clean picture that is nof closed: the point between the
blocké6 flashes on and off repeatedly when we fake closure and inferior. DEK said
he had tried unsuccessfully to find an algorithm fhaf produces an open-and-closed
picture “nearest” to a given picture.

DCH suggested fhat a different notation for the boundary-tracing king move6
might be useful, especially because fthe one suggested in the notes uses direction
relative to one’6 current position and direction of movement, so that errors send
the king moving to wildly different place6 fhan if should go. He suggested defining
the king move6 with respect to a fixed coordinate system like compass directions.
This scheme requires one more bif than the problem sfatemenf’s method, buf it ha6
the advantage that one may choose to begin the edge tracing at any point. DRF'
suggested using the actual coordinates of corners to denote the edges in the boundary.

DCH explained hi6 algorithm for boundary tracing a6 “walking around so a6 to
keep white to hi6 left at all times.” He did not have fime to offer a proof that this
works for clean pictures, Another algorithm needs to be used to gef from one closed
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cycle to another in the picture.

DRM mentioned that the boundary edges can be found by a simpler scheme if
instead of doing king moves we consider the boundary lines between pixels. This neat
idea 1s described in the following report that can be found in the CS library: B.W.
Lindsay and D.R. Morrison, ‘“Algorithms to link scan data into ordered contours
and topological algorithms.” Sandia Corporation, SIDCAP report no. 5, SC-DR-
68-815 (January 1973).

Notes from October 19

We spent this class session discussing the solutions you were about to hand in.
DRF was the first to volunteer to present his method. He had used some of the
results we’ve proved (like P9 = P—=—>), but had devised an operation that made
calculating P~ easier, Let P~ be the picture that results from smearing each black
pixel right two pixels, and P! the picture resulting from smearing black pixels down
two: then we have P= = P, This “factored” formulation is simpler because we
can smear pixels along the same row or column without worrying about adjacent
rows or columns: we’ve reduced a fundamentally two-dimensional problem to a one-
dimensional one. Furthermore, less total work is involved (four OR’s instead of eight).

DRF showed us a way to calculate P~ by walking back along a row. He showed
that we wouldn’t even need to look at each pixel in the row twice, since we don’t need
to check whether to smear if we’ve just smeared a black pixel. RTB pointed out that
this process is equivalent to logical-ORing a row or column with itself shifted left
one pixel and two pixels. His observation points up two different ways of evaluating
bit-fiddling algorithms: counting serial bit operations or counting parallel ones.

Extending the notation some, so that we smear either 1’s or O’s, DRF wrote PC =
P—iliolo, We can commute the operations on O’s, giving P€ = P—1lilo0 The
middle two operations in this expression (7o) constitute sort of a one-dimensional
closure: one or two consecutive O’s become 1’s; three or more remain 0.

DREF claimed that he didn’t need to keep extra rows along the edges, but MES
and WOL gave an example to show that he does, A 3 X 3 black square located two
pixels from the edge of the picture smeared right will smear up against the border.
But the only thing to distinguish those right-smeared bits from a 3 X 3 square that
abuts the border in the original picture is the bits in the border: we need them when
smearing white pixels left.

Anyhow, we can compute PCC = p—*tlifero—ololi ip five operations: the
second and third and sixth and seventh are respectively the one-dimensional closure
mentioned above and the corresponding one-dimensional interior operation. Further-
more, the fourth and fifth represent the extension of O’s by two pixels in both direc-
tions. This discussion raised a question about the commutativity of these operators,
since we know that —g}o equals Jo—o. JEB observed that —¢]1 is not the same as
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L1—0: the first makes a diagonal line of three I’s all white, while the second leaves a 1.

MES contrasted PO with P€9; since the interior operation leaves all pixels
outside the frame white and the closure is known to stay inside a rectangular frame,
POC can be computed without extra rows to remember black pixels that stray outside
and then disappear; we know that P€© may require extra rows, however. Was there
any reason for picking one over the other as our definition of clean picture? There
was no response, but DEK mentioned later that there is indeed a reason, since you
can’t always trace the boundaries of a P9 by disjoint king moves. (The pattern
010 can occur.)

ARR observed that the simple pattern below behaves rather differently under
the two operations: CO makes it all black, while OC makes it all white!

111111
111111
110011
110011
111111
111111

To investigate the advantages of word-shifting over serial bit operations, we’ll
use the notation P 4k [or P PP k] to mean the bit vector P shifted left [or right]
by k. We have Pt =PV (PP 1) V(P 2) (RTB's earlier suggestion) and Q0=
Q A (Q 1) A (Q 12).But this conceals the fact that the P’s are bit vectors that
extend across word boundaries, so we should really write P =(z,y, 2) and P =
(zV(z P 1)V(z P 2), (z 935)V(z 134)VyV(y P )V(y P 2), (y 135)V(y 134)VaV(z P 1)).
MES suggested that we could avoid shifts as long as 35 by masking out the bit we
want, in case long shifts are slow.

The operation P* is, of course, easier since we work with 38-bit words and no
shifting is needed,

DMO explained that he and AMY had handled the boundary condition by
designating certain parts of the words (generally the bits at either end) as “trouble
zones,” then picking out enough bits to process the trouble zones using the simple
algorithm. It turned out they needed exactly 38 bits to do this, so they could process
the left and right halves of the picture, then put the boundary bits calculated for
the trouble zones back in.

Continuing our algebraic manipulations, we wrote

P o= (PV(PPLV(PP)A(PIYVPV(PPL)A(P42)V(PY1)VP)
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This formula involves eight logical operations, but we can reduce it to five by applying
the distributive law:

P71 o=PA((PPL)APP2VPAL)V(PY1AP42)).

Such simplifications of formulas are usually possible; for example, DEK remarked
that most 4-variable formulas can be computed with five or fewer binary operations,
and they all can be computed with at most seven, “Exclusive OR” is often helpful,
but not for this particular function.

SOY presented a method for calculating P® without shifting. Imagine 25 targets
in each pixel, and a rifle with 25 bullets in each black pixel. We fire all the rifles, one
bullet into each target that’s in the 5 X 5 square of pixels surrounding the rifle that
fires it. Then, we check each pixel to see if one of the nine 3 X 3 squares in which it’s
contained is all black. This method, which essentially calculates P° by using relation
(2), requires roughly 10n? + 25B basic operations and 25n? pixels of space, where B
is the number of black pixels. It demonstrates the value of our theoretical approach:
via the nonobvious formula P2 = P—=<""" and factorizations like P<= P, we
are able to calculate PO with 8n? logical operations and n? pixels of space.

DCH explained a method for tracing the edges of the picture using only one
raster. His method gives segments of the edges, not continuous cycles that can be
traced. It has the advantage that it checks only around 1/9 of the raster points
on average: it processes the picture in bands of three pixels, checking every third
bit of one row. When it notes a color change, it knows that one or more boundary
edges are needed, so it backtracks and puts them in, This algorithm relies on the
cleanness of the pictures it’s tracing.

JJF remarked that there is trouble with this method if we wish to know how
the king moves hook together into a figure. DCH (and ARR and DAS) keep this
information implicitly in the DD buffer, so they really do use an extra raster. JJF°
observed that the hooking together is a more global task, hence apparently less
amenable to such a local approach.

Notes on Solutions to Problem 2

The writeups this time made delightful reading. Most of you wrote up your
successful and failed approaches with a vengeance: the average writeup exceeded
twenty pages! But you did a lot of interesting things on your respective paths to
solution. Keep up the good work.

The passive voice is used by some of you quite a lot in your writing. An air
of uncertainty is produced in your exposition by it. Since it is usually avoided by
good prose writers, it ought to be avoided by you too, Since it appears so much
in mathematical prose (necessarily so), it certainly ought to be eschewed by you at
other times.
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Your programs were, without exception, very nice to read. Nicely structured
comments made even the most complicated ones reasonably easy to follow. The
only stylistic comment is that some of you indent blocks too much (eight spaces or
more): this makes deeply nested structures look pretty weird.

On the other hand, your programs were, almost without exception, not very
nice to run. There were minor irritants, like programs that did not prompt the user
for the name of the data file, (The grader munged those files when he could.) This
is irritating in part because the IOSAIL macro OPENREAD (which everyone used)
will prompt the user automatically if you don’t provide a file name when you call it,

The big problem is that your programs really didn’t interact very nicely with the
user. Almost no one gave instructions, and the instructions were often ambiguous
or unclear. It would have been nice, for example, to tell the user when a picture was
being queued for output on the XGP; nicer still to ask whether the user wanted it
output there; and, nicest of all, not to switch the display before asking the user on
his other screen to make the decision!

As an example of the wise use of displays, consider the fact that several of your
programs exploded during the king-move tracing phase. It would have been nice
to switch the user back to his main screen so he could watch the execution time
mounting or the error messages produced by your programs filling the screen. As it
was, he had to guess whether the long waits were due to the system load or to bugs
in your programs.

Only half of you labelled the figures you displayed. One nice feature no one
had was a label on the display telling who had written the program that produced
it. Such a line would have saved the grader a lot of guessing as to which programs
produced which pictures in the mountain that collected the evening he ran all your
programs.

All but one team cleaned the picture using the smearing DRF described, al-
though the variety of descriptions for this method was astonishing. Almost everyone
processed the king moves by creating an array of boundary points, then figuring out
how to trace through the black pixels in that array.

RTB and AFB included an excellent description of the approaches they tried.
This included a huge analysis of the cases that arise in edge-tracing. They also gave
a very high-level description of their algorithm that made understanding their code
a whole lot easier. They apparently found work on this problem to be almost a
religious experience: after ten pages describing their method for cleaning the picture,
they say, “Guilt abated and souls uplifted we now consider the edge tracing phase.”
One of the most heartening of your comments appears in their writeup: “We think
our algorithm works quite well.”

JEB started his writeup with a nice description of his progress through the
“theorems” suggested in the problem statement, including the honest admission that
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(5) PO = P—=—> “struck me as unlikely.. . so I went on the the next ‘theorem.*”

His first work on the edge-tracing phase was to prove that cycles of boundary edges
exist. He also analyzed quite carefully what information he’d need to draw the
boundary, eventually developing a method that requires only one array. His dis-
cussion on storing the data in as compressed form as possible was also interesting.

DCH, ARR and DAS used a sound theoretical formulation and a careful ex-
amination of boundary space requirements to decide on their method. They reported
trouble with SAIL's macro expansion facility that led them to code certain routines
differently from their original plans. One nice idea they incorporated into their
program was to adjust screen dimensions so that centers of 3 X 3 squares were at
multiples of 7 in both directions. Their search for edges used absolute rather than
relative directions, and gave pieces of boundaries rather than a continuous trace of
the figures’ edges; it managed to do this by examining only around 1/9 of the pixels
in the raster.

JJF' and MA1 also considered carefully what border pixels they’d need to clean
the picture correctly. Their discussion of developing the edge-tracing algorithm
is beautiful, especially considering their observation: “one of the real problems in
listing ‘bad algorithms’ and/or ‘bad ideas’ is that quite a few of them are more like
mystic revelations than algorithms; like a hologram they disappear as soon as you
try to get your hands on them.” They admitted, however, that the false starts helped
them see what the important questions are. Eventually, they developed a theory
of solid regions and interior points that led to an algorithm. They also included a
discussion of options for storage management. Their writeup also contained some
golden words: “The time that was well spent on this problem was spent away from
any and all terminals, thinking rather than hacking.”

DRF and MH had already described their method in class. Their writeup and
code were the briefest of any of your solutions, Frankly, without having seen other
peoples’ code, the grader wouldn’t have understood much of their program at all.

WDG and DRR established a time table for completion of various phases of
their solution. Although this might mean their solution couldn’t incorporate the
latest ideas presented in class, it did have the advantage that they didn’t have to
rush any part of their work; it also facilitated their maintaining more regular hours.
Their program included facilities for displaying their output either on a Data Disc
or a Data Media, so they could accomplish much of their work from the terminal
room in Polya. They also reported trouble with SAIL's macro facility, which forced
them to write a logically boolean procedure as an integer procedure instead.

