Stanford Artificial Intelligence Laboratory Juy 1974
Memo AIM-252

Computer Sciénce Department
Report No. STAN-CS-74-466

RECENT RESEARCH IN ARTIFICIAL INTELLIGENCE,
HEURISTIC PROGRAMMING, AND NETWORK PROTOCOLS

Edited by
Lester Earnest

ARTIFICIAL INTELLIGENCE PROJECT
John McCarthy, Principal Investigator

HEURISTIC PROGRAMMING PROJECT
Edward Feigenbaum and Joshua Lederberg,
Co-principal Investigators

NETWORK PROTOCOL DEVELOPMENT PROJECT
Vinton Cerf, Principal Investigator

Sponsored by
ADVANCED RESEARCH PROJECTS AGENCY
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory July 1974
Memo AIM-252

Computer Science Department
Report No. STAN-CS-74-466

RECENT RESEARCH IN ARTIFICIAL INTELLIGENCE,
HEURISTIC PROGRAMMING, AND NETWORK PROTOCOLS

Edited by
Lester Earnest

ARTIFICIAL INTELLIGENCE PROJECT
John McCarthy, Principal Investigator

HEURISTIC PROGRAMMING PROJECT
Edward Feigenbaum and Joshua Lederberg,
Co-principal Investigators

NETWORK PROTOCOL DEVELOPMENT PROJECT
Vinton Cerf, Principal Investigator

ABSTRACT

This . 15 a progress report for ARPA-sponsored research projects in computer science for the
period July 1973 to July 19°73. Accomplishments are reported 1n artificial intelligence (especially
heuristic programming, robotics, theorem proving, automatic programming, and natural language
understanding), mathematical theory of computation, and protocol development for computer
communicarion networks. References to recent publications are provided for each topic.

mis research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAHC 15-73-C-0435. The views and conclusions contained in this
document are those of the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S.
Government.

1.

2.

TABLE OF CONTENTS

Sect ion
INTRODUCTION

ARTIFICIAL INTELLIGENCE
PROJECT

2.1 Robotics
2. L. IManipulation
2.1.2 Assembly Strategies

2.2 Computer Vision
2.2. 1 Description
2.2.2 Visual Guidance of a Vehicle
2.2.3 Mars Picture Analysis

2.3 Mathematical Theory of
Computation
221 FOL
232 LCF

2.4 Heuristic Programming
24.1 Theorem Proving
2.4.2 Automatic Programming

2.5 Natural Language
2.5. 1 Speech Recognition
2.5.2 Natural Language
Understanding
2.5.3 Higher Mental Functions

. 2.6 Programming Languages

2.7 Computer Facilities
2.7.1 Hardware
2.7.2 Software

. HEURISTIC PROGRAMMING

PROJECT
3.1 Knowledge-based Systems Design

3.2 The Meta-DENDRAL Program
3.2. I Data Selectron
3.2.2 Data Interpretation and
Summary: The INTSUM
Program
3.2.3 Rule Generation: The
RULECEN Program

Page

N B~

D o N DN

20

21

21

22

23

23

24

25

25

26

Section Page
3.2.4 Rule Modification 27
3.3 Systems for Semi-Automatic
Knowledge Acquisition by
Experts 27
3.4 Knowledge Acquisition and
Deploy men t 28
3.4.1 Background 29
3.4.2 Objectives 30
3.4.3 Methods of Procedure 30
3.4.4 Overall design of the program 31
3.5 Knowledge Deployment Research:
Inexact Reasoning 35
3.6 Knowledge Deployment Research
for Real-World Applications 37
3.6.1 WHY Questions -- Looking at
Goals 38
3.6.2 HOW questions: Looking at
Preconditions 38
3.7 Knowledge Representation:
Production Systems 20
3.8 Application of Al Techniques to a
Programmer’s Task:
Automatic Debugging 40
3.9 Tools and Techniques 41
3.10, Technology Transfer: Chemistry
and Mass Spectrometry 42
3.11 Technology Transfer: to Biology
and Medicine 43
3.12 Technology Transfer: to Military
Problems 44
3.13 Publications of the Project,
1972/1974 44

i TABLE OF CONTENTS

Sect ion Page

4. NETWORK PROTOCOL

DEVELOPMENT
PROJECT 47
4.1 Internetwork Protocol Design 47
4.2 PDP- 11 Expansion 48
4.3 Software Systems 48
Appendices

A. ACCESS TO DOCUMENTATION 51

B. THESES h 53
C. FILM REPORTS 57
D. EXTERNAL PUBLICATIONS 59

E. A. I. MEMO ABSTRACTS 65

1. INTRODUCTION

This is areport of accomplishments by three
ongoing projects that have been supported by
the Advanced Research Projects Agency
(ARPA) 1n the period July 1973 to July 1974.
Some related research supported by other
agencies (mainly NSF, NASA, NIH, and
NIMH) is also discussed. Where not
otherwise stated, the work reported below was
supported by ARPA.

The Artificial Intelligence Project is the oldest
and largest of the activities treated here. It
was organized by John McCarthy, Professor
of Computer Science, in 1963 and has
recetved ARPA support _continuously since
then. It has Included work in computer
vision, robotics, mathematical theory of
computation, theorem proving, speech
recognition, natural language understanding,
programming language development, and a
number of other activities. ARPA budgeted
$1.25 million in support of this work for the
year of this report.

The Heuristic Programming Project was
formed in 1965 by Edward Feigenbaum,
Professor of Computer Science, and Joshua
Lederberg, Professor of Genetics, and was
initially an element of the Artificial
Intelligence Project. It became a separate
organizational entity with its own budget in
January 1970. The central interest of this
project has been artificial intelligence applied
to scientific endeavor and the problems of
knowledge acquisition, representation, and use
that arise in constructing high-performance
applications of AI. ARPA support for the
year amounted to $200K.

The Network Protocol Development Project
was formed in July 1973 by Vinton Cerf,
Assistant Professor of Computer Science and
Electrical ~ Engineering, and has been
concerned with communication protocols for
computer networks, especially the ARPA
network. ARPA support to this activity was
$50K for the year.

This report updates and builds upon our ten
year report [11. Like most progress reports, it
is mainly a concatenation of segments written
by - the individuals who did the work.
Consequently, there are substantial variations
in style and depth of treatment.

The following sections summarize recent
accomplishments and provide bibliographies
in each area. Appendices list theses, films,
books, articles, and reports produced by our
staff.

Bibliography

(1] Lester Earnest (ed.), FINAL REPORT:
The First Ten Years of Artificial
Intelligence Research at Stanford,
Stanford A. I. Memo AIM-228, July 1973.

INTRODUCTION

Stanford Arm Assembling Water Pump

2. ARTIFICIAL INTELLIGENCE
PROJECT

The work of the Artificial Intelligence Project
has been basic and applied research in
artificial intelligence and related fields, such as
mathematical theory of computation. Here is
a short list of what we consider to have been
our main accomplishments during the past
year.

Robotics

We have devrlopcd a two-arm synchronized
manipulation capability and tested it on
several mechanical assembly tasks that are
beyond the capability of a Single arm. A new
high-level “hand language” called HAL has
been developed for specifying advanced
manipulation tasks.

Compu ter Vision

We have used near and far field stereo visron
and motion parallax to locate objects spatially
and to automatically generate contour maps.
Another program can recognizethings of the
complexity of a doll or a hammer in various
positions,using a laser triangulation system.

Mathematical Theory of Computation

Using out LCF proof-checker, we have
produced an axiomatization o f the
programming language PASCAL. This
represents a ma jor step toward using LCF as
a practical program verification system.

Theorem Proving

An interactive system has been developed for
structured top-down programming in
PASCAL. It guides the user in constructing a
program in successive refinements and in
proving its correctness.

Automatic Programming

A successful new automatic programming
system accepts descriptions of library routines,
programming methods, and program
specifications in a high level semantic
definition language. It returns programs
written in a subset of ALGOL that satisfy the
given specifications. Experimental
applications include computing arithmetical
functions and planning robot strategies.

Another system works with algorithms
expressed in a higher-level language and
automatically chooses an efficient
representation for the data structure. It then
produces a program that wuses this
representation. ~ Representations considered
include certain kinds of linked-lists, binary
trees, and hash tables.

Natural Language Understanding

A system called MARGIE was completed that
links natural language understanding,
inference, and generation of natural language
output. This is the first such system with a
strong theoretical basis, namely conceptual
dependency.

Training

During the year, six members of our staff
published Ph.D. dissertations and another 32
graduate students received direct support.

The following sections review principal
activities, with references to published articles
and books.

2.1 Robotics

A group led by Jerry Feldman, Tom Binford,
and Lou Paul has been developing automatic
assembly techniques using general purpose
manipulators, visual representation and
descriptive techniques using television camera
and other sensory data. The vision work is
covered wSection 2.2.

2.1.1 Manipulation

The robotics group has established leadership
in manipulation and notes particularly
advances In two arm synchronized
manipulation, and indesign of a new hand
language for manipulation.

The completion last year of automated
assembly of a water pump by Paul and Bolles
[Bolles] marked a change indirection of
manipulator research. In the previous phase
of system building, Paul [Paul] had developed
software for control of the Scheinman arm
[Scheinman] using touch (one switch per
finger wrth 10 gram sensitivity) and force
(measured from joint motor currents, about
350 gram sensitivity). The pump assembly
task showed the use of touch, force, tools, and
visionmn a complete system task. The new
emphasis has been on application of the
system to programming of repetitive assembly
tasks, and executing tasks chosen to develop
new manipulation abilities.

Our conception of the assembly task as a
planning task cartied out once on a large
system, and a small repetitive execution task
seems suited to industrial assembly. The plan
can be intelligently tailored to the individual
task; the small system repeatedly executes a
plan and modifies the plan at runtime to take
1Into account part to part variations.

In order to providethisruntime modification
it was necessary to move the arm solution
routines from the planning stage to the
runtime system and to communicate positions
in terms of rectangular table coardinates

ARTIFICIAL INTELLIGENCE PROJECT

Instead of in terms of arm joint angles. By
communicating part positions in terms of
rectangular coordinates it was possible to
‘translate and rotate sets of positions as
necessary to adapt the manipulator to each
actual part and its relative manipulator
placement.

When this work was completed, Bolles
programmed automatic assembly of the piston-

crankshaft subassembly of a two-stroke
gasoline engine, allowing considerable
variation in work piece positioning. Bolles
programmed tool changing. The arm

automatically removes one tool and mounts
another from a set of socket tools for an
automatic tool driver. A second arm was
interfaced to our computer. Paul developed a
system inwhich two arms could be run in
synchronization. He programmed assembly of
a hinge, using two arms. (These examples are
recorded in a film [3])). To explore arm
dynamics, Finkel programmed throwing
objects intobins sorted by size.

These tasks were carried out 1n the hand
language WAVE [(Paul). Programming in a
hand language gave a generality which might
be described as: given that we had carried out
one task, programming assembly of a similar
object would be simple. For example,
programming assembly of a generator would
require about 10 hours work, following the
pump assembly. A set of macros were
developed which were applicable to a variety
of tasks: put a pm in a hole, insert a screw.
About 8 hours are required to program a
macro of the complexity of Inserting a screw.
The hand language has made it simple to
teach students how to program the arm. In a
robotics course, students programmed “sword
in stone”, inserting a shaft into a hole. The
language WAVE is on the level of assembler
code.

In order to take advantage of more than one
manipulator, 1t IS necessary that the
manipulators can be run simultaneously, eithe:
performing independent subtasks or acting

2.1 Robot ics

together. The existing language, Wave, was
not designed to incorporate parallel operation,
and was Inadequate to take advantage of the
runtime modification feature already
described. A new language was needed to
specify structures and attachments of parts,
and to provide a suitable syntax in which to
express parallel operation. It was also
necessary to incorporate general expression
evaluation, including matrices and vectors. A
new language desigh was undertaken to
incorporate these features. Superficially, it
resembles Algol, as itprovides for structured
programming and block structure.

