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Abstract

Deductive techniques are presented for deriving programs systematically from given

specifications The specifications expre:s the purpose of the desired program without giving

ary ent of the algorithm to be ernployed The basic approach 1s ‘0 transform the

specifications repeatedly according to certain rules, unul a satisfactory program is produced.

Tne rules are guided by a number of strategic controls. These technique: %zave been

incorporated (Nn a runr ng program-synthzns 1ystem, calied DEDALUS.

Many of the transformation rules represent kncwledge about the program's sub ject dorma.r

(eg. number< lists, tes) some represent the meaning of the constructs of the specification

language and the target programming language, and a few rules represent basic programming
principles Two of these principies, tne cor.ditiona/- formation rule and the recursion— formation

rule, account for the 'ntroduction of conditional! expressions and of recursive calli into the

synthesized program The termination of the program is ensured as new recursive calls are
fcrmed

Two extensions of the recursion-formaticn rule are discussed: a procedure- formation rule,

which admits the introduction of auxiliary subroutines In the course ov the synthesis process,

and a generalization rule, which causes te specifications to be akered to represent a more

general problem that 15 nevertheless easier to solve Special techniques are introduced for the

formaiion of programs with side effects.

The techmques of this paper are illustrated with a sequence of examples of increas: ig
complexity, programs are constructed for list processing, nurserica: calculation, and array

computation.

The methcds of program synthesis can be applied to various aspects of programming

methodology - - program tansformation, data abstraction, progrsin modification, and structured

programming.

The DEDALUS system accepts specificaticns expressed in a high-level language, including
set notation, logical quantification, and a rich vocabulary drawn (rom a variety of sub pct

domains. The system attempts to transform the specifications in a recursive, LISP-like target

program Over one hundred rules have been implemented, each expresr=d as a small program
in the QLISP language.
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introduc i'o® L

INTRCAUCTION

In rece? years ihere has Deen increasing activity 1n the field of program verification. The

0.0 of these efforts 13 ta Co Struct computer systems (or determing whether a given program
1c correc. ar- the sense of sausiying given spea’icabons. These atternpis nave met with

in. reasinz succ?ss. while automatic proofs of the correctriess of large progam: ¢cay be a long

way off, it seems evident thai the tec! mqiies being developed will be useiu! in practice, to find

rhe bugs in faulty programs and to give us confidence in correc ones.

The general scenario of the ver.l:Zalion syste 1s (HAL » programmer will present his
completed compu'er progr;m, slong with fis specificacions and associated documentation, to a
syicemm which will then prove or disprove its correctness. [t nas been poinied out, most notably
by the advocates of structured programming. that this is “putting the cart before the horse.”
Onc: we have tech.aiques for proving program correctness. why should we wait (0 apply them

until after the program it complete> Instead, why not ensure the cor:ectness oi the program
while it 1s beng constructed, therzoy devemoping the program and it correctness proo: "hand In
hand™?

The point 1s particularly weli-(aken when we consider that program vertficatior. relies on
sutomatic theorem-proviag techniques. These techriuques embody prinuiplez of deductive
reasoning. the same princ ples that are applied by 3 prograramer in constructing the cregram li

the firs place Why aot employ these principles mn an awomatic synthesis system, which would
constri« the program instead of merely proving its correctness? Granted, to construct a
program requires more originality and creativeness than to prove its correctness, but both tasks
require the same kind of iiunking.

Structured programming itself made an early contribution to tice autexmatic synthesis of
;omputer programs in lying down principles for the development Gi programs from their
specifications. These principles are intended to serve as guidelines to be followed Cy a human
programmer. However, they ars not formulated precisely enough to be carried cut by a
machine. Indeed. the priponents of structured programming have been most peasimistic about
the possibility of ever automating taeir techniques; Dijkstra has gore 30 far as (> say that we
shouldnt automate propramming even if we can. because we would take away all our
enoYyment of the task.

Programming is a ci allenging task, and its automstion is a part of artificial intelligence. A
system to construct computer programs must have r broad range ot knowledge about
programming laiiguages programming techniques, and the subject domain of the program tc
be construciod. Fuithennore, # must have the ability to retrieve the rele ‘ant cormponents of its

knowledgeand to combine them to perform the task at hand. Programmi{ is among the most
derianding human activities, and is among the lag tasks computers will de well. Nevertheless,
the intrinsic interest ami oractical importance of the programming task have motivated many
researchers to consider the possibility of automating ii.
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Several yrar, 1go, we began cur research on autamanc program synihicus bv considering a

large nurnber of ample programming task In examining the derivations cf programs to
2chteve these tarts, we observed certain regularities, steps that are performer over and over

again in » vanety of sub pect domaine ard that therefore can be regarded as “epre.enting basic
programming orinciples We have specified these printiples precisely. and have applied them
to the construction of less trivial programs.

itr "hic paper we pressnt some of the basic principles io be incorporai~d into an automatic

progl am-syrtheis system Such a system accepts specifications that express the puroos: of the
prograin to be comstructed, without giving any hint of the algorithm to be employed With no
furthe: human intervention, the system attempts to transform these specifications into a

program that achieves the expressed purpose This program is ~tavanteed to be correct and
w,ll always terminate; for the most part, we will not be concerned with its efficiency

The specifications are expressed in a specification language rich with constructs from the
sub ject domain of the application Because the specification language does rat need 'o be
executed, 1t can afford high-level constructs ciose to our way of thinking about the sub jeci
Specifications represented in such a language are hkely to be easy to formulate and to
correspond correctly to our intentions. The details of the parucular targe language--the
language in which the program is to be constructed--are not important. In our exmnples, we
employ a simple LISP-like language.

Our basic approach 1s to transiorm the specifications repeatedly according ‘co cesta
_ transformation rules Cunded by a ne mher nf urategyw controle thee rules atiempt Io ©roduce

an equivalent description composed entirely of constructs from the target lariguagz Many of
the transformaiion rules represent kiowledge about the program's subject doman; so.ne

axphcate the constructs of the specification and target languages; and a few rules represcnt basic
programming principles.

Same of these techniquis have been licorporatsd into an zxperimental program~—synthesis
system called DEDALUS (the DEDuctive ALgwithm Ur-3ynthesizer). The purpcse of this
system 13 not to be apphierd in practicebist rathe to test cur program-synthesls idea. Most of
the examples included in this paper have seen carried out by the DEDALUJS system.
However, the emphasis of the paper is act on the details of the DEDALUY implementation,
but cn the basic prograrmrung principles it incorporates, which car be applied in any system.

In the paz few yetrs, there have appeared several varictier of prog. amming meth.dology,
¢ ¢, structured programming, program trinsformation, snd daa sbetraction. These disciplines
recommend systematic approaches to program construction for making the pragramaning process
simpler and more rslisble. The techoijues of program iynthesis serv: to facilitate the
application of each of these discic'ines In this way, program-synthests research can be of
value long before Ms :Hitimate goal is achs~d.
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In this paper, we prereni the basic concepts and principles of progrum synthesis, we extend

roese methods io allow the synthesis of programs with side effects. and we apply these

rechniques to various aspects of programming methodology Historical remarks, compariscns
with other approaches to automatic programring, and r.-ies on the DEA LUS implementation
are reserved for 2 f:nal section
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1. CONCEPTS

A. BSpecifivations

The first requirement of a specification language is that it should alt>w us to express the

puipose of the desired program directly in otner words, once we have formed a precise dea of
what the program 1s intended lo do, we should be able to formulate the specifications
immediately. without paraphrase Fur.hermore, it should be easy for the programmer and

othe: people to read and understand the specifications ana to see that they are correct

For this reason, it 1s necessary that the specafication language contain very high-level

constructs, which zorrespond to the concepts we use in thinking about the problem and which
are endemic to the subject domain of the target vrogram Such consiructs are typically not
included In a conventional programming language, because it may be impossibie to find a

unifcrin way of computing them or because they may not be amenable to efficient
implementation

Because a specification language shoud have a large number of constructs, and because
these constructs are particular to the subject domain, we do not attempt to define a complete
specification language Instead, we present the specifications of some of the programs we will

use as examples later in this paper, to il'ustrate some of the most useful constructs

Suppuse we want to construct a program, called lessall. to test whether a given number x 1t
less than every member of a given list { of numbers, and to oulput (rue or false accordingly

T his program can be described as

lessalix |) <== compute x < ali)
where x is a number and

{ 13 a list of numbers .

Here, the expression x < ¢/XJ) denotes the condition that x is less than every member of the iist
I, its value is (rue or fel;e depending on whether or not the condition holds. The expression
compute. . . 11 the sur2ur specification; it provides a description of the output the target

program is intended to produce. The expression wheve . . . is the inpur specification; it gives
the conditions the inputs ¥ and / can be expectsd ‘0 satisfy.

To specify a program maexiist to compute the largest element of a given list {, we write

maxiist(l) <== computeseme * : 2 « [ and 2 2 alNl)

whave / is a nonempy list of numbers.

Here,the construa "seme z « Plz)" denotes any element + satisfying the condition P(x),and « ¢ ©
means that x is a member of the hat (or et) v.
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Another exarnple the greatest common divisor (gcd) of two nonnegative integers 1s the

largest in-eger that divides borh of them To sp~ fr 2a program to compute the gcd of x and y,
we write

d(x y) <-« compute max|: ix and zl}
where x and y are nonnegative integers 2nd

xw OQory«0

Here mex 5 ac the argest element of the set 5 The input condition x » 0 or 9 » 0 1s Included
because if buth x and y are zero. then any integer divides each of them, a . the set of all the:r

commar divisars 1s infinite and has no largest element

The Cartesian product caf of two sets 5 and ( 13 the sot of all pairs whose first element

oelong: to 5 and whose second 2lement belongs tu i; a program to compute it is specified by

cars t) <== computes { (xy) xcsandyat
where 5 and [ are {inite sets.

Here (r vy) denotes the pair whose elements are x and y

B The Targss Language

The technique; we employ in this paper are not dependent on the particular choice of a
turgei (Gngucge, the ianguage in which the desirec program is to be expressed. However, for

the sake of definiteness, we will represe.t the target programs in this paper in a fixed, LISP-
ike language, which should be readily understandable.

For numbers, the target language inchxies such familiar operations as x +y, x-§, xs 9,
etc. For hits, we assume that the target anguage contains the usual LISP primitives:

leaa(l): the first elemem of the nonempty kist /

tail): the hst of 2H but the flist element of the nonempty ls {

cons(x) : the list formed by inserting the element x at the beginringof “he list{ .

Furthermore, we include the common conditional expression:

if Pthemx disc 9: x If P is true,
y if Pisfabse
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Feonally we mimploy recursion {or exarmpie. « program f{(} may be defined in t2rms of a repr ive

Cal JTree

(M (owurse we zn use any of the target-ianguage constructs i formulating the specif. cations

i bus, ‘he targe language mav be considered (0 be a subse! the agecification eng ag®

A seprrvent of a Oro am aescriplion that conusts entyrely of target-language constructs wail

Le salled a primitive segment

A: times we vill Choose 10 add new primitives 10 the target language Thus if we wani to

write a program mm a new wheat demamn, will add the primitives appropriate to that

aoa Jt we want (0 express a program in terms of some yiven set of procedures, we wil!

treat those precedures as primitives In the section on side effects (Section 4), we will inciude

constructs surt. as assignment statements and arrays in the tavget lznguage.

By, (ie s..ne token, for certain tasks we may choose 0 delete primitives from the target

language For initance. 0 construct a more efficent program we may delete certain time-

consumung primitives The DEDALUS system allows the user to add or delete construct: from

1s primitive set for a parixular task

C. Transformation Rules

Our hasic epproach to program synthess 15 lo employ a large number of (ransformazion

rules, which replace one segment Nf a program description by anather, equivalent description.
The task no’ program synihess 1s then reduced tv applying these rules to the given specification

repeai~diy uva’il a primitive program us produced.

“orme transformation rules express the prncipies of the underlying semantic doman (zg. the
properties of the integers or list structures). Otver rules express thr meaning of ‘ne constructs

in the speaficationand the target languages (6g. (x : 7) in the specificationlanguage and

Aead(l) in the target language) Still others represent : formuilarion of basic programming
techniques, which do not depend on a prstixular wbpc domain (eg. the introduction of
conditional expressions ANG TECUrkon).

We use the notation

ft =>»

to denote a uansformation rule that an expresso: of form ¢ may be repiaced by the
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corresponding expressi~n t° Th rransfermation may be applied to any sube pression t of the

current program description It x not to be applied in the reveise d.rection unless another rute

of form 1" «> 18 gir sn explicyly

For example the rule

true and Q +> ©

means that any expression of form (ruc ind Q may be replacer by Q. By applying this rule, we

may replace a program descriptiof.

max{z (rue and 1ly}

by the description

max{r rly,

A rile

t«>t" AF

denotes that the transformation { «> [‘ can be applied only if the condition P 1s true. Thus the
Tule

uly => true if us an integer and v « 0

denotes that a program segment kjv can be replaced Dy true if u 1s known to be an integer and

v to be zero whenever the segment is executed. Thus, this rule can be applied to transform a

program description

ifye=0
then xy
else. .

nto

tfy=0
(Aen Tie

else. .

wher: x 1s known to be an integer.

Often, more than one rule can be applied to the same program description or even to the

same segment. For ex>mpie, the logical rule
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P and Q => Qand P

snd the numerical rule

uly and uw => ule and wlw-v if u,v, and w ar> .ntegers

can both be applied to the program description

max{2 zk «4 iy}

In such ase 1t must be decided which rule is best to apply. This difficult problem must be

faced tn any transformation-rule system We prefer to postpone such considerations until after

we have presented some concrete examples (See Section 2D on “Strategic Controls 7)

D. Derivation Trees

In applying a transformation rule ic a given program description, we obtain a new program
description, which we regz:d as a suogoal of the first. To this subgoal we apply additional
transformation rules repeatedly, until a primitive program description is obtained. This

description is the desired program.

The top-evel goal oo obtaived dire-tly from the program's specifications. Thus, if the
programf 1; specified by

fix) <=a compuie P(x)
where (Xx),

the te p-ievel goal will be

Goal: compute P(x)

(Here, Q(x) Is a condition but P(x) may be any expression in the specification language.) For
example, in deriving the god program, we are giver the specificaons

ger 9) <== compute mex{z : zi end 2p}
whare x and ) are honnegative integers and

xewOorye 0.

'ictusity, the DEDALUS sysiem dnes not use this rule explicitly) the seme
effect is achieved by o diferent mechenism. Se: “mplemeniition,’
Section 68.
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Qur top-level goat is thus

Goal 1: compute max{z zx and zfy)

By applying the transformation rile

P and Q => Q and P,

we obtain

Goa! 2: compute max{zr z{y ana 2; .

If a transformaticn rule imposes x condition P, which must be true if the ruic is to be

applied. a subgoal of the torm

Goal: prove P

must be achieved before the rule ran te applied. For tianpie, in developing the program
lessall(x {) to test if a number is les. than every element of a list of numbers, we begin with the:

iop-level goal

Goal 1: compute x < alll} .

in attempting to apply the rule

P{all(l)) => true if I is the emp.y lis,

which states that any property 2 holds for every element of the empty list, we generate the
subgoal

Goal 2: prove lis the empty list .

To accomplish such a task, we must apply trznsformatisn rules repeatedly to the expression to
be proved, until the expression true is produce. if, inwead, false is produced, or If we
encounter a situation in which no rule can be aoplied, the goal of proving P is aborted, and

the attempt to use the rule that imposed P as a condition is abandoned.

If no rule applies to a given subgoal, bucktrecking occurs; we seek akernale rules tn apply tr.
previous subgoals. Backtracking will be discussed further in the section on “Strategic Controls”
(Section 2D).

By the process we have just outlined, a tree of goals and subgos's is generated. We will call
this structure a progrem derivation free.



10 Elementary Programming Principles

2. ELEMENTARY PROGRAMMING PRINCIPLES

A. The Formation of Conditional Expressions

To illustrate the formation of conditional expressions and cecursive calis, we exploit a single

simple example The program to be constructed, lessailix [), 13 intended to test wirether a given
number x 1s less than zvery member of a given list / of numbers, and to output true or false

accordingly The specifications, as indicated in Section 1A can be expressed as

lessall(x |) <== compute x < all{l)

where x is 3a number and

{ 15 a lst of numbers

Note that the output description uses the all specification construct, which is not primitive,
therefore, we attempt to apply transformation rules to paraphrase the output description using

only primitive constructs of the target language.

We assum: we have at our dispasal two rules that explicate the all construct:

® The vacuous rule

P(ail(l)} => true if [ is the empty hst

says ibat any property is true of every element of the empty list.

® The decomposition rule

P(all(l)) => P{tead(l)) and P(alKtail(!}))) if I is a nonempty list

states that a property holds for every element of a nonempty list if it holds for the first element
and for all the rest.

Our top-level goal is formed directly from the program's specifications:

Goal {1 compute x < &l)).