MSK and NCR were the only ones who didn’t pack their data into integers.
They used two arrays, stored the original picture in one, the closure in the second,
then the clean picture back in the first; they worked straight from the definitions.
They divided the work of writing the program cleanly between themselves, and
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had only one problem when putting the pieces together: they had chosen exactly
opposite directions for their coordinate system! They too reported trouble with
SAIL, this time with its linking to an externally compiled procedure, Another of
the heartening comments appears in their writeup: “I must admit to feeling very
good about actually proving an algorithm before implementing it, and having the
implementation work the first time. It is a rather vast improvement over my normal
practices.”

DMO and AMY tried using one of the tricks DEK mentioned once in class:
transforming a problem so that it’s easy, then transforming the answer back to the
original. (Does h = f~1gf ring a bell?) Thus, they took out the bits that would
cause trouble with a simple closure or interior routine and put them into a raster
chosen so that they could be calculated with a non-complicated method. For the
edge-tracing routines, it was clear that they liked using directions relative to the
way the tracing element faces, They raised an interesting question in their writeup,
too: What properties of a function f make it better t o compute in bit-serial fashion
than bit-parallel?

CPP, CHT and WOL expressed their approach almost exactly as DRF had
done. The dualism between closure and interior that they pointed out made the
grader wonder why they had separate interior and closure routines. Their explana-
tion of their edge-tracing algorithm was the clearest: they use the metaphor of bugs
running around the boundaries of figures in the picture and being squashed together
when they meet at a point. (Anyone using RAID or DDT on their program should
be careful not to kill these bugs.)

MES was quite taken with the idea of developing a theory: he devised two new
operations on pictures in his effort to axiomatize our algebra simply. He also did a
very careful analysis of which operations could easily be performed in place in the
raster. His program accepts any file as input, reading zeros and ohs as whites and all
other characters as black; he made the intriguing observation that his program could
be used to display the block structure of a program, He also managed to incorporate
the dualism between interior and closure by writing @ huge macro with parameters
that he invoked almost like a procedure. His three tries at an edge-tracing algorithm
led him to try developing a theory of “cores” of pictures. This task took him so
long, though, that he didn’t get a program for edge-tracing written!

IAZ included a nice discussion of how he decided what borders of the array he
would need to compute the clean picture properly. He originally misunderstood the
problem statement, so he wound up rewriting part of his code. As he pointed out,
however, “this gave me a chance to be more consistent in naming conventions.” His
code also made the grader wonder about incorporating dualism in these programs;
he’s beginning to believe that on such a nitty-gritty level as bits the explicit coding
of various cases is necessary,
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The data used to test your programs is shown on the accompanying page. It is
designed to give them a thorough workout: DEK called it “ the dirtiest picture I’ve
ever seen in my life.” It starts out a picture within a picture within a picture within
a picture, including multiply connected regions and some random patterns lying
around. The rightmost of the figures inside the irregular box at center should merge
with the frame around it, but the leftmost should stay separate. The checkerboard
should fill in all black. The top left hand corner should be cleaned to all white. The
grader’s initials appear on the left border. The right border is a set of segments of
random lengths.

Several teams had trouble with the top left border. Three programs went into
apparently infinite loops trying to trace the king moves around the boundaries of
the clean pictures. The pictures included here were produced by the program of
DCH, ARR and DAS.



Problem 3. Cubic spline drawing (due November 2)

This problem arises in connection with drawing “nice” curves on a discrete raster.
We are given two cubic polynomials

o(t) =z . it . ;t? | m3t?,
y(t) =t + wt . wi® , wt%

and we wish to plot the curve (x(z), y(t)) for 0 <t < 1. But we are allowed to plot
only integer points, making king moves.

Here is the way Knuth solved this problem in the prototype version of his
“METAFONT” system last year. First, he made the problem slightly more general,
namely to plot a set of curve segments (x(7), y(t)) fora; <t < b; and for 1 <1< n.
Furthermore, it is possible to assume that k has been added to zp and to ¥, SO
that the closest integer point to (x(t), y()) is (|2(£)], Ly(t)]). Under these conditions,
the algorithm repeatedly does this: Terminate if n = (. Otherwise, if x(7) is not
monotonic between t== a, and ¢ = b,, find the roots of its derivative z'(t) and
break the interval into two or three intervals in which x(7) is monotonic (increasing n
accordingly). Similarly, the intervals are broken up even further, if necessary, so that
both x(¢) and y(t) are monotonic between t = a,, and ¢ = by, If now |z(a,)] = |2(by)]
or |y(an)] = [y(bn)], draw the appropriate horizontal or vertical straight line (a rook
move); decrease n by 1. Otherwise if |z{an)] = |z(bs)] 41 and |y(an)] =|y(bn)]F 1,
make the appropriate diagonal king move; decrease n by 1. Otherwise replace the
interval [a,, bs] by two intervals [a,, (an— bn)] and [4(an—+bn), bs); increase n by 1.

Knuth’s “binary splitting” method seems somewhat elegant at first glance, but
the curves it draws are sometimes too skinny-looking and they occasionally contain
undesirable glitches near points where ¢ is a simple binary fraction, Even when x(t)
and y(t) are linear, the results are often very strange, So the purpose of this problem
is to help Knuth design a better routine for the real METAFONT system. The new
approach is intended to be faster and to give better curves.

Here’s the germ of an idea that should work better: By refining the intervals a
little more, we can ensure that x(z) and y(t) are not only monotonic in each interval,
but that their slope y/(t)/z/(t) is never equal to #=1 (unless the slope is constant in
the interval). This means that the curves in each interval will now be confined to
one of eight “octants”; by rotation and/or reflection we can assume, for example,
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that x(¢) and y(t) are increasing and that y(t) increases less rapidly than x(¢). (In
other words, 0 <y/(t) <#(t).) Now each move is either one rectilinear step to the
right, or one diagonal step up and right.

Find an efficient way to plot a given cubic spline curve (x(z), y(t)) for 0. <t <1,
assuming that 0 <¢/(t) <z(t) for 0 <t <1. Your algorithm should decide as
rapidly as possible whether or not each successive rightward move should have slope
0 or 1. Then incorporate your method into an efficient subroutine for the general
problem. [Hint: We would like to plot the points (n, [y(t)]), where z(tn) = n; but
it is probably not necessary to know the value of ¢, very accurately.]
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Notes from October 24

DEK was sick today, so CVW led the class, This had the potential advantage
that since CVW is not as familiar with cubic splines as DEK is he would be less
likely to interject his own ideas into the discussion, It has the possible disadvantage
that what DEK had in mind when he wrote the problem is not known to CVW any
more than to anyone else.

Several people wanted to know what DEK meant by “the curves it [his binary
splitting method] draws are sometimes too skinny-looking and they occasionally
contain undesirable glitches near points where ¢ is a simple binary fraction.” DRM
suggested that some undesirable skinniness arises when a diagonal line is drawn
and it appears thinner by a factor of v/2 than a line parallel to one of the coor-
dinate axes. JJF and DRF both suggested that problems could arise because of
insufficient resolution in the raster, JEB posited that glitches near binary fractions
could arise when drawing a straight line and two jumps between pixel rows occurred
close together, instead of being fairly evenly distributed over the length of the line.
No one had done enough playing around with splines, though, to give an example
of a funny-looking raster curve produced by DEK’s binary splitting method.

A couple of people who had heard DEK’s talk on mathematical typography
(see Mathematical Typography, STAN-CS-78648, February 1978) thought that the
problem might have to do with what shape pen tip was used to trace around the
spline curve on the raster. Again, this discussion was inconclusive, because none
of us can read DEK’s mind. NCR suggested that we use some statistical approach
to evaluate methods of plotting splines, but the problem statement suggests that
there’s an esthetic component to the judgment of the results too.

Disregarding what DEK wants, for the moment, we discussed several methods
that were presented for plotting splines. We even restricted the discussion to the
special case he mentioned at the end of the problem statement: plot a given cubic
spline curve (x(t), y(t)) for Q0 <t < 1, assuming that 0_<_y[7) < xt) for 0 <t < 1.

We can try to beat the speed of DEK’s binary splitting method, or we can establish
some measure that compares our curves with those produced by binary splitting.

ML followed up on the hint given at the end of the problem with this approach:
Suppose we wish to plot the points (n, y(z—(n))) for n=|2(0),|=(0)]+1,.. .,[=(1)].
We can use a Newton-Raphson approximation to find a point ¢, such that z(t,) ~ n.
Suppose we have previously plotted (n-l, k); then the new point will be either (n, k)
or (n, k4 1), and the problem is to decide which. If z(ts) = n and y(tn) < k- 1, the
answer is (n, k). If z(t,) < n and y(tn) = k+ 1, the answer is (n, k- 1). Otherwise,
we need a better approximation. This idea is based on the hope that our rough guess
to ¢, will be good enough to tell the general direction in which the curve is going
without much computational labor.
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CHT suggested that instead of a Newton-Raphson approximation we compute
the first few terms of a Taylor series for ¢,. He also observed that DEK’s binary
splitting method does at most four function evaluations at each step of the algorithm,
which suggests that we do want to restrict our computation rather heavily, It also
mandates a rather careful error analysis before we program the computation, since
we want it to be robust for a variety of spline curves.

MES asked just how little computation DEK's binary splitting does. The way
it’s written in the problem statement suggests that a derivative is evaluated at each
step. After some discussion, we decided that the roots of the derivative of x(z) are
found before the splitting starts, and then we can check quickly whether either or
both lie in an interval we’re processing. In the latter case, the interval is split up
into two or three separate intervals.

JEB showed us what he called “the state-of-the-art” algorithm for drawing
straight lines on a raster. Say the (positive) slope of the line is dy/dz. We put dz
into a register and repeatedly subtract dy from it. After each subtraction, we check
the sign of the register; if positive, make a rightward horizontal move; if negative,
make a diagonal move upwards and add dx to the register. The existence of such a
nice method for lines prompted CPP and DRF to suggest that we break the spline
into pieces that can be approximated by lines, then use this algorithm on each of them.

Notes from October 26

DEK was still on sick leave today, We spent most of class discussing improve
ments to the basic algorithm ML showed us last time, Recall that his method was
to start at » = 0, and use ¢;; =1/2/(0) as a first approximation to #;. If z(t11) > 1
and y(t11) < y(0)] + 1 then we move straight to the right; if z(t;;) < 1 and
y(t11) > |y(0)] + 1 then we move diagonally upward, If neither inequality holds,
obtain a better approximation #3 to ¢; and repeat the above tests for which move
to make.

CPP observed that if we could derive an approximation formula for ¢, for which
z(tn) lay alternately on one side or the other of n (viz., z(tn,2¢) < n and z(tn,2641) >
n or vice versa), we’d be in good shape: this method probably wouldn’t require too
many iterations before it computed a good enough approximation to ¢s so that we
could make our move and go on,

We discussed the possibility that the Taylor series approximation to #, is alter-
nating, hence has the nice behavior we’d like. Although it’s not true in general that
a Taylor series alternates (the polynomial z° + 28 4 x + 1 being its own Taylor
series, for example), we might hope for better luck in our situation, because inverting
x = 1 4¢3 gives an alternating Taylor series for ; in terms of z. But what about
x =1 + 2 + ¢37 The class was pretty evenly divided between those who believed
the Taylor series inversion would alternate for most cubics and those who weren’t
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convinced.

ARR suggested that we try ¢ == m if we needed a better approximation
to ¢;. This looks sort of like a second-order Taylor series approximation, but ML
pointed out that it’s cheap to compute: since we already have 1/z'(0) and z(t,), we
need only perform one division.