HAL

Paul, Finkel, Bolles and Taylor have begun a
new hand language, HAL. The effort began
as a higher level language version of WAVE,
to Include coordinated motion of two arms.
The design was broadened to Include some
strategy generation. The system is made
partially model-based (versus procedure-based
as WAVE, ALGOL, etc). Some degree of
automatic generation of sequences for non-
independent operations whose order is
important, has been included in the design.
In order to carry on the next stage of
generalization beyond WAVE, the system
must matntain models of its world.

Consider modifying the pump assembly
program to assemble a generator. An expert
programmer 1S neecded to modify the program,
while for a model-hased system, the engineet
could input a new model (presumably from a
previous design) and allow the system to do
the low levelinterfacing. The system could not
perform that Interfacing if given only low
level trajectory commands. We regard this
system as a first level of model-based system.
A ma jor technical advance will be coordinated
two arm motton, as opposed to independent
two arm motion. An Important part of the
design process has been to express a number
of tasks (gedanken experiments) in the new
language. The design of HAL was three-
fourths completed during the period of this
progress report.

New work has gone into touch sensor
development. A new sensor with adequate
sensitivity and small size was built and tested
by-. Perkins. The sensor seems adequate for
use in task execution, but requires more
development in packaging and mounting on
usable fingers.

A new collision avoidance package has been
programmed by Widdoes. The package finds
a collision-free path for the first three joints of
the arm, using an interesting strategy. The
previous collision avoidance program [Pieper]
used a very local search around objects and
was very time-consuming.

During the period covered inthis report, we
have begun conversion of arm hardware to a
PDP-11/45 and begun converting to a new
hand/eye table which allows room for two arm
manipulation.

Bibliography

(Bolles] Robert Bolles, Richard Paul, The use
of Sensory Feedback in a Programmable
Assembly System, Stanford A. I. Memo
AIM-220, October 1973.

[Dobrotin] Dobrotin, Boris M., Victor D.
Scheinman, Design of a Computer
Controlled Manipulator for Robot
Research, Proc. Third ht. Joint Conf. on
Artificial Intelligence, Stanford U., 1973.

[Paul) R. Paul, Modelling, Trajectory
Calculation and Servoing of a Computer
Controlled Arm, Stanford A. I. Memo
AIM-177, Ph.D. Thesis in Computer
Science, September 1972.

[Pieper] Donald L. Pieper, The Kinematics
of Manipulators under Computer
Control, Stanford A. I. Memo AIM-‘72,
October 1968.

[Scheinman] V. D. Scheinman, Design of a
Computer Manipulator, Stanford A. L
Memo AIM-92, June 1969.

Films

(1] Richard Paul and Karl Pingle, Instant
Insanity, 16mm color, silent 6 mm, August
1971.

[2] Richard Buland Karl Pingle Automated
Pump Assembly, 16mm color, Silent, 7
min, April 1973,

[3] Pingle, Paul and Bolles,Automated
Assembly! Three Short Examples, 1974
(forthcoming).

2.1.2 Assembly Strategies

Our work at programming manipulation
sequences applies to programming the class of
programmable assembly devices. The goal is
to program at the level of assembly instruction
manuals: msert shaft B into hole C. That is
to go from a high level program to a program
in terms of device motions, including force
and control information. There 1S an
enormous scope for such applications; the ease
of programming assembly devicesis crucial to
their wide application, from high volume
special automation to low volume general
purpose devices. The effort has produced
outline programs for assembly of the wate:
pump (without manipulation programming)
by Taylor, and by Luckham [Luckham]. A
typical sequencing task Is to choose a sequence
which does not involve putting down the tool
and picking it up again inpulling out the
guide pins and inserting screws to fasten the
pump cover. As another facet of compatible
sequences, semantic constraints such as x on y
aretranslated into mathematical constraints;
Taylor has programmed alinear constraint
solution package to solve the resulting
mathematical conditions.

Bibliography

[Luckham] David Luckham, Jack Buchanan,
Automatic Generation of Programs
Containing Conditional Statements, Proc.
A.LS.B. Summer Conference, Sussex,
England, July 1974.

ARTIFICIAL INTELLIGENCE PROJECT

2.2 Computer Vision

The theme of our work in visual perception of
complex objects has been description and not
classification. ~ We have concentrated on
building up capabilities for generating
structured descriptions useful in a rich
universe of objects.

2.2.1 Description

This project has been extended by Nevatia
[Nevatia], with programs which recognize
objects of the complexity of a doll, glove, toy
horse, or hammer. The work has included
new, stable hardware for the laser
triangulation system [Agin]. The programs
use depth data from the laser system, find
boundaries of continuous surfaces, and make
descriptions of armlike parts according to a
representation based on generalized cones
[Binford]. Other groups have begun to use
special cases of such representations. The
programs then make complete structured
descriptions of objects as a part/whole graph
of parts and relations of parts at joints.

Compact summary descriptions are abstracted
from complete object descriptions and used to
index into a structured visual memory of
models of previously seen objects to locate a
subclass of model similar to the test object.
The index procedure limits comparison of the
test object description to relatively few models
from memory, even with a large visual
memory of many objects (although only about
six objects were used). Modelsin memory
were descriptions made by the program of
previously seen objects, sometimes modified by
hand. An important feature of the description
matching process is that it depends on
generating structured symbolic descriptions of
differences between test object description and
the model.

The descriptions themselves are intuitively
familiar for humans, so that the decisions of
the program are easy to understand and
debug. Although a great deal more work is

2.2 Computer Vision

necessary for that system, it represents a first
and significant step in such description and
recognition, particularly since it can tolerate
moderate obscuration. The same techniques
are applicable to edge images from TV data;
they give good descriptive ability for that
domain. However, that is only a small part of
the necessary system for analysis of TV
images and although useful, in no way
resembles a solution to that complex problem.

Stereo Vision

It 1s difficult for humans to perform
manipulation tasks from a single TV image,
without stereo. We intend to make
considerable use of stereo inapplications of
vehicle navigation and visual feedback for
assembly. Hannah [Hannah] has
demonstrated some techniques of stereo
matching for stereo pairs with moderate stereo
angle, 10 degrees, without calibration
information. By matching a minimum of six
points in the two images, it was possible to
obtain the relative calibration of the two
cameras. Further search was limited by
calibration information. Techniques were
developed to match corresponding areas 1in
outdoor pictures from features including color,
mean and variance of intensity. A program
was able to define regions bounded by depth
discontinuities.

Mot ion Parallax

Thomas and Pingle [Thomas] have applied
motion parallax to simple scenes. They limit
attention to a few points defined by variance
or edge measures. These points are tracked as
the scene is rotated on a turntable, equivalent
to moving the camera. The program requires
only about 1 second per frame, using the SPS-
41 computer. Although the research was
performed on scenes of blocks, itis not limited
to such scenes. The mechanism for selecting
points o f interest would be Inadequate for
scenes with texture, however. Ganapathy has
developed techniques for wide angle stereo
matching in scenes of blocks. These programs

use a variety of conditions of the form that
planes remain planar under matching.

BuHock [Bullock] has made a systematic study
of available operators for description of
texture, and made a library of standard
textures. His informal conclusions are that
spatial domain descriptions are necessary, and
that known techniques are very weak.

We have continued our study of techniques
for visual feedback to deal with scenes with
realistic contrast (not just black versus white)
and with realistic complexity (curved objects).
Perkins [Perkins] has made a program which
finds corners for visual feedback in block
stacking. Although block stacking itself is of
little interest, the program is interesting for its
ability to function with realistic contrast levels
(no special preparation of scene) and
interesting for its global edge finding strategy.
Perkins also made a program which found
elliptic curves among edge points from the
Hueckel operator [Hueckel 197 1] The
program was able to identify cylinders.

Vision Language

Binford has made a beginning on a language
for vision research. Previously, the laboratory
has built a hand/eye monitor system to
systematize cooperating routines at a job level;
a library of simple procedures has been
implemented [Pingle]. It has been found that
the job level is too coarse to be useful for
accomplishing our objectives: to allow research
to build on previously built data structures
and modules; to allow a common vocabulary.
The new effort is not predominantly a system
software effort, but a scientific effort, aimed at
providing a language in which strategies can
be expressed. Our experience is that it is
difficult for humans to program in LISP or
SAIL, and that we cannot reasonably expect
strategy programs to be expressed at that low
level of language. The language will be
embedded in SAIL. Our previous work in
representation of shape has been significant;
now we are extending the study of

representation to visual program structure,
including intermediate internal structures. Our
experience with the hand language is that this
is a valuable step.

Polyhedral Modeling

Baumgart [Baumgart 19°73, 1974A,1974B] has
developed a system for descriptive computer
vision based on polyhedral modeling and
image contouring. Baumgart’s overall design
idea may be characterized as an inverse
computer graphics approach to computer
vision. In computer graphics, the world is
represented 1n sufficient detail so that the
image forming process can be numerically
simulated to generate synthetic television
images; 1 the inverse, perceived television
pictures are analyzed to compute detailed
geometric models. To date, polyhedra (such as
in the figure) have been automatically
generated by intersection of silhouette cones
from four views of a white plastic horse on a
black turntable. The viewing conditions are
necessarily favorably arranged, but then the
claimed results are honest.

ARTIFICIAL INTELLIGENCE PROJECT

Bibliography

{Agin] Agin, Gerald J, Thomas 0. Binford,
Computer Description of Curved
Objects, Proc. Third International Joint
Conf. on Artificial Intelligence, Stanford
University, August 1973.

[Bajcsy] Bajcsy, Ruzena, Computer
Description of Textured Scenes, Proc.
Third Int. joint Conf. on Artificial
Intelligence, Stanford U., 1973.

(Baumgart 19731 Bruce C. Baumgart, Image
Contouring andComparing, Stanford A.
I. Memo AIM-199, October 1973.

[Baumgart 1974A) Bruce G. Baumgart,
CEOMED - A Geometric Editor, Stanford
A. 1. Memo AIM-232, May 1974.

[Baumgart 1974B] Bruce G. Baurngart,
Geometric Modeling for Computer
Vision, Stanford A. I. Memo AIM-249,
October 1974.

[Binford] T.O. Binford, Visual Perception by
Computer, Invited paper at IEEE Systems
Science and Cybernetics, Miami, December
1971.

[Bullock] Bruce Bullock, in preparation.

[Hannah] Marsha Jo Hannah, Computer
Matching of Areas in Stereo Images,
PA.D. Thesis in Computer Science, Stanford
A.1. Memo AIM-239, July 1974.

[Hueckel 19711 M. H. Hueckel, An Operator
Which Locates Edges in Digitized
Pictures, Stanford A. I. Memo AIM-105,
December 1969, also in JACM, Vol. 18,
No. I, January 1971.

[Hueckel 1972] Hueckel, Manfred H., A Local
Visual Operator which Recognizes Edges
and Lines, /. ACM, October 1973.

[Nevatia] R. K. Nevatia and T. 0. Binford,

2.2 Computer Vision

Structured Descriptions of Complex
Objects, Proc. Third International Joint
Conf.on A.l., Stanford Univ., February
1973.

[Perkins] Walton A. Perkins, Thomas O.
Binford, A Corner Finder for Visual
Feedback, Stanford A. I. Memo AIM-214,
September 1973.

[(Pingle] KarlK.Pingle, Hand/Eye Library,
Stanford Artificial Intelligence Laboratory
Operating Note 35. 1, January 1972.

