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Abstract

Deductive techniques are presented fo: deriving programs systzmatically from given
specifications  The ipecifications expre:s the purpose of the desired program without giving
ary hent of the algorithm to be ernployed  The basic approach 1s ‘o transform the
tpecstications repeated'y according to certain rules, until a satisfactory progrim s sroduced.
Tne rules are guiced by a number of strategic controls. These technique: %ave been
incorporated (N a runr ng program-synthzs 1ystem, calied DEDALUS.

Many of the transformation rules represerit kncwledge about the program's sub ject dorna.n
(e g . numbe:< lists, sets), some represent the meaning of the constructs of the specification
language and the target programming language, anJd a few rule; represent basic programming
principles  Two of these principies, tne corditiona/- formation ruie and the recursion-formation
rule, account for the sntroduction of condittonal expressions and of recursive calls into the
synthesized program The termiration of the program is ensured as new recursive calls are
formed

Two extensions of the recursion-formaticn rule are discussed: a procedure-formation rule,
which admits the introduction of auxilliary subroutines in the course oi the synthecis process,
and a generalizaiion rule, ‘which causes te specifications to be akered to represent a more
general problem that 15 nevertheless easier to solve. Special techniques are introduced for the
formaiion of programs with side effects.

The techmiques of this paper are illustrated with 2 sequence of examples of increa: 1y
complexity, programs are constructed for list processing, nurserica: calculation, and array
computation.

The methcas of program synthesis can be applied to various aspects of progremming
methodology - - program tansformation, data abstraction, progrsin modification, and st-uctured

programming.

The DEDALUS system accepts specificaticns expressed in a high-level language, inciuding
set notation, logical quantification, and a rich vocabulary drawn from a variety of sub pct
domains. The system attempts to transform the specifications inm a recursive, LISP-like target
program Over one hundred rules have been impiemented, each expresc~d as a small program

in the QLISP language.
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introduciron 1

INTRCAUCTION

In recea: years ihere has been increasing activity 1n the field of program verification. The
co.l of these efforts 13 ta COStTUCt Computer systems L or determining whether a given program
1« orrec:, i the sense of sausiying given spea’icanons. Theswe atterapis have met with
in.reasinz succrss. while automatic proofs of the correctriess of large progiamy ¢ray be a long
way off, it seems evident thai the tect. miqises being developed will be usetul In pracvce, to find
rhe bugs in faulty programs and to give us confidence in correc ones.

The general scenario of the ver.l:zalior systers 13 (hat » programmer will present his
completed compu'er progri m. slong with fis speci‘icacons znd assoclated documentation, to a
sysiem which witi then prove or disprove its correciness. [t nas been poinied out, most notably
by the advocates of structured programmirg. that this 1s “putting the cart befors the horse.”
Oncs we have techaiques for proving program ccrrectness. why should w: wait 1o apply them
until after the program i complete> Instead, why not ensure the coriectness i the program
while it 1s betng constructed, therzoy devewoping the program and it; correctness prooi “hand in
hand™

The point 13 particularly weli-caken when we conside: that program vertfication relies on
cutomatic theorem-proviag techniques. These techrigues embody prinuiplez of deductive
reasoning, the same princ ples that are applied by 2 prograramer in constructing the cregram i
the furs place Why aot smploy these principies in an awomatic synthests system, which would
constre « the program instead of merely prov.ng its correctness? Granted, to construct a
program requires more oriinality and creativeness than to prove its correctness, but both tasks
require the same kind of iiunking.

Structured programming itsell made an early contribution to ticr autixmatic synthesis of
computer programs in liying down principles for the development i programs from their
specifications. These principles are 1tended to serve as guidelines to be followed Uy 2 human
programmer. However, they ars not formulated precisely ennugh to be carried cut by a
machine. Indeed. the priponents of ‘tructured programming have been most peasimistic about
the possibility of ever aucomaring their techniques; Dijkstra has gore 50 far as b say that we
shouldnt automate projramming even if we can. because we would take away all our
en oyment of the task.

Programming is a challenging task, and its automstion is a part of a-tificial intelligence. A
system to construct computer programs must have » bromd range or knowledge about
programming laiguages programming lachniques, xnd the subject domain of the program to
be construcicd. Fusthernnore, # must have the ability to retrieve the rele ‘ant cormponents of its
knowledge and to combine them to perform the task at hand. Programmab ¢ is among the most
deinanding human sctiv:cies, and i3 among the lay tasks computers will do well. Nevertheless,
the intrinsic interest and oractical importance of the programming task have motivated manv
rescarchers to consider the possibility of automattny ii.
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Several yrar, 1go, we began cur research on automanc program symihous bv considering a
large nurmber of aimple programming task  In examiring the derivations ¢f programs to
2chieve these tars, we observed ceitain regularities, steps that are performed over and over
agatn 1n 2 vaniery of subject domaine ard that therefore can be regarded as “epre.enting basic
programmirg srincples We have specified these prinuiples precisely. and have applied them
to the constructinn of less trivial programs.

i1 "hie paper e pressnt some of the basic principles o be ncorporai~d into an automatrc
progiam-syrthetss system  Such a system accepts specifications that express the puroose of the
program to be constructed, without giving any hint of the algorithm to be employed With no
furthe: human intervention, the system atrempts to transform these specifrcations into a
program t=at achieves the expressed purpose This program 1s [ta“anteed (o be co:rect and
will always terminate; for the most part, we will not be concerned with its efficiency

The specifications are expressed in 2 specification language rich with consiructs from the
subject domain of the application Because the spatification language does rot need 'o be
executed, 1t can afford high-level constructs ciose to our way of thinking about the sub jeci
Specifications represented 1n such a language are hkely to be easy to formulate and to
correspond correctly to our intentimns. The details of the parucular targe language--the
language in which the program is to be constructed--are not important. In our exmunples, we
employ a simple LISP-like language.

Our basiz approach s to transiorm the speafications repeatedly according "o cectamn
rransformation rules  Cunded by 2 ne mher nf urategy controle thews rules stzempt 1o [ roduce
an equivalent description composed ertirely of constructs from the taryet languag:  Many of
ths transformaiion rules represent kaowiedge about the program’s subjgect domain, so.ne
2xphcate the constructs of the specification and target larguages; and a few rules represant basic

programming principles.

Some of thest techniqus have been ficorporated into an zxperimental prograr—synthesis
system called DEDALUS (the DEDuctive ALgavithm Ur-3ynthestzer). The purpcse of this
system 13 not to be apphierd in practice bist rathe- to test cur program-synthesis idea. Most of
the examples included in this paper have een carried out by the DEDALUS system.
However, the emphasis of the paper is nct on ihe details of the DEDALUS imgiementation,

but cn the basic prograrmrung principles it incorporates, which car be applied in any system.