In this discussion we will not consider how to select the rule to be applied; we will assume for

the time being that the appropriate rule magically appears when it is relevant.

One transformation rule that applies to the current output description is the vacuous rule,

P(alil)) => true if { is the empty list .
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7 hit rule would allow us to reduce our output description to true if only we could achieve the

subgoal

Goal 2: prove! 1s the empty list

Ci conrse. we cannot prove or disprove this condition: 13 an input that is kncwn io be a

hist. but that may or may not be empty Thi: is an occasion for applying the conditional

fymarien rule

Conditional expressions are introduced info programs as a result of

hypothetical reasoning during (ne program-formation process. If we fail to

prove or a:xprovs a suogoal cf the form

prove ©

the conditions forniction rule allows us to introduce a case analysis and

consider separately the case in which P is true and P is false. Suppose we

succeed 10 conzirucling a Drogram segment 5, that solves our problem under

‘he assumpLon taal P is rus, «nd another segment sp that solves the

problem under .ne assumption that P is faise. Then w. combine the two
segments into a condiilonal expression

if P then sy else 55

which solves the problem regardiess of whether P is true or false. Note that

to ensure that this expressitn is primitive, we apply the conditional
formation rule only when P itself is a primitive logical statement.

Let us return to our example. Having failed to prove Goal 2, that { is empty, we attempt to

construct a program segment tha: will soive our problem under the assumption that ! is empty.

Case / 1s empty: In this case, we are justified in applying the varuous rule

P(all(l)) => true of | is the empty list,

to Goal |, compute x < alll), yielding the primitive program segment frie. This segment

solves our problem in this case.

We have yet to consider the case in which { is nonempty. This requires the formation of a

recursive call, which will be discussed in the next section. However, at this point, we know that

the program will have the form
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lessall(x l) <e= if empty!)
then true

else

Case analysis in theorem proving has been emphasized by Bledsoe und

Tyson (1977) Other program-synthe<is systems thal form conditional
gxOrassions by case analysis have heen implemented by Luckham and

Buchanan (1974) and Warren [1976]

B. Ths Formation of Recursive Calls

We illustrate the formation of recursive calls oy continuing the construction of the lessall

program. Recall thai it cemains ‘0 consider the case in which / Is a nonempty list.

Casa [ is nonempty. lu this case we fail to achieve Goat 2, to prove that { is empty, and
therefore we look fo: sorne alternate means for approaching Goal |, cemputs x < ali).

Another rule that apolies to Goal | ts the all decomposition rule

P(all(l)) =» P{head(l)) and P(alltaii{()) if | is a nonempty Hist .

This rule imposes he condition

Goal 8: orove lis & nunempty list,

which Is satisfied immzdiately becausc we have assumed in our case analysis that { is nonempty.
The rule. therefore, (ransforms Goal | no

Goal 4: compute x < Asal!) end x < alltail!)).

To computethe truth value~f x < Asadli) is s:mple, because x and ! are inputs, and Asedis
a primitive consiruct. It zemaius, therefore, to achieve

Goel6: onmputs x < allie).

Note that this subgoal is an instance of our original Goal |, tocomputex < a2i/), with inputsx
and | repircedby x and tai). This is an opportunity for applying the recur sion- formation
rile.
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in general. suppose we are to develop a prograrn whose specifications are
of form

flix) <=- compute P(x)
where (Xx; ,

in which Q(x) 1s a condition but F(x) may . any expression in the

specification language. Assu:ne we encounter a subgual

compute P(!)

that is an instance of the outpui specification compute P(x). Tnen we can

attempt to achieve thie subgoal ©, forming a ricursive call fr), because the
program f(x) is intended to compute P(x) for any x that satisfies Xx). To
ensure that the introduction of this recursive call is legitimate, we must

verify two coniit,ons:

® The intut condition, Nr), which establisires that the argument ¢ of the
recursive call fir) satisfies the required input condition of the desired
program; otherwise, the program f i not guaran’ewd tc yield the expected
output.

® A rterminution condition, which ensui: thal tive recursive call cannot

cause i) infinite computation. A recursive call can full to Jerminate 'f its
execuviion leads to another recursive call, which lea's to another, and so on

ind=2initely

The termination condition is expressed in terms of the “well-forncled
set” concept, which wi'l be explained in a later sectin devoted exclusively
to termination. In the meantime, we will appeal to inwitive srgumen to

establish termination.

Note that to ensure that the recursive call f{r) be Jrimitive, we apply the
recursion-formation rule only when the argument { it-eli’ is primitive.

Let us return to cur example. The recursion-formation rule observes that Goal 5, to

compute x < all1aiXi}), is an instance of our outpw specification, x < alll), with inputs x and {
replaced by x and tall{l); thereiore it proposes that we achieve this gual with a recursive call
lessallx tes'()). For this purposs, the rule imposss two conditions, tive input condition

Goal 8: prove (aX) is a st,

and the termination condition
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Goal 7: proves lessad(x tail(l)) terminates.

The input cundition that tail(!) 1s a hai ran be proved directly by invoking a transforma:ion

rai!(!) 1s a hy => true if {1s a hist,

a basic rule describing hist structures. Tu achieve the termination condition 1s also

straightforwara, because th» argument tail!) of the recursive call is a proper sublist of the

Input /; therefore only a finite number of recursive calis can occur before the second argument
Is reduced ‘o the empty hst Consequently, we are permitted to in‘roduce 2 recursive call

lessall(x tail!) ar this pont. This sausfies Goal 5 (Goal 4 1s then satisfied by the program
segment x < Aead\!) and lessall(x tail(l)). This segment is composed entirely of primitive
constructs of our target language.

We have succeeded In finding primitive program segments tha. solve our problem in both
cases, whether ( 1s empty or not. Therefore the condit:onal-formation rule combines the two

program segments into a conditicnal expression. The final program is

lessall(x 1) <== if empty!)
{Aen true

alse x < Aead(l) and lessall(x tall(’)) .

The above technique causes the formation of a recursive program. If we are wor¥ing in a
target language that does not admit recu sion, it is necessary to transiorm the program further,
to replace the recursion by another repetit.ve construct. In many cases, a recursive program can
be transformed into 25 sterative program of comparable complexity. In the worst case, we can

always repiace a recursive procedure with an iterative equivalent by the explicit introduction of
a stack.

The abova recursion-formatior rule is the seme as the "foiding” rule of the
Bu:stsll and Derlington [1977] system for the tranetormation of rocursive
prowrams. Their system does rot check the input and termination conditions.

C. Termication

In the preceding sxampls we relied on intuitive arguments to establish the termination of
the program we constructed. In fact, for that example, the termination argument was quite
straightforward. In this section. we will consider a general mechani for proving the
termination of a recursive program at the same time as it is being constructed. We will
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:Hustrate this mechanism «ith an example for which the termination proof is somewhat more
subtle.

The program we const uct is intended to compute the greatest common divisor, ged{x 7), of
two nonnegative integers 3 and 9. 1 he specifications, as indicated in Sectich 1A, 2re expressed
as

grd(x y) <== comnute max{z : 1x and zp}
where i: and y are nonnegative integers and

cmwUorym 0.

Recall that the input conc ition x » 0 or y » 0 is impcsed because the ged is not deiined when

both its a:Tuments are zer::.

The cutput specificaticn is expressed in terms of the set constructor {u : F(w)}, which is not
primitive We therefore a:tempt to transform it into an equivalent primitive description.

We assume that the followir~ rules about the integers are included among the

transformations of our sys em:

uw e>trug  ifpve0

(every integer divides 0) ,

vic and uly => u(v and ulw-v

(the common divisors of v and & are the 3ame as those of v and w-v), and

max{u : uw} => if 2s a positive integer

(every positive hitteger is iti own greatest divisor).

As usual, our first goal is derived directly from the output specification:

Goal 1: comiute mex{z: xix end ty}. |

There aie at least two rules that match the subexpression ix end iy; they are the logical
rule

PandQ=>Qend P

and the numerics! rule

upp end xjw «> xy end uv.
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Either rule will lead to a successful program; suppse we attempt the logicui rule first. Then we

develop the subgoal

Goal 2: compute max{z : zy and 1x]

Goal < 1s an ‘'nstunce of Goal | itself, with x ad y replaced by y and x: therefcre, the

recurston-farmation rile att mots to satisfy Goal © w'th a recursive call ged(y x). To ensure
that this step 1s leg-urnate, th: rule imposes a: tnput ¢o droion

Goal 3: prove 9 ind x are nonnegative Integers anu

y= O0ourx«=0

obtained by replacing x and y by 2 and x, respect ely, in the input condition of the
specification This condition is easily established, because * 1s an equivalent form of th» given
input condition itself Furthermore, the recurtion-form atin rule imposts a termination
condition, to ens re that the prop xed recursive call termina 1:

Goal 4: prove ged(+ x) ternanates.

We will begin by attempting to use the same sort of informi.i argument we umployed in the
previous example proving the terraination of this recursive cali. Later in this cxample, we will
be fo. ced to intrcriuce the more formal and general apparatu.. To establish termineztion, it
suffices to achieve

Gow: 8: prove y <x,

because x and y are both kiowr ic De ronnegative integers (b, the Input condition), and
because ¥ is the first argument of the “ecursive cail

If we establish Goal 5 only a finite sequence of recursive calls can occur before the first

argument is reduced to zero. However, we cannot prove or disprove Goal % x and 9 are both
input variables, arv. we have ro way of knowing if one of them is bigger than the other. As
before, the conditional-formaticn rule causes a case analysis to be introduced.

Case y < x : Here, both the input condition and the termination condition for introducing
the recursive call gcdy x) are satisfied. We have thus completed «ne branch of the case
analysis; we have yet to consider the alternate case. However, at this stage we know that the
final program will have the form

gedx ”) <oo ify <x
then gedly x)
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Case x s vy: Here, it 15s not ‘egitimare to introduce the recursive call geiny x) to achieve
Goal 2. because tre termination condition 13 not satisfied Assuming that no other rules succeed

in reducing Goal 2 to a primitive segment, we are ied ‘0 consider alteriiate means of achieving
the original Goa! | in this case.

Recal! that among other rules that applied to Goal | was the numerical rule

uly and uly => uly and ujpy-v

This rule causes the generation of a new goal

Goal 8: compute max{z : jx and 1p} .

T his goal has the same form as the onginal Goal 1, but with the inputs x an y replaced by
» and y-x; re recursion-formation rule suggests satisfying Goal 6 with the recursive call
ged x y-x)

To ensure that the arguments x a.d y-x are legitimate, the rule imposes the input condition

Goal 7: prove x and y-x are nonnegative integers and
xw Qoryxw 0;

to guarantee that the proposed recursive call will terminate, the rule alse ‘mposes the
termination condition

Goal 8: prove ged(x yx) terminates.

Let us examine Coal 7 first: that 2 and y-x are nonnegative invegers follows from the

original input specstication and the case assumption x < y; the condition

xe OQoryxe 0

leads us to attempt to prove either

Goal 8: prvex » UV,

or

Geel 10:1 prove y-x » 0.

We fail to prove or disprove Goal & therefore, the conditional-formation rule introduces a
CASE analysis.
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Case x =» 0 Here. the input condition jor the proposed recursive call ged(x y-x) 13
satisfied, It remains to show the termination condition (Goal 8)

[f this were the oniy recursive call tn the entire program, its termination; would be easy to
establish. After all, we know in this case that x is a posiuve integer and that y-x is a

nonnegative integer, furthermore, y-x is strictly less than thz second wtput y. Thus, each
execution of this recursive cali reduces the second argument, and only a “inite number of

executions con occur befcre the secend argument is reduced to ero. However, the program we

are developing aiready contains another recursive call ged(y x). we must consider the possibility
that an 1nfiniie computation involving both recursive calls might occur.

This 1s a -eal possibility, because the recursive “all ged(y x) actuiily increases the second
argument. We (herefore must (reat both recursive calls at once, ard this requires a more
sophisticated mechanism or proving termination conditions.

In general, to prove termination we employ the concept of a well-
founded set, one whose elements ure ordered in such a way that no infinite
decreasing sequence of element' can exist. For example, the nonnegative

integers, under the usual le-s-'han ordering, constitute a weli-foundec set,
whereas the entire set of integers does not

To prove the termination of a recursive program fx) with recursive calls
fit). fa), fy) we show that x, (,, {;, .... ty, all belong to some

well- founded set W, ordered by a relation < and that

0; (x. t3<x, ...,and{, <x.

This condition suffices to ensure termination, because if there were a

nontermirating computation, it would contain an infinite »squence of
recursive calis, whose arguments would constitute an infinite decreasing
sequence In the well-founded set. But a “vell-founded set contains nu
infinite decreasing sequences.

By the method we have just described, to establish the termination of a
program f(x) with many recursive calls A7.), ftp), ..., ft,) we must show

that each argument {; is less than the original input x under a single well-

founded orjering <. This implies that, during the synthesis of the program,
whenever we introduce 3 new recursive call f{(;) we must show that f; < =

under the same ordering < which we have used to establish the termination
of the recarsivecalls fir), Msp), ..., ft) introduced previeusly. If we
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cannot. we must modify the well-founded set W and the ordering < so r*at

t, < x. while ensuring that the relations 1 <x, f; <x, , {;_y <x are

still satisfiod

[t the program has more than one argument, the ordering < of the well-

founded set may need to cempare pairs or tuples of arguments. For this

pu pose it is convenient to use the lexicographic ordering between tuples.

For j.airs of nonnegative integers, for example. this ordering is defined as
foliows.

(x, x2) <9, 99) fxy<9,,0rif x, a9, and x3 <y,.

Thus, the second components are ignored uniess the first components are

equal This lexicographic ordering can be shown to be well-founded: there

exist no infinite sequences of pairs of nonnegative integers that decrease

under this ordering. A general notion of lexicographic ordering on

arbitrary tuples of elements can be defiriad in a similar way.

in the ged example, we have already provea the termination condition of the recursive call

gcd(y x) by showing that the first argument 9 of the recursive cail is less than the first input x;
in other words, we have used the ordering < defined by

(u, 43) < (9, v,) of <p, . |

This 1s a well-founded ordering between pairs of nonnegative integers. Thus, in proving the

termination condition for the proposed new recursive call gedix 9=x), we attempt to show that

(x 9—x) < (x9)

under this ordering, i.e, that x < x. This attempt fails; the first argument is not reduced by the

proposed recursive all. We thurefore try to modify the ordering < to establish the termination
condition for the second recursive call as well

The first argument x of the proposed recursive call gedlx y-x) is nonnegative and is
identical to the first input x; we have also seen that the second argument y-x is a nonnegative
integer (since we have as:umed that x < 9) and is less than the second input9 (since x is
positive ir: this case).

This suggests that we modify the ordering < to be the lexicographic orderirg. This ordering
wii} allow us to prove the termina‘ion conditions for both recursive calls.

The useof the recursivecall gcd(x 9--x) has been justifiedin this case, because its input
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condition (Goal 7) and ats termination condition (Goal 8) have been established. The partial

program we have constructed so far 1s

ged(x 9) <=e tf3 <x
then ged( y x)
os¢ ifx wu 0

then ged(x y-x)
else

We have vet to consider the case iri which x = (

Case x = 0 In this case, the recurston-formatien rule fails to introduce the recursive call

ged(x 9-x) because we cannot establish its termination condition; inc ved, if we «id iniroduce
this recursive call, the program woule certainly not terminate. Instead, we 00k for some

alternate means of satisiying Goal 6,

compute max{:  1~ nd th-xj,

which, since x = 0, 1s reduced to

Goal 1... compute max{z : 1/0 and jy} .

By application of the three rules

Wp => true if p=0,

trueand P => P, and

maxiu up} «> » if vis a positive integer

in succession, we obtain

Goal 12° computeHy.

The last rule could be applied becausein this case x = J, and thus 3 » G {incex » 0 Or 9 » 0),
and y > 0 (since y u nonnegative).

Now 9 is a primitive program segment that solves our problem in this final case. The
complete gcd program is

gedix9) <o= ify x
then gedly x)
ese ifxo 0

then gedix y-x)
osey
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Tins 1s a version of the “subtractive” ged algoritam.

Well-focnded orderings were first invoked to .e pruperhies of

racirni,: pruglfems Dy tlurstan (19633 1he theorem-proving s/stem 4

Boyer and Moore [1977] sisc cunstructs isxrcographic orcerings.

"he particular prograin we obtain depends on the t;ansformation rules we have it our
disposal and the choices we make during the derivation process For exa-ngle, f we had the
additional rules

geeu v) => 2. ped(u/2 vf2) if uw and v are even,

gedlu v) => ged(u/2 v) if ws even and vis ood. and

ged(u vy => ged(u 9/2) if wis odd and v 1s even,

we could have ot:tained the “binary” gcd program

ged(x y) <=a i° fvenix)
tAen if even(y;

then 2. ged(x/2 y2)
else ged(xi2 y)

else if even(y)
then ged(x 3/2)
else ify <x

then ged(y x)
else ifx a0

then ged!» yx.
tise y

This program turns oui to be quite efficient ‘or implke=.~ntsiion on a binary machine, In which
division and multiphcation by two can ie represented as right and left shifts, respectively (ot
vice versa, depending on which side of the machine we are standing on). Of course, nothing in
the technique guarantees that an ef/icient program will be derived.