[Sobel] Sobel, Irwin, On Calibrating
Computer Controlled Cameras for
Perceiving 3-D Scenes, Proc. Third Int.
Joint Conf. on Artificial Intelligence,
Stanford U., 1973; also in Artificial
Intelligence J., Vol. 5, No. 2, Summer 1974.

[Thomas] A.J. Thomas and K.K.Pingle, in
preparation.

[Yakimovsky] Yakimovsky, Yoram, Jerome A.
Feldman, A Semantics-Based Decision
Theoretic Region Analyzer, Proceedings
of the Third International Joint Conference
on Artificial Intelligence, Stanford
University, August 1973.

2.2.2 Visual Guidance of aVehicle

Lynn Quam and Hans Moravec are working
on a "cart project” that has as one of Its goals
the development of a set of techniques to
enable a vehicle to guide Itself through a
unknown environment on the basis of visual
information. As a first step, a program has
been written which takes a motion parallax
pair of pictures of a scene, finds "interesting”
feature points scattered over one image, and
tries to locate the same features in the other
image, deducing their location in three
dimensions.

This program has been tried on about 40
pairs of pictures of outdoor scenes, and in all
cases was able to line up the horizons

properly. In about 60% of the cases one or two
nearby obstacles were located accurately. In
the remaining 40% the “matching” features
‘found were typically pieces of the same road
edge farther along the path than the desired
feature in the first picture. This kind of error
precludes exact measurement of distances, but
still provides enough information so that the
edge can be avoided.

Significant subtasks completed include the
operator which locates “interesting” features by
thresholding and locally maximizing
directional variation in grey level. A minor
innovation is a distortion of the pictures in
the horizontal direction, tantamount to
transforming the original planar images into a
cylindrical projection, thus making the scale of
features invariant over camera pan.

Considerable effort has been expended in
getting our existing cart hardware to the point
where these techniques can be tried on a
running vehicle. A set of control routines,
which calculate an optima.l path for a
requested position and orientation change and
transmit the appropriate commands to the
vehicle, were also written this past year.

Near-field Stereo

Near-field stereo has the problem that a high
degree of distortion and occlusion occurs in
most scenes when the baseline distance
between the camera positions is comparable to
the distance from either camera to objects in
the scene.

For our immediate cart project goals, we are
primarily interested in objects in the direction
of motion. Such objects undergo
predominantly a scale factor change, but
previous efforts in area matching have not
allowed an unknown scale change between the
areas in the two images.

To handle this problem, we have developed a
technique for area matching under scale
change using a model for the camera position

10

and orientation of one image relative to the
preceding Image. Whenever a point in the
second image s proposed as a match for a
point in the first image, one can use the
camera position model to determine at what
depth the 2-space point must lie. The ratio of
the distances between this point and the two
camera positions corresponds to the observed
scale factor change. This scale factor ratio 1S
used to geometrically scale the pomnts in the
area of Interest 1n one image prior to
computation of the area correlation operator.

Thistechnique was applied to a sequence of
road Images gathered as a "typical” road
envrronment. The results indicated that areas
with scale changes of wpto 1.5 or 2.0 to |
could be efficiently and- reliably be matched.
An extension of thistechnique which allows
unequal scale changes in the vertical and
horizontaldirections is planned.

2.2.3 Mars Picture Analysis

The NASA Viking Project supported a
feasibility study at to determine if computer
image processing techniques could be used for
aerial/orbital photogrammetry. The ob ject
was to take pairs of orbital photographs of
portions of planets (the Moon and Mars in the
study) and construct contour maps for the
terrain. These techniques are under study fot
checking the suitability of the proposed
‘landing sites for the 1975 Viking missions to
Mars.

The approach we took was to first match up
as much as possible of the two images wrth a
program that used correlation, the region
grower, and an approximate camera model
derived from spacecraft position and pointing
data. The parallaxes were then converted to
elevations by a second program and contoured
at the desired intervals by a third program.

Early results are fairly promising. Given
images which are of sufficient resolution,
reasonably free from noise and have sufficient
information content, the computer can produce

ARTIFICIAL INTELLIGENCE PROJECT

contour maps in a small fraction of the time
required by traditional photogrammetry
techniques [Quam1974).

Several articles have recently been published
based on earlier work supported by NASA on
interactive analysis of photographs of Mars
taken by the Mariner satellites [Quam 1973,
Sagan, Veverkal.

Bibliography

(Quam1973]Quam, Lynn, Robert Tucker,
Botond Eross, J. Veverka and Carl Sagan,
Mariner 9 Picture Differencing at
Stanford, Sky and Telescope, August 1973.

[Quam1974] Quam, Lynn and Marsha Jo
Hannah, An Experimental System in
Automatic Stereo Photogrammetry,
Stanford A. I. Memo, 1974 (forthcoming).

[Sagan] Sagan, Cart, J. Veverka, P. Fox, R.
Dubisch, R. French, P.Gierasch, L.
Quam, J. Lederberg, E. Levinthal, R.
Tucker, B. Eross,]J.Pollack, Variable
Features on Mars II: Mariner 9 Global
Results, Journal of Geophysical Research,
78, 4163-4196, 1973.

[Veverka] Veverka,], Carl Sagan, Lynn
Quam, R. Tucker, B. Eross, Variable
Features on Mars Ill: Comparison of
Mariner 1969 and Mariner 1971
Photography, Icarus, 21,3 17-368, 1974.

2.3 Mathematical Theory of Computation

Several articles based on our earlier work in
mathematical theory of computation were
published during the year [1, 2, 3, 4,5] and
Manna published the first textbook inthis
field [6].

Vuillemin's Ph.D. thesis examines the
connection between the concept of least fixed-
pomnt of a continuous function and recursive
programs [7].

2.3.1 FOL

The FOL project was designed by Richard
Weyhrauch and John McCarthy to create an
environmentn which first order logic and
related traditionalformal systems can be used
with ease and flexibility. FOL 1sa proof
checker based on the natural deduction style
of representing the proofs of first order logic.
The ability to use FOL to do substantive
experiments sjust becoming feasible. Some
of these are described below.

Eventually we expect FOL to act as a practical
system in which the verification of the
correctness and equivalence of programs can
be carried out in the language of ordinary
mathematics. T h e theoretical discussion o f
how this can be accomplished has been
outlinedin the papers of McCarthy, Floyd,
Manna and others. The reduction of these
ideas to practice is still in the experimental
stage.

The above task requires a system that can
represent the traditional arguments of
mathematics. Thus a major part of our effort
is devoted to developing a smooth and useful
embedding of traditional set theory into this
environment, and for ways to deal correctly
with the metamathematics necessary to
completely represent any substantive part of
mathematical practice.

An example of using FOL to prove a very
simple theorem follows. Lines beginning with
"sarx” are input and the others are output.

o DECLARE INDVAR x y3;DECLARE PREDCONCT F I
sk TAUT F () vaF (x)

1 F(x)v-F (x)
soewxd] 1, xey oce 2
2 3y, (F{x)v=F (y))
sVl 2, x;

3 ¥x. 3y, (F(x)v-F (y))

The first large proofs using FOL are reported
by Mario Aiello and Richard Weyhrauch (9).
They describe a n axiomatization of the
metamathematics of FOL and prove several
theorems using the proof checker.

Weyhrauch has also expanded McCarthy’s
idea of a computation rule using a notion he
has called semantic attachment. This is a
uniform technique for using the computation
to decide sentences like 32 or 3+7=8 or
ISON(BLACKKING, BKNI, BOARD) o r
HAS(monkey, bananas). Independently of
this, Arthur Thomas suggested using FOL in
a similar way to explore models of perception
and their interaction with the actual world.
Robert Filman is using these ideas extensively
to axiomatize basic chess knowledge.

Several preliminary users manuals were
produced for FOL, and an Al memo [10] will
appear soon.

232 LCF

Progress was made in two directions. Mario
and Luigia Aieilo and Richard Weyhrauch
produced an axiomatization 0 f the
programming language PASCAL using LCF.
This project represents a major step towards
using LCF as a practical program verification
system. This work 1s reported on in [8] and
(11} PASCAL was chosen in order to
compare the techniques of Dana Scott’s
extensional approach to program semantics
with that of Robert Floyd and C.A.R. Hoare.
Thel latter approach is represented at the Al
lab by David Luckham and his work on the
PASCAL program verification system [Section
2.4.1].

12 ARTIFICIAL INTELLIGENCE PROJECT

Fredrichv o n Henke rewrote the LCF [9)Mario Aiello, Richard Weyhrauch,

program and expanded it to Include an Checking Proofs in the

axiomatization of the type-free logic originally Metamathematics of First Order Logic,

devised by Dana Scott, Robin Milner and Stanford A. I. Memo AIM-222, October

Richard Weyhrauch. In addition, von Henke 1974.

used the type-free logic to study the

functionals definable over data structures (10) Richard W. Weyhrauch, Arthur J.

which have recursive definitions. Thomas, FOL: A Proof Checker for First-

order Logic, Stanford A. I. Memo
Bibliography AIM-235, June 1974.

[1] Ashcroft, Edward, Zohar Manna, Amit [11] Luigia Aiello, Richard W. Weyhrauch,
Pnueli, Decidable Properties of Monodic LCFsmall: an Implementation of LCF,
Functional Schemas,J. ACM, July 1973. Stanford A. I. Memo AIM-241, August

1974.

(2] Igarashi, S, R. L. London, D. C. Luckham,
Interactive Program Verification: A
Logical Systemand its Implementation,
Actalnformatica, (to-appear).
2.4 Heuristic Programming

(3] Katz, Shmuel, Zohar Manna, A Ifeuristic

Approach to Program Verification, Heuristic programming techniques are being
Proceedings of the Third International applied to theorem proving and automatic
Joint Conference on Artificial intelligence, programming problems.

Stanford University, August 1973.
2.4.1 Theorem Proving

(4] Manna, Zohar, Program Schemas, in

Currents in the Theory of Computing (A. A group headed by David Luckham has
V. Aho, Ed.), Prentice-Hall, Englewood directed their recent research toward the
Cliffs, N. J., 1973. application of mathematical theorem proving
in the area of program verification. There are
(5] Manna, Zohar, Stephen Ness, Jean now have two theorem provers:
Vuillemin, I nductive Methods for (1) A general proof program that has been
Proving Properties of Programs, Comm. developed for research in different areas
ACM, August 1973. of mathematical problems. This is based
on the Resolution principle and rules for
(6] Manna, Zohar, Introduction to equality. It contains a wide selection of
Mathematical Theory of Computation, proof search strategies, and incorporates
McGraw-Hill, New York, 19'74. an interactive user language for guiding
proofs and selecting strategies. It can be
(7] Jean Etienne Vuillemin, Proof Techniques used either as a theorem prover or as a
for Recursive Programs, Thesis; PA.D. in proof checker. There is a facility for an
Computer Science, Stanford A. 1. Memo automatic selection of search strategies
AIM -2 18, October 1973. based on an analysis of the problem, so
that prior knowledge of theorem proving
[8]LuigiaAiello,Mario Aiello, Richard techniques on the part of the user is
Weyhrauch, The Semantics of PASCAL unnecessary. We summarize recent
in LCF, Stanford A. I. Memo AIM-221, developments with this program below.

August 1974. (2) A fast special purpose prover (called the

2.4 Hrurirtic Programming

Simplifier) designed specifically fot
program verification. This program
makes use of documentation submitted
with the program to reduce the
complexity of logical verification
conditions (the truth of these conditions
imply the correctness of the program).
Originally, this program was Intended as
a preprocessor for the general theorem
prover. However, it includes a limited
theorem-proving capability aimed at
eliminating the “easy work” and this has
turned out tn experiments to be a
powerful component of the verification
system (see below).