In the past few years, there have appeared several varietier of proy. amming methadology,
¢ g. sructured programming, program trunsformation, snd daa sbatracion. Thase disciphines
recommend systematic approaches to prigram construction for making the programaning process
simpler and more roMsble. The techoijues of program iynthesis serve to faciliiate the
application of esch of these discig'ines. In this way, program-synthests research can be of
vase long before Ms iHitimate goal is achs~ d.
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In this paper, we prereni the basic concepts and priraiples of progrem synthesis, we extend
rnese methods o allow the synchesis of programs with side effects. and we apply these
rechnique« o various aspects of programming merhedology  Historical remarks, comparisons
with other approaches to automatic programming, and r.-ies on the DEDALUS implementation
are reserved for 2 f:nal section



q Concepts

1. CONCEPTS

A. Specifivations

The fosi requirement of a specification language 1s that it should alixw us to express the
puipase of the des:ired program directly  in otner words, once we have formed a precise tdea of
what the program 1s intended to do, we should be able to formulats the specifications
immediately. without paraphrase Fur.hermore, it shoukd be easy for the programmer and
othe: people to read and understand the specificatons and to see that they are correct

For this reason, it is necessary that the ipecification language contain very high-level
constructs, which correspond to the concepts we use in thinking about the problem and which
are endemic to the subject domar of the target orogram Such consiructs are typically not
included 1n a conventional programming language, because it may be impossibie to find a
unifcrin way of computing them or Dbecauie they may not be amenable to efficient
implementation

Because a specification language should have a large number of constructs, and because
these constructs are particular to the subject domain, we do not attempi to define a complete
specification language Instead, we present the specifications of some of the programs we will
use as examples later in this paper, to 1i'ustrate some of the most useful constructs

Suppuse we want to construct a program, called lessall. to test whether a given number r i1t
less than every member of a given kst ! of numbers, and to output true or false accordingly
T his program can be described as

lessallix ) <== computs x < ali()
where x s a number and
{ 13 a list of numbers .

Here, the expression x < «/Kl) denotes the condition that x 1s less than every member of the st
I its vale i3 true or fal:e depending on whether or not the condition holds. The expression
compute . . . I3 the sus2ur specificetion; it provides a descripion of the output the target
program is itended to produce. The expression where . . . is the iRput specificetion. it gives
the conditions the inputs ¥ and ! can be expectad ‘o satisfy.

To specify a program mexlist o compute the largest element of a given list [, we write

maxiisil) <=« compute sems »: 2z ¢/ and z 2 alll)
wiavre | is a nonemply list of numbers.

Here, the construa "seme z ¢« Plz)" denctes any element * satisTying the condition P(z), and « ¢ ¢
means that & is a member of the kst (or ) v
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Anothei exarrple the greatest common divisor (gcd) of two nonnegative integers 13 the
fargest in-eger that divides borh of them To sp~ ‘v 2 program to compute the ged of x and y,

we write
icdix y) «<-« compute max{z zix and 2y}
where x and y are nonnegative integers 2nd

xwOQorys0

Here mox 5 i< the jargest element of the set 5§ The input condition x » 0 or 9 » 0 1s Includex
because if buth x and y are zero, then any integer divides each of them, a . the set of all their
commar divisns 1s infinite and has no larges! element

The Cartesian product ¢a*f of two sets s and ( 15 the 3ot of all pairs whose first element
odelongi to s and whose seconc slement belongs tv ¢; a program to compute it is specified by

cart(s 1) <= computs | (xy) xcsandyat;
whaere 5 and [ are {inite sets.

Here, (» v} denotrs the pair whose elements are x and

B The Targss Languagse

The techniques we employ in this paper are not dependent on the particular choice of a
turgei icngucge, the ianguage in which the desirec program is to be expressed. However, for
the sake of definiteness, we will represe..t the target programs in this paper in a fixed, LISP-
like language. which should be readify understandable.

For numbers, the target language inchxies such familiar operations as x +y, x -3, x5 9,
etc. For hsts, we assume that the target anguage contains the usual LISP primitives:

leae(l) : the first elemem of the nonempty kst

tasl) - the hst of 2 but the flist element of the nonempty Mt {

consx /) : the list formed by inserting the element ¢ at the beginring of “he list ¢ .
Furthermore, we include the common conditional expression:

ifPthemx oiscy: x If Pistrue,
y P isfabe




8 Cenospla

Feavally we mimploy recurston for exampie. o program f{(} may be defined in t2rms of a revwr.ive

all [Tragddn

M (ourse we czn use any of the target-ianguage consizucts @ formulating the specif.cations
i hus e targer language mav be considered (o be a subset the apecification ieng sage

A csepment of 4 orogram aewcnipuon that conusts entyrely of target-language constructs wall
bLe s alled a primifive segment

A timwey we vl hoose 10 add new primifives 1o the target language Thus, if we wani to
write 2 program m a new whed domamn, + will add the primitives appropriate to that
aorvain |t we want (0 express a program in terms of some iven set of procedures, we will
treat those precedures as primitives  in the section on side effects (Section 4), we will inciude
constructs sert. as assignment statements and arrays in the tavger l2nguage.

B, t.e s,.ne token, for certain tasks we may choose .0 delete primitives from the target
language For initance. 0 (onstruct a more effiient program we may delete certain time-
consumung primitives The DEDALUS system allows the user to add or delete construct: from
13 primutive set for a paricular task

C. Transformation Rules

Our hasic epproach to program synthesss 1s 1o employ a large number of transformation
rules, whnich replace one segment o a program description by anather, equivalent description.
The task o program synihens 13 then reducec to applying these rules to the given specification
repeain~diy ua’il a primitive program 1 peoduoed.

“Jorme transformation rules exgpress the principies of the undertying semantic doman (z.g., the
properties of the integers or list structures). Othver rules express thr meaning of ine constructs
in the speafication and the target languages (eg- {x : 7)) i the spectficetion language and
Acad(l) in the target language) Still athers represent 2 formuiarion of basic programming
techniques, which do not depend on a particular wbpect domsin (eg. the introdection of
zonditional expresstons MG reCUrton).

We use the notation
=’

to denote a ansformation rule that an eaprestcr of form ¢ may be repiaced by the
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corresponding expressi~n t° Th - rransformation may be appiied to any sube:press.on ¢ of the
current program description it 1 no! to be applied in the reve:se d.recion unless another rule
of form " <> 118 g1t 2n exphcr iy

For example the rule
trueand Q +> @

means that any expression of form trus and  may be replacer by Q. By applying this rule, we
may replace a program descriptiof.

max{z - true and zly}
by the descript:an
max{r  rly,
A rule
te>t" AF

denotes that the transformation f => ;' can be applied only if the condition P s true. Thus the
rule

uly => true if u s ar integer and v « 0

denotes that a program segmv:nt klv can be replaced Sy true if 1 15 known to be an integer and
v to be 1ero whenever the segment is executed. Thus, this rule can be applied to transform a
program description

ify-0
then xpy
else . . .

nt?
'J', -0
then trie
else . .,

wher: x 13 krrown to be an integer.