WDG proposed that if we still needed a better approximation to ?; after two
tries, one low and one high, we use the abscissa of the intersection of the tangent
lines at the two guesses to get a very good guess. The formula for this,

|
® = T — o) 1 2 — ') wa'w),
involves computing only one value we won’t already know, z'(tz), which is probably
not too much work.
DRM observed that these approaches all fit the following general pattern: we
know two numbers s; and s such that

z(s1) < & <z(sp)
Y(s1) < I < y(s2)’

where (%, §) is “special” (for example, Z= 1 and § =|y(0)]+ 1). Then any s3
we choose in the range s; < §3 < s can either replace one of s; and sy (because it
satisfies the same inequalities) or gives enough information to decide where to move.
Our basic problem is deciding how to pick s§3: using the midpoint gives binary splitting.

DCH suggested simply writing out the Taylor expansion of ¢ to third-order:
t(z) = ap + a1z + agz® + a3z®, then plotting the moves determined by the set
{t(2), y(t(¢)) }o<<i<n- WOL observed that this can’t work if the interval is very long,
since #(x) is a good approximation only in a neighborhood of x == (. But it might be
a reasonable idea to use the same approximation formula for a few steps across the
raster, then adjust the formula by computing the Taylor expansion about a different
point.

NCR asked if there was a standard spline curve to use for testing programs.
DRM suggested that x(1) = y(t) = (r — 1/2)® might be interesting to try: it’s a
terrible parameterization of a straight line,

IAZ proposed a method by which he hoped to reduce the problem to solving
a quadratic equation. We’d like to know where the curve is with respect to the
point (n, m), m being the row we crossed on the y-raster when we plotted the point
(n— 1, m). One way to try to find this is to intersect a line through (n, m) of slope
y3/z3 with the curve. This gives us a quadratic in ¢

z3(y(t) — m) = ya(z(t) — n)
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(because the ¢3 terms cancel), which we can solve to find an approximate value for ts.

NCR suggested that we use some method based on the spline’s curvature to
take longer steps in drawing the curve. Along these lines, DAS observed that parts
of the spline that were troublesome to fit with a straight line might be approximated
well by a parabola.

Notes from October 31

DEK started class asking who had sent him an article from IBM’s Technical
Disclosure Bulletin (September 1978) about drawing straight lines on bit rasters.
The article described yet another “discovery” of the method JEB showed last week,
which DEK thinks was first published in 1965 [IBM Sys. J. 4, 25].

DEK showed us the test case he had in mind when he wrote up Problem 3, his
“favorite” cubic splints. Let

3(t) = 2 + (1 — 20)(3t — 2t% + re®t(1 — t2) + se't3(1 — 1)).

Then x(z) =R(2(t)) and y(r) = (2(t)) is a good test case. This is the most general
cubic from 2 to # that starts at angle 8 relative to the straight line [2, z1] and comes
in at angle ¢. The parameters r > 0 and § > 0 determine how close the spline stays
to the line 2(t) = % + (2; — %)t. For 8 = ¢, we get a cubic spline that looks very
close to an arc of a circle, if we choose r and s so that the spline hits the circle at
t =1/2. In general, DEK's METAFONT system chooses r and s as functions of &
and ¢ as follows

4sin ¢

1
;, (1+cost§ﬁ)sina—'-’{—¢

45in 6
(1 + cos ’—‘i}i) sin 43¢

He suggested we test our programs on a family of cubics with 2 == 0, 2; == 1, fixed
6 but varying ¢.

In response to NCR’s question, DEK clarified the problem statement to the
effect that x(z) and y(z) need not satisfy the derivative condition 0 <y/(t) < z'(¢)
over their whole domain of definition: instead, we’d split the domain into pieces so
that the condition was met by the two equations, possibly interchanging the roles
of x and y.

Here’s what DEK meant when he referred to “skinny lines™:
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looks skinnier than

fti4
j’-*f
o+

when the points are replaced by black square pixels. He observed that needlepoint
samplers usually draw straight lines using the second form, whereas binary splitting
produces a mixture of skinny and fat. Two ways to compensate for the skinniness
problem are to use a thicker pen and to try to fill in one of the “corner” squares in
the raster. So for Problem 3 it’s OK to use the skinniest curve.

In reply to a question from JJF whether this is a serious problem at a resolu-
tion of 5000 pixels per inch, DEK stated that he wants his spline plotter to be as
independent of the raster resolution as possible: the fonts produced by the program
should not require editting by hand to repair glitches when the resolution is, say,
100 per inch or more. CHC asked if one ever needed lines in fonts that are just one
pixel wide, Answer: Yes, “hairlines” and serifs are typically one pixel wide. DEK
called the exclamation point the biggest problem, since it should taper in width from
top to bottom, but it’s not easy to decide on a raster where to go from width 4 to
width 1 and make the thing look centered.

Next, DEK presented a method that no one had mentioned in discussion so far,
namely eliminating dependence on #. Say

z(t) = a3t + agt? + at + ap
y(t) = b3t + bat? byt + by’

If we write
Yo oatt- x - . bf—y=0,

0<i<3 0<s<3

we can compute the resultant of those two polynomials, alias Sylvester’s determinant:
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f43 & a G—3zI 0 0
a3 a aj ap—x 0
0 0 43 ay aj ay— x
F(z,y) =
@u=detly b b —y o 0
0 & & & Hh—y O
\0 0 & b b b—y)

Then F(z,y) = 0 is a third degree polynomial in x and y; in general,

Flz, y) = a2’ + ba'y + cay® + dy* + e + foy + gy* + ha + iy + J-

Now, we can express our rule for moving across the raster this way:
while appropriate do

begin
X+x+1;
if F(z,y) <0
then begin
y—yt+l
move diagonally
end
else move right
end

An advantage of this is that the test F'(z, y) < 0 and the updating of z and y can
be done using only six registers. This makes it a nice candidate for implementation
by microprocessor. We use a difference method to perform the computation. We’ll
only need six registers because each (partial) differentiation reduces the degree of
the polynomial F(z, y) by one.
Here’s how the algorithm looks with the difference computations:

while appropriate do

begin

[z —z41]

F—F4Fg;

Fp —Fy+Fys;

Fre —F,y +qu;

Fye—F,~+F;

Fy, ‘_Fys+Fyui

Fyy & Fyy+Fyysi

ftF<0

then begin
[y —y+1]
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F «F+4F;

Fye—F,4F,;

Fyy e Fyy +Fyyi

FL"'F;'+'F;y5

sz*"FLs-FIny;

Fip—F;y +-F;sy;

move diagonally

end

else move right
end

Here, Fz(x) y) = F(z +1, y) _F(x; y)’ Fy(zi y) = F(x’ Y+ 1) _F(x’ y)’ Fzy(xy y) =
Fy(z,y + 1) — Fg(z, y), etc. The values of Figq, Fyzy, Fuyy and Fyyy, are constant.
The derivative condition 0 < 3/(t) < d(t) is important or this would not work,
Perhaps other conditions are needed too: we have eliminated ¢; and the equation
F(z,y) =0 includes points not on our original curve.

JEB asked whether this method will have trouble if the cubic spline intersects
itself. Problems arise because we’re using the sign of F(x, y) to decide which direction
to move, but the side of the curve on which F(z, y) is negative suddenly switches
when the curve intersects itself:

F(x,y) <O

DRM asked whether the six-register method could be slightly modified so that
a change of octant is detected as soon as it occurs; then we wouldn’t need to pre-
process the curve to break it into pieces. DEK said he didn’t know if this method
can be fixed up easily, but its efficiency makes it an appealing direction to pursue,
However, he didn’t mean to say that it was the only promising line of attack; he
liked the methods discussed in class last week too,

DEK suggested another possible algorithm: take big steps across the raster,
rather than asking at each raster column which direction to go. Such a method could
be better than linear in processing time.

In response to the wailing and gnashing of teeth about the ailing SU-AI com-
puter, DEK suggested that this is a golden opportunity to consider our theory very
carefully before trying to implement it.
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Notes from November 2

We continued to discuss ideas about cubic spline plotting. Because of SU-AI’s
temporary difficulties with its disk channel, few people had much experience with
programs running on actual curves. There were plenty of ideas anyhow.

NCR elaborated on the idea of breaking the spline curves into pieces short

enough that each could be approximated well by a straight line. First, he finds where
. . dy __ dy/dt . .

dy/dz or dz/dy vanishes. Since ¥ = ﬁéd—“ we can find where dy/dz vanishes by
solving the quadratic equation dy/dt = 0; a similar observation applies to the places
where dz/dy vanishes. So there are at most four interesting points of this kind. If
we also designate the endpoints of the interval to be interesting, we have at most
SiX interesting points at t == &, &1,. . . ,85.

Next draw straight lines between successive interesting points  (that is, be-
tween (z(s:), y(s:)) and (z(si+1), y(si+1)) for 0 <4< 5), then smooth the resulting
polygonal curve so a8 to reduce the angle8 between successive segments. To do this
latter smoothing, we replace the segment between (z(s;), y(s;)) and (z(s5+-1), ¥(55+1))

by two segments, one between (z(s;), y(s;)) and (z(ﬂ%f‘-ﬂ), y(ﬂiff-ﬂ)), the other
between (z(ﬂ%ﬂﬂ‘—‘), Y( f11'2‘1-'3'—’)) and (z(s;41), Y(s;+1))-

JEB asked if there would be a problem when both dy/dt and dz/dt vanish: such
places are cusp8 on the curve, where neither dy/dz nor dz/dy exists, -

IAZ observed that this problem will not arise if we allow such points only at
the endpoints of our intervals, Furthermore, it’s easy to insure that this condition
holds: if we solve the quadratic equation

vaz(t) — zay(t) =0 c*

for ¢, the discriminant turns out to be independent of x and y. The geometric
significance of the discriminant is that it’s zero when both derivative8 dy/dt and
dz/dt are equal, hence where both vanish if that happens. IAZ also noted that
substituting the value we get for t out of (s) back into (s#) and rationalizing the
resulting equation gives us the same polynomial as Sylvester’s determinant.

DEK was still worried, however, that the six-register method he presented last
time would fail in a situation like that pictured below, because it relies on the poly-
nomial F(z, y) being negative below the curve and positive above, but the signs
switch when the curve crosses itself. This look8 like it’ll give us trouble even though
we’re on one branch of ¢ (discriminant always of same sign).
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F(x,y)

To remedy this problem, JEB suggested that we could look at Fy, as well as at
Fwhen we decide in which direction to move. DRM observed that the curve crosses
itself when the Jacobian of F vanishes:

) Fzy _
det (Fvs Fw) = 0.

The observation that the crossover is a saddle point doesn’t seem to help in the
plotting: we’ll just have to look to see when the sign of Fy changes.

JEB asked about this case: (The signs tell the sign of F(z, y) at that corner.)

=

This reminded DEK of algorithms for contour lines, which use the sign pattern to
decide which of three possible lines to draw inside a raster square.
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Nl

These algorithms also have the problem that they’ll chop off curves like this one:

-
N

ARR pointed out that this might not be so bad, since such spikes would be cleaned
out of pictures by the algorithms resulting from Problem 2 anyhow.

We discussed troublesome curves for about forty-five minutes. Finally, DRM
showed us this example of a troublesome curve:

() =(t+ 1)t —1)(t—3)
y(t)=(¢ + 3)(t + Dt —1)
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CHT presented his team’s method next. Say the slope at & is &. Solve the
equation tan(| tan™? s| 4= §) = dy/dz for § to within some tolerance. Then draw
a line of the appropriate slope from (x(O), y(0)) to where it intersects the curve
(z(t), y(t)). This method requires work proportional to the curvature of the spline.

DCH elaborated some on the method he showed us last Thursday. Recall that
he was going to calculate the Taylor expansion of t(x) and use it to walk across
the raster. Since Taylor approximations are generally valid only in small neighbor-
hoods, he said last time he’d adjust his Taylor expansion every once in a while. He
could do so either at certain pre-chosen points in the plotting or adjust whenever
some tolerance was violated. He’d chosen the latter method; he observed that the
approximation could be pretty far off (around .9 pixels) and he’d still be close to
the intended curve, so such tolerance checks needn’t be very costly.

DEK pointed out that since he’d specified that 0 <y/(t) < x{¢) in the interval
we’re plotting, it might be better to walk along the side of the raster, that is, to find
the u, at which y(u,) = n. For example, the spline x(z) = ¢, y(r) = .0 1¢, is easily
drawn this way because the curve will go straight for 100 x-points before rising by
one y-point.