A user’s manual for the general theorem
prover is available [1); and publications
[2,3,4,5] deal with nteractive applications o f
this program to mathematics and information
retrieval. Recent experiments mnusing the
prover to obtain new characterizations o f
varieties of Groups and to check tedrous
proofs in Euclidean Geometry are given in [6).
A primitive “HUNCH” language has been
programmed by J. Allen. This enables the
uset to describe complex proof search
procedures in which the strategies may vary
during the search for a proof. This language
1s currently being extended to permit outlines
of proofs to be described in a natural way.
We regard this as a necessary development for
moredifficultapplications in mathematics.

During the last year the prover has been used
to provide the automatic deduction capability
for the PASCAL program verification system
(7).In particular, J. Morales has made an
extensive study of the verification of sorting
algorithms from first principles (including, for
example, SIFTUP[8)BUBBLE SORT (9],
and INSERTION SORT [10)) and is working
on modifications of the HUNCH language to
aidin these problems.

T h e simplifier is a fast theorem prover
incorporated into the program verification
system for PASCAL programs [11}. The

verification system as originally described in

13

[7), has been extended to permit the user to
submit ~ axiomatic descriptions o f data
structures and specifications o f (possibly
uriwritten) subroutines with the program to be
verified. The simplifier uses these
documentation statements either as algebraic
simplification rules or as logical goal reduction
rules in a depth first proof search. A
methodology of using the verification system to
debug ad verify real life programs depending
on nonstandard data structures is being
developed [12]. A user’s manual for this
system is available [13], and experiments using
the Simplifier to verify sorting and pattern
matching programs on the basis of user-
defined concepts are reported in[12,141. A
version of this system for PL/1 (including the
data type POINTER) is being programmed.

Further developments and applications of
heuristic theorem proving are described in the
section on Automatic Programming (c.f.
Luckham and Buchanan), and an ambitious
proof checking system for higher order logic
has been developed by R.W. Weyhrauch (see
Section on Mathematical Theory o f
Computation).

Bibliography

(1) Allen, J.R., Preliminary Users Manual for
an Interactive Theorem-Prover, Stanford
Artificial Intelligence Laboratory
Operating Note SAILON-73.

(2] John Allen, David Luckham,An
Interactive Theorem-proving Program,
Proc. Fifth International Machine
IntelligenceWorkshop, Edinburgh
University Press, Edinburgh, 1970.

(3] Richard B. Kieburtz and David
Luckham, Compatibility and Complexity
of Refinements of the Resolution
Principle, SIAM J.Comput., Vol. 1, No.
4, December 1972.

14

(4] David Luckham, Refinement Theorems in
Resolution Theory, Symposiumon
Automatic Demonstration, Springer-Verlag
Lecture Notes in Mathematics No. 125,
Berlin, 1970.

[5] David Luckham, Nils J. Nilsson,
Extracting Information from Resolution
Proof Trees, Artificial Intelligence, Vol. 2,
No. 1, Spring 1971.

(6] Jorge J. Morales, Interactive Theorem
Proving, Proc. ACM National Conference,
August 1973; also TheoremProving in
Group Theory and Tarski’'s Geometry,
forthcomrng A.I. Memo.

[7]1garashi, S, London, R., Luckham, D.,
Automatic Program Verification |,
Logical Basis and Its Implementation,
Stanford A. I. Memo AIM-200, May 1973;
to appear inActa Informatica.

(8] Floyd, R.W., Algorithm 245, TREESORT
3, Comm.ACM, June 1970.

[9] Knuth, D.E., The Art of Computer
Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, Reading,
Mass., 1973.

(10] Pratt, V.R., Shellsortand Sorting
Networks, Ph.D. Thesis in Comp. Sci.,
Stanford Univ., February 1972.

[1 1] N. Wirth, The Programming Language
PASCAL, ACT Alnformatica, I11., 1971.

[12]F. von Henke, D. Luckham, A
Methodology for Verifying Programs,
A.l. Memo, forthcoming (submitted to the
1975 International Conference on Reliable
Software).

[13] N. Suzuki, Short Users Manual for the
Stanford Pascal Program Verifier
A.l.Lab. operating note (forthcoming).

ARTIFICIAL INTELLIGENCE PROJECT

(14] N. Suzuki, Verifying Programs by
Algebraic and Logical Reduction, A.l
Memo, forthcoming (submitted to the 1975
International Conference on Reliable

. Software).

2.4.2 Automatic Programming

Research in automatic programming has
progressed on several fronts, summarized
below.

Automatic ProgramGeneration

A heuristic theorem proving system for a
Logic of Programs due to Hoare [1] forms the
basis for a successful automatic programming
system that has been developed over the past
two years. This is an experimental system for
automatically generating simple kinds of
programs. The programs constructed are
expressed in a subset of ALGOL containing
assignments, function calls, conditional
statements, while loops, and non-recursive
procedure calls. The input to the system is a
programming environment consisting of
primitive programs, programming methods for
writing loops, and logical facts. The input is
in a language similar to the axiomatic
language of [1]. The system has been used to
generate programs for symbolic manipulation,
robot control, every day planning, and
computing arithmetical functions.

Two papers concerning the theory and
applications of the automatic programming
system have been written [2, 31. Applications
of the system to generatrng assembly and
repair procedures within the HAND
CONTROL language [5] for simple
machinery are described in[2]. Report [2]
presents a full overview of the system with
many examples. Details of the implementation
are in Buchanan’s thesis [4] The loop
construction and program optimization
methods have been extended by John Allen
and more ambitious applications in
programming and mechanical assembly are
being tackled.

2.4 Heuristic Programming

Automatic Selection of Data Structures

A system has been developed which, given an
algorithm expressed in terms of high-level
information structures such as sets, ordered
sets, and relations, automatically chooses
efficient representations and produces a new
program that uses these representations.
Representations are picked from a fixed
library of low-level data structures including
linked-lists, binary trees and hash tables. The
representations are chosen by attempting to
mintmize the predicted space-time integral of
the user’s program execution.

Predictions are based upon statistics of
information structure use provideddirectly by
the user and collected by monitoring
executions of the user program using default
representations for the high-level structures.
In performance tests, this system has exhibited
behavior superior to human programmers,
and 1s at the stage where 1t could be
Implemented 1t a very high level language,
like SAIL. This work is reported in Jim
Low’s thesis[6].

Program Understanding Systems

Progress has also been made in the design of
systems which can be said to have some
“program understanding” ability.In our case,
the primary evidence for such ability lies in
the capability to synthesize programs, either
automatically or semi-automatically, but such a
capability alone is insufficient for
understanding: the line of reasoning which the
system follows during the synthesis process
must = also support the claim of
"understanding”, and we feel that most of our
systems behave well n this regard.

One experimental system used its knowledge
base of "programming facts” to synthesize
(among others) programs which interchange
elements, perform a 3-element non-recursive
sort, and find the integer square root, basing
choices at decision points on user responses to
questions posed by the system. Another

experimental system can synthesize programs
from example input/output pairs, and has
written about 20 simple list-processing
functions.

These experiments have led us to several
preliminary conclusions and to a view that two
of the major research areas in program
understanding systems are the exploration of
various manners of program specification, and
the codification of programming knowledge.

Looking at the two experimental systems
mentioned above, we see two different methods
of specifying the desired program: example
input/output pairs and user responses to
questions from the system. There seem to be
many other ways in which the desired
program could be specified, ranging from very
formal to very informal. A unifying paradigm
would seem to be a kind of dialogue between
the user and the system. In such a dialogue
any of these methods (or even several of them)
might be employed, depending on suitability
for the program, and preferences of the user.
Work is currently progressing on various
methods of modeling and conducting such
dialogues.

Our experimental systems and numerous hand
simulations of program understanding systems
indicate that satisfactory behavior can only be
expected when the system contains a large
body of knowledge. For the understanding of
programs in a given domain, there is
considerable domain-specific ~ knowledge.
Additionally, there seems to be a large body of
“pure” programming knowledge which is
relatively domain-independent. Much of our
work is aimed at isolating, codifying, and
representing this knowledge.

Our early experimental systems as well as
discussions of conclusions and future plans are
reported in [7) and in papers by Green and
Barstow, and by Shaw, Swartout, and Green,
which are in preparation.

16

Bibliography

(1] C.A.R. Hoare, An Axiomatic Approach
to Computer Programming, Comm.ACM,
October 1969.

(2] David Luckham, Jack Buchanan,
' Automatic Generation of Programs
Containing Conditional Statements, Proc.
A.LS.B. Summer Conference, Sussex,
England, sy 1974.

[3] Jack Buchanan, David Luckham,On
Automating the Construction of
Programs, Stanford A. 1. Memo AIM-236,
May 1974, (submitted to the JACM).

(4] Jack Buchanan, A Study in Automatic
Program miNg, PAD T hesis in Computer
Science, Stanford A. I. Memo AIM-245,
September 1974.

[5] R. Bolles, L. Paul, The Use of Sensory
Feedback in Programmable Assembly
Systems, Stanford A. I. Memo AIM-220,
October 1 973.

(6] Low, Jim,Automatic Coding: Choice of
Data St ructures, PA.D. Thesis in Computer
Science, Stanford A. 1. Memo AIM-242,
(forthcoming).

[7] Green, Cordell, R.J. Waldinger, DavidR.

. Barstow, Robert Elschlager, Douglas B.
Lenat,Brian P. McCune, David E. Shaw,
Lours I. Steinberg, Progress Report on
Program-Understanding Systems,
Stanford A. I. Memo AIM-240,
(forthcoming).

(8] Manna, Zohar, Automatic Programming,
Proceedings of the Third International
Joint Conference on Artificial Intelligence,

Stanford University, August 1973.

ARTIFICIAL INTELLIGENCE PROJECT

2.5 Natural Language

Research continued on three aspects of natural

language:

. 1) speech recognition, which typically deals
with acoustic waveforms,

2) natural language understanding, which
generally starts with text, and

3) higher mental functions, which deals with
psychiatric problems manifested through
natural language.

A lack of funding support for speech
recognition has resulted in a progressive
reduction of that activity.

2.5.1 Speech Recognition

During the past year the focus of speech
recognition research at Stanford has changed
from machine learning based phoneme
recognition [1] to linguistically structured
acoustic-phonetic ~ processing ~ [2]. The
philosophy of the research has been to attempt
to extract a maximum of linguistic
information from the speech signal. This led
to using waveform type segmentation, pitch
synchronous analysis o f voiced regions,
waveform level steady state detectors and
syllable detectors. The major effort has gone
into developing algorithms which
automatically extract the linguistic information
at each level; waveform and short time
frequency spectra.

Neil Miller has developed a semantic pitch
detector which used the expected pattern of
excitation and exponential decay of the
acoustic signal during voicing. The purpose
of the earliest version of the pitch detector was
to mark the beginning of each pitch period
during voicing, making a voicing decision
along the way. Various versions of this
program find the pitch in less than real time

(4]

Waveform level acoustic segmentation
algorithms ~ were developed by Jim
Hieronymus [3). On the sub phonemic level,

2.5 Natural Language

areas of steady frequency spectra where
continuant phonemes most closely approach
their target frequency values are found by
pitch synchronous waveform comparisons. A
process for segmentation into continuants and
transitions was developed based on a model of
the way a human visually compares
waveforms. An algorithm for waveform type
segmentation into voiced, nasalized vowel,
voiced fricative, unvoiced fricative, and silence
was developed based on amplitudes, integrals
under the acoustic peaks in a pitch period and
Zero crossings.