Oftens, more than one rule can be applied to the 1ame program description or even to the
same segment. For ex-mpile, the logical rule
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PandQ => Qand P
+snd the numerical rule

uly and uhw => ule and ujw-v tf ¥, v, and w arz .ntegers
can both be applied to the program description

max{2 1l o4 iy}

In such rasee 1t must be decided which rule is best to apply. This difficult problem must be
faced ta any transformatior:-rule system We prefer to po:tpone such considerations untl after
we have presented some concrete examples (See Seciion 2D on “Strategic Controls 7)

D. Derivation Trees

In applying a transformation rule ic a given program description, we obtain a new program
description, which we regz:d as a suogoal of the first. To this subgoal we apply additional
transformation rules repeatedly, until a primitive program description is obtained. This
description is the desired program.

The top-evel goal o obtaired dire-tly from the program’s specifications. Thus, if the
program [ 1; specified by

fix) <=a compuie P(x)
where ((x),

the tcp-ievel goal will be
Goal compute P(x)

(Here, Q(x) I1s a condit:on but P(x) mey be any expression in the speification language.) For
example, in deriving the ged program, we are giver the specificai-ons

gelxr y)  <== compute mex{z : zix end zp}
whare x and ) e nonnegative intagers and
xeOorye 0.

Vixctusily, the DEDALUS sysiem doss not use this rule explicitly) the same
offect is schieved by o difterent mechsnism. Se: “mplemeniition,®
Section 68.
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QOur top-level goa! is thus
Goa) 1: compute max{z . zlx and zp)}
By applying the transformation rile
PandQ=>Qand P,
we obtain
Goal 2: compute max{z z{yana 7v; .

If a transformaticn rule imposes x condition P, which must be true If the ruic is to be
applied. a subgoal of the form

Goal: prove P

must be achieved before the rule ran te applied. For tiamnpie, in developing the program
lessall(x !} to test 1f a number is les. than every element of a list of numbers, we begin with the
iop-level goal

Goal 1:  compute x < alll} .
In attempting to apply the rule
Plali(l)) => true  if { is the emp.y list,

which states that any property 2 holds for every element of the empty list, we generate the
subgoal

Goal 2: prova ! is the empty list .

To accomplish such a task, we must apply trznsformatisn rules repeatedly to the expression to
be proved, until the expression frue is produce.. if, insead, false is produced, or If we
encounter a situation in which no rule can be aoplied, the goal of proving P is aborted, and
the attempt 1o use the rule that imposed P as a condition is abandoned.

If no rule applies to a given subgoal, ducktrecking occurs; we seek akernale rules tn apply tc.
previous subgoals. Backtracking will be discussed further in th: section on “Strategic Controls®
(Section 2D).

By the process we have st ovtlined, a tree «f goals and subgoss iy generated. We will call
this structure a progrem derisation tres.
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2. ELEMENTARY PRCGRAMMING PRINCIPLES

A. The Formation of Conditional Expressions

To rllustrate the formation of conditional expressions and secursive calis, we exploit a single
simple example The program to be constructed, lessailix 1), 13 intended to test wirether a given
number x 1s less than cvery member of a given hist / of numbers, and to output frue or faise
accordingly The specifications, as indicated in Seciion A can be expressed as

lessall(x {) <== compute x < all{l)
where x is a3 number and
{18 a list of numbers

Note that the output description uses the all specification construct, which is not primitive,
therefore, we attempt to apply transformation rules to paraphrase the output description using
unly primitive constructs of the target language.

We assun,z we have at our disposal two rules that explicate the all construct:
® The vacuous rule
P(ail(l)) => true  if L is the empty hst
says ihat any property is true of every element of the empty list.
® The decomposition rule
P(alll)) «> P(tesd(!)) and P(alK1ail(l)) if ! is a nonempty list

states that a property holds for every element of a nonempty list if it holds fcr the first element
and for all the rest.

Our top-level goal is formed directly from the program's specifications:
Geal {1 compute x < aik/) .

In this discussion we wiil not consider how to select the rule to be applied; we will assume for
the time being that the appropriate rule magically appears when & is relevant.

One transformation rule that applies to the current cutput description is the vacuous ruls,

P(aND) => true  4f 1 13 the empty ist .
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T hic rule would allow us to reduce our output description to true if only we could achieve the
subgoal

Goal 2: prove ! i3 the empty hst

Cv contse. we cannot prove or disprove this condition: {18 an input that is kncwn to be a
list. but that may or may not be empty Thi: is an occasion for applying the comditional-

fomarien rule

Cnonditional expressions are introduced info programs as a result of
hypothetical reasoning during .ne program-formation process. If we fail to
prove or a:sprovs a suogoal cf the form

prove ° |

the condittonri(-fornction rule allows us to introduce a case analysis and
consider separately the case in which P is true and P is false. Suppose we
succeed 1N conzirucing a program segment 5, that solves our problem under
he assumplion tnat Pois tru2, «nd another segment sp that solves the

problem under .ne assuraption that P is faise. Then w. combine the two
segments 1nto a condiiional expression

if P then sy else 3y

which solves the problem regardiess of whether P is true or false. Note that
to ensure that this expressiza is primitive, we apply the conditional-
formation ruile only when P itself is a primitive logical statement.

Let us return to our example. Having failed to prove Goal 2, that [ is empty, we attempt to
construct a program segment tha: will solve our problem under the assumption that / is empty.

Case / 15 empty: In this case, we are justified in applying the varuous rule
P(ali(l)) => true  sf [ is the empty list,

1o Goal |, compute x < allil), yielding the primitive program segment true. This segment
solves our problem in this case.

We have yet to consider the case in which [ is nonempty. This requires the formation of a
recursive call, which will be discussed in the next jection. However, at this point, we know that
the program will have the form
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lessadl(x ) <e= if empiyl)
tAen true
else

Case analysis in theorem proving has been emphasized by Bledsoe und
Tyson (1977} Other program-synthesis systems thal form conditional
exprassions by cast  snalysis have heen mplemented by Luckham and
Buchanan [1974) and Warren [1976]

B. Ths Formation of Reocursive Calls

We illustrate the formation of recursive calls oy contnuing the construction of the lessall
program. Recall thai it semains t0 consider the case in which [ is 2 nonempty hit.

Casa [ s nonemply. lu this case we fail to achieve Goat 2, to prove that ! is empty, and
therefare we look io: soene alternate means for approaching Goal |, cemputs x < ali(l).

Another rule that apolies 1o Goal | ts the all decompoatsition rule
P(all()) > P{Aead(l)) and P(alltaii{i))  if [ is a nonempty list .
This rule imposes .he condition
Goal 3: prove ! is z nunempty list,

which Is satisfied timmcdiately becausc we have assumed in our case analysis that { is nonempty.
The rule. therefore, iransforms Goal | into

Goal 41 compule x < Asadl/) end x < altail\l)).

To compute the tiuth value ¥ x < Aeadli) Is s:mple, because x and [ are inputs, and Aoad is
2 primitive consiruct. [t remaius, therefore, to achieve

Goel 6:  onmputs x < slteil))) .