D. Strategic Controls

Up to nov we have developed programs by applying transformation rules to goals without
considering how ‘uo select the rule to be applied; the proper rule seemedto appear by magic
when it was relevant. If we have hundreds of rules at our disposal, how do we retrieve the
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applicable ones? Of the many rules that can be apphed :n a given situation, a. all will lead to
a primitive program if more than one ruie applies to a goal, how do w= decide which to

attempt?

If the program 1s being developed by hand, we can rely on the programmer’. knowledge ar.d
intuition However, if we expect this process to be performed by an autoriatic s 'nthesis system,

the basis for our strategic decisions must be made explicit. in this section, we will discuss some

strategic methods for directing the transformation rules

The strategic controls that w= have incorporated into our own program-syn:hesis system may
br cuthned as follows When a goal 1s proposed, the riles that seem applicable are selecte-l by

tttern- directed invocation Of all the telecied rules. one 1s chosen according to a given r ile
ordering. this rule is attempted first. Each rule muy be provided with a nu nber nf strategic
condit.ons, whith prevent it from being applied .oolishly [If the strategic ~onditions are not

satisfied. or If the rule does apply but does not lead to a primitive program, we backtrack and

consider the next applicable rule chosen by the rule crdering. Let us discuss each of these
methods in more detail

® Partern-directed invocation: The rules are indexec by the patterns to which they can be

applied. For example, the a/l decomposition rule

P(all(})) => P(Aead(!)) and P(all(tail(l))) if | is a ncaempty list

13 classifted according to its left-hand side. P(all(!)). When a new goal is proposed, all those

rules whose patterns match the goal ar» retrieved. Thus, the above rule ard the vactous rule

P(all(t\) «> true If I is the empty lise,

would both be invoked when the goal compute x < all(l) is proposed. This method of

| retrieving a rule wnen i ie ma applicanle 1s termed patiern—directed invocation.

® Rule ordering. It often happens that more than one transformation rule will match the same
goal. However, sometimes we cai decide a priori that one rule should be attempted before
another. For example, if the vacuous rule

P(all)) => true if ¢ is the empty list

and the recursion-formation rule both match the same goal, the vacuous rule shoud aiways be

attempted first; the recursion-formation rule imposes the input and termination conditions,
which may be time-consuming to verify. Furthermore, if both rules do apply, the program

segment (rue is preferable to a recursive cail.

Cn the other hand, if the decomposition rule
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P(all(l)) =. P(head(l)) and P(all(tail(()) if {13 a nonempty list

and the recursion-formation rule both match the same goa), we prefer to attempt the recursion-

formation rule first, the decomposition rule produces a nonprimitive subgoal more con:plex

than the oniginal goa!, while the recursion-formation rule is guaranteed to produce a primitive
recursive cail

® Strategic conditions We have seen that a transformation rule may impose logical conditions,
which must be satisited to ensure a valid application of the rule. By the same token, a rule

may have strategic conditions, which prevents it from being applied foolishly. For example, in
introducing a conditional expression if P then 5s else 53 or the recursive call ft) we imposed

the strategic condition that the condition P or the argument ( be primitive; this was to ensure
that the resulting expression would itself be primitive.

Two more examples: If we introduce the logical rule

Pand Q=>Qand FP,

or the integer rule

uly and uy => uy and ujwp-v,

we must give them each strategic conditions to ensure that they are not applied repeatedly to
the sujexpres:ions that they themselve: produce; otherwise, we may obtain an endless sequence,
eg

PandQ, QandP, PandQ., ... .

Cuod stiategic conditions improve the general performance of a »ystem, but they may
prevent i: from finding some trickier, less intuitive solutiorss.

® Backiracking: If applying one rule to & goal fails to lead to a primitive program segment,
the systam will backtrack, and attempt to apply other applicable rules to the same goal.

For instance, in constructing the gcd program, we applied the rule

Pand Q=>Qand P

to Goal |,

compute mex{z : zjx snd zy}. |

to form Goal 2,
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coinpute max{r : ty end 1x} .

In the case in which x sy. we failed to derive a primitive pregram segment from Goal 2;
therefore, we backtracked and considered other rile: that riatched Goal |. As it turned out,
the rule

up and uw => tj and ulw-v

applied to Goal | to yield Goal 6, -

compute max{z : tix and rpy-x} .

In addition to these general strategic methods foi controlling transformation ruits, there are
special strategic techniques associated with particular rules. One of these techniques is the
sub ject of the next subsection.

Pattern-directed invocation wes iniroduced as o festure of the PLANNER

programming language for srlificisl-inteliigence research (Hewitt (1971).

The Redundant-Test Strategy

The conditional-formation rule will introduce a case analysis when we fail to prove or

disprove a condition P. We consider separately the case in which P is true and the case in
which P is false, construct program segments $s, and 5; to handle each case, and combine these

segments into the conditional expression

if P then 5) alse 5p.

However, it Is possible that one of these segments, say sp, does not depend on the corresponding
case assumption, that P is false. In this situation, the segment 5; itself will solve our problem
regardless of whether P is true or fase; constructing the other segment 5; would be a wasteof
effort.

The redundant-test strategy prevents such irrelevant conditional expressions from being
formed. According to this nrategy, in introducing a case analysis we always consider first the
negativecase, in which P is false. If we then succeed in constructinga program segment sg that
solves our problem without ever using the case assumption that P is fale, then this segment
solves the entire problem. We do not consider the positive case, in which P is true, and we do
not generate a conditional expression.
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We always consider the regative case first because in the positive case, the assumption that

P 1s true wili alway: be used by the rule thal imposed the cundition; therefore, we can never

escape considering the negative case

For example, suppose. in constructing the ged program, we are given the rer: rule

uly and ut => uly end upem(wv) fre 0

instead of the minus rule

uly and ujw => ujy and vw-v

where u, v, and = are n2inegative integers. (The rem rule states that the common divisors of
v and vu are the same as the common divisors of v and rem(w v).) Recall that in developing our

previous gcd program. we introduced a case analysis on the condition y < x in an attempt to

introduce a recursive call ged(y x). Now, according to the reduridant-test stratsgy, we will first
consider the negative case, in which x £ 9. In this case we will apply the rem rule and

eveniually develop the program segment

ifx =» 0
then ged(rem(y x) x)
else 9

without ever using the case assumption that x s 9. Consequently, we nzed never cunsider the

positive case, in which 9 < x. The above segment solves the entire problem, 30 our final

program is simply

ged(x9) <o= if vw 0
thet ged{rom\y %) x)
else y .

This is a version of the Euclidean ged a.torithm.

In describing a program derivation ‘n which a case analysis is introduced and later
eliminated by the redundant-test strategy, we will often omit mentioning the cuse analysis

altogether. For example, in developing either of the above ged programs, we introduce a case
analysison the condition 9 = 0 as well as on ‘he condition x = 0; this case analysis on y = 0 is

eliminated by the redundant test strategy, and r.ever appears in our discussion.
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2. EXTENSIONS OF RECURSION FORMATION

A. Generalization

Recursive calls have been introduced +hen a new subgoal 1s discovered to be a precise

instance of the top-ievel goal But what if the subgoal is an instance not of the top-level goal
but of 2 somewhat more general expression? In such cases, it may be advisable to construct a

i} new procedure (or subroutine) to compute the more general expression, and to achieve our

original goal by a call to the new procedure. Although the new procedure attempts tc solve a
more general problem, that problem may nevertheless be easier to solve.

Generzitzation is already commonplace in the theorem-proving context: paradoxically, it is
ofter. necessary, in proving a theorem by mathematical induciicn, to prove a more general
theorem, so that the taduction hypothesis will be strong enough to prove the inductive step. In

program synthesis, induction is analogous to recursion: we attempt to construct a program to
compute & more gerieral goal so that the recursive call will be strong enough to achieve the
desired subgoal. |

A: before. we will explain the method in the context of an example. We will not follow the

precice order dictated by the strategic controls in constructing the program. Because we have
considered a similar program, lessali(x {), previously, we will be a bit more brief in our

exposition.

Suppose we want to construct a program Avadtail(l) to test whether the head of a nonempty
hist [ is less than every element of its tail. The specifications for this program may be expressed
as

headtail) <== compute Aead(l) < alitaill))
where [ is a nonempty list of nuinbers.

Our top-level goal is then

Goal 1: compute Assdl!) < slNtailll)) .

Recall that we have introduced two rules that explicate the all constrict: the vacuous rule

Pali) => true if | is the empty list, |

and the decomposition rule

P(alKD)) => P(head(l)) end P{alKtaiX])) if I is a nonempty Hist.

These rules, together with the conditional-formation rule, account for the introduction of a case
analysis into our derivation, and the subsequent formation of a conditional expression in our
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final program In the case that (vil) is empty, the vacuous rule reduces the (roal 10 the
primitive segment true; wn the other cas2, in which tail() 1s not empty, the decomp ition rule
reduces the goal to computing the con unction of two ex pressions:

Goal 2: compute A:ad(!) < Aead(:a/X(l))

and

Goa! 3: compute Aead(l) < aliltail(tail(l)))

Goal 2 is aiready a primitive expression. We have yei to consider Goal 3; howover, the
progtam constructed so far is

Aeadiail() <==if empty(taiX))
(Aen [Tue -

else head(l) < Aead{tail(()) and

An attempt to satisty Goal 3 by the recursion-formation rule fails, because Goal 3 13 not a
preciz: instance of Goal |,

compute Aecd(l) < alltaiKD))

the { on the left-hand side of Cos! | corresponds to { in the subgoal, but the / on the right-
hand side corresponds to raiX}. However, Goal $ is an instance of a more general goal,

Goal 1 (generalized): compute Aeedll)) < aliraiXly))

obtained from Goal | by introducing new variables {, and /; :n place of the left- and right-

hand occurrences of {, respectively. This suggests that we attempt to construct \ procedure
Aesdiatigen(i, l3) to achieve the generalized Goal | instead of the original version. Thus, the
output specification for the new +ocedure will be

Aradtailgen(l; lp) <= compute Meadll,) < silitaill,))

This procedure will test waether the head of {; is less then every clement of the tall of {;. where
{, and ly may be distinct sts.

We can now set aside our original derivation, and satisfy the original Goal | by a mall == i
more general procedura instead; the resulting hesdtsil program will be simply

Asadiail[) <== Aeadtailgenil |) .
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It remains to construct the indre geneiil procedure Aeadtaligen, ie. to achieve the

generalized Goal |. The derivation of th: gevievalized goal will attempt to mirror the original
derivation; our hope is tha: this time the top-level goal is general znough so that the previous
obstacle encountered in ‘ntroducing the i cursive call wil be overcome.

In general, suppose we are developing 2 program whose specifications
are of form

fx) <== compute P(a(x))
where Xx) .

Then our top-tevel goal is of form

Goal A: compuie Plalx)) .

Suppose that in developing the program we encounter a subgoal

Goal B: compute P(x)

that is not an instance of Goal A, but that is an instance of the more

general expression

compuss P(9).

Then the generalization rule proposes that we altempt to construct a new |
procedure whose output specification is

£9) <== compute P(y) .

We can thus satisfy the original Goal A by a cail to the new procedure; the

resulting programf will be

To ensure that the calis to the new procedure g will be primitiva, we do
not apply the generalization rule unless a(x) and &(x) are primitive.

T he top-level goal of the new derivation will be the gewralized Goal A,

compute P(3). We will attempt to mirror the steps of the original
derivation; that is, we try to apply to the new goal the same rules that we

applied earlier to the originalGoal A in derivingthe original Goal B. Our
hope is that the goal in the new derivation corresponding to the original
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Goal B will tuin out to L:z an (-stance of the generalited Goal A, and that

it will ce achieved by a recursi: e cal’ to g. How=ver, there is nc guarantee
that the same sequence o rules will be applicable to the generalized Goal A,
or that if we succeed in cerving a generalized Goat B, it will turn out ro be

an instance of the genre aiized Goal A. If the derivanon fails for wither
.eason, we abandon the generalizai,on and look for other ways to achieve
the original Goal B (This is a very conservative strategy. a more
adventurous approach would be tu try to use as much as possible of the
original derivation, but to seek other ways of progressing when the original
derivation fails)

We have postponed describing tine input specification for the new
procedure g. It is to our advantage to have as few conditions in this
specification as possibl, because we must check each tf these conditions
every time a procedure call to g is introduced. For this reason, rather than
attempting to formulate the new input specification in advance, we prefer to
proceed with the derivation of g and add to the input specification only
those conuitions that ar: needed to compicte the derivation. In other words,

we form the inpui specification for g incrementally.

Thus. if in the cotirse of the derivation we fail to prove a desired

condition S(y), we con:ider adding this condition to the input specification
of g. However ever: time a call g(u) to the procedure g has been
introduced previcusly in the synthesis, we must go back and check that the
additional input condition S(u) is satisfied. In particular, because the main
Drogram

fi) ee gla)

contains a procedure call gle(x)), we must check that condition S(sfx)) is
satisfied.

Often, conditions are added to the input specification simply to ensure

that the output specifi:ation is meaningful

Returning to our example, we attempt to construct the more general procedure

compute Asedl/,) < a!Ntaili,)) .

However, this goal is not meaningful unless

{, and l3 are nonempty lists.



Extensions of Recursion Formation 31

We cannot prove this cxndi ion about our arbitracy nputs {, and ly; iherefore, we must add It

to the :nput specific wich fo; the new procedure. Because the main program ieadtall(() contains
the call Aeadtailge(! ), vse first check that the :wrguments ! wnd { for the call satisfy the
proposed conditte. 7 hus, we have to show that

{ and / are nonempty lists,

ie.

[ 1s a nonempty lis.

Bu! this is exactly the input specificatiun for the mai program.

We attempt to apply to the genciaiized Goal | ih: same sequence of rules that we applied to
the originai Goal | earlier. Applying the vacuous rule in the case where tail(l;) is empty, we
derive ths primitive program segment true; applying the decomposition rule in the case where
tail(l,) is not empty. we decompose the generalized Goal | into computing the vonpinction of
two ex pressions.

Gea! 2 (generalized): compute Aead(l)) < Araltaill,))

and

3oal $ (generalized): compute Reod(l|) < all(tailtailiy))) .

The new Goal 2 is a primitive expression as before, however, this time the new Goa! 3 is a

precise instance of the generalized Goal |

compute Acad(l) < allrail:j)) ,

therefore, the recursion-formation rule proposes that we achieve the generalized Goal $ by a
recursive call Aeastatigenil, tatllls)) to the new procedure. The arguments I, and teillis) can be
shown in this case to satisfy the input condition that

{, and taii{ly) are nonempty lists,

because [, and [, ar» nonerpty sts (the new input condition) and (eili;) is not empty (the case

assumption). The termination conditiciiis established becaussthe second argument (eilly) of
the recursive cal is a v:blis oi the second input lp.

The complets final program 5 inen

Aoadiatll) <oo Aeadtailgenil {)
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where

(Aen (rue

else head(!|) < Asad(iail(l,)) and
Aeadtailgen(l, tail(ly)) .

When it is successful, the generalization principle results in t've construction of a stronger

program than originally required. If the new specifications are too general, however, the
corresponding program ca# actualy be more difficult to construct than he original. For this
reason, we must impose conservative strategic controls on the application of the generalization
prinaple. For ali the examples in this paper, the only generalizations required involve
replacing a constant hy a variable, or one occurrence of a variable by a new variable, in }
general. it is necessary to replace more complex terms by variables.

For examples of theorem-proving systems that y.sarslize the theorems

they sre about to prove by induction, see Boyer srvi 'ioore (1975) Brotz
(1573) and Aubin [1975]. Siklossy [1974] propoied spplying this technique
to program synthes:s.

B. The Formation of Bubsidiary Procedure:

We form a recursive cali when a subgoal is discovered (0 be an instance of the top-level

gua! But what if the subgoal is an instance, not of the top-level geai, but of sore other
subgoal? In this section, we show how such a situation can lead to the formation of tubsidiery
proceduiss (or subroutines) .

As before, we will consider the gencral case in the context of a specific example. The

program to be constructed,allel! m),is intended to test whether every member of a given lui{
of numbers Is less than every member of another ach Mt m. The specificationscan be

expressed as

3lielKl m) <e= compute sill) < alm) ,
where [ and m are lists of numbers.

The top-level goal is thus

Gcal 1; compute al) < elm) .

As before, ve will umpiny the vacuous rule
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Plalt(D)) => true if { as the empty list

and the qecomposition rule

P(a’t({)) «> Pl{head(l)) and P(all(tail(!))) if | 13 a nonempty list.

In the case in which [ 1s empty, the vacuous rule reduces Goal | to the primitive prcgram

segment frie. in the other case, the decomposition rule reduces the goal to ~emputing the
con junction of two expressions:

Goal 2: compute fead(!) < ali(m)

and

Goal 3: compute ali{rail{()) < alm).