Pitch synchronous short time frequency
spectra were found to contain clearly delimited
formants, so that linear predictive modeling of
the spectrum was not necessary in order to
readily find the formants. In addition, pitch
synchronous analysis preserves the maximum
information ~ about formant transitions.
Transrtions in and out of stop consonants are
clearly seen. A formant extractron algorithm
was developed by Arthur Samuel to pick the
formant peaks from the pitch sychronous FFT
spectra. Visual comparisons with the output
of the M.ILT. Lincoln Labs formant tracker
and sonograms have been made. Generally
the formant tracking is as good as or better
than much more complicated tracking
programs using LPC data. Pitch synchronous
analysis also preserves the true formant
bandwidths, which may be useful in nasal
‘detection.

Moorer has developed a very efficient scheme
for performing pitch period analysis [5].

A system for displayrng speech waveforms,
their frequency spectra, and for hearing the
utterance being examined has been developed.
Hard copy plots can be made from the display
program using the Xerox Graphics Printer.

After April 1974, the group worked on
refin 1 ng the pitch detector, syllable detection
and rate of speech measures based on syllable
counts. A plan to do some research in contest
dependent vowel recognition was formulated,

since this is a significant problem area in
present speech recognition systems.

This work is continuing at a very low level for
lack of funding. Several articles are in
preparation from the research work done in
1973-74.

Bibliography

(1] Thosar, Ravindra B., Recognition of
Continuous Speech: Segmentationand
Classification using Signature Table
Adaptation, Stanford A. I. Memo
AIM-2 13, September 1973.

(2] Hieronymus, J. L., N. J. Miller, A. L.
Samuel, The Amanuensis Speech
Recognition System, Proc. IEEE
Symposium on Speech Recognition, April
1974

(3] Hieronymus, J. L., Pitch Synchronous
Acoustic Segmentation, Proc./EEE
Symposium on Speech Recognition, April
1974.

(4] Miller, N. J., Pitch Detection by Data
Reduction,Proc. IEEE Symposium on
Speech Recognition, April 1974.

(5] Moorer, James A., The OptimumComb
Method of Pitch Period Analysis of
Continuous Speech, /[EEE Trans.
Acoustics, Speech, and Signal Processing,
Vol. ASSP-22, No. 5, October 1974.

2.5.2 Natural Language Understanding

This was a transitional year for our program
of research in natural language. Roger
Schank, who previously directed some of the
work, was on leave at the Instituto per gli
Studi Semantici e Cognitivi, in Switzerland.
He continued his research into conceptual
dependency theory for natural language
understanding at the institute [2]. His work,
along with that of Chris Riesbeck, Neil
Goldman, and Charles Rieger, led to the
completion of the MARGIE system [1].

18

One aspect of this is reported in Rieger's
thesis [11], which develops a memory
formalism as a basis for examining the
inferential processes by which comprehension
occurs. Then, the notion of inference space 1S
presented, a n d sixteen classes o f conceptual
inference and their implementationin the
computer model are examined, emphasizing
the contribution of each class to the total
problem of understanding. The idea of points
of contact of Information structures in
inference space 1s explored. A point of contact
occurs when an inferred unit of meaning from
0 n e starting point within one utterance’s
meaning graph either confirms (matches) or
contradicts an inferred unit of meaning from
another point within the graph, or from
within the graph of ansether utterance.

The work of the other members of the group
will be published in the coming year,
including a book edited by Schank,
summarizing research in conceptual
dependency.

Yorick Wilks continued his work on machine
translation [2, 4, 5 6, 7, 8 9, 10). In
particular, he studied the way in which a
Preference Semantics system for natural
language analysis and generation tackles a
difficult class of anaphoric inference problems
(finding the correct referent for an English
pronoun in context). The method employed
" converts all available knowledge to a canonical
template form and endeavors to create chains
of non-deductive Inferences from the
unknowns to the possible referents.

Annette Herskovits worked on the problem of
generating French from a semantic
representation [13). She concentrated on the
second phase of analysis, which binds
templates together into a higher level semantic
block corresponding to an English paragraph,
and which, in operation, Interlocks with the
French generation procedure. French
sentences are generated, by the recursive
evaluation of procedural generation patterns
called stereotypes. The stereotypes are

ARTIFICIAL INTELLIGENCE PROJECT

semantically context sensitive, are attached to
each sense of English words and keywords
and are carried into the representation by the
analysis procedure.

In addition, members of the translation group
entered into discussions with others in the
laboratory in a series of conversations dealing
with some of the issues connecting artificial
Intelligence and philosophy [141. The major
topics included the question of what kind of
theory of meaning would be involved in a
successful natural language understanding
program, and the nature of models in Al
research.

Terry Winograd spent the year at Stanford as
avisitor from MIT, and continued his work
on natural language understanding and its
relationship to representation theory. He
published a number of papers outlining his
theories [15, 16, 17, 18, 20] and an
introduction to artificial intelligence and the
problems of natural language [19]. He gave a
number of talks, including a lecture series at
the Electrotechnical Laboratory in Tokyo, the
Tutorial on Natural Language at the
International Joint Conference on Artificial
Intelligence (Palo Alto, August 1973), an
invited lecture at the ACM SIGPLAN-SIGIR
interface meeting (Washington D.C.,
November, 1973), and “A Computer Scientist
Looks at Memory”, a part of Sigma Xi
Lecture Series (Palo Alto, February 1974).

Bibliography

[1] Schank, R oger C., Neil Goldman, Charles
J. Rieger IIl, Chris Riesbeck, MARGIE:
Memory, Analysis, Response Generation
and Inference on English, Proceedings of
theT hird International Joint Conference
on Artificial Intelligence, Stanford
University, August 1973.

(2] Schank, Roger C., Kenneth Colby (eds),
Computer Models of Thought and
Language, W. H. Freeman, San Francisco,
1973.

2.5 Natural Language

[3] Wilks, Yorick, The Stanford Machine
Translation and Understanding Project,
in Rustin (ed.) Natural Language
Processing, New York, 1973.

(4] Wilks, Yorlck, Understanding Without
Proofs, Proceedings of the Third
International Joint Conference on Artificial
Intelligence, Stanford University, August
1973.

[5) Wilks, Yorlck, Annette Herskovits, An
Intelligent Analyser and Generator o f
Natural Language, Proc.int.Conf. on
Computational Linguistics, P1sa, 1 taly,
Proceedings of the Third International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

(6] Wilks, Yorick, The Computer Analysis of
Philosophical Arguments, C/IRPHO, Vol.
1, No. 1, September 1973

[7) Wilks, Yorlck, An Artificial Intelligence
Approach to Machine Translation, in
Schank and Colby (eds.), Computer Models
of T hought anti Language, W. H. Freeman,
San Francisco, 1973.

[8] Wilks, Yorrck, One Small Head -- Modecls
and TheoriesinLinguistics, Foundations
of Language, Vol. 10, No. 1, January 1974.

E9]Wilks, Yorlck, Preference Semantics, E.
Keenan (ed.), Proc. 1973 Colloguium on
Formal Sonuntics of Natural Language,
Cambridge, U.K., 1974.

[10] Wilks, Y., Machine Translation,in
Current Trends in the Language Sciences,
T.A. Sebeok, (ed.), forthcoming.

[11] Rieger, Charles J., Conceptual Memory:
A Theory and Computer Program for
Processing the Meaning Content of
Natural Language Utterances, Stanford
A. 1. Memo AIM-233, June 1974.

19

(12) Wilks, Yorick, Natural Larrguage
Inference, Stanford A. I. Memo AIM-2 11,
September 1973.

[13)Herskovits, Annette, The Generation of
French from a Semantic Representation,
Stanford A. I. Memo AIM-212, September
1973.

[143 Anderson, D. B., T. O.Binford, A.].
Thomas, R. W. Weyhrauch, Y. A. Wilks,
After Leibniz Discussions on
Philosophy and Artificial Intelligence,
Stanford A. I. Memo AIM-229, April 1974.

[15] Winograd, Terry, A Process Model of
Language Understanding, in Schank and
Colby (eds.), Computer Models of Thought
and Language, W. H. Freeman, San
Francisco, 1973.

[16]) Winograd, Terry, The Processes of
Language Understanding in Benthall,
(ed.), The Limits of Human Nature, Allen
Lane, London, 1973.

(17 Winograd, Terry, Language and the
Nature of Intelligence, in C.J. Dalenoort
(ed.), Process Models for Psychology,
Rotterdam Univ. Press. 1973

(18] Winograd, Terry, Breaking the
Complexity Barrier (again), Proc.
SIGPLAN-SIGIR Interface Meeting, 1973.

(19] Winograd, Terry, Artificial Intelligence
- When Will Computers Understand
People?, Psychol ogy Today, May 1974.

(20] Winograd, Terry, Parsing Natural
Language via Recursive Transition Net,
in Yeh (ed.) Applied Computation Theory,
Prentice-Hall, 1974.

20

2.5.3 Higher Mental Functions

The Higher Mental Functions Project is

directed by Kenneth Mark Colby and is .

supported by the National Institute Of Mental
Health. The overall objective of the project
are to develop computer models for problems
in psychiatry.

One model is a simulation of paranoid
thought processes (PARRY) which can be
interviewed using unrestricted natural
language input. Another involves a computer-
aided treatment for nonspeaking autistic
children.

Bibliography

[1]Schank, R.C., Colby, KM. (eds.), Computer
Models of Thought and Language, W.H.
Freeman and Co., San Francisco,
California, 1973.

(2] Colby, K.M. Artificial Paranoia, Pergamon
Press, N.Y., 1974.

(3] Enea, H. and Colby, K.M.Idiolectic
Language-Analysis for Understanding
Doctor-Patient Dialogues, Proc. Third
International joint Conference on Artificial
Intelligence, Stanford University, August
1973.

-[4] Colby, K.M. and Parkison, R.C. Pattern-

matchingrules for the Recognition of
Natural Language Dialogue Expressions,
American Journal of Computational
Linguistics, 1,1974.

(5] Hilf, Franklin, Use of Computer
Assistance inEnhancing Dialog Based
Social Welfare, Public Health, and
Educational Services inDeveloping
Couiii t ries, Proc. 2nd Jerusalem Conf. on
Info. Technology, July 1974.

(6] Wilks, Y. Semantic Procedures and
Information, in Studies in the
Foundations of Communication, R. Posner
(ed.), Springer, Berlin, forthcoming.

ARTIFICIAL INTELLIGENCE PROJECT

[7] Colby, K.M. and Kraemer, H. Objective
Measurement of Nonspeaking Children’s
Interactions with a Computer Controlled
Program for the Stimulation of
Language Development, (in press 1974).

2.6 Programming Languages

We continue to find it profitable to invest a
portion of our effort in the development of
programming languages and related facilities.
We have already discussed the development of
“HAL”, the advanced “hand language” for
robotics research [Section 2.11. We expect that
work on automatic programming [Section
2.4.2] will greatly increase the power of
programming, though such systems are not
very practical yet.

The languages LISP [6,7,8), FAIL [10], and
SAIL [11] carry the bulk of the programming
workload here and at a number of other PDP-
10 installations. We have continued to make
modest improvements 1n these systems, which
we originated.

The Higher Mental Functions group, under
NIMH sponsorship, has been developing a
pattern-directed ~ extensible language called
LISP 70 [9]

Professor Hoare spent a sabbatical here,
continuing to develop his ideas on structured
programming and related concepts [2,3,4].

Swinehart completed a dissertation on an
Interactive programming system that controls
multiple processes [5).

Bibliography
(1] Feldman, Jerome A., James R. Low,

Commenton Brent's Scatter Storage
Algorithm, Comm. ACM, November 1973.

2.6 Programming Language.5

[2]Hoare, C.A R. Parallel Programming:an
Axiomatic Approach, Stanford A.],
Memo AIM-219, October 1979.

[3]Hoare, C.A.R., Recursive Data Structures,
Stanford A. . Memo AIM-223, December
1973.

[4]Hoare, C.A.R., HintsonProgramming
Language Design, Stanford A. I. Memo
A1M -224, December 1973.