Note that this subgoal is an instance of our original Goal |, to compute x < a2i/), with inputs x

and | repirced by x and teiXf). This is an opportunity for applying the recur sion—formation
rule.
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in general. suppose we are to deveiop o prograrn whote specifications are
of form

flx) <=« compute P(x)
where Xx} .

in which (Xx) 1s a concition but F(x) may . any expression in the
specification language. Assuine we encounter a subgual

compute P(f)

that is an nstance of the outpui specification compute P(x) Then we can

attempt to achieve this subgoal o, forming a rcursive call fir), because the

program fix) s intended to compute P(x for any x that satisfies Xx). To

ensure that the introduction of this recursive call i3 legitimate, we must
verify two concdit,ons:

® The= intut condition, Q(r), which establisiies that the argument ¢ of the
recursive call fir) satisfies the required input condition of the desired
program; otherwise, the program f i not guaranierd tc yield the expected
output.

® A terminution condition, which ensuiss that tiie recursive call cannot
cause i1 infinite computation. A recursive call car fuil to ‘erminate f its
execuion leads to another recursive call, which leac's to another, and so on
ind=tinitely

The termination condition is expressed n terms of the “well-forncied
set” concept, which wi'l be explained in a later sectin devoted exclusively
to termination. In the meantime, we will appesi to intwitive srgumen to
establish termination.

Note that to ensure that the recursive call fitr) be arimitive, we apply the
recursion-formation rule only when the argument { it-eli’ is primitive.

Let us return to cur example. The recursion-formation rule observes that Goal §, to
compute x < alltaili}), is an instance of our outpw ipecification, 3’ < alN/), with inputs x and {
replaced by x and tail{l), therefore it proposes that we achieve this goal with a recursive call
{es56lKx ted'(). For this purposs, the rule imposss twe conditions, tive input condition

Goal 8:  prove teXl) is a Mst,

and the termination condition
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Goal 71 provs lessad(x tadl(l)) terminates.
The 1nput cundition that (ail(/) 15 a hai ran be proved directly by invoking a transforma:ion
rail(l)1s a iy => rrue if {15 alist,

a basic rule describing hst structures. Tu achieve the termination condition is also
straightforwara, because the argument (ail(!) of the recursive call is a proper subhist of the
Input /; therefore only a fimite number of recuriive calis can occur before the second argument
18 reduced ‘o the empty hst. Conrequently, we are permitted to in‘roduce & recursive call
lessall(x tail(!)) at (his pont. This satisfies Goal 5 Goal 4 1s then satisfied by the program
segment x < head(!) and lessall(x tail(l)) This segment is composed entirely of primitive
constructs of our target Ianguag!.

We have succeeded 1n finding primitive program segments tha. solve our problem in bath
cases, whether ( 1s empty or not. Therefore the condit:onal-formation rule combines the two
program segments into a conditicnal expression. The final program is

lessali(x 1) <== if empryll)
tAen true
olse x < Aead(!) ond lessall(x tall(’)) .

The above technique causes the formation of a recursive program. If we are worving in a
target language that does not admit recu.uion, it is necessary to transiorm the program further,
to replace the recursion by anather repetit.ve construct. In many cases, a recursive program can
be transformed into 25 sterative program of comparable complexity. In the worst case, we can
always replace a recursiv» procedure with an iterative equivalent by the explicit introducticn of
a stack.

The abova recursion-formatior rule is the seme as the “foiding” rule of the
Bu:-stsll and Derlington [1977] system for the tranetormation of rocursive
proarams. Their system does rot check the input and termination conditions.

C. Termivation

in the preceding sxample we relisd on intuitive arguments to estabhsh the termination of
the program we constructed. In fact, for that eximwle, the termination argument was quiie
straightforward. In this section, we will consider a general machanivm for proving the
termination of a recursive program at the same time as K is being constructed. We will
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‘Hustrate this mechanism vith an example for which the termination proof is somewhat more
subtie.

The program we zonstuct is intended to compute the greatest common divisor, ged(x 5), of
two nonnegative integers 3 and 9. 7 he specifications, as indicated in Secticn 1A, 2re expressed
as

grd{x y) <== comnute max{z : zix and 1y}
where :: and y are nonnegative integers and
twUoOryw 0.

Recall that the input conc ition x » 0 or y = 0 is impcsed because the ged i3 not deiined when
both its a:Tuments are zer:.

The cutput specificaticn is expressed in terms of the set constructor {u : F(w)}, which is not
primitive We therefore a:tempt to transform it into an equivalent primitive description.

We aitume that the followir~ rules about the integers are included among the
transforrnations of our sys sm:

upe>trus ifre0

(every integer divides 0) ,
vl gnd uy => (v and upy-v

(the common d:ivisors of v and & are th» same as those of v and w—v), and
max{u : uiw)}=> 1 if 2is a positive integer

(every positive tixteger is i1 own greatest divisor).

As usual, our first goal is deriver' Jdirectly from the output specification:

Goal 1: comiute mex{z : xix end 1y} .

There mie at least two rules that maich the subexpression zix end riy; they are the logical
rule

PendQ=>Qend P
and the numerict) rule

up end xjw «> x» end up-v .
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Either rule will lead to a suceessful program; suppe se we attempt the logicui rule first. Then we
develop the subgoal

Goal 2: compute max{z : zly and zix] .

Goal £ 13 an *nstunce of Goal | itself, with x a: d y replacad by y and x: therefcre, the
recurston-farmation rile ~tt mors to satisfy Goal € w'th a recursive call gzd(y x). To ensure
that this step 1t leg-lirnate, th+ rule imposes aii tnput ¢o *drton

Goal 3: prove 9 ind x are nonnegative integers anu
y=0urx=0

obtained by replacng x and y by ¥ and x, respecti-ely, in the input condition of the
specification  This conditton is easily established, becaus2 ! 1s an equivalent form of rh» given
input  condition itself  Furthermore, the recursion-form atn rule imposts a termination
rondition, to ens e that the propsed recursive call termina 1 :

Goal 4: prove ged(s x) ternanates.

We will begin by attempting to use the same sort of informi.l argument we umployed in the
previous exampie proving the terraination of this recursive call. Later in this cxample, we will
be fo.ced to intrcrduce the more formal and general apparatu.. 1o establish terminstion, it
suffices to achieve

Gow: 8t prove y <x,

because x and y are both kiown ic De ronnegative integers (b, the input conditinn), and
because y is the first argument of the "ecursive call

If we establish Goal 5 only a finite sequence of recursive calls can occur before the first
argument i3 reduced to zero. However, we cannot prove or disprove Goal % x and 9 are both
input variables, anv. we have ro way of knowing if one of them is bigger than the other. As
before, the conditional-formaticn rule causes a case analysis to be intreduced.

Case y < x : Here, both the input condition and the termination cndition for introducing
the recursive call gedy x) are satisfied. W2 have thus completed cne branch of the case
analysis; we have yet to consider the akternate case. However, at this tage we know that the
final program will have the form :

gedix 3) <ee ify<x
then gedy x)
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Case x s v Here, 1t 15 not ‘egitimare to in‘roduce the recursive call gcd(, x) to achieve
Goal 2. because tre termination condition 13 not satisfied  Assuming that wo other rules succeed
in reducing Goal 2 to a primitive segment, we are ‘ed "0 consider alteriiate means of achieving
the ortginal Goa! | in this case.