ARR and MES asked whether the potentially huge error in computing u,
(because the function y is changing so slowly) might cause problems with this ap-
proach. But JEB observed that we can afford to do about 100 times as much com-
putation to make our u, values good as we’d do travelling in the x-direction. CHT
noted that his team’s method would do well on this type of curve, since it doesn’t
prefer one direction on the raster over the other.

MES questioned our having spent so much time on special cases like cusps
and curves of small curvature. “‘It seems,” he said, “that each method that’s been
presented is optimal for some class of curves. Bow can we come up with a method
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when we have no idea of the particulars of the curves which will confront it?” DEK
remarked that this is the dilemma of computer science: there rarely is one method
that’s always superior to another for any input.

Notes on Solutions to Problem 3

RTB and AFB tried several methods (including a couple that ignore the octant
in which the curve lies) before amalgamating the best features from each into their
final solution. They break the interval into segments and approximate the curve
on each segment by a Lagrange polynomial of degree at most two. Then they plot
the Lagrange polynomial using binary splitting. This is faster than simple binary
splitting because the function evaluation is cheaper. Their curves looked very nice,
too. DMO and AMY's work proceeded along lines quite similar to RTB and AFB's.
Their method uses Hermite cubic polynomial approximations rather than Lagrange
quadratic polynomials, however,

JJF and MH implemented a simple method: they solve for the values of ¢ at
which x(z) is an integer, using regula falsi, compute the value of y(7) at these points,
and plot (x, y).

DRF and MAT devised a “pseudo-curvature” function that’s easy to calculate
and tells what set of straight lines to draw that will approximate the curve reasonably
well. Their method handles cusps especially nicely.

WDG and DRR followed the hint given in the problem handout pretty directly,
with the modification that they sometimes step along the y-axis rather than always
stepping along the x-axis. They used bisection to find the ¢, where z(t,) =n
(or y(tn) = n) because bisection is guaranteed to converge while simpler methods
aren’t. They also observed that the eight octants could be replaced by four quad-
rants separated by the lines y = 42/; for example, the case 0 <y < ' is like
0<—y<d.

CPP, CHT and WOL implemented a method that takes account of the cur-
vature of the spline, drawing long straight segments very fast. They conceive of
their algorithm as sliding a “window” (shaped like a sector of a circle) along the
curve: with the window sitting on the curve, they check where the curve intersects
one of its sides, and draw a straight line between the window’s corner and that
intersection. The speed of computation depends on the angle of the window. This
method produced some very nice pictures.

IAZ's method uses knowledge about which octant the spline curve lies in. We
state it here as if the curve lies in the first octant, If the point (n — 1, m — 1) has
been plotted, we must decide between drawing a straight line to (n, m — 1) or a
diagonal line to (n, m). To decide this, evaluate the implicit equation for the curve
(F(z,y)==0) at (n, m), if the sign differs from what it was at (n — 1, m- 1), move
diagonally upward, else move straight to the right, Because the implicit equation



can be found in a straightforward fashion (cf. Sylvester’s determinant) and is
easy to evaluate, this method is quite fast.

NCR presented a nice discussion of a variety of possible approaches to the
problem, though he hadn’t been able to get very far implementing his ideas because
of SU-AI's yo-yo mode while we worked on this problem. He attempted to quantify
the notion of “skinniness” and use the skinniness properties of the pictures drawn by
each method to decide which methods were superior, He also gave several examples
of “glitches” and what can be done to resolve them, Some of his methods plotted
point-by-point across the grid, while other6 made use of more global knowledge about
the spline’s curvature so as to take bigger steps across the raster between function
evaluations.

MSK was also stymied in his efforts by the system’s flakiness, He found it hard
to come up with much in the absence of experience with curve-plotting, though. He
suggested one interesting possibility in his writeup: refine binary splitting to work
on smaller sector6 than octants (hexadecimants?, duotrigimants?, etc.).

MEShanded in an excellent survey of his work on the problem, although he
also had had trouble getting a program running in the face of SU-AI's troubles. He
proposed a rule for moving that’s very similar to the idea ML presented the first
day we looked at this problem, with the proviso that if our root-finder for z(t,)=n
finds ¢, to a certain tolerance but no decision about which move to make has been
made, we select one of the two possible moves randomly and proceed.

DAS presented a heroic amount of calculation devoted to figuring out a nice way
to express the curve in an easily computable form that avoids the dependence on ¢.
He gave some examples that show just how hard it is to approximate a semicircle
by a univariate polynomial of low order,

DCH and ARR used a Taylor series approximation to solve z(tn) = n for ty.
They change the point about which the function is expanded in its Taylor series
only when they find they’ve deviated significantly from the true curve.
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Problem 4. A language for Gosper arithmetic (due November 16)

The main purpose of this problem is not to design a computer program-instead,
we will try to design a good programming languageof a new type (related somewhat
to the so-called “data-flow” languages being discussed nowadays in connection with
database systems). The semantics of a certain new computational scheme will be
sketched below; your task will be to suggest a good interface by which a user will
be able to use the scheme intelligently.

Here’s the sketch: Every real number x can be represented in a unique way as
a continued fraction |

+ 1

I 4+
92—'—000

where zp is an integer and zy, s, . . . are infinitely many positive integers; or perhaps
zr = oo for some k, in which case k-1, Zxk+2, ... do not exist, For convenience in
notation, we write X ==z + [z1, 23,. . . [. The z¢'s are called “partial quotients” of z.

R. W. Gosper has developed a set of routines that do arithmetic directly on the
continued-fraction representations of numbers. His routines have the neat property
that, when computing something like

w+fa, 2. ] — (zo+ foyoy. )+ (0 fuw,. ),

they look at just enough of the #; and y; to determine # before 2z is output, for k == 0,
1,2,.... Thus it is best to think of his arithmetic procedures as coroutines that
produce one partial quotient at a time when called on. Gosper’s addition coroutine
for 2 «— 24y is effectively hooked up to the coroutine for x and the coroutine for y;
when the z coroutine is asked for a new partial quotient, it will call on the z and/or
y coroutines for more information, but only as much as necessary.

Actually every numeric quantity in the system is a coroutine, at least at the
user’s level of abstraction, and these coroufines are connected together in a possibly
gigantic network, There are no ordinary numbers, in the old-fashioned static sense of
some bit representation stored somewhere; numeric quantities are totally dynamic.
Nothing is ever computed “to the end,” the calculations just get more and more
precise if this is called for.

When started or restarted, a coroutine for £ will sooner or later produce an
output that is either the next partial quotient for z or it will produce a coded message
that means “z is indeterminate, but its next partial quotient is anything between
a and b inclusive, and don’t ask me for any more information.” .This allows us to
deal with inaccurate input data, producing exactly as much output precision as is
legitimate.
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Assume that the following types of coroutines are available:

(1) Given two decimal numbers x and ¢, output the partial quotients for a number
that is indeterminate but between x-c and x - e.

(2) Given two coroutines x and y, output the partial quotients for x + y.

(3) Given two coroutines x and y, output the partial quotients for x — y.

(4) Given two coroutines x and y, output the partial quotients for x X y.

(5) Given two coroutines x and y, output the partial quotients for z/y.

(6) Given a coroutine x, output the decimal digits of x.

Each of these coroutines will produce its outputs one at a time, as called for. There
is also a procedure that, given coroutines x and y, will produce one of four outputs:
YY" 'z=y", “z>1¢", or “indeterminate”.

All this sounds very nice, but there is a serious problem that has been glossed
over: In order to produce results in finite time, the coroutines sometimes have to
make guesses and retract bad guesses later, Furthermore the comparison procedure
might have to give a fifth output, “I can’t figure it out even though I’ve checked
lots of partial quotients of x and y." The reason can be understood by considering
the analogous situation where we are working in the decimal number system instead
of with continued fractions: After reading finitely many digits of v/2 = 1.4142.. . ,
we will not be able to tell if the square of this quantity is less than 2 or not, even
though we know that it is at least 1.99999999999.. . (say); we have to wait forever
before we know even the first digit of the product. When Gosper’s routines appear
to be computing too long, he makes them produce a guessed-at result; if this turns
out to be wrong, they will later output a partial quotient that is zero or negative,
in such a way that the continued fraction will still evaluate to the correct final value.

So that’s the general idea. Our goal is to design a suitable user programming
language. To make the problem more explicit, you are asked to illustrate how you
would solve the following two problems using the language you design:

(a) Calculate a root of any given cubic equation.

(b) Solve a system of n simultaneous linear equations (by some straightforward

scheme).

For each of these tasks, present a sample program in your new language. Also give a
brief description of the features of your language. (But don’t attempt to implement
a compiler for it, wait until you take CS240 or something.)
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Notes from November 7

A large part of this session consisted of DEK'’s preamble to Problem 4. He
explained that an exciting new idea in programming is to view variable6 as dynamic
rather than static entities: they can answer questions about themselves, The problem
statement suggests one such view where the variables are numbers. A non-numeric
example would be the merging of two sorted lists: if the elements of two lists can be
specified by some rules, we can imagine merging the rules for the two lists, rather
than merging the actual elements; this option looks particularly attractive when the
lists are infinite.

Here’s another example: suppose an insurance company has changed computer
systems a couple of different times, so that now its records are scattered around on
all different kinds of media: floppy discs, magnetic tapes, etc. Instead of writing a
program to merge the information stored on these different media into one centralized
data base, we could imagine having our data-processing programs call on coroutines
to find the data we need to access. There’d be a different coroutine for each medium
used.

Yet another example is the notion of data-flow computers, where we regard a
computation as a network of nodes, each of which is computed from some nodes
that precede it and is an input to some node8 that follow it. We wish to decide how
to exploit the possible parallelism to the greatest extent possible, so that our com-
putation is fast and efficient. [References: Paul Kosinski, A data flow programming
language, Rep, RC 4264, IBM T. J. Watson Research Center, Yorktown Heights,
N. Y., March 1973. Jack Dennis, First version of a data flow procedure language,
Tech. Mem No, 61, Lab. for Comptr. Sci, M.L.T,, Cambridge, Mass., May 1973.
Also, papers by E. Ashcroft at Warwick (about LUCID), by Gilles Kahn at IRIA,
and about “Actors” by Carl Hewitt.]

We moved on to consider some interesting facts about the continued-fraction
representation of numbers; roughly speaking, the number of digits you know in the
decimal part of a real number is the same as the number of partial quotients you know
for its continued-fraction representation, Continued fractions also enjoy two nice
properties over decimal representations: they terminate if and only if the number
they represent is rational; they’re periodic if and only if the number they represent

1s a quadratic irrationality (aji. ), where a, b, and c are integers.

Anent the details of the continued-fraction representation that motivated this
problem, DEK remarked that identities like

20, [z, .. %i—1,0, Ziqp1ye o [ =20+ [31,0 0y Ticy F Zigry - ]

can be used to find the size of the x’s, and that Bill Gosper also works with his
own special continued fractions based on powers of two for efficiency. None of these
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details, though, should affect the language we’re designing for this problem.
We spent some time computing with continued fractions, to get a feel for how
they work. Here’s the beginning of the continued fraction for =:

3+ 1
T+ 1
15+ |
1
14 -
292 + T+

To compute with this, we form the following table:
i -1 0 1 2 3 4 5
a; 3 7 15 | 292
Pi 0 | 3 22 333 355 103993
g | 0 | 7 106 113 33102
G o T % & e

Here’s the rule for writing this table: write the partial quotients ay, ag, . . . , then for
+ 2> 1 form p; = a;p;—1 + pi—2 and ¢; = a;g;—1 + g;—o; finally, write ¢; = pi/q;.