{5] Daniel C. Swinehart, COPILOT: A
Multiple Process Approach to Interactive
Programming Systems, PA.D.T hesis in
Computer Science, Stanford A. I. Memo
Al M-230, August 1974.

(6] Quam, Lynn, Whitfield Diffie, Stanford
LISP 1.6 Manual, Stanford A. 1. Lab.
Operating Note SAJLON-28.7, 1973.

{73 Smith, David C., MLISP?2, Stanford A. L
Memo AIM-195, indiskfile:
MLISP2[AIM,DOC]), May 1973.

(8] Smith, DC. and Enea, H. Backtracking
inMLISP2, Proc. Third International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

[9] Tesler, L.C., Enea, H., and Smith, D.C.
The LISP70 Pattern Matching System,
Proc. Third International joint Conference
on Artificial Intelligence, Stanford
University, August 1973.

[IO] F.H.G. Wright II, R. E. Corm, FAIL,
Stanford A. I. Memo AIM-226, April 1974,
in diskfile: FAIL.REG{AIM,DOC], update
in FAILUPD[AIM,DOCI].

{11] VanLehn, Kurt, (ed.),SAIL User
Manual, Stanford A. 1. Memo AIM-204,
July 1979; in diskfile:
SAIL.KVL[AIM,DOC], update in
SAIL.UPD[AIM,DOC]

21

2.7 Computer Facilities

Our primary computer facility continues to be
PDP-10 (KA-10 processor) with 68 display
terminals online. It a rather efficient system in
that it can gracefully carry aload of forty-
some sizable Jobs. Even so, it is chronically
overloaded by the local demand.

2.7.1 Hardware

In late 1973 to early 1974, we received the
components of a new realtime system, namely
a PDP-11/4b processor, an SPS-4 1 processor,
and a 192K:16 bit Intel MOS memory. This
subsystem is connected to the PDP-10 and is
being developed mainly for computer vision
and manipulator control.

Late in 1973, we installed an audio switch that
connects any of 16 audio sources to any of 64
speakers on display terminals. This permits
general audio responses from the computer
and also supplies sound to go with television
images that are available on the video switch.
The cost of the audio switch was kept low by
using digital gates for switching. The audio
signal is encoded as a pulse-width modulated
square wave at a frequency of about 100
KHz.

In December 1973 we received a BBN Pager
that had become surplus at NASA-Ames and
connected it to our KA- 10 processor. System
changes to exploit the pager are under
development.

We replaced our six IBM 3330 disk drives
with four double density drives in June 1974.
This increases our file system capacity to 136
million words but reduces the monthly lease
costs slightly.

22

2.7.2 Software

Generally, recent changes in the timesharing
monitor were made only to accomodate
hardware changes. Documentation was greatly
improved by the new monitor command
manual [4] and program interface manual [2].

PUB, the document compiler [I], had a few
bells and whistles added (mostly by Larry
Tesler, who 1s now at Xerox PARC) and was
used to produce this report.

The online newswire system called APE has
been superceded by NS [3), which has a
number of new capabilities and accesses both
Associated Press and New York Times
newswires.

Our display-or-tented text editor "E" had a few
features added, and much improved
documentation [5]. Though 1tis not complete,
it still appears to be the world’s best text
editor.

Baumgart Improved his geometric editor [6],
which facilitates the interactive design of
three-dimensional objects and produces
various graphical and photographic
representations of them.

Our interactive drawing program for digital
logic design [7] continues in use at MIT,

- Digital Equipment Corporation, Carnegie-

Mellon University, and here.
Bibliography

[1} Tesler, Larry, PUB -- The Document
Compiler, Stanford A. I. Lab. Operating
Note SAILON-70, September 1972; in
dsikfile: PU B.TES[S,DOC), supplement in
PUBSUM.LES[UP,DOCI].

[2] Frost, M artin, UUO Manual, Stanford A.
I. Lab. Operating Note SAILON-55.3,
December 1973; in diskfile:
UUO.ME[S,DOC), update 1n
UUO.UPD[S,DOC].

ARTIFICIAL INTELLIGENCE PROJECT

(3] Frost, Martin,Reading the Wireservice
News, Stanford A. I. Lab. Operating Note
SAILON-72.1, n diskfile: NS.M E[S,DOC],
September 1974.

(4] Harvey, Brian, Monitor Command
Manual, Stanford A. I. Lab. Operating
Note SAILON-54.4, September 1974; in
diskfile: MONCOM_.BHI[S,DOC], update
in MONCOM.UPDI[S,DOC].

[5) Samuel, Arthur, TEACH, in diskfile:
TEACH{UP,DOC], 1974.

(6] Baumgart, B.C., GEOMED, Stanford A. I.
Memo AIM-232, May 1974.

(7] Helliwell, Dick, Stanford University
Drawing System, in diskfile:
SUDS.RPH[UP,DOC], April 1974.

3. HEURISTIC PROGRAMMING
PROJECT

We begin this annual report by mentioning
one of the tasks that the ARPA IPT Office
asked one of the co-Principal Investigators,
Professor Feigenbaum, to perform during the
year: to write a paper explicating the current
goal structure of Artificial Intelligence as a
scientific and technological endeavor, and
suggesting a set of most fruitful lines of
advanced research and exploratory
development over the next five years. This
task was completed in November, 1973, and a
report prepared for ARPA (available as disk
file ALRPT[I,LEAF] at SU-AI on the ARPA
net).

That document is wused as the basis of
organizing the material contained in this
annual report, since portions of it provide an
excellent framework for the activities of this
project. Where quotation marks otherwise
unidentified are used, the quotation is from
the Feigenbaum report to ARPA (sometimes
slightly edited).

The project’s research activities continue to be
motivated by this global view of Al research:
“Artificial Intelligence research is that part of
Computer Science that 1s concerned with the
symbol-manipulation processes that produce
-intelligent action. By ‘intelligent action is
meant an act or decision that is goal-oriented,
arrived at by an understandable chain of
symbolic analysis and reasoning steps, and is
one 1n which knowledge of the world informs
and guides the reasoning.” The project aims at
creating computer programs that act as
“intelligent agents” to human problem solvers
in areas of scentific problem solving,
hypothesis induction, and theory formation;
diagnosis and treatment of program failures
(automatic debugging) and medical problems.
It aims also at a general understanding of the
information processes and structures needed to
carry out these types of intelligent agent
activity; and the construction of necessary

23

programming tools to facilitate the building of
such programs.

3.1 Knowledge-based Systems Design

“The Al field has come Increasingly to view as
ittt main line of endeavor: knowledge
representation and use, and an exploration of
understanding (how symbols inside a
computer, which are in themselves essentially
abstract and contentless, come to acquire a
meaning). *

“In this goal of AI research, there are foci
upon the encoding of knowledge about the
world in symbolic expressions so that this
knowledge can be manipulated by programs;
and the retrieval of these symbolic
expressions, as appropriate, in response to
demands of various tasks. This work has
sometimes been called ‘applied epistemology or

9 9

‘knowledge engineering’.

Two of the major subgoals of the work in
knowledge-based systems design constitute the
most important thematic lines of research in
this project. They are:

“A. How is the knowledge acquired, that is
needed for understanding and problem
solving, and how can it be most
effectively used?

B. How is knowledge of the world to be
represented symbolically in the memory
of a computer? What symbolic data
structures in memory make the retrieval
of this information in response to task
demands easy?”

Significant advances on these problems have
been made in the past year. They are detailed
below.

“The paradigm for this research is, very
generally sketched, as follows: a situation is to
be described or understood; a signal input is
to be interpreted; or a decision in aproblem-
solution path is to be made.

24

Example: The molecule structure-
generator must choose a chemical
functional group for the ‘active center’ of
the molecular structure it Is trying to
hypothesize, and the question is, ‘What
does the mass spectrum indicate is the
‘best guess’?”

Specialized collections of facts about the
various particular tas k domains, suitably
represented 1n the computer memory (call
these Experts) can recognize situations, analyze
situations, and make decisions or take actions
with in t h e domain of their specialized

knowledge.

Example: In Heuristic DENDRAL, the
Experts are those._ that know about
stability of organic molecules in general,
mass spectrometer fragmentation
processes in particular, nuclear magnetic
resonance phenomena, etc.”

“Within this paradigm lie a number of
important problems to which we have
add ressed ourselves:

a. Since 1t1s now widely recognized that
detailed specific knowledge of task
domains 1s necessary for power in
problem solving programs, how is this
knowledge to be Imparted to, or acquired
by, the programs?

a 1. By interaction between human expert
and program, made ever more
smooth by careful design of
interaction techniques, languages
‘tuned’ to the task domain, flexible
internal representations. Our work
on situation-action tableaus
(production systems) for flexibly
transmitting from expert to machine
details of a body of knowledge is an
example.

a2. ‘Custom-crafting’ the knowledge 1n a
field by the painstaking day-after-
day process of an Al scientist
working together with an expert in
another field, eliciting from that
expert the theories, facts, rules, and

HEURISTIC PROGRAMMING PROJECT

heuristics applicable to reasoning in
his field. This was the process by
which Heuristic DENDRAL's
‘Expert’ knowledge was built. We
have also used it in Al application
programs for treatment planning for
infectious disease using antibiotics,
and protein structure determination
using X-ray crystallography.

a3. By inductive inference done by
programs to extract facts,
regularities, and good heuristics
directly from naturally-occurring
data. This is obviously the path to
pursue if Al research is not to spend
all of its effort well into the 21st
Century, building knowledge-bases
in the various fields of human
endeavor in the custom-crafted
manner referred to above. The
most important effort in this area
has been the Meta-DENDRAL
program described below.”

3.2 The Meta-DENDRAL Program:
Knowledge Acquisition by Theory
Formation Processes

The research task mentioned above as (a3.)
has been studied in the context of a specific
inductive theory formation task, a task which
is ideally matched to the project’s research
history: inferring parts of the theory of mass
spectrometry of organic molecules (i.e., rules of
fragmentation of molecules) from instrument
data (i.e., mass spectra). This is an area in
which we have not only a vast amount of
empirical data, cooperative collaborating
experts 1in the area, and a considerable
understanding of the structure of knowledge
in the area; but also we have an operating
performance program capable of using
(thereby testing) the knowledge inferred. This
program is the Heuristic DENDRAL program,
developed previously wrth ARPA support
(and substantial NIH support).

3.2 The Mcta-DENDRAL Program

Compared to grammatical inference, sequence
extrapolation, o r other induction tasks,
scientific theory formation as a prototypical
task for knowledge acquisition, has received
little attention from workers in Artificial
Intelligence. This may be partly because
scientific theory formation is a relatively
complex task, characterized by noisy and
ambiguous data which must be organized
within Incomplete or controversial models of
the discipline. However, many task areas to
which AI techniques might be applied have
this character.

Meta-DENDRAL (MD) 1sa computer
program that formulates explanatory rules
(but not revolutionary reformulations o f
principles) to account for empirical data in
mass spectrometry, a branch of analytical
organic chemistry. The problem is one of
explaining the mass spectrometry (m.s.) data
from a collection of chemical compounds -- in
other words, of telling why the given
compounds produce the observed data in a
mass Spectrometer. The most recent
description of the Meta-DENDRAL theory
formation work 1s given w “Scientific Theory
Formation by Computer”, a paper presented to
the NATO Advanced Study Institute on
Computer Oriented Learning Processes
(Bonas, France, Aug. 26- Sept. 6, 1974). The
following summary is taken from that paper.

The rules of mass spectrometry are expressed
in texts, and represented in the program, as
conditional rules (also called “productions”).
T h e productions indicate what physical
changes (e.g., bond breakage) we can expect a
molecu le to undergo within the mass
spectrometer.