Recal! that among other rules that applied to Goal | was the numerical rule
ulp and uhy => ujy and upy-v .
This rule causes the generation of a new goal
Goal 8: compute max{z : zix and z1p—"] .

T his goal has the same form as the oniginal Goal 1, bui with the inputs x an y replaced by
% and y-x; the recursion-formatior. rule suggests satisfying Goal 6 with the rccursive call
ged < y-x)

To ensuie that the arguments x a..d y-x are legitimate, the rule imposes the tnput condition

Goal 7: prove x and y-x are nonnegative integers and
x=wOoryxwO;

to guarantee that the proposed recursive call will terminate, the rule alsc ‘mposes the
termination condition

Goal 8:  prove gedx y-x) termirates.

Let us examine Coal 7 first: that  and y-x are nonnegative integers follows from the
original input speciiication and the case assumption x < 5 the condition

xwOQoryxwe0
leads us to attempt to prove vither

Goal B: prove x » \,

Goel 101 preve y-x « 0.

We fail to prove or disprove Goal & therefore, the conditional-formation ruls introduces a
case analysis.
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Case x « 0  Here the input condition jor the proposed recursive call ged(x y-x) 13

satisfied, It remains to show the termination condition (Goal 8)

If this were the oniy recursive call (n the entire program, its terminatior: would be eay o
vstablish.  After all, we know in this case that x is a positive Integer and that y-x i3 a
nonnegative integer, furthermore, y-x 1s strictly less than thz second wtput 3. Thus, each
execution of this recursive cali reduces the second argument, and only a ‘inite number of
executions con occur befcre the secend argument is reduced to zero. However, the program we
are developing aiready contains anather recursive call Jod(y x). we must consider the possibility
that an infinile computation INvolving both recursive calls might occur.

This 1s a -eal possibility, because the recursive ~all ged(y x) actuzily increases the second
argument. We therefore must treat both recursive zalls at once, ard this requires a more
sophisticated mechanism ;or proving termination conditions.

In general, to prove termination we employ the concept of a well-
founded set, one whose elements =re ordered in such a way that no infinite
decreasing sequeice of elementr can exist. For example, the nonnegative
integers, under the usual le-s-than ordering, constitute a well-foundec set,
whereas the entire set of integ e15 does not

To prove the termination of a recursive prograrm f(x) with recursive calls
fit), firl), . fity), we show that x, 1y, {. .... ty all belong to some

well- founied set W, ordered by a relation < and that

£ {x.t3<x, ..., andt, <x.

This condition suffices to ensure termination, because if there were a
nonterminating computation, it would contain an infinite ssquence of
recursive calis, whose arguments would constitute an infirite decreasing
sequenc: In the well-founded set. But a “vell-founded set contains nu
infinite decreaning sequences.

By the method we have just described, to establish the termination of a
program f{x) with many recursive calls ft\), fit3). ..., flty), we must show
that each argument ¢; is less than the original input x under a single weil-
founded orjering < This implies that, during the synthesis of the program,
whenever e introduce a new recursive call f{r;,) we must show that ¢; < =

under the same ordering < which we have used to establish the isrmination
of the recarsive calls A1), ftp), ..., S|} introduced previeusly. If we
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cannot. we must modify the well-founded set W and the ordering < so thar

1, < x. while ensuring that the relations 1 < x, f; < x, v iy < x are

still satisfiad

It the program has more than one argument, the order:ng < of the well-
foundeG set may need to compare pairs or tuples of arguments. For this
pu pose it 13 convenient to use the lexicographic ordening between tuples.
For j.airs of nonnegative integers, for example, this ordering is defined as
foliows.

(xy x;) <9, 99 fxy<g,,oraf x,ay and x5 <y, .

Thus. the second components are ignored uniess the first componeats are
egual This lexizographic ordering can be shown to be well-founded: there
exist no iniinite sequences of parrs of nonnegative integers that decrease
under this ordering. A general notion of lexicographic ordering on
arbitrary tuples of elements can e defiriad in a similar way.

In the ged example, we have already provea the termination condition of the recursive call
gcd(y x) by showing that the first argument 3§ of the recursive cail is less than the first input x;
in other words, we have used the ordering < defined by

(u) 4p) <(vy o)) fu <y, .

This 1s a well-founded ordering between pairs of nonnegative integers. Thus, in proving the
terminatinon condition for the proposed new recursive call gedix y=x), we attempt to show that

(x9-x) <(xy)

under this ordering, i.e, that x < x. This attempt fails; the first argument is not reduced by the
proposed recurnive Zall. We thurefore try to modify the ordering < to establish the termination
concition for the second recursive call as well

The first argument x of the proposed recursive call gedx y-x) is nonnegative and is
identical to the first input x; we have also seen that the second argument y-x is a nonnegative
integer (since we have assumed that x £ 9) and is less than the second input 9 (since x is
positive ir: this case).

This suggests that we modify the ordering < (o be the lexicographic orderirg. This ordering
wiil allow us to prove the termina‘ion conditions for both recursive calls.

The use of the recursive call gcd(x y-x) has been justified in this case, because its input
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condition (Goal 7) and its terminaison condition (Goal 8) have been estabiished. The partial

program we have constructed so far 1s

ged(x y) <== tfy<x
then ged( y x)
e3¢ ifx w0
then ged(x y-x)
else

We have yet to consider the case i which x = 0

Case x = 0 In this case, the recurston-formation rule fais to introduce the recursive call
ged(x y-x) because we cannot establish 1ts termination cordition; inc -ed, if we nid iniroduce
this recursive call, the program woule certainly not terminaie. Instead, we ook for some

alternate means of satisiying Goal 6,
compute max{z 17 ind th-xj,

which, since x = 0, 15 reduced to

Goai 1.: compute max{z : 1/0 and 2Py} .

By application of the three rules
W > true if =0,

trueand P > P, and

max(u : ule} «> v 1f v is a positive integer

in succession, we obtain

Goal 15° compute ).

The last rule could be applied because in this case x = 3, and thus 3 » G {ince x w O or 9 » 0),

and y > 0 (since 3 u nonnegative).

Now 9 is a primitive program segment that solves our problem in this final case. The

complete ged program is

gedix 9) <o= ifycx
then ged(y x)
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Tius 15 a version of the “subtractive” ged algeritum.

Well-founded orderings were first invoked to - .e pruperhies of
racirai, s prugfems Dy Burstan (19695 1he theorem-proving sysstem .t
Boyer and Moore [1977] aisc cunstructs Isxrcographic orderings.

‘Y particular program we obtain depends on the transformaticn rules we hases it our
disposal and the “hoices we make during the derivation process For exa.ngle, \f we had the
additional rules

gedlu v) => 2. ged(ui2 vf2)  if u and v are even,
god(u v) => ged(u/2 v)  if u1s even and v s oad. and
gedu vy => ged(u v/2)  1f uis odd and v 1s even,

we could have ot:tained the "binary” ged program

ged(x y) <== 1 rven(x)
then i1f even(y;
then 2. ged(x/2 yi2)
else ged(x{2 y)
else if even(y)
then ged(x 3/2)
elseify<x
then ged(y x)
ese ifx a0
then ged(r y-x.
tise y .