Goal 38 1s discovered to be an instance of the top-level goal, with the inputs { ans »m replaced

by tail(i) and m. Therefore, the recursion-formation rule repince: this goal by a recursive call
lessall(tail(l) mY, the input condition is easily checkid, and the termination condition is proved

because (ai!) is a proper suttist of {.

We have yet to consider Goal 2; the program constructed so far has the form

allall{l m) <== if emptAl)
them true

else .. and

allaiitaill) m) .

Goal 2, compute Azrad(!) < ali(m), 13 decomposed in a manner similar .0 Goal |. in the case

where m is empty, the vacuous rule transforms this expression to the primitive program

segment true. In the other case, the decomposition rule reduces this goal to computing tite
CONjunction of two expressions:

Goal 4: compute Assdll) < Arad(m)

and

Gom 8: compute Aead(() < aliailm)) .

Goal ¢ is a primitive expression tho: can be computed directly. Coal 5 is an instance not of
the top-level goal but of the intermediate Goal 2, compute Assd(l) < elim), with the inputs {
and m replaced dv’ nd tem). This suggests that we might achieve Coal 3 dy a recursive call
not to the entire program allel but to the segment of elie] ths: achieves Goal 2. For this
purpose, we must introduce a subsidiary procedure Accdell! m) corresponding to this segment.
Thus, the output specification ‘or the new procedure will be
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headall{l m) <== compute Aeadll) < all(m) .

(This procedure tests whether the head of / 1s less than every element of m.}) Then we can
achieve Goal 5,

compute Aead(() < all(tail(m}),

by a recursive cail Aeadall(! tail(m)) to the new procedure.

Ir: general, suppose we are developing a prog:am whose specifications
are of the form

fix) <== compute P(x)
where Xx),

and we encounter a tubgoa'

Goal 8: compute R(1),

which 1s an instance of some previously generated subgoal

Goal A: compute R(x).

Wwe astume that Goal A it .ome ancestor of Goal B other than the top-

level goal. The procedure-formation rule proposes that we introduce a new
procedure g whose output description is

g(x) <== compute R(x),

so that we can achieve Goal B by a recursive call g(t). Then we set zude

the original derivation for Goal A, and achieve the goal by 2 call gix) to
the new procedure.

As in the previous section, we prefer to formulate the Input
specifications for the new procedure g incrementally, rather than attempting
‘0 express this specification in advance. Again, i is 0 our advantage to
have as few conditions t possible in the input specification for g, because
each of these conditions must be checked every time 2 call to ; is

introduced. We add to the new input specification anly tho ondiuons
that are needed in the course of the derivationcf ¢.

Thus, if in constructing the procedure ¢ we fail 12 prove somos condition
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S(x). we conuder adaing this condition to the input specificavon for z
However, every Lime a cail gi) to the new proce’ure has been introduced
ezrlier In the synthesis we must go back and check that the additional

input condition S(u) 1s satisfied In particlar, because the main programf
now contains a call g(x) to achieve Goal A wz must check that S(x) holds
when this call 1s executed For this purpose. we may use the input

speaficctions for f or any of the case -isumptions that crur mn the
derivation of Goai A

Goal A. compute R(x), now becomes the top-level goal in the

construction of the procedure g Initially, we mirror the steps of the

original Gerivation, that is, we apply In the new derivation the tame
sequence of steps that we applied originally, adding conditions to the input
specification of g as necessary Goal B, compute R(r), will again be
introduced, and will again be an instance of Goal A, compute R(x}. This
time, however, Goal A is the top-level goal, so the recursiuh-formation rule

can be applied to satisfy Goal B with a recursive call g(t), provided that
the input and termination conditions are satisfied. This input condition for
such a recursive call is the same as usual; however, the termination

condition is more complex, and will not be discussed until Section 3D.

We may need to ach eve other goals to complete the derivation of the

main procedure f 1nd the subsidiary procedure g. Of course, in continuing
these derivations we mzy introduce still more subsiciary procedures.

Returning to our allall example, recall that we developed a subgoal

compute Aead(() < alXtaii(m))

(Goal 5), which we observed to be an instance of its ancestor subgoal

compute Asad!) < allim)

(Goal 2). Therefore. the procecu-e-formation rule suggests introducing a new procedure,
Aeadall, whose output specification is

Aeadalll m) coo compte Aesall) < alm).

The partial program description derived from Goal 2 is set aside; this goal is now satisfied
by a call Aecadeallil m) to the new procedure. Thus, the final slieil program is

tAen true
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else Aeadall(l m) and

allall(tail(l) m) .

We have yet to complete the construction of the subsidiary procedure Aeadal The top-

level goal for the procedure 1s Goal 2,

compute Acad{i) < all(m) .

This expression 1s not well-formed unless

{ and m are hsts

and { 1s not empty.

By our incremental specification technique, we ccasder adding these conditions to the inpu:

speciiwcation for Acadall Because a call fezaall(t m) has already been iniroduczd in the man
program ‘o achieve Goal Z, we must check that these conditions are satisfied when this call us
made However, the first conc:iion 18 the input specification for the main program, and the
second condition holds Secause Goa! 2 was introduced under the assumption that { is nox

empty Therefore. Zivese conditions may safely be added to the input specification for headadl .

To cumplete the derivation of the Aeadall procedure, we begin by mirroring the derivation
kazing from Goal 2 in the original synthesis. We again introduce Goals 4 ana 5. Goal 5,

compute Acad(!) < all(tail(m))

1s again an instance of Goal 2,

compute Aead(!) < all(m) .

However, this ume Goa’ 2 is the top-level goal, and the recursion-formation 1ule can now
introduce the recursive call Aeadalll teikm)). (The input and termination conditions for this

call are straightforward.) The complete program we derive is thus

aliall(i m) <== if empty(l)
tAen true

else Aeada'l m) and
ellali1ailil) m) ,

where

Aoadelll m) cae if empty(m)
then (ruse

else head(l) < hvad(m) end
Asadalll taikm)) .



Extensions of Recursion Formation 17

Another E.ample

Using the same basic principles as ui the less3ll example, but employing some additional
rules for the set-theoretic domasn, we can construct a prograin to compute the Cartesian

product cart(s t) of two sets s and !. I he speciiicaticns for this program are

cart(s 1) <a= compute | (x3) resandy ct]
where s and ! are seis

The rules for sets employed in thts syntnesis are the em pry-set— formation rue,

ju false} «> {|}

(where { } 1s the empty set). the union- formation rule

fu Pu) or Qu)} => fu: Pu) uv x. Ku)

(where u denotes the union of tv . sets), the equaliry—siimination rule

{uu et] => if]

(where u and t are expressions with no variables ir conimon) , and the definition of the member
relation « We assume that the empty set { }, the functions Aead(s) and tail(s), the union
function u, and the nofations for the singleton set {s} and the pair (s {) are among the

premitives of our target angu\ge.

We will be very brief. in deriving fae program from the specifications, we decompose the

output specification into the expression

(x9) x=hea sland; ai]!
{(xy) xetadl andyet},

corresponding to the cise in which © is nonempty. The second subexpression,

vol actal(s)endyat},

can be computed by a simple recuiiive call carf(tail(s) ¢).

It 1emain; to compute the firs. subexpression, i.e,

GoalA: compute {(xy): xe Acads)andyet}.

This expression decomposes further, yielding
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{ (xy). x = head(s) andy = head(t) jv
{ (x9): x « head(s) and 5 « tall(() |

iri the case :n which t 1s nonempty The first subexpression,

fy :V x = Aead(s) and y = Aead(t) }

reduces directiy to the primitive expression

{ {head(.) Read(r)) } .

It remains to compute the second subexpression, ie,

Goal B: compute { (x 9): x « Aead(s) and y « tailit) } .

Goal B 1s an instance of Goal A; therefore, we introduce a new procedure cartAead, whose

output specification is

carthead(s !) <e= compute { (x 3) . x = Arad(s) and yet} .

(This orecedure computes the Cartesian product of the singleton set {Aeadis)} and i.) To
ensure that ihis specification is well-formed, we are forced to introduce the condition

5 and { are sets

and s 13 not empty

as the input specification for the subsidiary procedure.

Then Goal A is satisfied by a call carthead(s () to the new procedure, while Goal B is

satisfied by a recursive call caiiread(s tailr)). The complete Cartesian produc. program is

cart(s 1) =a if emptys)
tAen { }
tise carthead(s 1) v

cere(tail(s) 1))

where

carthead(s 1) coo if em Prylt)
then { }
dlse {(Aeads) hoad(t))} L

carthoads tail(s)).

Tw Cortesion-product exemple is derived from Derlinglen [1978]
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C. The Generalization of SBubsidiary Procedures

In our discussion of subsidiary-procedure formation, we introduced a procedure only if 3

subgoal (Goal B) 1s discovered to be a precise instance of a previously generated subgoal (Gea
A) We further required that Goal A be a direct ancestor of Goal B (other than the top-level

goal) However, what if Goal A is not actua’ly an ancestor of Goal B but occurs somewhere

else in the synthesis? O: what if Goal B is not a precise instance of Goal A, but of a somewhat

more general expression? In fact, the techniques we have already introduced extend naturally

to this more general sit1ation, as we will see in nur next example. This example will also s~rve

to illustrate how program-synthesis techniques can be applied to transform an already-

constructed program.

Suppose we are given the following program reverse(!) for reversing 'h elements of a list { :

reverse(l) <== if empty!)
then nil

else appenass everse(iail(l))
t.s5t{ head(l))) .

where nil 1s the empty list and append({, {,) is the program for appsnding the elements of two

lists, given by

append(t, lp) <e= if emptyl))
then lg

else cons (head(l))

This reverse program is not very efficient because its execution may ir.volve many calls to

append, moreover, each tire append 1s called it makes a new copy of its first argument.

Let us consider the given reverse program to be the specification for another rverse

program. Even though we have a program t. compute the append lunction, let us treat

append as a nonprimitive construct. Thus, we will be forced to transform our given program
into an equivalent program that does not use append. Our hope is that the resuking program
wili be more efficient.

We assume that we have the following rules that explicate the =p pend construct:

append(!, lg) n> ly if & is the emply list

append, l3) => cons{head(l,)
eppend(taiNi|) lg) if Ig 13-2 nonempty kat,

and

appendlappendll, lg) ly) => append; appendlly ly) .
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These rules are derived from the append program itscif. In addition, we will use the given
reverse program as a transformation rule:

reve sl) «> if empty!)
then nil

ise append(reversetail{l))
list(headll})) .

Wz will also apply several rule: baiad on the properties of list ttructures.

Our top-level goal 1s

Goai 1: compute if empry(l)
then nil

else a4pend(reverse(tail(l))
list(head(!))) .

The “nonprimitive™ construct append appears in the ese brinch of the gual. Applying the
transformation rules

1isty, Jz --- Ig) => cons(y, list(yz ... 9)) Mn 2

and

list() => nil

to the ¢/se clause, we obtain

Goal 2: compute 1ppendireverse(talil))
cons{hcad(!) nll) .

Applying to the subexpression rewerie(taiXl)) the rule for reverse, and “pulling out” the
conditional expression using the rule

ff P then 3 else 33) => if P them fis) else fsa) ,

we obtain

Goal 3: compute if empts{iaiNl))
then appendinil coms(Read(i) nil)
dss sppesdappondirovizsdseilitalllh)

tse(hesdi tall)

| consihsad)) nil) .

Applying the rule
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append(ly ly) => {; 1f [} 18 the empty list

to the then clanse, and applying the rule

oc ppendiappend(ly (p) ly) => append(!, append, MN)

to the else clause, we obtain

Goal 4: compute if eriptyltail(l))
then cons(head(l) nil}

else append(reversetaiit:ziiil)))
append(list(Aead(ta:.(1)))

cons(head(() nil))) .

Let us focus our attention on the else branch of this goal.

Goal 6: compute append(reversetail(tail(l)))
ap pend{listlhecd{tailll))

cons(head(l) nil))) .

By the rules for st, append, and cons, this reduces to

Goal 8: compute appena(reversetail(tal(l))
cons(Aead(tail())

cons(/iead(l) nil) . |

T his goal 15 not a precise instance of the high :r-level Goal 2,

compute ap pend(reverse(tail(l))
cons(head(l)

nil) ,

because the expression cons{head(l) nil) in Goal 6 coincides with the constant nil in Goal 2.
However, Goal 6 is a precise instance of the somewhat more general expression

compute ap pend(reverse(taikl))
cons(head(l)

m)) ,

obtained from Goal 2 by replacing the constant sil by a new variable m.

We have rleveloped a situation in which a subgoal is a precise instmxce,
rot of the previously generated subgosl, but of a somewhat more genera!
uxpressin. In othx words, we have found that
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Goal B: compute R(Kx))

and the previously generated

Goal A: computa R(e(x))

are bot instances of the mor? general expression

compute R(y) .

(Note that we do not need to assume that Goal A 1s actually an ancesior of
Goal B, or even that voth appear in the synthes:s of the same procedure.)

In this sitvation, the extended procedure—formation rule proposes

introducing a new subsidiary procedure gy) whose purpose is to achieve

both goals. The output specification for g will be

(9) <== compute R(y) .

We intend to achieve Gnai A, compits Riz(x)) by a call ge(x)), and to

achieve Goal B, compute R(Mx)), by a call g(Xx)). (In the special case

where Goal A is already the top-leve! goal of some procedure that achieves
it, and Coal B is a precise instance of Goal A, there is of course no need to

introduce a new procedure to achieve Goal A)

The input specificzlion for the new procedure g is formed incrementally
as before. The top-leve! goal in the derivation of g is

Goal A (generalized): compute R(y).

In constructing the subsidiary program g, we begin by attempting to mirror
the original derivation leading from Goal A, adding conditions to the input
specification as necessary. All the techniques presented previc.utly can then

be applic.) to complete the derivation of ¢.

Returning to cur example, recall that the extended procsdure-formation rule propose
introducinga new subsidiary procedure rusersegen(l m) to compute the mure general expression
Thus, the output specification for ressrsegen i

reversegenil m) ceo  COMPULD 8ppon (rover setail]))
cons{Aeadl))

nm).

(Intuitively, the reversegenil m) reverses a norernpty list | and append: the resis to m .)
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Now, Goal 2 in the derivation of the main program is ach.eved by a call reversegen(l nil) to

the subsidiary procedure The final reverse program is then

reverse{l) <== if empty)
(hen nil

ls. reversegen(l nil)

It remains to complete the derivation of reversegen. The top-level goal for this derivation is

obtained directly from the output specification:

Goal 2 ‘generalized): compute append(reverse(tail(l))
cons(Ahead(l)

m))

To ensure that this expression is well-formed, we add the conditions

{ and m are lists

and [ Is nonempty

ncrementally to the input specification for the reversegen precedure. We then attempt to
mirror the original derivation leading from Goal 2. We succeed in applying the sane rules as
before, uitimaieiy obiaining

Goal 6 (generalized): compute append(rcverse(tail(taii(l))
cons(Aead(iaill))

cons(Aead(/)
m))) .

This time, the generalized Goal 6 is indeed an instance of the generalized Goal 2, obtained by
r placing { with tail() and m with cons(Aead(l) m). Therefore, we can achieve the new Goal 6
by a recursive call reversegen(tailll) cons(Aead({) m)} to the subsidiary procedure. The final
reverse program we obtain is thus

reverse{l) <ee if em pey(l)
then nil

else reversegen(l nll)

where

reverssgen(l m) <== if emptyltaiX0))
tan cons{headil) m)

else reversegen(taiN/)
cons(iread(/) m)) .
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This is a better reverse program than the one we were originally given. Not only has the

expensive append prograra deen eliminated, but by good fortune the new procedure reversegen
we have obtained is of a special form, for which the recursicn can be Implemented efficiently
without the use of a stack.

The reverse axanpa follows Burstell and Darlington [1977] Thei- system

does not perform tre ganarslization automatically.

D. Systems of Mutually Recursive Procedures

In the above examples we have used the usual techniques for showing the termination of

the programs and procedures we construct. However, certain situations arise in introducing
subsidiary procedures that require this technique to be strengthened. In particular, we can
form systems of murually recursive proced.ares, i.e. procedures each of which may contain calls to
the others. Let us see how such a system can emerge.