A discussion of our work on production
system representations of knowledge appears
later in this report.

The instances presented to the program are
pairs of the form <molecular structure> -
<mass spectrum>, i.e., pairs of known chemical
structures and corresponding empirical data

25

from mass spectrometry. A rule explains why
the mass spectrometer produces some data
points for a molecule of known structure. A
given molecule may undergo repeated
fragmentation in several possible ways, and we
want to find a collection of rules to explain the
whole mass spectrum.

The program is organized into four main
steps:

1) data selection

2) data interpretation

3) rule generation

4) rule modification.

3.2.1 Data Select ion

Knowing which data to examine and which to
ignore is an important part of science. The
world of experience is too varied and too
confusing for an unselective scientist to begin
finding and explaining regularities. Even
within a sharply constrained discipline,
experiments are chosen carefully so as to limit
the amount of data and their variety.
Typically one thinks of a scientist as starting
with a carefully selected set of data and
generating requests for new data. from new
experiments, after formulating tentative
hypotheses. Both the initialselection and the
additional requests are in the realm of data
selection.

The strategy behind data selection is to find a
small number of paradigm molecules - i.e.,
molecules that are likely to exhibit regularities
typical of the whole class. Rules formed from
these can be checked against other data in the
instance space.

3.2.2 Data Interpretationand
Summary: The INTSUM Program

Experimental data In science can be
interpreted under many different models.
Finding explanatory rules withinamocdel thus
forces one to interpret the data under that
model. For example, when one is looking for
biological rules within an evolutionary model,

26

the data (even as they are collected) are
interpreted in terms of continuity o f
properties, similarities of behavior, etc. The
rules (if any) suggested by the data are already
pre-formed in that the predicates and relations
used in the rules -- and often the logical form
itself -- are exactly those of the model.

The data Interpretation part of the MD
program (named INTSUM) describes the
instances selected by the data selection
program in terms of one model of mass
spectrometry. Thts redescription is necessary
for the reasons Just noted. Without it, rules
would be formed at the pattern recognition
level of statistical correlations between data
points and molecular features. Although rules
at this level are sometimes helpful, our intent
is to produce rules that begin to say something
about WHY the correlations should be
observed.

Four points are Interesting here because they
seem common to scientific rule formation tasks
but unusual for other induction tasks:

1) The fact that the presented Instances
need remnterpreting at all.

2) The ambiguity of the mterpretations.
The mapping from data points to
processes isa one-many mapping.
Sometimes a data point actually (or most
probably) results from multiple processes
compounding the same result. At other
times a data potnt is most probably the
result of only one process, even though
several processes are plaustble
explanations of it. And, at still other
times a data point 1s most probably a
“stray”, in the sense that it was produced
by an impurity in the sample or noise in
the Instrument, even though several
processes may be plausible explanations
of it. This ambiguity n the instances
makes the Induction task harder.

3) The strength of evidence associated wrth
processes. The data are not merely

HEURISTIC PROGRAMMING PROJECT

binary readings on masses of fragments.
(Most concept formation or grammatical
Inference programs use only a binary
separation of instances - “hit or miss",
although Winston’s program uses the
classifica tton o f “pear miss” to
advantage.) The strength of evidence
readings on m.s. data points can be used
to focus attention on just a few of the
many processes the program can
consider.

4) There is more than one rule to be
formed to explain the data. In the
presentation of instances, there is no
separation according to the rules to be
formed: Instances of many rules are
thrown together. The program must
separate them.

3.2.3 Rule Generation: The RULEGEN
Program

The collected observations of INTSUM, as
with Darwin’s carefully recorded observations,
constitute only the weakest sort of explanation.
After describing features and behavior, and
summarizing the descriptions, such a record
can only give a weak answer to the question,
“Why is this X an A?” The answer is roughly
of the form, “Because all X’s seem to be A’s."

The rule generation program, RULEGEN,
provides an additional level of explanation by
describing what attributes of the input
molecular graphs seem to “cause” the molecules
to behave 1n the observed way.

RULEGEN normally begins with the most
general class of rules: The bond (or bonds)
break regardless of their environment
(situation). The program successively
hypothesizes more specific classes of rules and
checks each class against the data. Likely
classes are expanded into specific rules for
which additional data checks are made. The
process terminates whenever (a) the more
specific classes fall the data checks, or (b)
individual rules fail the data checks. This
procedure is outltned below:

3.2 The Meta-DENDRAL Program

1. START WITH INITIAL CLASS OF
RULES

2. GENERATE NEXT MORE SPECIFIC
CLASS

3. SEE IF THE CLASS PASSES THE
FILTER
3A. IF NOT, STOP

4. ESPAND CLASS INTO INDIVIDUAL
RULES

5 EVALUATE RULES

6. PRUNE WITH REGARD TO
EVALUATION
6A. IF NO RULE REMAINS, STOP

7. FOR EACH REMAINING RULE,
WRITE OUT RULE AND DO 2 -7.

3.2.4 Rule Modification

While the programs described so far are
presently operational, the addition of a rule
modification phase is still under way. The
program for rule modification will duplicate
for 1ts own purposes the steps already
described: data selection, data interpretation
and rule generation. Data selection in this
case will be for the purpose of finding data
that can resolve questions about rules. Those
data, then, will be interpreted and rules
formed from them, as described above. The
results of rule generation on the new data will
then be used to modify the previous set of
rules. The data gathered in response to the
questions asked about the old rules will
determine, for example, whether those rules
should be made more specific or more general.
Rule modification opens interesting
possibilities for feedback in the system that
remain to be exploited.

The Meta-DENDRAL program is the
keystone of our study of automatic knowledge
acquisition. “Though the main thrust of Al
research is in the direction of knowledge-based
programs, the fundamental research support
for this thrust is currently thin. This is a
critical ‘bottleneck’ area of the science, since (as
was pointed out earlier)t is inconceivable
that the AI field will proceed from one
knowledge-based program to the next

27

painstakingly custom-crafting the
knowledge/expertise necessary for high levels
of performance by the programs.”

3.3 Systems for Semi-Automatic
Knowledge Acquisition by Experts

Previously we mentioned that one of the
modes of knowledge acquisition(a.2) in wide
use is Expert-Computer Scientist interaction.
Currently this mode is slow, painstaking, and
sometimes ineffective. Therefore, we have
been conducting research aimed at introducing
intelligent interaction into the process of
extracting and “debugging” knowledge from
Experts.

Knowledge acquisition is an Important
component of an intelligent system because a
complex knowledge base will almost certainly
have to change as the system is applied to new
problems. Gaps and errors in the knowledge
base will have to be considered. We have
recently designed a system that will provide an
expert with high level access to the knowledge
base of the system. (Work is in progress on
the implementation of these ideas.)

The specific task that is the base for this study
is a “diagnosis and therapy” advice system
developed by researchers and students of our
project, in collaboration with clinical
pharmacologists, under an NIH grant -- the
MYCIN system.

The knowledge modification and
augmentation system will have two entry-
points: (i) the expert supplying the knowledge
can enter the system during the course of a
consultation if something seems wrong, or (ii)
at the end of a session, the post-consultation
review mechanism automatically enters the
system to validate the program’s performance.

From the questions that the expert asks in
attempting to find the error (or perhaps as a

28

result of what he decides the error is) the
problem 1s classified according to one of the
error models. We may view this classification
scheme as stupidity, ignorance, incompetence,
and system errors. Thus there 1s either some
Incorrect rule in the current knowledge base,
some rule is missing, a ‘concept (predicate
function) is missing, or there is an error in the
control structure.

In the first case ‘diagnosis’ and ‘therapy
routines in the appropriate error model
attempt to discover and remedy the problem.
Heavy use 1s made of contextual information
(what subgoal was being traced, which
question the user found odd, etc.).

In the second case, theit_herapy’ is to invoke a
rule acquisition system. This consists of a rule
deciphering module and an incorporation
module. The former relies on domain and
contex t specific ~ knowledge to aid in
interpreting the expert’s newly offered rule.
The latter uses the current knowledge base of
rules and an understanding of the system’s
truth model to insure that the new rule is
consistent with those currently in the system.

While there appears to be little this system
will be able to do beyond recognizing the last
two types of errors, this can at least provide
the hooks by which future, more sophisticated
routines can be applied intelligently. In
addition, the incompetence case Is clearly
related to ignorance -- in the latter the system
lacks a rule it is capable of expressing, while
in the former it lacks the concept necessary for
even expressing the rule. Thus failure of the
ignorance model to handle the problem should
result in the suggestion to the incompetence
model that it may be able to recognize what’s
really wrong.

The error models are characterizations of the
types of errors in the knowledge base that we
expect the system might encounter. The
relevance function for each would take a look
at what was known about the current state of
the world to decide if it was relevant. The

HEURISTICPROGRAMMING PROJECT

model which found itself most relevant would
temporarily take control, using its diagnostic
routines to attempt to uncover the source of
the problem, and its therapeutic routines to
attempt to fix the problem. Thus it effectively
offersits advice on how to proceed by actually
taking control for atime.

The rule models used by the rule acquisition
system are slightly different in two ways. The
task here is to decipher the new rule which
the expert has typed in, and in this case the
models offer advice on what the content of the
new rule slikely to be, relying on contextual
information to hypothesize the type of the
incoming rule. Hence they do not directly take
control, but more passively offer advice about
what to expect. In addition, the large number
of rules currently in the system makes
conceivable the automatic generation of rule
models. By using a similarity metric to form
analogy sets, and then describing the
properties of the rules in the set in general
enough terms, we obtain a set of models on
which to base acquisition. The error models,
on the other hand, are both few enough, and
specialized enough to require creation by
hand.

3.4 Knowledge Acquisition and
Deployment: A New Al Application
to Scientific Hypothesis Formation

“We have felt for some time that it is
necessary to produce additional case-study
programs of hypothesis discovery and theory
formation (i.e., induction programs) in
domains of knowledge that are reasonably rich
and complex. It is essential for the science to
see some more examples that discover
regularities in empirical data, and generalize
over these to form sets of rules that can
explain the data and predict future states. It is
likely that only after more case-studies are
available will AI researchers be able to
organize, unify and refine their ideas

3.4 Knowledge Acquisition and Deployment

‘concerning computer-assisted induction o f

knowledge.”

In searching for new case-studies, the
Heuristic Programming Project has developed
criteria for a successful application, explored
several task domains, and has brought one
new application, discussed below, far enough
along to submit grant applications (to NSF
and NIH) for further research. Meanwhile,
other laboratories have made significant
progress 1n the design and implementation of
Al programs in this general area -- notably the
SOPHIE system for electronic troubleshooting
(BBN) and the HASP-Sonar work (see Section
3.7).

3.4.1 Background ..

Our choice of the protein crystallography
problem as a task domain in which to study
information processes of scientific problem
solving followed several informal discussions
with Professor Joseph Kraut and his
colleagues at UCSD, who were eager to
explore new computational techniques for
protein structure elucidation. They explained
to us how 3-dimensional structures of
crystallized protein molecules are Inferred
from x-ray and amino acid sequencing data.
It was clear from these discussions that, in
addition to the necessary but more or less
straightforward tasks of data reduction,
Fourier analysis and model refinement, there
was also a considerable amount of heuristic
data interpretation involved in structure
determination. The model builder, for
example, 1s often faced with a number of
possible substructures which are consistent
with an electron density map, and must base
his choice on “rules of thumb” as well as
principles of chemistry and geometry. The
task domain seemed well suited for the
application of heuristic programs which could
generate pausible hypotheses about a protein’s
structural elements and test these hypotheses
against the crystallographic data.