This program turns oui to be quite efficrent ‘or imple=~ntsiion on a binary machine, in which
division and multiphcation by two can e represented as right and left shifts, respectively (ot
vice versa, depending on which side o/ the machine we are standing on). Of course, nothing in
the technique guarantees that an ef/icient program will be derived.

D. Strategic Controls

Up to nov we have deveioped programs by applying transformation rules to gnals without
considering how to select the rule to be applied; the proper rule seemed to appenr by magic
when 1t was relevant. If we have hundreds of rules at our disposal, how de we retrieve the
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applicable ones® Of the many rules that can be applied :n a given situation, . all will lead to
a primitive program If more than one ruie applies to a goal, how do w: dectde which to
attempt?

Ii the program 1s being developed by hand, we can rely on the programmer’. knowledge ard
intuition  However, 1f we expect this process to be performed by an autoratic s mthesis system,
the basis for our strategic cecisions must be made exphcit. In this scction, we will discuss some
strategic methods for directing the transformation rules

The strategic controls that w= have incorporated into our own program-synthesis systerm: may
be cuthned as follows When a goal 1s proposed, the riles that seem applicable are selecte:l by
faftern- directed tnvocation  Of all the telecied rules one 1s chosen according to a glven r e
ordering, this rule is attempted first. Each rule muy be provided with a nu nber nf strategic
conditcons, whith prevent it from being applied .oolishly If the strategic ronditions are not
satisfied. or 1f the rule does apply but does not lead to a primitive program, we backfrack and
consider the next applicable rule chosen by the rule crdering. Let us discuss each of these
methods 1n more detail

® Partern-directed invocation: The rules are indexec by the patterns to which they can be
appliad. For example, the &/l decomposition rule

P(all(l)) => P(Aead(!)) and P(all(tail(!)))  if | is a ncrempty list

ts classified according to its left-hand side. P(all(l)). When a new goal is proposed, all those
rules whose patterns match the goal ar» retrieved. Thus, the above rule ard the vacrous rule

P(all(t" «> true  If ! is the empty lis,

would both be Invoked when :he goal compute x < al/l{l) is proposed. This method of
retrieving a rule wren i ie ma applicanle 18 termed patiern—directed invocation.

® Rule ordering. It often happe1s that more than one transformation rule will match the same
goal. However, symetimes we can decide a priori that one rule should be aitempted before
another. For example, if the vacuous rule

P(allD) => true if { is the empty list

and the recursion-formation rule both match tne same goal, the vacucus rule shouid aiways be
attempted first; the recursion-formation rule imposes the input and termination conditions,
which may be time—<onsuming to verify. Furthermore, if both rules do apply, the program
segment trus is preferable to a recursive cail.

Cn the other hand, if the decompusition rule
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P(all(l)) = P{head(l)) and P(all(tail(l))  if {13 a nonempty list

and the recursion-formation rule both match the same goa), we piefer (o attempt the recursion-
formation rule first, the decomposition rule produces a nonprimitive subgeal more con'plex
than the oniginal goal, while the recursion-formation rule is guaranteed to produce a primitive
recursive cail

® Strategic conditions We have seen that a transformation rule may impose logical conditions,
which must be satisited to ensure a valid zpplication of the rule. By the same token, a rule
may have strategic conditions, which prevents it from being applied foolishly. For example, in
introducing a conditional expression if P then 5 else 53 or the recursive call flt) we imposed

the strategic condition that the condition P or the argument ¢ be primitive; this was lo ensure
that the resulting expression would itself be primitive.

Two more examples: If we introduce the logical rule
PandQ->Qand P,
or the integer rule
ulv and upy => ujv and ulp-v,

we must give them each strategic conditions to ensure that they are not applied repeatedly to
the sujexprestions that they themselve: produce; otherwise, we may obtain an endless sequence,

eg.
PaendQ, Qend P, PandQ. ... .

Cuod stiategic conditions improve the general performance of a »ystem, but they may
prevent i from finding some trickier, less intultive solutiors.

® Backiracking: If applying one rule to ¢ goal fails to lead to a primitive program ssgment,
the systsm will bachtrack, and attempt to apply other applicable rules to the same goal.

For instance, in constructing the gcd program, we applied the rule
PandQe=>Qeand P
to Goal |,
compute mex{z : zix end 2y},

to form Goal 2,
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coinpute max{z : zjy end 1k} .

In the case in which x s y, we failed to derive » primitive pregram segment from Goal 2;
therefore, we backtracked and considered other rvles that riatched Goal 1. As it turned out,
the rule

uly and ujw => tp and ulw-v
applied to Goal 1 to yield Goal 6,
compute max(z : zix and tiy-x} .

In addition to these general strategic methods fo: controlling transformation ruies, there are
special strategic techniques asociated with particular rules. One of these techniques is the
sub ject of the next subsection.

Pattern-directed invocetion was iniroduced as o festure of the PLANNER
programming languege for srlificiel-intelligence research (Hewitt [1971).

The Redundant-~Test Strategy

The conditional-formation rule will introduce a case analysis when we fail to prove or
disprove a condition P. We consider separately the case in which P is true and the case in
which P is false, construct program segments $, and s, to handie each case, and combine these

segments into the conditional expression

if P then 3 olse 5y .

However, it 1s possibie that one of these ssgments, say s, does not depend on the corresponding
case assumption, that P is falss. In this situation, the segment 5 itsell will solve our problem
regardiess of whether P is true or fales; constructing the other sagment 5, would be a wans of
effort.

The redundant—test strategy prevents such irreievant conditional expressions from being
formed. According to this trategy, in introducing a case analysis we always consider first the
negative case, in which P is false. If we then sccesd in constructing a program segment sg that
soives cur problem without ever using the case assumption that P Is false, then this segment
solves the entire problem. We do not consider the positive case, in which P is true, and we do
not generats a conditional expression.
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We always consider the regative case first vecause in the positive case, the assumption that
P 1s true wili a2lway: be used by the rule thai imposed the cundition; therefore, we can never
escape considering the negative case

For example, >uppose, in constructing the gcd prugram, we are given the rew rule
uly and ulw => uly end ulrem(w v) ifve0
instead of the minus rule
ujy and ujw => ufy and vw-v,

where u, v, and s are nonnegative integers. (The rem rule states that the commeon divisors of
v and v are the same as the common divisors of v and rem(w v).) Recall that in developing our
previous gcd program. we iniroduced a case analysis on the condition y < x in an attempt to
introduce a recursive call ged(y x). Now, according to the redundant-test strategy, we will first
censider the negative case, in which x 3 In this case we will apply the rem rule and

eveniually develop the program segment

ifx =0
tAen ged(rem(y x) x)

else y

without ever using the case assumption that x s 9. Consequentiy, we nzed never cunsider the
positive case, in which 9 < x. The above segment solves the entire problem, 3o our final

program s simply

ged(x 9) <e= ifx w 0
thea ged(remy %) x)
olse y .

This is a version of the Euclidean gcd a.xorithm.