Suppose that one subgoal ir: the derivation of a subsidiary procedure g is achieved .y a call
to the main program f. Then the program f will be expressed in terms of a call to the
procedure ¢g,

while g wil! be expressed in terms of a call to the main program f,

Such a system of mutually recursive procedures can fail 'o terminate, say if f calls g, g calls

J. f calls g again, and 30 on ind:finitely. The naive approach for showing the termination of
such a system is to show that all the inputs and arguments belong to some well-founded set IV,
and that ,

«<{xand v {9

under the ordering < of W. However, there are systems whose termination cannot be shown by
this approach; for example, If Kk is x iaell, then no well-founded ordering will allowus to show
¥ < x. Furthermore, in some systems, f and gy may apply to different domains; f may apply'o

lists, say, and g may apply to numbers; in such a case, kK may bs difficuk to construct a single
wall-feunded set that containe the arguments of beth f and ¢.
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To show the termination of a system f,, fo, f3, .  .f, of mutually recu:siv: procedures,

we resort to a more general method: We find (a: before) a single well-founded set # with an

ordering < In addition, we find a termination function T; corresponding to each procedure f; ,

such that T,; razps the arguments of f; into W and such that, whenever a czii fin occurs in the
execution of the procedure f(x), we can establish the termination condition

T(t) <Tix).

This suffices to prove the termination of the iystem, because if there were a computation

containing an infinite sequence Sf calls

falta) . folty) . flee) oo

the corresponding sequence

Taltg) . Tolty) . TLt),

of elements of W would be infinitely decreasing, contradicting the definition of a well-founded
set.

To illustrate this method, we will briefly conside: this simple example of a system of

mutually recursive procedures to compute the ged >f two nchinegative integers x and 9 :

gedo{x 9) <os fxs 0
then 9
else ged(x y)

ged(x 9) <== ifg2x
then gedylx y)
else gedyfx 9)

gedafx 9) <on gedely x)

For this example, the naive approach is to show that the inputs (x 9) and the arguments of
each procedure call belong to the well-founded :et W of pairs of nonnegative integers, and that

the arguments of each procedure call are Jess than its inputs under some well-found:+ ordering,
such as the lexiiographic ordering. This zpproach fails here because, for instance, the aain
progiam gedo(x 9) executes a procedure call ged,(x 5; whose arguments are the same as the

inputs.
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It 1uffices, however, to take tv tw be the set of triples of nonnegative integers, under the

lexicographic ordering <. Correspcnding to each procedure ged; we have a termingtion

functicn T. :

Tolxy)=(xy2),

Tixy)elxyl).

Tox 9) = (x 90), and

Tix y) = (x 90)

Now, each time a procedure call gedfv v) is executed within a proceiure ged{x 9) we nexd w
show the termination condition

T fu v) {T(x y).

For example, because Jcao(x ¢) calls ged(x y) when x is not 1ero, w+ have to show

(xy 1; <(xy2),

which is clearly true under (he lexicographic ordering. Becauss jedg(x 9) calls gedo(y x) when » |
is less than x , we have to show

(9x2) <(xy0),

which aiso hold: under the lexicographic ordering since y < x .
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4. BTRUCTURE-CHANGING PROGRAMS

A. SBtraight-Line Programs

The programs we have been developing up '0 now have Deen structure-maintaining
programs: they do not alter the value of any variable or change the configuration of any data
stracture Thus, any condition that is true before executing such a program will 2iso be (rue
afterwards In this section, we extend the iechniques we have already introduced to permit the

construction of structure-cAanging programs; these programs can reset the values of variables.

change the contents of an ~rray, or alter the structure of a list or other data ob jet. (Commonly,
such changes are called riz effects; this term bas the unfortunate connotation that the effects
are undesirable, rather like a headache) In executing such 2 program, a condition that was

previously false can be made tive, and the opposite

For xample. a program that merely outputs the maximum element of an array is a
structure- maintaining program; its execution aces not change the contents of the array. On the
other hand, a program to sort an ariay in place is & structure—changing program, because the
contenis of the array may be changed.

The basic princoles of progr. m consruction introduced earlier (such as conditional
formation, recursion forination, generalization, and procedure formation) extend naturally to the

development of structure-changing programs. In addition, we will need some basic principles
that specifically pertain to this new class of programs.

To express programming proolems tha: require ructure changing, we need to introduce
new construc’s into our specification language. To express programs that solve such problems,
we need to introduce new primitive statements into our target lsnguage.

To the specification language we add the new construct

achieve P ,

where P is some condition. The meaning of this construct is that the corresponding pragram

segment is to cause condition P to become true. (Thus, schieve< = 2 can yield a program
segment that sets x to be 2.)

We abo extend our target language to include assignment statemena, such as serials
sisignments, eg,

Bet,

array a1sigrments, eg,
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ali] - I,

and lst assignments eg,

head(l) ~ t and tail(l) «1

The effect of these statements i: to change the value of the variable u, the contents of the
array element ali). and the Acad and tail of the list [, respectively.

We will introduce other specification and target-language constructs ii the Jontext of

specific examples.

Let us introduce rules that explicate the achieve construct and reiate it to the assignment
statements For instance

® The achieve-elimination rule

achieve P => prove P

This rule expresses that to achieve some condition P, it suffices ) prove that P is already rue.

T he rule 1s generally applied in conpunction with

©® The prove-elimination rule

prove (rue => A,

where A represents the empty program segment. Together, thes rules aliow us to remove from
the program description any subexpression of form achieve P. where P can Je proven to be
true. Because prove is a nonprimitive conkruct, a Program segment contair.ag a

subexpression prove P must be transformed until the subexpression t3 eliminated, Le, until we
prove that P holds when contro! paises through the corresponding point.

® The varialie--assignment formatisn rule

achieve P(x) => prove Pl)

el! for some ¢

whereu is a variable ad¢ is an expression. Thiz rule expresses that if the condition P(¢) is
true, we can achieve z condition of form P(x) by the variable assignment x + ¢.

Let us illustrate how these rules can be applied to construct a program to achieve x = 2.

The specif ications for the program are

meketwe(x) <== achieve x = 2.
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Our top-level goal 1s therefore

Goal 1: achiever. 2

Two of the above rules match this goal. The achieve-elimination rule trans’ sins this goal into

the subgoal

Goal 2: prover -?2.

which fails. The vari>hic-assignment formation rule, on the other hand, ieads to the subgoal

Goal 3: prove! «

xe! for some ¢ .

Applying the rule for equality,

UU => (Tue,

forces us to take ( to be 2 itself; we obtain

Goel 4: prove (rue

Xx « 2.

Finally, the prove-elimination rule yields the ukimate program

maketwo(x) con x ¢ 2.

B. Conditional Programs

Let us illustrate how the condittonal-formation rule extends to :tlow the introduction of tests

into struccure-changing programs. For this purpose, we will consiiuct a program serfXx y) to
sort the values of two variablesx and 9. We will assume that the target language contains the
new instruction intercAsnge(x 9), which has the effect of exchanging the values of the variables
x and3. This instruction is described by the interchange rule

cchiove P(x ») => provePv u) |

interchangdx v) ,

where ux and » are variables.

T irs output specification fer the rf? programis
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sort2Ax y) <e= achieve x s y and prrmi(xg yoXX 1)

Fiere. permi(x, yoXx y)) means that the values of x and y are a permutation of their origina!
values x, and Jo [In the following, we will abbreviate thu condition as perm{(x yN] Thus
condition 1s necessary because, were it omitted, the sort2 prov sam could achieve x < y simply by
reseiting x anc y, say to | and 2, respectively However, the ouput specification for his
program is to achieve two conditions al the same ‘ime; such goals requirs special treatment and
will not be discussed until the next section The purpose of this section 13 merely to iliustrate
conditional formation in structure-changing programs. Consequently, wz will ignore the
permutation property and pretend that the output specificsiion has only the one ccndition,
achieve x < y We will ensure that the permuiation property 13 preserved by temporarily
allowing interchange(x 3) to be the only siructure-changing primitive in our target language.

Our top-level goal 1s therefore

Goel 1: achieve x 5 9

The achieve-elimination rule,

achieve P => prove P

transforms this goal to form the subgoal

Goal 2: provex sy.

We can neither prove nor disprove x s y -- X and 9 are inputs -- 30 we introduce a case
analysis based on this condition.

Case y < x Here, we cannot achieve Goal 2, 30 we weX alternate way: to 2. hieve Goal
1. Cur interchange rule,

achieve P(x ») «> prove F(» x)

interchenge(n v) ,

causes us to transforma Goal | into

Gonl 3: prove y sx

interchangex 9) .

However,we are assuming that 3 < x in this case. Therefore,the subexpression ¢rovej § x is
chumina/ed by applying the rule

UsSverrue Ecy,
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followed by the prove -elimination rule. Consequently, we generate ihe program segment

inserchange(s y)

in this case It remain; to consider the alteti:ate case

Case x =) Here, Goal 2, prove x s y is achieved by the prove-el'mination rule, and
we aie lefi vith the empty program segment A

Our final program 1s therefore

sort2Ax gy) <== ify <x
then (nterchange(x y,
else A

or, equivalently,

sort2(x 9) «w= ify cx
tAen interchange(x 9) .

C. The Weakest-Preconcdition Operator

in formulating the specifications fer the sort2 program in the previous section, we avoided
incl 1ding in the output specification the condition perm((x y)); otherwise, the top-level goal
woud have been

achieve x 5 y and perm((x 9).

Special cifficukies arise in approaching a simultansous—goal problem, Le, a goal of the form

achieve P, and Py,

where FP, and P, are to hold simultaneously. We -annot always decompose such a goal into a

sequence of two goals

achieve P,

achieve Ps ’

or

®

achieve P,

achieve P, ,
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beca ise 1n tice course of making the second condition true we may very well make the first
false. For instance, in the sort2 problem, we can achieve x s y by setting x te | and y to 2, and
we can achieve permi(x v)) by setting x and y to their original values, but no concatenaticn of
these two programs will sort x and y.

To handle such simultaneous-goal problems properly, we need to analyze what effect a

given pros rem segment has on the truth of a given condition. For this purpose, we define the
concept of the weakest precondition, we wiil (hen use this concept to formulat: a program-
moAification technique that will serve as the basis for our simultaneous—gos! principle.

If $ 1s a program segment and P 13 a concition, we define the weakesi precondition a(S P)
to be the condition P’ such that

P’ 1s true before executing >

if and only If
P 1s true afterwards

(We will assume throughout that S terminates) We will also call wi(S P) the result of passing
P back over S Thus, the weakest precondition for the execution of the program segment
x + x+ | to achieve the conditior x 22 is x+1 22, ie, x2 | In other words,

wp{ x « x+| x22) is x21.

We can represent the properties of ‘he weakest-precondition operator by transformation
rules. Some of these rules tell how to compute the weakest precondition for particular

specification- or target-language constructs:

wp(A P)e> Pp

wpl ust Pu) => PO)

wp interchange(u v) Plu v)) => P(r x)

wl if :n61 5, else Sg P) => (if gthen wiS, P)) and
Uf not ¢ them wi(3, P))

wi if gthen SP) => (ifg then wp(3 P)) and
(if not ¢ then P)

wl 5:52 P)e> wp Sy wp(S2 P))

wp( achieveQ P)=> trues If Q impliesP
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The weakest-precondition rule for the recursion construct does not tell us how to compute
the weakes: precondition, but only how to prove by mathematical induction that a given
condition is indeed the weakest precondition for a recursive cali. Suppose that As) is a cali to 2

procedure

fix) <== B(x),

and that < 1s a well-founded ordering. Ten, for any condition P(x; , we have

wp(fls) P(s)) = P03)

If we can prove

wp(B(xY P(x) = P'{x)

under the inductive assumption that

wpAD) PO) = P(1)

for any ¢ such that ¢ < x. (Often, < is taken to be the well-founded ordering used to piove the
termination of f.)

In addition to rules that give the weakest preccnditions for the various programming-

language constructs, there are rules for computing the weakest preconditions for specific
conditions. For example,

wp(S true) => trus

wi{3 false) =: false,

wiS P, end Po) (2) 3 wi Py) end oS Pg) '

oS Pyor 2) e> wpS Pi)or wp(8 Pg), and |

When a new constructis defirad in terms of other constructs, we can often deduce the

weakest-precondition rule for the new construct. For example, sert2(x 9) is the program

ifocu
tAen interchangeiu v) .

Therefore,
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wp ( 50: t2Au v) P(uo))

= wp (Fv <u then .nterchangeiu v) Pu v))
= if v < u then wp(interchenge(u v) P{u v)) end
if usuvthen Plu)

«if v<uthen P(v u) and

ifusvthem Pur).

We thus obtain the scri2 rule

wpl sort2Au v) Plu v)) => (if v < u then Pv u)) and
(Uf & S vetAm Pluv).

On the other hand, if we introduces a new construct into our specification or target language

that is not exprcised in terms of other constructs, we must also provide weakest-precondition
rules for the new construct. For example, we have used the construct perm(/) to denote that the
values of the variables in a list { are a permutation of their original values; we must therefore

introduce rules sich as

wp( interchange(u v) perm(l) ) «> perm(l) if u and v belong to! .

In other words, interchanging the values of two of the variables of the list does not affect the
permu:ation property. Similarly, we will introduce the construct only | changed to denote that
no variables other than those in [ are changed by the program segment; we will also introduce

the corresponding rule

wp{uet onlylchanged)=> only! changed if ul.

The weakest-precondition operator is used to express many transformation rules that
manipulate structure-changing programs. Two regression rules are obtained directly from the
definition of the weakest precondition:

S «> prove wis P)
prove P 3

and .

3 «> achieve wis P)
echieve P Ss.

Ti.¢ Is, to prove or achieve a condition P after a program segment $, one may just as well
prove or achieve the weakest precondition w(S P) before S.
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‘We have twe additional rules for pushing goals back into conditional expressions.

then S, tAen A

else Sj) achieve P

achisve P else 3;

achieve P

and (consequently)

if q => iq

then S)) then §

schieve P achieve P

ese achieve P

Le us ree how these cnnczpts can be applied to obtain a systematic program-modification

rectini ue, which will eventually be used in the simukaneous-goal rule.

The weashas!-precotdition operator of Dijkstrs (1975) was rolivaied by
\"e program-ver ification technique of Floyd [1967] and Hoere [1969]

D. A Projyram-Medifioation Technique

Imagine that ve have a program segment § that is a concatenation $5; of two instructions.

Suppose we wish to aker § (0 achieve some new condition P. The most straightforward
approach is to add new instructionsto the snd of 5 that achieve the new condition;we may
describe the desired modification as |

Si

Se
achieve P .

However, according to the regression rule of the previous section, we may just as well add new

instructionsto achieve wp(S; P) before Sy; La, we can pass ® back ever 3;, yielding

$

achieve wi(3, P)
3p.
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Similarly, we can pass wp(S, P) back over §, :

acnieve wp(S, wis, P)
5)

Sa

Thus, we can make modifications at ar; peint in S to achieve the desired condition.

For example, suppose thai 5 is a program segment

yx

yl

and that we want to modify § to achieve the relation y 2 2; this modification task may be

expressed as

yx

b A y+
achieve 7 2 2.

We can certainly achieve the new condition by adding an instruction (eg. 9 « 2) to the end ot
the program But, by the regression rule, we car. also transform the above task into

yx

achieve 9 2 |
A od

and then into

achieve x 2 !

yx

y-yl.

[in the first transformation,we relied on the fact that wp( ye a1 y22) pel 22,108,921;
the second step rehsd on the fact that wp(y « x 92 1) is x 2 1.] Thus,we can also perform
the required modification by adding instructions in the middie of the program (eg.y « 1) or at
the beginning (eg. x « J).

Of course, a program segment modified by the above technique may no longer achieve the
purposefor which it was originally intended. Suppose that a program segment $ was originally
intended to achieve some condition P,, avd we want 10 modify S 10 achieve a new condition P,

as well as the original condition P,. To ensure that the modified program still achievesits
original purpose,we pratect P| at the end of S$ ¢ ring the modification process. This
modification task is dencled by
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S

achieve P,

protect P

The purpose of the protection condition protect P is to block any modification that does not

allow us subsequently to prove the protected condition P, Let us see how such a protection
condition 1s checked

Returning to the previous example, suppose in modifying the program segment

ye x

to achieve the new condition § 2 2, we want to protect the condition x < y that the program

originally achieved Our task can thus be described as

Goal 11 %ex ’

ye yl

achieve 5 2 2

protect x < y.

We have seen that we can achieve the desired condition y 2 2 by introducing statements at the

end (eg. y « 2), the middle (eg. y + 1), or the beginning (eg. x « 1) of the program. To check
the protection condition for a proposed modification, we try to prove that the protected

condition stili holds in the modified program. Thus, ic see whether introducing 9 « 2 at the

end of the program violates the protected condition, we establish the subgoal

Goal 2: ye+x

A od

y+?

Prove x < jy.

This means that we must prove that x < y holds after the execution of the modified program.

In fact, we fail to prove this condition, so the propossd modification is rejected. Similarly,
we cannot achieve the desired condition by inserting the statement y « | !n the middie of the

program, because we fail to establish the corresponding subgoal

Goel 3: ye~x

y+ | |
y= yl

prove x < yj.
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However, the third proposed modification, to insert x « | at the beginning of the program, does
maintain 1%" nrotected condition:

Goal 4: x «+ |

Ye Xx

yl

prove r <y.

Let us see in more d=:il how such a proof is conducted.

A pplying the regression rule

\ -> prove wiS P)

prove P S,

we develop the subgoal

Goal 8: x+ |

Jer

provewp{ y+ yl x <3)

b Aa y+ .