Each successive pair ¢, ;41 gives upper and lower bounds on where 7 lies.
We can write the decimal representation for # by using this information: Since
§ <7 <%, we know the first digit of the decimal representation is 3. Then we
can subtract 3 from the inequalities, giving 0 < x — 3 < 4; this tells us the second
digit is 1. When we’ve exhausted the information given us by one set of bounds, we
move on to the next set,

Suppose we want to add « and e. We can illustrate the flavor of the continued-
fraction approach by what we do with the decimal representation. We have 7 =
3.14159.. . and e = 2.71828.. . . Adding the first digits, we know we have 7 + e =
5 4+ x, where 0 < x < 2; after adding the second digits, though, we know that
X = 0.8 4y, where 0 < y < 0.2. This tells us that the first digit is 5. Adding the
third digits tells us the second digit is 8, since 1 44 == 35.

The only time we have to withhold judgment is when the sum of two digits is 9;
then, it’s possible that a later addition could cause 1 to carry left, so we need to find
out more information before giving the next digit of the number. This problem is,
however, quite serious in some cases. For example, consider trying to add ¢! and
é 2. After getting fifteen digits, we’ll know that ¢! 4 ¢—2 = .999999999999999;
moreover, there’s no prospect that we’ll ever get a sum that we’ll be forced to carry

through all the 9's.
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So, we have to make a decision. Since the likelihood of the computer’s dropping
a bit is probably > 1071% we can say that the probability of the sum ¢! + ¢—2
not starting with 1 is quite negligible, so we might decide that as a general rule,
we’ll guess that after fifteen successive Q’s, we have a 1.

The next stage in DEK's scenario was for someone to activate our routine again,
so that it computes the next digit, and finds it to be a 7: .9999699999999997. DEK
mentioned three possibilities for handling this case: (1) go into another line of work;
(2) give the user an error message; (3) output a digit of “—3" to repair the error and
go on. As DRF pointed out, however, we might never discover the error. That’s what
adds an interesting dimension to the problem: why insist on total correctness of our
programs, when the likelihood of their erring is much smaller than the probability,
say, of the sun’s not rising tomorrow?

We moved on to discuss approaches to Problem 4 itself. DEK remarked that
the best way to design a language is to try to write programs in it and see what
features you’d like it to have. He also observed that there’s an easy cop-out for
writing the root-finder for the cubic, namely including an explicit cube root function
in the language, and using the general solution for cubic equations. He urged us not
to take this easy way out, since the real goal is to design a language, not to solve a
cubic.

The cubic root-finder is potentially quite useful and interesting, as polynomial
equations can be very unstable. The classic example of this case is due to Wilkinson:

The roots of the equation

e+ J[ ¢t—3) = o,

1<i<20

where ¢ is very small, can be very far away from {1,2,. . .,20}; many of the roots
are complex.

OJD suggested that there’s no evidence a priori that we shouldn’t redo the
entire root computation each time we want a new digit of precision in the answer.
DCH replied that if there were some way we could store the state of a computation
so that we could return to it if necessary, we’d have better luck dealing with the
“Q's problem” discussed above.

With respect to solving a system of n linear equations in » unknowns, DEK
pointed out that standard Gaussian elimination techniques require us to be careful
when a potential pivot element is zero, But how can we test for that in our sys-
tem? For example, what method could we use to allow our routines to decide that
2(¢~! + ¢—2) — v/24/2 = 0 in a finite amount of time?

ARR pointed out that we might well decide this using an approach similar to
our solution to the Q’s problem: after a certain number of digits are computed and
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are all zero, we declare that the number is zero. MBK observed that this might not
be much of a problem since we expect the numbers we'll be vorking with aren’t
single values but rather have an associated error tolerance. In other words (due to
DRM), we’ll be doing arithmetic on intervals of numbers, rather than points on the
real line.

OJD asked if zero is a coroutine, BIA, who has worked with Bill Gosper on the
development of this system, replied that it is, and its representation uses a special
“infinity” marker. OJD wondered if anything is known about the distribution of the
partial quotients in a continued fraction. DEK replied that, for a random number
z, the probability that the n'® digit equals a is

(a+1)?
‘g(m)-

Finally, DEK mentioned the pretty continued fraction representation for e:

e=24J12114,1,6,1,1,81,1,10,... 4.

Notes from November 9

DEK started class asking what question loomed largest in people’s minds when
they mull over Problem 4. MSK was the first to volunteer his question. He wondered
just how we’d handle the case where the program is asked a question and must reply
simply “I don’t know.” An example of such a question occurs when the program is
asked to find the roots of the equation 22 4 ¢ = 0 when we only know ¢ to bounds
a << (0 << ¢ <<b These same bounds on ¢ give us trouble solving cx == 1 for x, too.

The general problem of which these are instances is: “When doing interval
arithmetic, what do I do if asked to divide by an interval that contains zero?” There
are two schools of thought about the appropriate reply. One says we should reply that
(:h; = (—o0, -1) U(1, 00); the other says we should let the quotient be undefined,
so as to be completely rigorous and exclude the possibility of dividing by zero. DEK
himself prefers the latter answer, although he admitted that we could debate the
point for weeks. DRM asked if we might ever get a result out of computations done
by the first rule that consisted of more than two disjoint intervals; DEK assured
us that wouldn’t happen. NCR pointed out that a significant problem is that the
“hole” [—1, 1] could fill up in subsequent operations, like adding (—2, 2).

SOY claimed that it would rarely occur that the program would be need to
produce the reply “I don’t know,” and suggested that we build into the language
a facility for handling this case, Specifically, he suggested that we investigate the
utility of three-valued logic to the user. In three-valued logic, variables may have
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one of three values: T, F, and . Here are truth tables for three-valued logic:

| T F

Al T F 1 v ? -
T T F ? T T T T T F
F F F F F T F ? F T
? ! F 1t ? T 1 7 ? ?

With these definitions, DeMorgan's law still holds: =(z Ay) = =2V ~y. Furthermore,
if we assign the numeric values T =1, F = 0 and ! =4, “A" corresponds to the
minimum operator, “V" to the maximum operator, and “~" to subtraction from one.

Now, what should our syntax for conditional statements be? CPP observed
that we might need three clauses (one for each outcome of the test), so we could
use a syntax like the FORTRAN arithmetic IF-statement. JJF' suggested the more
ALGOL-flavored “if ... then,,,else.., perhaps . . .," the last branch to be taken if
the result of the test was ?. All these suggestions address the problem of expressing
the flow of control of the language neatly and perspicuously. DEK asked just how
much difference people thought such “syntactic sugar” makes, ARR immediately
pointed out that it makes quite a difference: his example of SAIL’s terminating
comments with semicolons, making the likelihood that part of a program is swallowed
up as comment much greater, was dear to the heart of almost everyone in the room.

DRM opined that devising the ultimate programming language may be a hope-
less task, since people think differently. This prompted JJF to champion PASCAL as
a language whose designers distilled a few powerful constructs out of many people’s
thought processes, giving it a sparse syntax which helps one avoid spending all his
time looking up language details in a manual. DEK agreed that the closer program-
ming languages come to being natural expressions of our thought processes, the
better they are, but asked what makes programming languages grow to the sizes
they do.

CHT made an analogy with natural language: people’s need to express ideas
fosters the growth of facilities in natural language for expressing important distinc-
tions. Eskimos, for example, have over fifty different words to describe snow. He
likened efforts to pare programming languages to the barest essentials to Newspeak
in George Orwell’s 1984. This led DRM to suggest that a programming language
that’s an early success is doomed to fail because people will use it and want to extend
it to handle the kinds of problems that interest them. OJD agreed and added that
there aren’t very many people who can expand a programming language sensibly.

All this discussion reminded DEK of his own experience when he designed TEX,
and also of the time when PL/I was developed. He said that there are around twenty
mutually incompatible desiderata for programming languages, which explains why
designing one is so hard: we must trade different goals off against one another. One
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of the most important desiderata is a good acronym; he encouraged us all to think
of one,

MAL asked if there were any examples besides the area of programming languages
where notation or terminology proliferates, DEK cited factorials as an example
of an idea whose notation didn’t settle down for a while after the idea was intro-
duced. Binomial coefficients and decimal numbers are still subject to several different
notations. And graph theory is an area where there’s just a vast overabundance
of terminology. [See Fundamental Algorithms, vol. 1 of The Art of Computer
Programming, p.362.] This is still a problem for those who translate texts into
foreign languages: they want to choose felicitous names for the concepts being defined.

DRM suggested that we could avoid choosing words in our language that have
particular sentiment for us by using an easily pronounceable concatenation of letters.
But DRF suggested that we need to be sparing in naming new concepts; otherwise,
we develop a system for expressing our thoughts that’s simply unmanageable.

We turned from psychological theorizing to defining the syntax and semantics
of the“if .. . then .. .else...perhaps..."” construct. DAS observed that it’s quite
likely we’d never be able to state for certain that two numbers in continued-fraction
representation are equal: we may get a “probably” result, or we may reach the limit
of the precision we have in the numbers. JEB observed that the dilemma is similar to
the problem of comparing floating-point numbers for equality: we need to establish
some tolerance for how close the numbers have to be before we’re willing to accept
them as “equal.” This facility is available, for example, in APL, where it’s called
SETFUZZ.

MSK suggested that we could use ||z — y|| < ¢||z|| as the definition of equality
in the language we design, OJD pointed out, however, that equality so defined is
not an equivalence relation: transitivity is not guaranteed. DEK noted that it would
be nice if hardware designers would put this test for floating-point equality into the
hardware. DRF' noted that we could still use a macro facility to make the language
look nicer and relieve the programmer’s need to worry about such nitty-gritty details.

SOY proposed that we create a language feature to set a default limit on the
number of partial quotients we’ll compute with, BIA, however, pointed out that
sometimes we need many digits from one continued-fraction coroutine and only one
or two from the others; so, we need more flexibility in our language.

BIA also noted that we’d also have trouble in the proposed system representing
a number like Avogadro’s number (= 6,023 X 102%), since all the significance would
be in the integer part of the continued fraction. MH pointed out that we could always
allow a continued-fraction mantissa with an integer exponent. But MES observed
that the language we’re designing may simply be unsuitable for computing with this
kind of number: we needn’t try to make it be “all things to all people.”

DCH suggested that we might want to be able to use “normal” real and integer
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numbers for speed and efficiency. JEB pointed out that it’s reasonable to suggest
such an idea, since we’re given a routine to translate from a real number with
tolerance into a continued fraction. Such “normal” numbers might also be useful as
loop indices: we certainly don’t need the precision afforded us by continued fractions
when we’re counting by one! MES asked what conventions would govern conversion
among data types; DEK expressed his own preference for the PASCAL convention
of strongly typed data types.

Notes from November 14

DEK opened class with a letter that recently appeared in a British computer
trade magazine urging that data flow computers really don’t need new languages.
This points up the need to design our language so that it’s a useful extension to
existing programming languages, rather than just for the sake of innovation. It’s also
a shame that there’s no system on which we can try programming in the languages
we design, since one learns a lot about a language by trying to debug programs
written in it. DEK hopes that someone will want to implement a version of the
language we're discussing. BIA has some routines and notes about such a project,
for those interested.

MSK volunteered to show us his proposal for a language. He includes four types
of variables: INTEGER, BOOLEAN, COMPARISON (for three-valued logic; CHC
suggested the name NON-ARISTOTELIAN), and GOSPER, and the usual operators
for comparison and logic. Part of his routine for the cubic root finder might look
like this:

gosper h;
he1;
while (f(h) >, 0) % T do
h —h X 2;
(The subscript on the greater-than sign indicates a comparison on Gosper-numbers.)
The while-condition looks a little strange, but it’s written that way so that 4 is

doubled until we’re sure that f(h) > 0. NCR suggested that we might be able to
make the syntax somewhat nicer by creating a subtype of COMPARISON.

DAS raised an issue that occupied our discussion for most of the class, Does it
make sense to 6ay “h«h + 1”7 or *h « 2 X h" when & is a Gosper-number? MSK
believes that it does, and interprets it this way: We have h, a coroutine, somewhere.
To add 1 to it, we instantiate a coroutine for 1 and one for +4-, and point % at the
-+ coroutine, which in turn points to its operands.
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“Old” h 1

MH and DRF asked how this interpretation fits in with the “stepwise” nature
of the coroutines: since they’re designed to return one digit at a time, won’t they
need somehow to keep track of who’s asked them for digits, so that they can tell
each requestor the digit it needs to know next? Another question is raised by DEK's
example h — 2 X h+h:

“old” h 2

As JEB phrased it, who turns off the coroutine for the “old A"? Or, are we going to
maintain different instantiations of the same coroutine each place we need it?