In describing a program derivation 'n which a case analysis is introduced and later
eliminated by the redundant-test strategy, we will often omit mentioning the cuse analysis
altogether. For example, in developing either of the above ged programs, we introduce a case
analysis on the condition 9 = 0 a1 well a1 on ‘he condition x = 0; this case analysison y = 0 is
eliminated by the redundant test strategy, and r.ever appears in our discussion.
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2. EXTENSIONS OF RECURSION FORMATION

A. QGeneralization

Recursive calls have been introducet +iien a new subgoal is discovered to be a precise
instance of the top-ievel goal But what if the subgoal is an instance not of the top-level goal
but of 2 somewhat more general expression? In such cases, it may be advisable to construct a
new procedure (or subroutine) to compute the more general expression, and to achieve our
original goal by a cal! to the new procedure. Although the new procedure attempts tc solve a
more general problem, that problem may nevertheless be easier to solve.

Generaitzation is already comnwonplace in the theorem-proving context: paradozically, it is
ofter. necessary, in proving a theorem by mathematical induciicnh, to prove a more general
theorem, 5o that the 1aduction hypothesis will be strong enough to prove the inductive step. In
program synthesis, induction is anralogous to recursion: we attempt to construct a program to
compute & more general goal so that the recursive call will be strong enough to achieve the
desired subgoal.

A< before. we will explain the method in the context of an example. We will not follow the
precice order dictated by the strategic controls in constructing the program. Because we have
considered a similar program, lessall(x 1), previously, we will be a bit more brief in our
exposition.

Suppose we want to construct a program Avadrail(!) to test whether the head of a nonempty
st ! is less than every element of its tail. The specifications for this program may be expressed
as

headtalll) <== compute Aead(l) < altaili))
where [ is a nonempty list of nuinbers.
Our top-level goal {1 then
Goal 1:  compute Assd() < alNtell)) .
Recall that we have introduced two rules that explicate the e/l constrict: the vacuous rule
P’alXD)) => true if ! is the empty Hat,
and the decomposition rule
P(alKD)) => P(Aead(l)) end P{alXtaiXl)) If | i3 a nonempty tist.

These rules, together with the conditional-formation rule, account for the introduction of a case
analysis inte our derivation, and the subssquent formation of a conditional expression in our
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finai program In the case that (wi(lj is empty, the vacuous rule reduces the jyoal 10 the
primitive segment true; \n the other casz, in which tail() 1s not empty, the decompition rule
reduces the goal ts computing the con wnction of two ex pressions: :

Goal 2: compute A:ad{!) < Arad(:aii])}
and
Goa! 3: campute Aead(l) < aliltail(tail(l))) .

Goal 2 is aiready a primitive expression. We have ye: to consider Goal 3; howuver, the
progiam constructed 3o 11/ is

Aead1ail() <==if emptyltaiX())
then ITue

else headil) < head(taiX()) and
An attempt to satisty Goal 3 by the recursion-formation rule fails, because Goal 3 i3 not a
preci-i instance of Goal |,
compute Aecd(l) < allltaiKD) .

the ! on the ieft-hand side of Coa! | corresponds to [ in the subgoal, but the ! on the right-
hand side corresponds to raiX). However, Goal 3 is an instance of a more general goal,

Goal | (generalized): compute Aead(l)) < alitaiXly)) |

obtained from Goal | by introducing new variables [, and I3 :n place of the left- and right-
hand occurrences of {, respectively. This suggests that we atterapt o construct 8 procedure
Assdsaiigen(i, l3) to achieve the generalized Goal | instead of the original versicn. Thus, the
output spectfication for the new -vocedure will be

Aeadrailgenil, ty) <=~ compute Aedll,) < sitai],)) .

This procedure will test waether the heac of ¢, is less thun every clement of the tall of ;5. where
l| and ,, may be distinct lists.

We can now set aside our original derivation, and satisly the original Goal | by a =l := *h=
more general procedurs instesd; the resulting Aesdtell program will be simply

Avadtail)) <o= Aoadsailgenil D) .




Extensions of Recursion Formation 29

It remains to construct the inre generil procedure Aeadtailigen, ie. to achieve the
generalized Goal |. The derivation of th: geievalized goal will attempt to mirror the original
derivation; our hope is tha: this time the top-level goal is general znough so that the previous
obstacle encountered in ‘ntroducing the 1 «cursive call wiil be overcome.

In general, suppose we are developing 3 program whose specifications
are of form

fix) <== compute P(a(x))
where Qx) .

Then our top-level goal is of form
Goal £:  compute Pla(x)) .

Suppose that in developing th> program we encounter a subgoal
Goal B: compute P(Xx))

that is not an instance of Goal A, but that is an instance of the more
general expression

compute P(y).

Then the generaliration rule proposes that we attempt to construct a new .
procedure whose output specification is

£y) <== compute P(y) .

We can thus ;atisfy the oviginal Goal A by a cail to the new procedure; the
resulting program f will be

£x) <== glolx) .

To ensure that the calis to the new procedure g will be primitiva, we do
not apply the generalization rule uniess &(x) and Kx) are primitive.

The top-level goal of the new derivation will be the generalized Goal A,
compute P(3). We will attempt to mirror the steps of the original
derivation; that is, we try to apply o the new goal the same rules that we
applied earlier to the original Goal A in deriving the original Gaal B. Our
hope is that the goal \n the new detivation corresponding 1o the original
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Goal B will tuin out to bz an 1-stance of the generalited Goal A, and that
1t will ce achieved by a recursi: e cal' to g. How=ver, there I3 nc guarantee
that the same sequence o rules will be applicable to the generalized Goal A,
or that if we succeed in ceriving a generalized Goat B, it will turn out ro be
an instance of the gene aiized Goal A If the derivanon faiis for uither
.eason, we abandon the generalizaiion and look for other ways to achieve
the original Goal B (This is a very conservative strategy. a more
adventurous approach would be tu try to use as much as possible of the
original derivation, but to seek other ways of progressing when the original
derivation fal)

We have jostponed describing tine input specificatior for the new
procedure g. It 15 to sur advantage to have as few conditions in this
specification as posiibl, because we must check each of these conditions
every time a procedure call to g is introduced. For this reason, rather than
attempting to formulate the new 1nput specification in advance, we prefer to
proceed with the der:vation of g and add to the input specification only
those conustions that ar: needed to compicte the derivation. In other words,
we form the inpui specification for g incrementally.

Thus. if in the cotirse of the derivaion we fail to prove a desired
condition S(y), we con:ider adding this condition to the input specification
of g. However ever' time a call glu) to the procedure g has been
introduced previously in the synthesis, we must go back and check that the
additional input condition S(u) it satisfied. In particular, because the main
program

J1) <ee glal)

contains a-procedure call gls(x)), we must check that condition 3(efx)) is
satisfied.

Often, conditions are added to the input specification simply to ensure
that the output specifi:ation is meaningful.