The weakest-precondition rule for avignment statements,

wp ust Bw)=> PO), :
eliminates the weakest-precondition operator:

Goal 8: x |

yx

prove x < y+!

yi.

Again applying the regression and assignment rules, we obtain

Gol: x1
prove x < x+|

yx

yo yel.

The condition prove x < x+ | can now be establishod by the rule

% <uslws frue if is a number.
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Having verified the protection condition, we obtain the program

x + |

ye x

veylL,

which achieves both the original condition x < 9 and the additional condition y 2 2.

The previous discussion neglected the strategic aspects of our program modification

technique. How do we divide our (me between akering the program to achieve a new
condition P, and ensuring that a protected condition P, is stil achieved? The most

adventurous s.rategy is first to complete the modification necessary to achieve P, and then to

check that P, still holds. This cen be wasteful, however, because we may need io do a lot of

work modiying the program to achieve P, before we ducover that P, is not achieved by the

modified program. A more conservalive strategy is to .::a’k that the protection conditions are
maizaained each time a new instructicn 3 inserted during the modification process; thus a

proposed modification that does not achseve P| may be re jeciec quite early. For example, if P,

is the permutation property perm(/), that the values of the variables in the lst [ are to be a
permutation of their original values, we will admit modifications that interchange the values of
variables in !, but reject modifications that attempt to assign new values to these variables.
This conservative strategy is adhered to by our implemented system; it is a bit too restrictive,
because a modification that satisfies the protection condition only at the final stage may be

rejected if its protection condition is checked prematurely.

The above modification technique allows us 20 insert new instructions intn the program

segiient, but not to aker or delete any of the instructions that are already there. Such
modifications may sometimes be necesrary, but they are beyond the scope of our technique.

The »rolection concept was used by Sussman [1973] ss an approach to

pian formation by the successive debugging of rneerly correct plans.

EB. The Bimultanecus-(ical Principle

We have remarked that when faced with a simuitansous-goal problem

achieve P, and P, ,

we cannot dicompaee the goal into the near sequence

ssldove P,
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because, In the course of making Py true, we may be making F, false. For the same reason, it

Is not enough to reverse the order in which the goals are achieved. However, the program
modification technique of the previcus section gives us a way of solving such a problem. To

apply this technique, we first construct a program that achieves P,; we then modify this

program to achieve P, whiie protecting P,. The simultancous—goal rule that represents this

approach 13

achieve P, and P, => achieve

achieve P,

protect FP .

(Of course, the roles of P, and P, can be reversed.) This rule extends naturally to the more

general problem of achieving many conditions simukaneously; we consider P to be one of the
conditions, and 7; to be the conjunction of ail the others.

The simultaneous-goal principle does not dictate which condition we attempt to achieve
first. In general, if we discover that ons of the conditions is already true, we prefer to “achie” *
that condition first, protect it, and go on to achisve the others. Jurthermore, we may have rues
for specific sub ject domains that cause these conditions ic be reordere::

Let us see how the simukaneous-goal rule applies :0 a new sorting problem; this tim: we

wish to sort three variables x, 3, and t. The problem can be specified by

soriYx 9 1) <== achiove x § 3 and y S z and perm((x 9 2))
where x, 9, tnd 2 are variables with numerical values.

We will introduce the program sorr2(u v), which we constructed in the previous section, as a

primitive in the target language. Because the sorr2 program was constructed to achieve the
condition & s », we can include the sorf2-formal:on , Jie

achieve x s v => sortu v)

in our set of transformation rules. Because sorr2(x 9) was specified to maintain the condition

perm((u »)), we can add the sertd-perm rule

wil sortNAu 9) permil))=> perm(l) if uw and » belongto: { .

The top-level goal for the sert3 derivation 1s

Goal 1:  achievi x < sand 9s 1 ond permi(x 9 1) .

We apply the simultaneous-goslprinciple; because the condition permi(x3 1)) is alreadytrue, #t
is the first to be "achisved":
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Goal 2: achieve perwmi(r j tj)

echleve x s yand y s 2

protect perm((x y z))

Because perm((x y z)) 13 true initially, we can eliminate the first task achieve perm((x y 1)) by

applying first the achieve-elimination rule

achieve P => prove P ,

and later the prove-elimination rule

prove true «> A

We obtain

Goal 3: echievexsyandyst

protect perm((x 9 1)) .

Tne first task, achiave x s 3 and 9 $s 2, is another simuRkaneous-goal problem; we again

apply the simuitaneous-goal rule, arbitrarily attempting to achieve the condition x s 9 first.

Goal 4: achieve x <y

achieve 3 Sz

proteci ¥ 5s 9

protect perm(ix ¥ 1).

A polying the new sorr2-formation ruie

achieve it Ss ¥ => serr2u »)

to the first tas, achieve x s 9, yields

Goel 8: srf2x 9)

achieve sz

protect x £9

protect permi(x 9 1)) .

We first attempt to apply the same rule to th second task, ashiove 9 ¢ 1, yielding

Goel 8:  serr2(x 9)

sorry 2)
protect ~. 3 9

protest permi(x 3 2).
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However, in executing the instruction sort2(y r) we may violate the protected condition x s y

(In particular, if r was imutially the smallest of the three values, then sorting y and r makes y the

smallest. x and y will now be out of order.) Therefore, we are forced to backtrack and consider

alternate means for achieving Goal 5.

By applying the regression rule

A ~> achieve wp(S P)
achieve P S.

we derive

Goal T: achieve wp sorf2Ax 9) *s 1)

sortx y)

proiectx 3 y

protect perm((x y 2) .

We have already derived the weaken -precondition rule for the sorf2 instruction; it is

wil sortNu ») Plu v)) o> (ifv < u then P(v u)) and

(if us »then P(x v))

A pplying this rule produces

Goel 8: achieve(if y < x tAm x S 2) and

(ifxsythemys1)
sort2x 9)

protectx sy

protect perm((x y 1)) .

intuitively, the first task of this goal,

achieve (ify < x thenx 4 1) end
(ifxsythmysz),

1s 00 achieve that the vakue of z is the largest of the three values: if this condition holds before
sort2x 9) 1s executed, we know that the desired condition 9 < z will be true afterwards. This

task is stil another simukanesus-geal problem, and is achieved by another application of the

sémulktansous-goal principle. We will not descrise in detail how this task is accomplished. The
resulting program segment is

ify < x thom sor:2x 2)
if x S$ 9 then sort2y 2) .
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The corresponding goal is

Goal 9: ify « x {Aen sori2Ax 1)

tf x Sy then sorry 1)

soriAx 9)

protecix sy

protect perm((x y 1)) .

It remains to cherk the protection conditions. Intuitively, the first condition x < y is satisfied

because it occu.'s immediately after the sorix 3) instruction, which achieves this relation. The

second condition perm((x y 1)} holds because it is true initially and it is preserved by the three

sort2 instructions In the program. In practice, these conditions would be established by

applica’ion of the regression and weaksst-precondition rules. (As we remarked, our
implementation checks these conditions repeatedly whik the program is treing modified rather

than waiting until the end of the derivation)

The final program we obtain is

501t¥> 9 2) <=m if 9 < = then sorfAx 2)
ifx sy then sortXy 1)
sortz 9)

This concludes cur discussion of the simulianecui-goal rule; we will see further applications

of this rule in the next section. in the synthesis of a somewhat less trivial program.

An extended discussion of the simultsneous-goel problem eppeasrs in

Weidinger [1977] A nimiler spprosch {0 the problom wes devised by Werren

[1974] but he did n3t use the weshesl-precondition operator. Other methnds

have been applied to the problem by Secardoti [1973] end Tete [1975]

F. Recursive Programs

The structure—<hangingprograms we have constructed 30 far contain M0 recursive calls.
Our next example illustrates how the recursion-formation techni ue we have introduced

suriier can be apphied to tructure-chanting programs.

We are asked to construct a program ‘0 find the maximum maxis 8) of an arcay sagment
a{0: a) the listof a+] elements ¢{0), ell), ... alr]. The specificationsfor this progam may
be written as
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max{a 1) <e= @acr.'eve ali(a(0 nl) < z and
1¢a(0 njond

only z changed

where a 1s an array of rumber: and
n 13 an ‘nieger and
Osn

Recalt thai only 1 changed means thai no variable other than z can be changed by the program,
in particular. this condition ensures that the final program will have no surprising side effects,
and that it will not satisfy its specifications perversely, say by setting z and all the elements of

the array segment tO zero.

Our top-level goal 13 thus

Goal 1: achieve all{a[0 n]) < z and

z «af0 n)and

only : changed .

This goal has tive form of a simukaneous-goal problem. The third condition, only © changed, is
of course true initially, sc we decide to “acivieve” it first; it will then be eliminated by the
achieve- and prove-elimination rubs. The cher two conditions may be approached in either
order. We obtain

Goal 2: achieve 2/Xs{0 n)) sz
achieve z « a[0 : ]

protect alle(0 : rn) s z

protect sly 1 changed

Assume that we have the following three transformation rules that relate the e/! ccnstruct

and the array segment:

® The vacuous rule

P(aiNealu : wD) => true fu > w

(any condition 13 true for every element of the empty segment),

© The singisten rule

Piallaln : wD) «> Plalu]) fnew

(a a.xiition is true of every lame. of a “singleton” segment if the condition holds for that
segment’s sole elsment), and
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¢ he decomposition rule

Plall(alu  w)) => Plaltlalv  w-1))) and Plaiw]) fu «m=

(a cordition (s true for every element of a segment containing two or nore elervents if the

condition hokis for the tinal element of the segmoant as well as for every siement of the initial

segment)

We focus our attention on the first task in Goal ¢

Goal! 3: achieve allla[0:n]} s =

The three all rules each match this goal. The vacuous rule requires that the segment be empty;

we krow this is false by the condition 0 $s n in the inpui specification. The singleton rule

requires that the segment have but one element, ie, that 0 = =; we cannot prove or disprove
this condition, so we make it the basis for a case analysis.

Case 0 + n (1e, 0 <n): Here, the singleton rule fails, but the decomposition rule, which

actually requires that 0 ~ n, succeed: in decomposing the goal ino the conjunction of two
conditions. These conditiont may be treated separately by the simuRtaneous-goal principle,

yielding

Goal 4; achieve &llu{0:n-1) s.
+~hiave a(n) s 2

pro.ect alle(0: n-1]) 5s 2.

We will consider the three tasks of this goal in turn The first task, to achieve

alXa(0:n-1Ns 2,

is an inscance of one of the conditions of the top-level goal therefore, the recursion-formation

rule proposes achieving it by means of a recursive call mex(e »-1). The input and termination
conditions for this call are straightforward.

We now focus our aitention on the second task of Coal 4,

Goal 8: achiove a(x) sz.

Beure attempting to achieve a condition, the achieve—climination rule always tries to determine
wirether that condition is alreadytrue; we can neither provenor disprove R, 00 we make it the
basis for & Jurther case analviis.

Casex < a(n): In this case,we must see akernatemeans to achieve Goal 5. Recall that we

have a varisble-assignment formation ruk



86 Structure-Chang'ng Programa

schisve Plu) => prove P(i)

ued for some{

where u is a variable and ! is an expression. Taking P(u) to be a(n) s u. 1 to be a(n), and u
to be 2. we can achieve Goal 5 by the assignment statement

z + a(n},

because a(n] s a(n).

[Note that we could also achieve Goal 5 by the array-assiznment rule

ain) « 1, |

or the sort2 instruction

sortNalnrl 7),

these solutions would be rejected, however, Cecause they violate the protocted condition only t
changed.)

) Case a(n] s z: Here, the condition of Goal 5 is already true, and can be “achieved” ty the
empty program.

We have achieved Goal 5 in both cases; the conditional-formatin principle yields the

program

if 1 <cln) then 1 ~ ala).

We have thus completed the second task of Goal 4.

We now proceed to consider the third task, which is to check the protection condition

Goal 6: maxis n-1)

if 2 < sin)
then 2 « a(n)

prove elial0:n-1} sz.

Applying the prove-regression rule

S o> prove ¥pS P)

grove FP 3,

the weakest-precondition rule for the {f-{ien constrect
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wp if gthenS P) => ifg then wi P) and
if not q them P

and the weakest-precondi.ion rule for the assignment statement

w po wet Plu) P(r),

we obtain

Goal 7:1 max(a n-1)

prove if 1 < a(n) then al!(a{0: n-1)) 5 aln] ond

gf otn) < z then allia[0: n-1)) < 2tf zr < a(n)
then 1 + an] .

Note that max(a n) was specified to achieve the condition

ala{0-u)) sz;

therefore, by mathematica! induction, the recursive call max{a n-1) can be assumed to achieve

ali@{0:n-1]) sz.

T he second condition we are asked to prove,

fan) s 2 tAen all(a{0:n-1]) st,

follows at once. The first conaition,

if 1 < a(n) then alalO: n-1] s a(n},

follows directly by the transitive rule.

This completes the final task of Goal 4, and thus we have achieved the conditien of Goal 8,
that alKa[O0: »]) $s 1, for the case where0 < 8. The remainingcase is more easily disposed of.

Casen = 0: Here, the segmental0 : 8) has only one element, and the singleton rule
reduces Goal $ to the following:

Goal 8: achieve (0) s 1 .

This condition is achieved by the assignment statement

2 + ol0] ,

as before.
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We have constructed program segments that achieve Goal 3 In each case, the resulting
conditional segment is

ifn=0
thea x + al0)

else max(a n-1)

if t « ain]
then 1 « a(n)

There are three addititnal tasks in Gozl 2 that we must perform: We must achieve the
rondition

76 a{0 n),

this condition 15 already true, and may be proved by application of the regression and weakest-
precondition rules. Next, we must check that ihe protected condition

all(al0 - n)) s 2

1s satisfied; this is true, because we have just constructed a segment that achieves th: condition,
and in “achieving” the additional condition z ¢ al0 : a) we made no changes to this sxment.
Finally, we must ensure that the protected condition

only z changed

is satisfied: this is true, because only assignments to z occur in the program we have constructed.

Having established the protection conditions, we are left with the final program

max(a nj <== ifn e0
then 2 « a(0]

else maxis n-1)

if 1 < en)
then 2 + ain] .

G. The Moedilication of Recursive Pregrams

The program-modification technique we introduced fer leap-free programs extends
naturally to permit the modification of recursive structure-changingprograms.

Assume we are given the program menis n) ~enstricsed in the preceding sectien; this
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program finds the value of the maximum element in an array. Suppose that we vrish to extend
that program to obtain a new program maxindex(a n) for {inding the index cf that maximum
element as well as its value. [n other words, we want to modify the program max tu: achieve the

new condition

aly) =z2and 0s ysn .

while protecting the original condition

all(a[0 . r)) s z and 2 « a[0 : n)

that the program was Intended to achieve. Note that we do not protect the condition only z
changed that the program origineily achieved; this is because we want to change the value of y
as well as z. Instead, we include

only 5, 1 changed

among the new conditions to be achieved by maxinaex.

Qur modification task is thus specified as fullows:

maxindex(a n) <== if 1 = 0
then = « a(0)

else maxindeda n-1)

if 1 < a(n)
tAen 2 « aln]

achieve aly) = zani CG <y <n end go 9.2 changedprotect alie(0 nD svandzea(0:n

where gis an array of numbers and
n is an integer and
Osn. :

Here, we have replaced the recursive calls io max, the old program, by recursive calls to the
extended program maxindex. Goal | is formed directly from these specifications, and will not
be copied here.

Note that it is quite necessary to protect the condition elNel0 : n]) 5 ©; otherwise, we could
achieve the new conditions by perversely resetting z to 6{0] and setting 9 to 0. The second
condition,on the other hand, is actually redundant; if aly) = 2 and CO £ 9 5 nn, then certainly

z « «(0 : rn). Applying the usual regression und weakest-precondicion rules, we derive
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Goal 2: {fn -0
then achieve aly) » 6:0] and 0 s vy S n and only 3, t changed

2 « al0)

¢{s¢e maxindex(a n-1)

if 1 <alnj
then achieve u(y] = alnjand 0 sy snand only y, 2 changed

a(n)

¢/s¢ achieve uly) » 2and 0 sy Ss nand only y, 1 changed
protect ¢/{a{0:n)) s rend r«alC n)

The task

achieve a(y) = a(0) ard 0 5 y s n and only y, 2 changed ,

which occurs :n the branch for which n = 0, is found to be achieved by the assignment

y- 0,

by application of the simukaneous-goal principle and th: variable-alsignment fo:mation ru.e.
Similarly, the task

achieve a{y) = a(n} and 0 s y s n and only y,: changed , |

which occurs after the recursive call in the case z < a(n], is found to be achieved by the

assignment

gen.

Finally, the task

achieve aly) = zand0 5 3 5s n and only 9,2 cAsnged ,

occurs immediately after the recursive call mexindex(s n~1) in the case o{n) s 2. The recursive
call can be assumed inductivelyto achieve the condition

sly) =zend0s 9s n-| end only y, t changed;

thus, the desired condition is already true.