DMO suggested that each coroutine be required to keep around a list of all the
partial quotients it’s computed so far, so that it can respond sensibly to requests
for more digits. His suggestion was motivated in part by the rather different view
his team @MO, RTB, and AMY) takes of the requirements of the language; this is
discussed below.

JJF observed that the question of when to get rid of a coroutine, either because
it’s computed all the digits it can or because its value is no longer needed, is very
similar to the question of when a variable becomes “dead” in a program. A simple
example is the program fragment

=X,
zeY,
Yy
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which switches the values of x and y. If a compiler can tell that the value of ¢
is never used again after those statements are executed, it can use a register for ¢
during those three instructions’ execution, then forget about it,

Then, JJF asked if we’re willing to set forth a language that requires its com-
piler to perform such optimizations. It’s not clear, though, that our language would
require them; also, ARR observed that the kinds of variable de-allocation we’d need
to do are pretty simple to envision.

NCR pointed out that such considerations suggest that the language we’re
designing will be compilative, whereas he’d thought it a perfect candidate for in-
terpretation: because the user’s knowledge is so important to the “reasonable” run-
ning of the program, an interpretive language would offer greater flexibility. DRM
asked if we plan to take advantage the cyclic structure of the continued-fraction
representation for quadratic irrationalities: have a coroutine point to itself once it’s
reached the cyclic part of the expansion. Such coroutines could be detected by a
garbage-collection scheme.

MES expressed his opinion that we shouldn’t be talking about “variables” and
“assignment” 1n this language; we need different names because the language doesn’t
require any computation until output is requested. ML observed that what we’ve
been calling “assignment” simply uses the notion of procedure variables, hence is not
that different from familiar ideas. DEK remarked that the notion of assignment is one
big difference betwen traditional mathematics and computer science, Von Neumann
and Goldstine didn’t have the idea of assignments in their original flow diagrams.
Even when the language SIMULA was first designed, different notations were used
for setting pointers and assigning numeric values to variables: the underlying notion
of “assignment” being a primitive operation had not been fully assimilated.

WDG mentioned that users of the language might well want to be able to set
the accuracy to which they desired the computation to proceed. We might put such
options in the input/output facilities of the language. CPP then pointed out that
accuracy is not just an issue when output is requested, but whenever the result of a
comparison between the values of two Gosper numbers is done. CRT had handled
this with explicit language features like “print x to y places.”

DRF observed that the idea of letting users set the accuracy of computation
is akin to the way we handle problems of overflow or underflow in floating-point
computation: if such anerror occurs, recompile with the offending variables declared
to be double precision. (Presumably the program really needs such accuracy, and
the range errors are not due to program errors.) He also questioned the feature
that the coroutines return single numbers as partial quotients, rather than a range
(x -61,x+4 &8). DEK hoped, however, that the language would be insensitive to
such lower-level implementation details.

Responding to CHC's question about the point of a coroutine’s telling fewer of
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the digits in a Gosper number than it knows about, JJF' pinpointed the problem as
one of how to permit different parts of a computation to use the same coroutine. For
example, if f(h) = ah?+bh®4-ch4-d, then computing the difference f(h) — f(h 4 1)
calls on the & coroutine at least six times,

MH offered the computation of # by series approximation as one in which there
are two different “directions” in which we might want more precision:

J .1 1
r=l=3t5—gt

We could ask for more terms in the expansion, or for greater precision in those we
already have.

JEB noted that most of the discussion had centered around implementation
details, rather than the user’s perspective. Should a user be expected to understand
the issues we’ve discussed in order to be able to use the language? Of course, taking
this argument to extremes, we could simply say our language will be FORTRAN or
PASCAL with real variables implemented as Gosper numbers.

RTB explained that his team sees the computation as one driven by comparisons
and output requests, hence would tailor their language to a user who knows the type
of variables with which he wants to compute, but who doesn’t want to worry about
all the details of setting up such a computation. In this vein, WOL proposed that if
there’s not enough accuracy at some point in the computation to decide the result
of a comparison, we let the user know what we know and allow him to change his
program or direct the computation some other way.

This idea suggests that one of the most important features of the language will
be a nice facility for letting the user know what his program is doing, especially at
run time. DAS offered this illustration of how the computation proceeds: we have
a big pot of spaghetti, and when we yank on one noodle (for output), many of the
others may get stirred up,

Notes from November 16

DCH and ARR were the first to volunteer to show their proposed language;
they had extended the language PASCAL to handle Gosper numbers. Here’s their
program to find one root of a cubic equation:
program findroot;

var
AU, Al, AZ, A3, (s coefficients for the function )
X, NEWX, (s approximations to the root )
FofX, FprimeofX : real; (¢ approximation to F(x), F’(x) %)
Count, Maxcycling : integer; (# cycle counter and stop )
begin
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Setaccuracy (10);
Read (A0, Al, A2, A3); (s read in coefficients )
Read (NEWX); (s read first approximation )
Read (Maxcycling); (s read maximum number of cycles )
Count = 0;
loop
Count = count +1;
if Count > Maxcycling then exit; (s stop if too long )
X i = NEWX;
FofX := A0+ X X( Al 4+ X X( A2+ X X A3));
FprimeofX := Al + X X(2 X A2+ X X3 X A3);
NEWX := X — FofX | FprimeofX;
if Abs(NEWX—X) =0
then exit (s stop if accurate )
else
indoubt exit (1they are close, anyway #)
end;
if Count > Maxcycling
then writeln (‘Not enough cycles. Root between',X,‘and',NEWX)
else writeln (‘Root at',NEWX:20:10)

end.
The additions to PASCAL are the three-way conditional statement “if . . . then
...else .. .indoubt, ,.," and the capacity to set accuracy dynamically. They also

avoid the weird syntax problems on WHILE conditions by means of the loop . ..
exit construct. Finally, there’s a procedure to release more digits from a particular
coroutine than are required by the general Setaccuracy statement.

CPP pointed out the first problem with this method, namely that it incorporated
Newton’s method, which simply may not work if the initial approximation to the
root is not good enough, But that’s not really a problem with the proposed language
(the two problems were given for wncreteness’ sake), so we punted that issue.

IAZ asked if there’s a mechanism for undoing statements, for example if the
result of a comparison is later falsified by more digits coming out of a wroutine. This
language includes no built-in mechanism, but expects the user to enter a debugger
to deal with such problems.

DEK wondered if Setaccuracy obeys the block structure of PASCAL. Such a
LIFO structure would be much nicer than globally resetting the parameter, as SAIL’s
SETFORMAT command does. DEK also liked the indoubt clause. He summarized
the underlying philosophy of this approach as a conservative extension to PASCAL.

NCR proposed a similar language structure, but handled accuracy considera-
tions by attaching an explicit accuracy argument to each Gosper number when it’s
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used in computation, conditional expressions, or output statements, Thus, binary
operators become Gosper functions with more than two arguments. Then, if we
come to a point in the computation where we want greater accuracy, we redo a lot
of computations to get greater accuracy where required. This viewpoint fits in with

the data flow tree we’ve seen before.
NCR also mentioned what happens when we change the last known partial

quotient by one:
Jou, VARG ARG

i1s always the reciprocal of an integer. DEK mentioned that the denominator is
related to the continuant polynomial of the first k partial quotients. For example,

q4(21, 22, 23, 74) = T1DT3T4 + TT4 + DTy + D172 + 1,

the number of terms being a Fibonacci number. This theory is related to finding the
best rational approximation to a real number using small denominators,

DRF suggested that instead of explicitly setting accuracy we just run the
program with increasing accuracy until it finds the answer desired. In other words,
embed the above program in a huge while-loop that increases the accuracy to which
the computation is performed until we have the answer.

BIA mentioned that the 9’s problem hasn’t really been addressed by these ex-
amples. But JEB pointed out that Gosper’s method guesses for us, so the problem is
not one for us to solve anyhow. We discussed methods for notating NCR’s accuracy-
setting on operators: DEK mentioned that no one has a really good ternary operator
notation. However, the average number of operations in a statement is around one,
so perhaps we shouldn’t worry about this problem too much either,

IAZ proposed a radically different kind of language. He would write programs
as data-flow graphs, and at every comparison, try to do the computation required
by both possibilities for the value of the Boolean expression. This method could
handle arrays by lots of copying. IAZ hoped he could do without an indoubt clause
in his conditional statements, but DEK pointed out that inaccuracy in input may
necessitate such a feature,

Notes on Solutions to Problem 4

Everyone decided to extend either PASCAL or SAIL to handle Gosper numbers.
Of course, people differed on details, and several interesting issues were addressed
by only a few of you.

Everyone added a type GOSPER, and most kept INTEGER as a separate type;
only a few kept REAL as a distinct type, however, Although the problem statement
called for it, only half the class made explicit provision for the user to specify the
accuracy of his input data. Half the class included a facility for the user to write his
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own coroutines to specify variables. (This would be useful for e or v/2, for example.)
Most teams provided user-settable accuracy, either globally (SETACCURACY 10
DIGITS) or in each statement (PRINT x TO 7 DIGITS); some allowed both.

One issue that sparked a lot of discussion was what to do when a test for equality
is indeterminate. JEB and JJF/MH decided to call the result “true.” MAI/DRF
and ML increased flexibility by adding indeterminacy as an operator: for example,
“if 2.999 <?3" means “if 2.999 < 3 or you can’t tell.” NCR and CPP/CHT/WOL
wanted to run their languages in an interpretive environment, so that the user could
direct the computation himself if an indeterminate condition arises. Everyone else
extended the if-statement to a three-way branch.

The dominant view of programs written in the language was as computation
networks driven by comparisons and output requests. A couple of you (AFB, NCR,
DAS, MES) considered with some care just how big this network can grow when
loops are involved, AFB put it best when she observed that it “boggles the mind.”

Very few people discussed the difficulties with backing up to recover a computa-
tion should one discover that a Gosper coroutine had guessed wrong. Since that’s
one of the harder issues confronting a user, it’s surprising that so many omitted it
from their discussion.

Only four teams suggested names for their languages: MES offered GAL or
GogpeL for Gosper Arithmetic Language. CPP/CHT/WOL proposed CORDIAL for
CORoutine DIrected Accuracy Language. RTB/DMO/AMY suggested YAWL for

Yet Another Worthi’;lﬁ‘sile Language. And WDG/DRR overheard the user discussing
his computing bill and called theirs @/?s +&%%".



Problem 5. Kriegspiel endgame (due December 5)

In this problem we are concerned with the game of chess where there is a white
king and white rook against a black king, An easy checkmate, you say; but there’s
a twist: The white player does not know where the black king is.

The game starts with the white king and king rook at their normal opening
positions, while the black king may be anywhere else (but not in check); White
moves first. Whenever White makes a move, he or she receives one of the following
replies:

a) Checkmate, you win.

b) Stalemate, it’s a draw.

c¢) That move of yours is illegal because it puts your king next to mine; try again.

d) Your move put me in check, but it was not checkmate so I have made my next
move.

e) Your move did not put me in check, and I have made my next move.

f) I took your rook. It’s a draw.

It is possible for White to force checkmate in finitely many moves, but the winning
strategy is not easy to discover, so a good Black will usually be able to escape.

Your problem is to design and program a Black strategy that plays “intelli-
gently”; in particular, your program should be able to survive at least 100 moves
against two different White programs supplied by the grader. (These White programs
will, of course, be incorrect attacking strategies, typical of what a player might try
if he doesn’t know the secret of winning.) You will not be able to see the grader’s
second program until the final contest actually takes place (nor will he look at your
program); but the grader’s first program will be available to aid you in preliminary
testing.