Returning to our example, we attempt to construct the more general procedure
Asadteilgen(l, i3) that achieves the generalized Goal |,

compute Assdl/,) « a’'Ntaili,)) .
However, this goal is not meaningful unless

1, and !3 are nonempty lists.
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We cannot prove th's cndiion about our arbitracy nputs !; and Iy, iherefore, we must add It
to the :nput specific uicn fo: the new procedure. Because the main program ieadrail{!) contains
the call Aeadtailge (! ), we first check that the :urguments ! wnd { for the call satisfy the
proposed condittei. 7 hus, we have to show that

{ and / are nonempty ists,

[ 1s a nonempty lisi.
But this is exactly the input specificatiun for the mai program.

We attempt to apply to the gensiaiized Goal | ih: same sequence of rules that we applied to
the originai Goal | exrlier. Applying the vacuous rile in the case where tail(l3) is empty, we
derive the primitive program segment true; anplying the decomposition rule in the case where
tail(l,) is not empty, we decompose the generalized Goal | irto computing ihe con pnction of
two expressions:

Gea! 2 (generalized):  compute head(l)) < Aradtail(ly))
and
3oal § (generalized): compute Ased(l|) < alltaitaill,)) .

The new Goal 2 is a primitive expression as before, however, this time the new Goa! 3 is a
precise instance of the generalized Goal |

compute Acadl ) < allrail¢y))

therefore, the recursion-formation rule proposes that we achieve the generalired Goal $ by a
recursive call Aesstatigen(l, 1eil{ly)) to the new procedure. The arguments !, and teillis) can be
shown in this case to satisfy the input condition that

{, and tali(l,) are nonempty lists,

because !, and [y ars nonerpty Yists (the new input condition) and teili;) is not empty (the case
assumption). The termination conditici is established becauss the second argement (ailly) of
the recursive call is a »:blist 5i the second input lp.

The complets final progrem {5 ihen

Resd1ailll) <o Aesdtallgenil O
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where
Aeadiailgan(ly Iy) <a= if empiyliaiilly))
tAen (rue
elsehead(l|) < Asad(iaillly)) and
Ascdtailgen(l, tailly)) .

When it is successful, the generalization principle results in tve construction of a stronger
program than originally required. If the new specifications are too general, however, the
corresponding program cz# actualiy be more difficult to construct than the original. For this
reason, we must 1mpose conser vative strategic controls on the application of the generalization
prinaiple.  For all the examples in this paper, the only generahzations required Involve
replacing a constant hy » variable, or one occurrence of a variable by a new variable, In
general, it 1s necessary to replace more complex terms by variables.

For examples of theorem-proving systems thet y.sarslize the theorems
they sre sbout to prove by induction, see Boyer srvd *ioore [1975) Brotz
{1973} and Aubin [1975] . Sikiossy [1974] propoied spplying this technique
to program synthesis.

B. The Formation of Bubsidiary Procedure:

We form a recuriive cali when a subgoai is discovered (o be an insanc of the top-level
goa'. But what if the subgoal is an instance, not of the top-level gesi, but of some other
subgoal? In this section, we show how such a situation can lead to the formation of tubsidiary
proceduiss (or subroutines) .

As before, we will consider the gencral case in the context of a specific example. The
program to be construcred, ellal! m), is intended to test whether every member of a given lisi !
of numbers Is less than every member of another sich kst m. The specifications can be
expressed as

altell m) o= compute aill)) < alim) ,
where ! and m are lists of numbers.

T he top-level goal Is thus
Gcal 1;: compute allN)) < ellm) .

A3 before, ve will employ the Yacuous rule
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Plalil)) »> true  1f {13 the empty list
and the aecomposition rule
P(a2U{)) «> PlAead(l)) and P(all{tail(l))  if [ 13 a nonempty list.

In the case in which [ is empty, the vacuous rule reduces Goal | to the primitive prcgram
segment frue. 1n the other case, the decompontion rule reduces the goal to ~cmputing the
con junction of two expressions:

Goal 2: compute Aead(!) < ali(m)
and
Goal 3:  compute ali{rai()) < all(m) .

Gnal 38 15 discovered to be an instance of the top-level goal, with the inputs { and m replaced
by tail(l) and m. Therefore, the recursion-formation rule repiace: this goai by a recursive call
lessaltail(l) m), the input condition is easily checkid, and the termination condition is proved
because (ail!) s a proper sutlist of {.

We have yet to consider Goal 2; the program constructed so far has the form

allall(l m) <== if emprAl)
them true
e .. and
allalitaill) m) .

Goal 2, compute Arad(!) < all(m), 13 decomposed in a manner similar .0 Goal 1. in the case
where m is empty, the vacuous rule transforms this expression to the primitive prograra
segment true. In the other case, the decomposition rule reduces this goal to computirg the
con unct.on of (wo expressions:

Goal 4:  compute Aradll) < Arad(m)

Gom 8: compute Aead(() < ali1ailm)) .

Goal 1 is a primitive expression th.i can be computed directly. Goal 8 is an instance not of
the top-level gual but of the intermediate Goal 2, compute Assd(l) < ali(m), with the inputs !
and m replaced by ' -nd tetm). This suggests that we might uchieve Cual B by a recursive call
not to the entire program allsll but to the segmant of eliell thsi achieves Goal 2. For this

purpose, we must introduce a subsidiary procedure AszdelX! m) corresponding to this segment.
Thus, the output specification for the new procedure will be
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headall(l m) <== compute Aead(l) < all(m) .

(This procedure tests whether the head of / is less than every element of m ) Then we can
achieve Goal 3,

compute Aead(!) < all(tail(m)),

by a recursive calil headall(l tait(m)) to the new procedure.

I general, suppose we are developing a prog:am whose specifications
are of the form

Ax) <== compute P(x)
whare X»),

and we encounter a subgoa’
Goal 8: compute R(1),

which 1s an instance of some previously generated subgoal
Goal A: compute R(x).

We assume that Goul A it ,ome aiicestor of Goal B other than the top-
level goal. The procedure—formation rule propoes that we introduce a new
procedure g whose output description is

£(x) <o= compute R(x),

30 that we can achieve Goal B by a recursive call g(). Then we set zude
the original derivation for Goal A, and achieve the goal by 2 call g(x) to
the new procedure.

A3 in the previous section, we prefer to formulate the input
specifications for the new procsdure g incrementally, rather than attempting
i0 express this specification in advance. Again, i is %0 our advantage to
have as few corditions & possibie in the input specification for g, because
each of these conditions must be checked every time 2 call to ¢ i
introduced. We add to the new input specificaion anly thaor .ondlsons
that are nesded in the course of the derivation cf g.

Thus, if in constructing the procsdure ¢ we fail 12 prove somo condition
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S(x), we conuder adoing this condition to the input specificavron for g
However, every ime a cail §i) to the new froce’ure has been introduced
ezrher 1n the synthesis we must g9 back and check that the additional
input condition S(u) 15 satisfied  In partilar, because the main program f
now contains a call g(x) to achieve Goal A wz ™ust check that S(x) hoids
when this call 1s executed For this purpose. we ay use the input
speaficitions for [ or any of the case -isumptions that c-cur mn the

derivation of Goai A

Goal A. compute R(x), now becomes the top-level goal in the
construction of the procedure g Initially, we mirror the steps of the
original Gerivation, that 1s, we apply in the new derivation the same
sequence of steps that we applied originally, adding conditions to the input
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