The protected condition

eNO:nD s send scel0:n),

which was achieved by our original program mais n), has not been affected by any of our
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modifications; the only instructions we have added are assignments to 3. The final maxindex

program we obtain is thus

maxindex(a n) <u= 50
then 9 + 0

7 « a0)

ose mexindex(e n-1)

if 1 < a(n]
fhem y +n

. t eel’

The modification of recursi“e programs can be iritiated Ly the simukaneous-goal principle

if the progiam constructed to achieve vie oi ie goa! conditions happen: 'o be recursive.
However, modification of a given program may also be: regarded at an tndependent

programming task; this application is discussed further in Section SC.
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5. IMPLICATIONS FOR PROGRAMMING METHODOLOGY

In program synthesis as we have defined it, a person formulates :he purpose of the program
he wants withoul Indicating a procedure to achieve that purpose. In practice, even the most
computationally naive user of a program-synthesis system is likely to have some idea of an
algoriihm that could be employed by the desired program. This algori'hm may not be entirely
satisfactory: 1t may nox achieve all the desired conditions, it may be incompletel ¢ specified, or It
may lead to an inefficient program. Nevertheless, it would be foolish to prevent the user from
conveying this information to the system, because It Is easier to derive a program from a
partially specified algorithm than from a specification that expresses only the program's
purpose. in this section, we will show how the . _ram-synthesis techniques we hav? already

_ sniroduced can be applied to transform a partially specified procedure into a complete program.

Actuaily, we have already seen some examples in which the specifications had a procedural
component. In the maxindex example (Section <G), our specifications were given in the form of
a complete max program with some additionai conditions to be achieved. In the revive
example (Section 3C), the specifications were composed of a complete revsrie program, whith
was transformed into a more efficient equivalent. These examples we e introduced to illustrate

particular program-synthesis rechniques. The emphasis 1a this sec.ion will be on the actual
task performed.

We will consider separately three ways in which the procedural components of a
specification can be presentad.

® Program transformation. The specifications ure giver in the form od a clear—pirhaps
inefficient--program, which is then transformed tito an efficient—perhaps unciear--
equivalent.

® Data abstraction. The specifications are given ip the form of a complete program that
operates on certain abstract dale types, structures (such as sets, stacks, or graphs) whose
properties are expressed precisely bu. whose 'nachine represeiitation Is unspecified; the
program is then transformed to regiace each operation on the abstract data types by a
corresponding concrete operation or. a choser. machine representation.

® Program modification. We are given a complete program that performs one task successfully;
we wish to extend the program to achie/e an additionai condition, while still performing
its original task.

Although we consider each of these tonics separately, the same techniques can be applied to
transform a procedure whose d.ac:iptior is subject to all three modes of imprecision. In other
words, “he given pecifications could resent an inefficient procedure, expressed in terms of
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abstract structures, that needs !o be extended to achieve addilional conditions. Of course, there

are other way. in which the description m.y be imprecice besides the three we will discuss here.

A. Transformation: Programs -> Better Programs

Often the clearest, simplest prog am for a given task ina: not be the most eff.cient; if we

attempt to construct an efficient program for the task at once, our result is likely to be unclear,
and perhaps incorrect as weil. It his been suggested, therefore, that we construct vur program

In two stages. we begin by setuing efficiency considerations aside for awl'lc; we construct as
clear and straightforzard a program as possible. We then wansform this program to make it

more efficient, possibly losing some clarity during the process.

It 15 argued that the programs produced in this way are more likely to be correct than
programs produced by the conventional one-phase method The first version is likely to be
correct by virtue of iti clarity, the second version is produced by the application of

transformation rules that preserve the correctness of the first version while improving ius
efficiency.

We have already seen program-synthesis techniques applied to a transformation problem, in

Section 3C. 'n thal example, we were given the following program for reversing a list:

rover se{l) <=eif emptyll)
then nil

else append(reverse(tai}
lisihead(l)) ) .

append!) ly) <== If empiyll,)
then ly
else cons(hoad(l,)

Treating this program: itself as the specifications, we developed the following system of two
programs for performing the same task:

reverse) <ee if mpiyll)
then nil

else reversegen(l nil) ,

where
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reversegen(! m) <= if em pty(tailil))
then consiAead(l) m)

Ase reversegenyail(l)
cons(Aead(l) m))

The original reverse program 1s quite inefficient each execution may require many czlls t * the
append program, each of these calls to append produces a new cupy of its first argument. On
the other hand. in the final system of programs, the expensive append operation is replaced by
the economical cons Furthermore, the recursion 1s of a special form that ~an be evaluated
without the use of a stack; in fact, this system can be converted to the following iterative reverse

program by application of a recui .lon-removal transformation rule

reversel) «=eif empty!)
then out put(nil)
else m « nil

whtle not em ptyltail(l))
do m « cons(head(;) m)

| « tatl{l)

out put(con s(Aead(l) m)} .

| By explottir:g he properties of the operations in the orig‘nal reverse prugram, we have
managed to transform it to a more efficient program that achieves the ame purpose by a
fundan entally different method.

In this example, our specifications were given in the form of a complete program, with no
other indication of the purpose to be achieved. We were fortunate to perform the same task by
an envsrely different and more efficient m=thod. in general, if the pecification of the program
is purely procedural, such radical improvements are difficult to achieve, In omitting any
statement of purpose from the given specification. we are biased ioward adopting the algorithm
of the given program. inxte3d of seeking to achieve the same purpot i a NEW way.

For example, suppose that we want to construct a program to sort a list of numbers. Our
dexcription of the desire program might be

sort(l) <=o if om pty)
then ril

else merge(hoadl)) sort(taiND))) ,

where

then Uise(x)

ose if x 5 hood)
then conslx )
sise conslheadl))

mer poix tail) .
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The sorting method employed by this program is intrinsically inefficient. The program
contains no z* phat statement that the list at produces is intended to be urdered. Without such
a statement. it 1s difficult to imagine x system stumbling across a more efficient sorting method.

A more practicable approach wuld de to have the user specify the purpose of the given

program along with the program aself. The system would then apply correctness—preserving

transformations, which could alter the given program tc achieve the same purpose in a
fundamentaliy different way

The pure program-transformation approach has been advocated by

Burstall and DNerlington [1977] Knuth [1974] Standish et af. (1976) end

others. Gerharl [1975] introduces a system of correciness-preserving

trans! ~rmations. An experimental system to improve programs by successive

transformation was implemented ty Derlington and Burstall [1976]

B. Abstract Data Structures

Qut of the different diagnoses of the causes of our programming ills, there arise different

therapies One school of thought attributes much of the difficulty of programming to the

process of encoding high-level data structures in terms of the constructs avaliable in the targe
programming language.

According to this ichool we design an algorithm in our minds in terms of ebstrect dere
structures, structures such as sets, queues, or graphs whose properties are specified but whose

precise implementation is undetermined. In these terms, the “mental algorithm” is
straightforward and easy to formulate.

The difficuky arises when we attempt to express our mental algorithm in terms of the

primitive constructs of the target language, such as arrays or lists. Because the machine
representations at our disposal do not correspond precisely to the abstract data structures of our

mental algorithm, an act of paraphrase i3 involved in the programming process We must
simultaneously formulate our algorithm and express it in terms of mackine operations.
Furthermore, there are often many possible implementations for the same abstract data

structure, only after we have completely described our algorithm in abstract terms, and can see

v/hat operations are to be performed on the structure, can we decide which implementation will
lezd (0 the most efficient program.

It has therefore been proposed that we construct our program in two stages: we beginby
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constructing a clear program in terms of the abstract data stru<tures of our mental algorithm;
only then do we choose a representation ‘or the abstract data structures, and transform our

program accordingly For instance, we would first express our algorsiam in terms of high-level
operations such as popping an element from a queue or adding an element to a set; then we
would decide how 10 represent (he queue or set. os an array or hst, say. Facilites might be

provided to perform the required transformations automatically, or at least to ensure that they
are done correctly

The transformation process may be regarded as a program-synthesis task. The specification

for this task 1 the program expressed in terms of the abstract data structures; the operations on
these siructures are considered ‘ov tc nonprimitive constructs. The properties of the abstract

data structures and their operations are stated as transformation rules. The final program will

be equivalent to the original, but all the nonprimitive abstract operations will have been
reformulated in terms of primitive target-language constructs.

For exam-le, suppose we are writing a program that deals with queues as an abstract data
structure We may have three cperations on a queue: a push operation, which inserts an

element at Lhe end of the queue; a (op operation, which produces the first element of the queue;

and a pop operation, which removes the firn element from the queue. informally, we can
a represent the properties of these operations by the rules

pusi(y queus(x, .. Xp) => queue(x, .. X, y)

toplquenelyx, .. x.) =>y if queue(yx, . . x,) is nonempty

popiqueneyx, ... x,))o> quoua(x, ... xy) if quouslyx, ... xy) is NONemMpLy.

Now, suppose that we have written our program in terms of abstract queues, but that our
target programming language requires us io represent cur queues in terme of lists. The obvious
representation 1s to encode the queue directly as a list, Le,

encode (quene(x, .. x.) => list(x, ... Xp)

An alternate representation is to encode the queue as a list with the slements reversed, i.e.

encodeNquone(x, ... x.) => listxy ... X)).

A ssume that we have thosen the first encoding.

To our encoding operation mcodel there correzponds the opposite decoding operation

decode \istix, ... x.) => quenelr, ... x).
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Qui synthesis task 1s now to construct concrete operations on lists that correspond under cur

chosen encoding to the abstract pusA, top, and pop operations, Le,

push i(y {) <== encode (pushy decodsi(i)))

top 1({) <== top{decode1({))
where decode [{[) 13 nonempty

pop 1(’) cna encodel{pop{decodel(()))
where decode i(!) is nonempty,

where (is a hist. We can consider these descriptions a: specifications for a synthesis task in

which push, top, pop. encode), and decodel are all regarded as nonprimitive constructs. By

including the rules describing the propesties of these constructs among our transformation rules,
and applying our usual program-synthesis techniques, we obtain the following concrete
implementations:

pusii(y I} <omif empty (D
then l1st(y)
olst cons(Aead(!)

pushy tail) ,

top iii) <== hAead(l)

and

pop 1{{) <== tasll) .

The final program is then obtained by replacing the abstract uperations pusk, top, and pop
by the concrete implementations pusAl, topi, and pop: in the given program.

In this implementation, ted] and popl may be executed directly, but pusAl invoives

searching down the entire queue. Therefore, we might choose this implementation if the top
and pop operations must be performed quickly, but the push operation is permitted to take
more time.

If the reverse situation is the case, and push is the more critical operation, we may choose

ihe akernate representation, in which the elements of the queue appear on the Net in reverse
order, ie,

oncodedquinelx, ... x.) => Ustixy .. x).

The corresponding implementations that resulk are
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pusAXNy l) cma consis )

(0A!) cm= if empty AN)
(hen Acad!)

else topasdll))

and

Pop) cme tf empty all)
then nl

else con sthead(()

poptasl()))

In this representation, the pusA operation becomes guite economicil, bul the top and pop
operations tLecome correspondingty more exgcziive

The problems ihat anise in translating abstract data structures i..0 concrete representations
require all the synthesis techniques we have considered. However, these problems are of
more limited scope and require less invention than the more general synthesis problem. lv is
likely that program-synthesis techniques will become riactical for such relatively restricted
problems long before the general problem 1s solved.

The dala-sbstractior, methodology has been investigated extensively (ses,

for example, !'snov and lilles (1975) and Gutleg, Horowitz, snd Musser

[1976]. Systems in winch the representations for cortsin sbstract data
siructures sre selected automaticauy hevr been implemented by Low [1976]

and Schwartz [1974) Our queus Sxample iollows Hewitt end Smith [1975] at
a sofe distance.

C. Program Modification

It is often remarked that programmers spend more of their time in modifying old programs
to achieve additional purposes than in constructing new programs. These modification tasks

are conceptually far less challenging than the original programming effort. However, a
programmer is especially prone to err in modifyin a program: For one thing, if the original
program is complex. % ma* be difficult to find all the points at which changes must be made.
Furthermore,the programme: may not know or remember how the program works; he mav
interfere with its original functinning in introducing the required changes.
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Thus. the difficulty of program modification may be attributed to its complexity as &

bookkeeping chore rather than to its challenge as a creauve endeavor. For this reason,
program modification ti another area in which program-synthesis techniques are likely to find
.hetr eaihest application

We have a:ready intraduced a program-modification technique, using protected conditions,

as a pasts for our simuitaneous-goal principle in program synthesis. This technique can also be

applied directly to the program-inodification task. Thus, we modify the given program to
achieve a new condition, while protecting the condition the program was originiiy intended to
achieve

We have seen one exampie (in Section 4G) in which our program-modificecion technique
was applied to extend a program for finding the value of the maximum element of an array, to
“130 find the index. of that element. The original program,

maxia n) <s= if ned
then 1 « (0)

else max(ac n-1)

if z <aln,
then t + clin],

was constructed to achieve the condition

atl(ald n)) s 2 and z « a0: 2) and only 1 changed.

This program wal then modified to achie.e the additional condition:

z=alyland 0 <9 sn and only y, 1 changed

while still maintai ing, two of the original conditions,

all(al0 nj) and 1 « a0: n)

This modification tesk was specified as

maxindex(a n) <=e (f1=0
thm z + al]

else maxindex(a n-1)

if 1 < aln]
then 2 « a(n]

achieve aly)» z4Rd 0s 3s nendonlyy, x changed
protect all{a{0: nD stand z «a0: n).

The achieve task ensures tha. the modifie¢ ~rugram will fulfill its rew purpose, and the
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protect task guarantees that in modifying the prog am we will not interfere with its original
funztioning

From the above specification, we obtained the modified program

maxindex(a n) <ca= ifn 0
theny «0

1 al0)

¢/3¢ wmaxindexia n-1)

if: < a(n]
then y -n

A als) .



Loose Ends 81

8. LOOSE ENDS

A. A Footnote on Biructured Programming

In program synthesis we attempt to reproduce by machine the same process that Is carried
out by the “structured programmer” by hand. However, the basic programming principles we

employ in this paper are not mercly machine implementations of the principles of structured
programming. Let us briefly exarnine the derivation of 2 program in the style of a structured-
programming practitioner, to illustrate some of the essential differences.

The program exp(x 9) we construct is intended to set the value of the variable z to be the

expunential xJ of two integers x and y , where x 1s positive and jy is nonnegative We assume
we are giv = a number of properties of the exponential function, inching

wal fuwOandve0,

u? « (uv? if viseven, and

Wo ke(ue wt? if pis odd,

where u, v, and w are any integers. dere, + “enotes integer division. Written in our notation,

the top-level goai of a structured-programming derivation is

Goel A: achieve rs x)

(where the exponential function u’ is considered to be nonprimitive). This goal can be
decomposed into the con junction of two condition.

Goal 8: achieve :-xx7? «e J endyy = 0.

The motivation given for this step Is that, initially, we can achieve the first condition

1. xx77 « x7 easily enough (by setting xx to x, yy to y, and z to 1}; if we manage to achieve the
second condition yy = 0 subsequently, while maintaining the first condition, we will “ave
achieved our goal.

For this purpose, we establish an itc ative lop, whose invariant is 2. xxJ7 « x} and whose
exit condition is 9 = 0; the body of the loop mus! bring yy closer to zero while maintaining the
invariant.

By exploiting the known properties of the exponential avi other arithmetic functions, we
are led uk.mately to a final program, eg.
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evpix y) com (xxyy2)e(xy}
whileyy » 0
do Lf even(yy)

then (xx 99) « (xxx yy+2)
else (xx yy 7) + (xx: xa ilo XX).

The weak point of this derivation seeins to be the passage from Goal A to Geal B. This
step 1s necessary to provide the invariint for the loop of the ultimate program. However, how
do we know to use this invariant unless we already know the final program in acvance? Why

shutild we generate this goal instead of one of the following, equally plausible alternatives,

Goal 8: ‘achieve z + xx - x) and xx = 0

[to be imtialized by (xx yy 2) + (x 3 0)

Goal 8;: achieve J? = xVand yy = |

(to be initialized by (yy 2) + (y x)), or ever

Goal By: achieve (z. xx)? = x and xx = yy = |

[to be initialized by (xx 99 2) « (x 3 1) or by (xx yy 1) & (i 9 =]?

Each of tivese steps can be nxXivated oy the same considerations that justified the generation of
Goal B, but none of them leads to an exponentiai program so readily.

Our instructors at the Structured Programming School have urged us to find the

appropriate invariant assertion before introducing a loop. But how are we to select the
successful invariant when there are 30 inany promising candidates around?