This game is different from true Kriegspiel in that Black does know the positions
of White’s pieces. Furthermore, Black does not have to be committed to particular
king moves at each step, he or she is allowed to imagine being in any set of possible
positions consistent with what White has been told. After seeing what White does,
Black has the right to decide what the past history actually was,
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Notes from November 21

DEK started the class off asking why he’d posed Problem 5 at all. JEB said
he assumed that it was the Artificial Intelligence problem of the quarter, but DEK
had hoped to provide problems less closely identified with one area than that, MES
suggested that one of the substantial issues to be faced in this problem is that of
representing the knowledge one has about the board situation and the heuristics
he or she plans to use in play. DRM pointed up the related problem of devising a
good data structure for knowledge. DEK partitioned the possible strategies into two
kinds: providing a huge game tree of moves and responses or deciding on a move
based on the current board state and some look-ahead. Also, this problem should
be fun to work on.

Since JEB claimed to have discovered a winning strategy for White, he played
against the class; the rest of us took turns replying to his moves, The initial board
position (showing all possible Black King positions) is:

After JEB's first move “k-f2," we may respond with one of “illegal,” “check,” and
“okay,” leading respectively to
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Here is the result of the first game:

l. kA2 k-e5 19. k-h3 26. k-e2
r-h5 k-d3 20. k-g2 27. k-d2
2. r-as 9. k-e3 k-h2 k-d3
3. k-d2 10. r-d5 21. kg2 k-el
4, k-c3 11. kA3 r-h3 28. k-d2
5. k-d3 12. r-e5+4 22. kg2 r-h2
6. r-cd 13. r-e3 23. kA2 29. k-dl
7. k-€3 14. k-f4 k-3 30. k-2
k-e4 15. r-13 24, k12 31. r-h3
k-d4 16. k-g4 25. k-e2 32. r-a3$
8. k-e3 17. r-h3 k-e3
k-e4 18. r-g3 k-f1

MES wanted to resign at move 20, fearing the worst, but was dissuaded by DEK,
who hoped JEB might trip up at the end game and stalemate Black.

The second game &: ~rted differently, because almost nobody thought that DEK's
first move (to declare “k-f2" illegal) was very smart:

1. k-2 8. r-e4 15. k-h4 22. r-f3

2. ki3 9. k-3 16.  k-hS 23. k-d6
3. r-gl 10. k-13 17. r-h4 24, r-ed
4, k-e3 1. r-g4 18. k-gb 25. r-e8

5. rfl 12. k-g3 19. k-f6

6. k-d3 13. r-h4 20. r-g4

7. r-el4 14. r-g4 21, k-eB

At this point, a tremendous sense of déja vu overwhelmed us, so we recalled our
response to move 21, changed it to “illegal,” and continued:
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21. ke-eB k-e5 24. r-f4+ 27. k-g5
k-f5 k-d4 95, r-f6 28, r-h8
22. k-8 23. k-d5 26. k-5

In response to DMO's inquiry asking what Black programs should do given that
White has a guaranteed winning strategy, DEK assured us that the grader’s White
program (against which the class programs will be tested) will not incorporate a
perfect strategy.

DEK then began to describe an approach to writing a Black program that would
last a long time against a White program, The method is called alpha-beta pruning,
and is described in D. E. Knuth and R. W. Moore, Artificial Intelligence 8 (1975),
293-326. It assumes that the opponent will be using a good strategy also. To play a
game using alpha-beta pruning, we need a function that evaluates board positions,
f(P). We then define the function

F(P) = f(P), if P is a leaf in the game tree;
max{—F(P; | P;is a descendant of P}, otherwise.

Here’s a procedure that calculates F(P) from the above definition:
integer procedure A board position P);
begin
-integer mys,t,d; [d is number of descendants of P)
ifd=0
then Ft f(P)
else
begin
mt-00:;
for ++—1thrud do
begin
t «——F(P);
ift>mthenm+1
end;
Ftm
end

end
We can do better than this by defining an auxiliary function whose value is

indeterminate in certain cases:

_[F(P) ifFP)<pB
F1(P,f) = {2 s iFE)> A

Then we have F(P) = FI{P,00) and we can use this procedure:
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integer procedure F1( board position P, 8);

begin
integer m,1,t,d; [d is number of descendants of P]
ifd=20
then Fl« f(P)
else
begin
m — —o0;
for i+ 1thru ddo
begin
t+——F1(P; m);
if t > m then m «{;
if m 2 f then done
end;
Flem
end
end

The full alpha-beta method uses a more complicated auxiliary function:

<a if F(P)<a
F2(P,a, B)=({F(P) ifa<FP)<p
=B fFP)2P8

Analogously, we have F(P)= F2(P, —o0,00) and we can use this procedure:
integer procedure F2( board position P, a, f);

begin
integer my,t,d; [d is number of descendants of P]
ifd=0
then F2 « f(P)
else
begin
mt a
for 4¢=1thru d do
begin
[+ _F2(Pu "'ﬂ: —m)i
if ¢t > m then m ~ ¢;
if m 2> B then done
end;
F2m

end
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end
This procedure, while it requires less computation than the other two, takes at least
four levels in the game tree for the savings to be observed,

Notes from November 28
DEK asked for examples of stalemate positions. WDG provided these two:

., 0,0, % 7,0,
% /// / /’/ / /
/ 7, / / /’/’/ /
/ / / /’/ /./

////// //>%;%¢%

/ 45/ o0 %
9y /73/@ A E

Here are two positions from which it’s possible for White to stalemate, although the
Black King is not known to be confined to one position:

/ / / 4 / / / /
/ % / // / / "y o

// o ////////fé

/ % f W v 7"
Y vk Ge /// /m/@

On the left, if White moves r-g2, he may stalemate the Black King at hl. On the
right, White’s move k-h3 may stalemate the Black King at hl.

JEB mentioned that he can guarantee a White mate in fewer than 40 moves.
This means that our Kriegspiel problem can be completed within chess’s regular
fifty-move rule,

SOY asked how to represent the chess board and move information in a computer
program. DEK replied that our task is easy compared to regular chess: there are no
esoterica like en passaat captures or castling to worry about. He also mentioned that
the difference between good and excellent programmers is often the representation
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they choose to solve problems.

CHC agreed with this latter point and emphasized that a poor choice of data
structure may obscure the path to solution of a problem, DEK cited the first problem
of the quarter as an instance of such an effect. He mentioned that it was well within
the realm of possibility to solve the problem with no explicit representation of the
chess board in memory at all.

At NCR’s prompting, we discussed how hard it would be to develop a repre-
sentation scheme that allowed Black to decide its “actual” board position and the
history leading thereto, JEB suggested we use a list of the possible moves to get
to each possible position of a Black King. DEK remarked that we could store each
possible board position as a reply is made to White moves. DMO asked how hard
it would be to move “backwards” through the history of Black responses. It is
apparently just as hard as moving “forwards,” and neither is easy.

This discussion is relevant not only because the Black programs need not be
committed to a move at each response, but because it bears on the depth of explora-
tion in alpha-beta pruning. If we can decide easily how to switch from one board
position to the next, we can get away with keeping just as many board positions
as the depth of the alpha-beta tree we’re searching. This could be very important
because, as IAZ pointed out, there may be twenty-two possible White moves at
almost every step.

This latter point prompted CPP to observe that most White moves at a step
aren’t “reasonable”: they lead to instant Rook capture, or just increase the freedom
of the Black King. The alpha-beta method takes care of some of this, though, pruning
out branches of absurd moves,

DRM asked if an expert player could spot opponents’ weaknesses, and exploit
them in its play; it might be worthwhile to try to build such a “psychological” facility
into a Black program. DEK remarked that good computer chess programs can do
this, but only in a limited way: they understand piece advantage much better than
positional advantage.

This discussion gave rise to a short history of computer chess. DEK mentioned
that David Levy had lost one game to the computer and drawn another in the match
he played in August (which he ultimately won). But the program against which he
played didn’t incorporate any especially elegant insights into chess: it was faster
because it ran on faster hardware, so it could search more levels of the game tree.

DEK remarked that game-playing programs are generally very resilient to er-
rors: as long as a program plays legally, one may be led to believe simply that he’s
incorporated an insufficiently sophisticated strategy, rather than that he’s imple-
mented a sophisticated one incorrectly. He also mentioned that mistakes made in
research can be a fruitful ground for insight into solving problems: we learn a lot
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by solving the simpler problems that arise when we overlook some aspect of a problem.

Notes from November 30

We spent some time discussing the representation method for the board of pos-
sible Black King locations. DAS had mentioned at the end of last class that he could
do it with eight words, each of which contained one rank of the board. If the old
board is in Ay, ..., Ag, we can create the board on which every king in the A’s moves
all possible ways as follows: First, define

A= (A1) v (AP ).
Then, here’s the 3*® rank ofthe new board:
Bl' = A:—l \) A:+1 VA: VA.'—-I VA;'-’-]_.

Now, of course, we must ensure that the Black Kings aren’t in check or an
illegal position relative to the White King and Rook. DAS suggested that we could
take another eight words and zero out the bits corresponding to squares next to the
White King or on the same rank or file as the White Rook. MES mentioned that
we could achieve this effect with less storage by keeping track of the White pieces’
locations in terms of their coordinates. Ultimately, we followed ARR’s suggestion
to ‘use an integer telling the piece’s rank and a word with the appropriate bit set to
tell the piece’s file, Say X is the word and Y the rank-integer for the King, and x
and y the corresponding information for the Book. Then we can get rid of Black
Kings in the White King’s immediate vicinity by the following computation:

o.-={BfA-(XV(X*u)V(Xr'1)) il —YI< 1

B; otherwise

To get rid of the Black Kings attacked by the White Rook, we tried this first:

D___{C’.-Az ifi=Y

' 1C;Anz  otherwise

This works only if the White King and White Book are neither on the same rank
nor the same file (& 9% X and y $£Y).

MSK pointed out the problem with computing when X = X or y == Y: the
Rook’s attacking power may be truncated by the King’s being in the way. This
means a little more work to write down the Rook-elimination equations in these
cases. If X =x, we define Dy = C; when 1 <Y <yori=>Y >y, otherwise use
the same equations as above. Similar changes occur if Y =y.

All this bit fiddling prompted NCR to ask whether this wouldn’t be easier to
compute on an array machine, DEK granted the point that such machine8 are very
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powerful-for example, they enable us to multiply n X n bit matrices together in
O(log n) steps, using O(n®) bits per step. NCR added that with fast enough big
memories, many artificial intelligence techniques are surprisingly powerful.

MSK presented his idea for a static board evaluation function: Number each
square between 1 and 10, depending on its distance from the center of the board,
higher numbers being toward the center. Then, in deciding what response to give
the White player, try to maximize the value of the function on the board. If two are
tied for maximum, take the one that maximizes the smallest rectangle containing
all the Black Kings and one corner of the board. One way to compute this using
Boolean operations would be to use ten 84-bit words, A; containing a one for squares
of value ¢ on which a Black King might appear.

JJF pointed out that this algorithm might miss some board positions in which
the possible Black King locations are spread all over the board, but on low-value
squares, Such positions are indeed terrible for White to try to mate from, but don’t
seem to arise much in practice. This objection seems to be a special case of JEB's idea
that the evaluation function should include the White piece locations in deciding
the value of a position, because some moves may make the Black possible location
set smaller, but harder for White to confine in one move.

Notes from December 5

Here are the results of the playoff between the grader’s White program and
the class’s Black programs, Some teams also played their pregrams against JEB's
guaranteed-win White strategy.

While preparing the notes for this session, the grader noticed that several of the
games played were identical. Therefore, a game may be recorded with more than
one title heading,

We use amodified algebraic notation to record the progress of the games. The
move number is not incremented until a move has been declared legal by Black. The
symbol “~4" by a move means it placed Black in check; “=" means adraw; “§"
means mate.



1. k-2

10.
11.
12.

e L

r-gl
k-f3
r-g2
k-e3
r-f2
k-e4
r-f4
k-f3
k-g4
k-g5
k-f6
k-e5
k-f5

CVW (White) vs. CPP, CHT, and WOL (Black)
13.

14.

15.

186.

17.

18.
19.

k-e5
r-g4
k-e5
r-e4

k-eB
k-e5
r-f4

k-e5
k-ed
r-ed
k-eB
r-e5

k-f6
k-e7

20.

21.

22.

23.

24,

25,
26,

k-e6
r-I5

k-e6
k-e5
r-e5

k-e7
r-e6

k+f7
k-e7
r-gb
k-e7
k-e6
k-e7
r-d6

27.

28.

29.

30.
31.
32.
33.
34.
35.

December 5

k-d7
r-16
k-d7
k-d6
r-d6
k-d7
r-d7
k-d8
r-c7/
r-e7/
k-c7
r-eB

r-ab}
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CVW (White) vs. DCH and ARR (Black)
CVW (White) vs. DRF and MAT1 (Black)
CVW (White) vs. MSK and NCR (Black)

These three programs all fight for the middle of the board. The only difference
in their behavior came at the end of the game, DRF/MAI and MSK/NCR took the
White Rook at move 42. DCH/ARR replied check; after it called White’s “k-c7"
illegal, White moved “r-c8” and DCH/ARR claimed to have captured the White
Rook, which is impossible,

1. k12 k-f5 k-c4 32, k-b5
2. r-gl 15. k-e6 r-d3 33. k-cB
3. k13 k-e5 25. k-c4 k-b5
4, r-g2 r-f4 k-d4 34, k-c5
5. k-e3 18. k-e5 k-c3 35. k-cB
6. r-f2 k-e4 26. k-c4 r-dé
7. k-ed r-e4 27, k-5 36. k-d5
r-f4 17. k-eb r-d3 37. k-eb
8. k-3 18.  k-d5 28, k-c4 38. k-e7
9. k-g4 r-f4 29. k-c5 39. k-d7
10. k-g5 19, k-e5 r-d5 r-f6
11, k-f6 20. k-d5 30. k-b5 40. k-d7
12.  k-e55 k-e5 k-c5 k-d6
k-5 21. k-ed r-d4 r-d6
13. k-e5 22. k-d3 31, k-5 41, k-d7
r-g4 23. k-3 k-d5 42, re-aB=
14. k-e5 24, k-b4 r-d5
CVW (White) vs. IAZ (Black)
CVW (White) vs. RTB, DMO, and AMY (Black)
l. k12 10. r-e3 19. r-ad 28. k-d6
2. rgl 11. k-d5 20. k-c5 29. k-d5
3. k13 12. r-e4 21. k-b6+ 30. r-cB
4, r-g2 13. k-c5 22. r-c5 31. k-e5
5. k-e3 14. r-d4+4 23, r-c7 32, r-d8
8. r-12 15. r-d5 24, k-b7 33, k-e4
7. k-e4 18. k-c4 25, k-8 34, r-d5
8. r-f3 17, rb5 26. k-d8 35, k-f4
9. k-d4 18, k-b4 27, k-e7 368. r-e54

We are now in a position symmetric with that after move 14. The program
lasted 100 moves.
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CVW (White) vs. JJF and MH (Black) (evaluation function)

1. k-f2 k-f4 k-e5 r-f2
2. rgl+4 9. k-f5 13.  r-f4+4 20. k-g4
3. r-el r-e3 14. r-d4 21, r-f5
4. k-13 10. k-f5 15, k-f5 22, k-g5
5 r1-e2 r-e5 r-f4 r-f3
6. k-f4 11. k-g5 16, k-e4 23, k-g5
r-e4 k-5 17. k-3 k-f5
7. k-g4 r-e4 18. k-g3 24. k-g5
8. k-5 12. k-15 19, k-g4 r-h3#
CVW (White) vs. JJF and MH (Black) (random)
1. k12 5 r-c3 9. rf3 13, r-e3
r-h8 8. r-e3 10. k-2 14, k-g3
2. r-c8 7. k-e2 r-d3 15. r-elf
3. r-cl r-c3 11. k-2
4, k-d24 8. k-e2 12, r-g3

CVW (White) vs. JJF and MH (Black) (random)

This game exposed one of the errors in the grader’s program: he moved his Rook
off the board!

. k12 7. k-g4 12. k-d7 16, r-aB
2 rgl+ k-f4 13, k-e7 17. k-17
3. reel 8. k-5 r-c6 r-f6
4. k-3 9. k-6 14, k-e7 18.  k-f7
5. r-e2 r-e6 k-eB 19. r-i6?%?
6. k-4 10. k-e5 r-e6
r-e4 1. k-d6 15, k-e7

CVW (White) vs. MES and DAS (Black) (version 1)
This program also managed to take White’s Rook.

1. k-2 9. k-d4 k-3 20, k-g3
2 r-gl 10. r-e34 r-e2 r-fl

3. k-f3 11. r-e5+ 17, k-3 21, k-g3
4. r-g2 12, r-e3 k-e3 k-f3

5. k-e3 13. k-d3 r-e3 r-f3

6. r-f2 14, k-e2 18. k-g3 22 k-g3
7. k-e4 15, k12 r-13 23, r-15-
8. r-f3 16. k-g3 19, k-g2
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CVW (White) vs. MES and DAS (Black) (version 2)

1. kA2 8. k-e2 20. k-g5 26. k-g5
r-h8 9. k-d3 k-f5 r-g5
2. r-c8 r-cl r-e6 27, k-h5
3. r-cl 10.  k-d2 21. kA5 28, r-g4
4. k-d2 11. k-d3 k-5 29. k-h4
k-d1 12. r-c2 r-e5 r-gb
5. k-d2 13, k-d4 22. k-g5 30. k-h4
r-c2 14, r-c34 r-f5 31. r-g3
6. k-e2 15, r-c5 23. k-gb 32, r1-g5
k-d2 16. k-e4 24, k-g5 33. k-g3
r-cl r-ed r-f7 34. r-f5
7. k-d2 17. k-d5 25. k-g5 35. r-fl§
k-c2 18. k-e6 k-15
r-c2 19. k-16 r-f5

CVW (White) vs. WDG and DRR (Black)

1. k-f2 8. k-4 15, k-c4 22, k-f3

2. rgl 9. r-d3 18. k-c3 23. k-e2

3. kA3 10.  k-e5 17, k-d2 24, k-d3
4, r-g2 11, r-d4+4 18. k-3 25, k-c3

5. k-e3 12, r-f44 19. k-3 26, r-d4-}-
6. r-f24 13. r-d4 20. r-ed<-

7. r-d2 14.  k-d5 21, k2

We are now in a position symmetric with that after move 20, The program
lasted 100 moves,
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9.
10.
11.
12.

e e B e e

. k-2

k-3
r-gl
k-e3
r-fl
k-d3
r-el--
r-e4
r-c4
k-c3
k-b4
k-b5
r-b4
k-c5

k-12
k-3
r-gl
k-e3
r-fl
k-d3
r-el-
r-e4
r-c4
k-c3
k-b4
k-b5

k-2
k-f3
r-gl
k-e3
r-f1
k-d3
r-el--
r-e4
r-c4

JEB (White) vs. CPP, CHT, and WOL (Black)

k-c4 23. k-6
k-b6 r-e4
15. k-c5 24, k-f5
18. k-d5 k-5
k-d4 25. kA5
k-c6 k-f4
17. k-d6 26. k-f5
18. r-c4 k-g4
19. k-d5 27. k15
20. k-ed 28. k-6
k-e4 k-e6
k-d6 29. k-6
21. k-eB 30. k-gb
22. r-d4 r-f4
JEB (White) vs. DRF and MAI (Black)
13. r-b4 21. k-d5
14, k-c5 22, k-cS
15. k-d5 23. k-b6
k-d4 24.  k-b7
k-c6 25. r-b6
16. k-d6 26. k-c7
17, r-c4 27. k-d7
18. k-d5 k-d6
19. k-ed k-c8
k-e4 28. k-d7
20. k-5 29. k-e7
r-c6-}- k-e6

JEB (White) vs. IAZ (Black)
JEB's program moved its Rook off the board in this game.

10.
11.
12.
13.
14.
15.
16.
17.
18.

k-c3
k-b4
k-b5
r-b4
k-c5
k-d5
k-d6
r-c4

k-d5

19.
20.
21,
22.

23.
24.
25.

k-e5
k-e6
r-d4
k-6
r-e4
k-f5
k-16
k-g6
r-14

3L
32.
33.

34.
35.

36.
37.

38.

30.
31.

32.
33.

34,

26.
217,

28,

29,

December5

k-g5
k-f5
k-g5
k-g4
k-g5
k-h4
k-g5
k-gb6
k-f8
k-g6
k-f7
k-h6
r-18¢

k-d8
k-e7
k-7
k-f6
k-e8
k-7
k-g6
k-18
r-h6$

k-g5
k-g6
k-h5
k-g6
r-g4--

k-i4???
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JEB (White) vs. JJF and MH (Black) (random)

1. k-f2 k-2 8. re3 12.  k-g5
2. kA3 5. ki3 10.  k-f5 k-5
r-d1 r-el k-5 13. k-g5
3. k-e2 8. k-f3 k-g4 14. k-gb
4, k-e3 7. r-e2 11. k5 15. k-7
k-d3 8. k-f4 r-f3 16. r-h3§
JEB (White) vs. MES and DAS (Black) (version 1)
1. k-2 11. k-b4 17.  k-c6 k-e6
2. k-f3 12.  k-b5 18. k-d6 k-d8
3. r-gl 13. r-b4 k-d5 23. k-e7
4, k-e3 14, k-c5 k-c7 r-b7
5. r-fl k-c4 18. k-d6 24, k-e8
6. k-d3 k-b6 r-b6 25. k-7
7. r-el4 15. k-¢5 20. k-d7 26. r-bB
8. r-e4 r-bS k-d6 27. r-h6$
9. r-c4 16. k-cB 21, k-d7
10.  k-c3 k-c5 22. k-7
JEB (White) vs. MES and DAS (Black) (version 2)
1. k-f2 8. k-d2 11. k-d3 15. k-2
r-h5 k-f2 k-d4 k-c3
2. r-a$s r-84 k-e2 k-d1
3. k-d2 7. k-d2 12. k-d3 16. k-c2
r-a4 k-f2 r-13 r-f2
4. r-h4 8. k-e2 13. k-d2 17. k-c2
5. k-12 9. rf4 k-d3 18. r-f3
r-b4 10. k-e3 14, k-d2 19. r-a3$
JEB (White) vs. RTB, DMO, and AMY (Black)
1. k-12 8. k-3 15. k-d5 22. r-cB
2. k-f3 9. r-e2 16. k-c5 23, k-d7
3. rgl 10. k-d3 17. r-ed 24, k-e7
4. k-e3 11. k-d4 18. k-cB 25. kA7
5. rfl 12.  k-c4 19. r-d4+4 k-8
8. k-d3 13, r-e3 20. r-d8 26. k-f7
7. r-el 14, k-d4 21. k-7 r-c84

Notes on Solutions to Problem 5

Everyone used static board evaluation functions that value central squares more
than edge squares; the ratio of centeriedge preferences varied from 5:1 to 1019:1,
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RTB, DMO, and AMY’s function gave a bonus to a board position if it split the set
of possible Black King positions among two or more of the quadrants determined
by White’s Rook. NCR and MSK's function broke ties between board positions
by favoring those for which the rectangle containing the set of possible Black King
positions and one corner was largest.

Everyone tested for the possibility of capturing White’s Rook or claiming
stalemate before employing evaluation functions. DRF/MAI RTB/DMO/AMY,
NCR/MSK, ARR/DCH, and IAZ then evaluated the board positions resulting from
each of the Black replies “OK,” “Check ," and “Illegal,” choosing the one that gave
the best value. DAS/MES, CPP/CHT/WOL, and AFB implemented alpha-beta
pruning to do 14 move lookahead before deciding what move to make.

A couple of people mentioned that they’d planned to implement lookahead, but
found it hard to beat their preliminary static board evaluation programs when they
played White by hand, so they stuck with the simpler programs.
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