The corresponding derivation of the same program by the program-synthesis techniques of
this paper requires no such pracognitive insights. By using the lame properties of the
arithrratic functions that were exploited in the structured-programming derivation, we can
reduce

Goal A: computs XJ)

to the (wo subgoals

Goal B: compute (x-x)*2

(in the c.se that 9 is even) and
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Goel C: compute x(x. x)7+2

(in the case that y 13 odd) Only after we observe that the subexpression (x-x*2 | which
occurs in both subgoals, 1s an instance of the expres. ion x) in the top-level gozl, do we actually
decide to introduce a recursive call exp(x-x +2 to compute these subexy-essions. The

resulting program is

exp(x y) <== ifye=0
(hen x

else if even(y)
then exp(x.x +2)
else x.exp(x-x 947)

This ts a rec.rsive version of the previous iterative exponential program, aid can actially be

transformer into that program by siandard recursion-removal techniques.

The recursive calls iin the above program arose naturally from the tree of goais In the

derivation, and the structure of the final program reflects the wtructure of that tree. In contrast,

the derivation tree fo. the st'rative program had to be for ibly manipulated to induce the

invariant to appear.

Recursion se. ms to be the deal vehicle for sysiematic rogram construction; its use accounts

for the relative umplicity of the ibce derivation. In choosing ic emphasize iteration instead,

the propcnents of structured prograrnming have had to resort to more dubious means

The principle of structured progremming have been described often in the

Itersture, e.g. by Da, Drjkstra, snd Hoare [1972] Wirth [19741 snd Dijkstra
[1976]

B. Implementation

It 1s difficult to develop or evaiuate heuristic techniques without experimenting with an

implementation The DEDALUS (ODEDuctive Algorithm Ur-Synthesizes) system is a
laboratory tool rather than a practical product. The system is implemented in QLISP (Wilber
[1976)). an extension of INTERLISP (Teiteiman [1974]) (hat includes pattern-matching and

backtracking facilities. In this section, we wiki describe some of the special characteristics of our
‘mplementation without going into very much tetadl.



34 Loose Ende

The specifications are expressed in a LISP-like notation. Thus, the output specification for
the lessall program, which we wrote as

x < alk!) ,

is represented in the DEDALUS system as

(LESS X (ALL L)).

T he outpu: specification for the ged program, which we wrote as

max{z : zjx and 1p} .

Is represented as

(MAX (SETOF Z (AND (DIVIDES Z X)
(DIVIDES Z Y))).

The target program is also expressed in LISP syntax.

The transformation riiles are expressed as programs in the QLISP programming language.
For example, the rule that we dono by

P and trues «> P

is represented by the QLISP program

(QLAMBDA (AND +P TRUL) §P).

The rule we wrote as

up => rr; if uis an integer and ¥ = 0

is expressed as

(QLAMBDA (DIVIDE «U
(INSIST (PROVE (’ (INTEGER SUN)

| (INSIST (PROVE (’ (EQUAL Vv Oi)
TRUL).

A khough the reader who is unfamiliar with the QLISP language may not underXand all the
detailsof the above pJograms,he may ull olxserve that they are similar in farm © the vise
that they represses;; the features of the QLISP languugemake this representation fairk’ direct.
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Because rules are represented as programs, we are aliowed the full power of the program.ning

language in expressing each rule.

The DEDALUS system currently contains more than a hundred such transformation rules.

In expanding the system to handle a new sub ject domain, we simply introduce new rules.

The rules of the system are classified accordi.’g to their pattern, their left-hand side. This

pattern describes the class of subgoals to which the rule can be applied. Thus, the rules

uly «> true if ...

and

upp => up-u if...

both have patterr: uly, and can be applied to goals such us

compute x |y+r.

When a new goal is generated, the system retrieves those rules whose patterns match the form

of the goal. This retrieval is facilitated by arrairging the rules in a classification tree according
to their patterns; thus the two rules above would be classified on the same branch of the tree.
This mechanism allows us to avoid matching every rule in the system against each newly-

generated goal.

If no rule matches tie entire expression. of a goal, its subexpressions are established as

subgoals. If no rule matches any subexpression of a given goal, a feliure occurs, «nd
backtracking is invoked; the system attempts to find an akernate transformation that applies to
a previous subgoal.

The QLISP pattern-matcher has special provisions for matching commutative functions.
Thus, because the and operation i commutative, the rule

P and true => P

represented as the QLISP program

(QLAMBDA (AND «P TRUE) $P),

can be appliedto goals of form “true end P° as well as “FP ond trus”". For this rewson,
commutativity rules such as

Pend Q=>QanaP
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are no: necessary in the DEDALUS system.

The. kind of matching also occurs in the recursion-formation rule, in determining whethei a
new goal 1s an instance of some earlier goal. For exampie, in ihe actual synthests of the ged
program, the top-level goal

compute max{r - xix and zjy)

was regarded as an instance of itself with the roles of x and y reverse . bicause the and
function 1s commutative. The recursion-formation rule, therefore, was atle to propose the

recursive call gcd(y x).

Currently, the DEDALUS implementation incorporates the principles of conditional
formation, recursion formation (including the termination proofs), and procedure formation, but

not general: ation or the formation of structure-changing programas. The techniques for
deriving straight-line structure—changing programs were implemented in a separate system (see
Waldinger (1977)

Representative samples of the programs constructed by the current DEDALUS system are
the following.

Numerica! Programs:
® the subtractive gcd algorithm
® the Euclidean gcd algorithm
® the hinary gcd aleonihm
® the remainder of dividing two mtgrs

List Programs:
® finding the maximum element of a lis.
® testing if a hist is sorted
® testing if a number is less than every element of « lst of numbers (lessall)
® testing if every element of one list of nuinbers is less than every elemen:

of another (allall)

Set Programs.
® computing the union or intersection of two sets
@ testing If an element belongs to a set
@ testing If one set is 2 subset of another
® computing the Cartesian product of two sats (cart) .
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CC. Historical Remarxes

In this section we trace briefly the hictory of the deductive spproach to program synthesis.

The early heuristic compiler of Simon [1963] constructed simple Kraight-line list-processing

programs irom descriptions oi the expected input and desired output; the syst-m as based on
the General-Problem-Solver approach

A later group of systems wa; based on the resxulion (Aeorem- proving approach the
specifications for the desired program were translated into an equivalen: theoremn-proving
problem. and the desired [rogram was derived from the corresponding roof (See eg, Green
(1969), Waldineer and Lee [1969] and Lee, Chang, ind Waldinger (1974]) These systems

could pioduce conditional -cgrams, but thetr loop-formation ability was rudimentary; the
required mathematical-induction proofs were awkward to pa: form in the resolution formalism.
Efforts to improve tks synthesis of oops within a (iionresoiution) theorem-proving approach
are described I~ Manna and Waldinger {19711

A program-synthesis system based nn the program-verifization formalism of Hoare [1969] is
described by Buchanan and Luckham [1974] Their system was impleriented using some of the
tacihties of PLANNER (Hewitt [1971]); it required that whe loops be specified in advance by
the user

The more recent waik in program synthesis 1s (00 txtensive aiu toc varied to be

summarirzd here. Papers related to aspects of the deductive approach are mentioned in the

approoriate sicttons Xf the text; some of the other aoproaches are discussed in the nex: section.

DL. Cther Approaches

The program-synthess approach we have followed requires that we provide complete
specifications for the desired program expres:ed in an artificial language. It has been armed
that these specifications are difficuk to provide, and many akernate approaches have been buik
around d/;ferent specification schemes.

® Sumple input-output pairs. In this approach (eo; see Hardy [1975] Summers (1977), the
program is described by giving typical inn. «nd the corresponding outputs. Thus,

(ABCle>(CBA), (A(BC)D)=>(D(s5CjA)

suggests u program to river.e a list. Such specifications are natural and edsy to formulate.



88 Loocee Ends

However. in constructing the pairs one must be careful to avoud ambiguities; for instance the
pairs

H4)=>2, H¥ND>6. (2313-10

could represent esther the subtraction or the remainder program. Furthermore, the approach
demands that the system be able to generalize from examples, not always an easy task, for
instance, it 13 not immediately obvious that

22D =>4., (36) =>6. (T1Da>7. (142)=> 42

denotes a least-common-multiple program Moreover, the generalization task 1s redundant: the

system 13 trying [o guess a relation thai the user knows perfectly weil, but 13 unable to express
directly in this notation.

® Sample execution traces In this approach, the user provides a detailer! trace of the
performance of the denred program on some typical npuls. (See, eg. Biermann and
Krishnaswamy (19761) Thus, the trace

(12 18) = (6 12) (U6) +6

indicates the Euclic-an algorithm for ine ged function. Here, the possibilities of ambiguity and
the burden on the system are reduced, but the user himself is required to design the algorithm
to be employed

® Preawcate-logic language. This 1s a direct descendent of the theorem-proving approecis.
The cpecifications for the program are expressed 1s resolution-style clauses; the system then
transforms these clauses Into another, equivalent set of clauses, which can be regarded as the

desired oogram. (See, eg. Kowalski (1974), Clark and Sickel (13771) We question whether
the clause form has the nozanona' flexibility to serve as a sunable specification language: for

example, many of the constructs ve use f our specifications would not usually be permitted in
a predicate-logic clause.

® Synthesis by debugging. Human programmers produce their programs by the successive
debugging of nearly correct progzams. Ii has been proposed that a synthesis system cauld
benefit by imitating this process. In this way, .t could focus ita attention on the main features
of a problem, postponing consideration of the details until afterwards. Such techniques have
been apnlied to the construction of robot plans (Sussman (1975) and electronk circuits
(Sussman [1977]), for example, but not to the solution of mors typical programe:ing problems.

@ Synthesis by analogy. ii is unusual for a programmer to construct a program from its
specifications by a purely deductive process; normally, he sttempts te sonty techniGues sxiracced



Loose Ends 89

| from previous sclutions th similar problems 1 hus, he might compute the square root of a
number by a binary-search techncae extracted from a previcus program to divide two

numbers Most of the work oa this approach (eg. Manna ani Waldinger (1975) Dershowitz

and Manna [1977], and Ulrich and Moll (1977]) requires thet 5 close syntactic correspondence
be fourd between the speafications for the two programs, this correspondence then provides a
bas for transtorming the previous program to solve the new problem To be more effec: ve,

these techniques must be strengthened to 1ake ad vantage of looser similarities

® Automatic programming It has been ciaimed (eg. see Balzer [1972)) that, for a complex
programming task. it 1s unreahstic to expect the user to formulate complete, correct

specifications for the desired program In specifying an airline-reservation system, an operaung
system, or a tpacecraft-guidance system, for example, we are unhkely to anticipate the desired

behavior of the system in every possible situation in some systems, the specifications for the

program are formulated gradually through an extended dialogue between the user and the

system (See eg. Green (1976) Barstow [1977] Balzer et al [1977], or the survey of Heidorn

(1976)) The dialogue 1s continued during the program-construction process, 30 that the user

can rescive any ambiguilies Of Inconsistencies the system might discover Typically, these
systems attemp! to play the role of an cxpert programmer-consukant, and they tend to rely more

on built-in knowledge han on deductive processes By admitting natural language as a

communication vehicle, automat: -programming ystems avoid the necessity of specifying
programs in an artificial formalism; however they add to the problem of program construction

the not inconsiderible dif ficulties ww natural-language understanding.

A survey of various approaches (0 sutomatic program constructic.: can be

found in Biermann [1976]

E. Uunsettled Questions

Manv of the techniques we have presented in this paper oring to mild questions that have
not bee: adequately answered. Some of these are mentionec: here.

® Conditional-formation. We have introduced a case analysis, and consequently a conditional

expression, when we failed in ar attempt to prove of disprove some condition. This attempt,

however, may be somewhat time-cor:suming, as it involves exhausting all the rules that might
appiy io the condition. Marsever, {iiere are certain situations in which we can see in advance

that the theorem-proving effort is door. ..d to tilure. For exwrple, if we can find a legitimate
input that will cause the condition to be true, and cnother that will cause the condition to b

false, it 13 clear thai "sz can neither prove nor disprove th= ‘onditian. 's is possible to recognize
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some of these situations quickly, thus avoiding the ¢ Jense of a pointless theorem-proving
effort?

® Generalization. We formed a generalized procedure when we discovered that two subgoai:
were an instance of a “somewhat” more general expression. For all the exairples in this paper,

he only generalizations we require involved replacing a constant by a variable, or replacing
one oclurrence of a variable by a new variable. in some cases. however, it ‘s necessary to

replace a complex term by a new variable On the other hand, if the specifications for the new
procedure are too general, it may De impossible to construct a program that satisfres them.
W hat limits shall we set on the extent of generalization we permit?

® Termination. In forming simple recursive programs, it is always possible to establish
termination by finding a well-founded ordering between the input of the program and the
arguments to its recursive calls. Methods for finding this well-founded ordering during the
dertvacion process have bee: discovered and implemented in the DEDALUS system However,
we have seen that, to prove the termination of systems of mutuahv recursive procedures, (i 3
necessary to find termination functions that map all the inpu’s and arguments into a single
well-fouitded set. How are we to find these termination functions and the related we..-for.ndxd

set during the synthesis process?

® List-manipulating programs. We have introduced technic es for forming programs that
manipulate data structures. In our examples. however, the only iata-siructure manipulation we
perform is the assignment of values (¢ variables. The same xhniques can be applied In a
straightforward way to construct array- manipulating prograns. Can these techniques be
extended to develop programs that change the structure of ists, graphs, and other complex data
objects? The in-place hst-reversing program and the Schorr-Waite garbage collection
algorithm are programs within this category

® Simultaneous goals. The technigues we develop for achieving more than one goal
simukaneously presuppose that the transiormation rules at our disposal can focus on only one
goal at a time, 30 that the various goals must be achieved, and protection conditions checked, in
separate stages. Couldn't we devise transiormation rules that, while trying to achieve one
condition. consider what conditions have ben protected, and - hat other conditions have yet to
be achieved? Thus, a rule that was about to introduce an assignment ixtement into the

program might check whether it ix permitted to change the variable.

® Strategic controls. We have introduced strategic controls to praven' the oerivation tree
from growing unmanageably. In the derivation trees constructed by the DEDALUS system, the
unsuccessful branches at least represent plausible and weil-motivated attempts to tolve the
problem. Will this mechanism still be adequate when we in‘rease the numbder of rule: from one
hundred to one thousand. or the size of the target program fiom a few liaes to a few pages?
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®@ Efficiency. The techniques we have incroduced are .i0t concernad with the efficiency of the

programs they produce However, if program-synthesis methods are ever «0 become : actical,
they must :ake efficiency considerations into account THis 1s not to say that a synthesis system

will need to perform a mathematical anaiysis of the program being constructed; it would scirice
to {ind crude estimates of the running time to guide the derivation (cf Wagbreit 11976), Kant
(1877)

® Specifications. The oniy specificatiors we have allowed describe the relationships te ween

the evnected input and the desired ou’ Lt of the program to be constructed. Such “input-
output specitications” are inadequate describe certain classes of programs. In particular, in

specifyitg, say, an arrline-reservatic system or an operating system, which are never intended
to terminate. 11 1s necessary to ¢ press relationship: batween the inputs it accepts and the

outputs it produces at m'ermed .e stages in the computation. Can the techniques wr have
used with input-output :pecifications be extended lo allow the construchon of ‘uch

“continuousiy operating programs?
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10 SUPPLEMENTARY NOTES

3 Deductive techniques are presented for deriving progress systematically from given
specifications. The specificatinas expres: the purpose of the desired program without
giving aay hint of tne algoritha to be wployed. The basic approach iv to transfors
the specifizziiors rapeatedly according to certain rules, until a satisfactory progrea
is produced. The rules are guided by a number of strategic contrals. These techniques
have been imcorporaied is a running program synthesis system, called DEDALUS.” TS —

¥ xty Many of the transformatis:. Jules represent kaowledge about the prograa‘’s subd ject
dorain (e.g. oumbers, lists, sets); some represent the meaning of the constructs of the
sprcification language and the target programming language; and ¢ fev rules represent
basic prugremminyg priocipies. Two of these principles, the coniitional-formation rule
and the recursica-formetion rule, account for the iatroduction of conditional expressions
and Of recursive calls isto ‘he ayntheri.d progrem. The termination of the Trogram is \
ensured a8 nov recursive calle are formed.

Two extensions of the recursion-formationa rule are discussed: a procedure-formation —
75 «ps rule, which adnits the istroduction of auxiliary subrout lass in the course of the ayn-

thesis prucess, and a generalization rule, which causes the specifications to be etond-
od LO represent 8 more general problem that is navertheless easier iu coalve.

The techaigques of this paper are lllurtrated v.'h & sequence a’ wnamples of increas-
ing oomplesity] programs are comstructsd for list processing, numerical computatiom, !
and sorting. These techaiques are compared vith the methods of "structured programming”,

work oo “program tramsformation”. -
he DEDALLS aystes 8c: apts specifications sxprossed in a high-level language,

including set mtation, logical quamtifisation, and a rish vocabulary drawn from a
variety of subjest domains. The system attempts tO transform the specifications into |
es recursive, LISP-like target program. Over one hundred rules have been implemented,
each expreseed as a mall prugren in the QLISP language.
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