Professor Kraut suggested that our efforts

29

would yield a high payoff if we could
somehow eliminate any of the main
bottlenecks indetermining protein structures.
Amajor bottleneck is obtaining phase data,
which is required to construct an electron
density map of the molecule. These data are
usually obtained by the process of multiple
isomorphous replacement (MIR), in which
heavy atoms are implanted in the crystallized
molecule. The determination of many protein
structures has been delayed for months to
years because of the difficulty in obtaining
MIR data.

Kraut suggested that a way to eliminatethis
bottleneck is to use the parent protein data
only, in con junction with all the “non-
crystallographic” knowledge which the expert
would bring to bear on each specific problem.
For example, the “unknown” protemis often
one member of a family of similar proteins
having known characteristic ~ structural
features. We assume that one or more of
these features is present and test that
assumption agamnst the data. This is done
readily by first reducing the data to a function
of the three crystallographic space variables.
This function, the Patterson function, has a
simple physical interpretation, which facilitates
the verification process.

Havrng delineated the task domain, we
continued to work closely with our UCSD
colleagues, and developed a program, PSRCH,
whose main purpose is to test the feasibility of
inferring structure without phase information.
We have thus far applied the program to data
obtained from two proteins whose structures
are already known. In one case we searched
for a characteristic tetrahedral structure of
iron and sulfur in the protein called HIPIP,
by starting with its known relative coordinates
and looking for the orientation(s) an d
posittons in the unit cell which give the best
confirmation of the experimental data. The
search was successful; however, the task was
an easy one and we could only conclude that
the procedure might work on more subtle
cases. We then moved on to a slightly more

30

difficult case, searching for the position of the
heme structu rein we protein cytochrome C?.
(Incidentally, HIPIP and cytochrome C2 are
two proteins whose structures ~were first
discovered and reported on by the UCSD
group. There are currently only about three
dozen proteins whose complete, ie,tertiaty,
structures are known today.) Here, too, tt was
possible to find the orientation of the heme
group properly. The translation search
yielded several positions which were highly
confirmed by the data, including the correct
one.

At this potnt in our research we entered into
discussions with a member of the Computer
Applications to Research section of the
National Science Foundation, which led to a
proposal submission on May 31,1974 A
nearly identical proposal was also sent to the
NationalInstitutes of Health in September.
Extracts of the research plan, namely our
objectives and methods of procedures, are
given below.

Cotnputcr networking has been and will
continue to be an important component of our
collaborations with the UCSD group. Until
recently, we were using our program on the
IBM 270/158 at the RAND Corporation in
Santa Monicavia the ARPA network. The
UCSD group also has access to the RAND
Computation Center through their ARPA
network connection. We were thus able to
exercise the program jointly, peruse the stored
output on other files, or simply use the
network as a communication facility for rapid
interchange of ideas and results. Computations
have now been shifted to the new SUMEX
facility (a PDP-10I), located at the Stanford
Medical School. SUMEX 1s a national
resource sponsored by NIH for use in
applying Artificial Intelligence to problems of
biomedicalinterest. SUMEX 1s also accessible
to the UCSDgroup, as well as others, by a
network connection. SUM ES willprovide us
with computation only. Our ability to proceed
with the work will, of course, depend on the
continuation of support for the scientists who
are designing and Implementing the programs.

HEURISTIC PROGRAMMING PROJECT

3.4.2 Objectives

The objective of the research proposed here i
to apply problem solving techniques, which
have emerged from artificial Intelligence (Al)
research, to the well known “phase problem”
of x-ray crystallography, in order to determine
the three-dimensional structures of proteins.
The work 1s intended to be of practical as well
as theoretical value to both computer science
(particularly ~ AI research) and protein
crystallography. Viewed as an Al problem
our objectives will be:

1. To discover from expert protein
crystallographers the knowledge and
heuristics which could be used to infer
the tertiary structure of proteins from x-
ray crystallographic data, and to
formalize this knowledge as computer
data structures and heuristic procedures.

2. To discover a program organization and
a set of representations which will allow
the knowledge and the heuristics to
cooperate in making the search efficient,
i.e., generating plausible candidates in a
reasonable time.(This is a central theme
of current artificial intelligence research.)

3. To Implement the above in a system of
computer programs, the competence of
which will have a noticeable impact upon
the discipline of protein crystallography.

3.4.3 Methods of Procedure

Our task can be defined at two levels. At the
application level the goal is to assist protein
crystallographers in overcoming the phase
problem in x-ray crystallography. We propose
to do this by developing a computer program
which Infers plausible “first guess” structures,
in the absence of phase information, by
applying as much general and task-specific
knowledge as possible to constrain the search
for a structure consistent with the x-ray
intensity data.

3. 4 Knowledge Acquisition and Deployment

At the computer science level, our task is to
discoveraprogramorganizationanda set o f
representations which can effectively utilize a
large and disparate body of knowledge in
con junction with experimental data. The
program must allow the various facts,
procedures and heuristics, which the experts
themselves routinely employ, to cooperate in
making the search efficient, i.e., generating
plausible candidates in a reasonable time.

The problem of organizing and utilizing a
non-homogeneous body of knowledge, a
central problem in current Artificial
Intelligence research is particularly acute in
protein crystallography. Generally speaking,
we can divide our overall knowledge into
three categories: 1) rules and relationships, e,
knowledge and heuristics for which there are
no well-defined algorithmic procedures; 2)
rules and relationships expressed as
algorithmic proceclures; and 3) data. The
‘accompanying table shows some members of
each category:

KNOWLEDGE

- Amino Acid Sequence-structure correlation

- Symmetry Information
a) crystallographic
b) non-crystallographic

- Stereochemical constraints

- Mathematical relationships among structure
factors

" . When to use which procedures

PROCEDURES

- Patterson search

- Rotation Function

- Superposition

- Trial and Erro

- Anomalous dispersion Patterson
-Direct methods

DATA

- X-ray ntensities

-AminoAcid Sequence

- Other chemical data

- Coordinates of related molecules if
available

- Existence of prosthetic groups or cofactors

31

- Space group and cell dimensions

These varied sources of information are
expressed i an equally varied set of
representations. Knowledge about sequence-
structure correlations 1s expressedin terms of
amino acid sequences and macro-descriptions
of structures (alpha-helix, beta-sheet).
Symmetry relationships are usually defined by
rotation and translation operators applied to
coordinate vectors. Stereochemical constraints
are usually expressed in terms of standard
bond lengths and angles, allowed values for
the (phi, psi) dihedral angles, minimum
acceptable distances for non-bonded contacts.
Among the various procedures used to extract
information from the data we find that the
Patterson search technique works in vector
space, the rotation function in reciprocal space,
superposition methods in vector space and its
own superposition space, electron density
interpretation in direct space, and so forth.
The data as welt are comprised of tables and
lists defined in different domains.

We wishtobring as much knowledge to bear
on the problems as we have available, just as
a practicing proteincrystallographer would do.
Therefore, we must have the ability to take
information obtained by operating on the data
base with a particular procedure and
communicate it to another procedure even if
these two procedures work with different
representations of the world. We believe this
problem can be solved by careful system
design, as is discussed 1n the followrng section.

3.4.4 Overall design of the program

One approach to protein structure
determination would be to write a battery of
programs, each of which had a specific
capability -- a Patterson interpretation
program, a superposition program, etc. The
investigator would es amine the results from
one of these programs,decide what to do nest,
make appropriate transformations of the data
to conform with the nput requirements of the
next program, and submit the next job. This

32

process, althoush conceptually st aightfor w d,
has several drawbacks:

1) There is a great deal of manualshuttling
back and forth between programs, with
the concomitant task of re-representation
o fINpuL.

2) It 1s difficult to assess the value of each
program nadvancing toward a solution.

3) The ability of the individualprograms to
cooperateinan iterative tashionis
limited by the investigator'sstamina and
willingness to keep the iterations going.

4) The manual control of the sequence of
programs used Increases the probability
of errors in data transference.

5) Unless very careful records are kept, it will
be difficult to trace the reasoning process
which led to the solution.

6) As new heuristics are elicited from experts,
itmay be necessary to incorporate them
inseveraldifferent programs.

Another approach 1s to adopt the program
organization used nthe HEARSAY system
[1] where cooperating “experts” work in a
quasi-parallel fashion to build the hypothesis
toward a complete solution Figure?2 shows
how this program structure might look for out
application; it 1s essentially isomorphic to
figure 1 shown for the HEARSAY
organization. Instead of "recognizers” we have
substituted “analysts”, experts mapplyinga
specialized technique to the data at hand in
" order to propose and verify a partial structure.
At the left of the figure are well-established
pre-processingroutineswhich can reduce the
data and make the transformationsinto forms
that can be used by the analyst programs. Fot
HEARSAY's lexicon, w ¢ have substituted our
own dictionary o f superatoms, 1e, a
polyatomic structure which: sconsidered as a
unit. Examples are alpha helices, the amino
acid residues, heme group, and beta sheets.
The controller at the bottomof the figure
plays the same role as ROVER, the
recognition overlord in HEARSAY. The
controller can examine the list of current best
hypotheses and pass control to the appropriate
analyst for further synthesis of a structure ot
verification of an extant structure.

HEURISTIC PROGRAMMING PROJECT

Although the representations of knowledge
required by the various analysts may be
incompatible, they communicate through a

standardized representation of the hypotheses

which they can generate and verify. The
hypothesis may be thought of as a global data
base which communicates information between
the analysts, as shown schematically in the
figure. The hypothesis is a partial structure,
which may be represented by a list of atomic
coordinates plus a description of allowed and
forbiddenregions of occupancy of the unit
cell. We have not yet settled on a single
representation; 1t is currently under study.

The particular analysts shown in the figure
are only a representative subset of the full
panoply that can eventually be added. The
addition of a new expert to the system would
b e relatively straightforward. =~ The new
program could be written and tested
Independently, providing the designer adopts
the standard hypothesis representation. To
merge the analyst with the full system would
require adding new rules to the controller’s
scheduling heuristics. The controller is driven
by a table of situation-action rules, as in the
planning phase of Heuristic DENDRAL.

Although we have used the structure of the
HEARSAY program to guide the organization
of our protein structure inference program,
there willlikely be some significant differences
even at the schematic level shown in the two
figures. For example, not all analysts will
contain both an hypothesizer and a verifier.
Some analyticaltechniques are capable of one
or the other but not both. Also, the general
knowledge box shown at the top of figure 1
may contain subcategories of information
which are not compatible with all of the
underlying analysts. These changes should
not Interfere with the basicidea of building
an hypothesis by a set of cooperating
specialized procedures, under the coordination
of a rule-driven executive.

ueidoad UOTHBUTULO19(
SINIONAZG UTS30I 9Y3 UT S§3004d SOUDIBFUL 3ANIONILS dYG JO TTresdq ‘2 914

Illlnll..--_ - =1 \ ” N\
__ : Vu_ h% | T,\,\wx_s./\QU
e G X S v &
| |
Nf_. TN N AN B NETAERNA NN 7 TRNNTTTTY O BLESSSEXN
' 1 oaan ! h \ N _ Vs ﬁ Noagtioag
/ P JJ i /.M;L/./ m N N AT a.:l...,,/ - /, I)..\f()l).‘lc - SR . * _
{‘.....m,.....\\, H RN /xm NS NN AN w///r/. R _

e mﬁmngca> , g

AT TN SE SIS AL
e e Ry /_ i | ;x.eﬁak N wdizeqpos f“”. ﬁ
wto g q_s.m N 1 Vot w N .\O\HGO N\ Q.,.
/

v

\ Lo

N, r‘.\l

L——-—,—J
l/ Z
\--
G"I
<
U’)

] . AL NI ,T
- TATTT T A B NN XTI A N N N /
SN , N CN NN o RN / SOOI
o . M N / . RN \ SONON Y %
i /// 1 DN _/,//,_//// %M;i%mqg
,, . ,,// N . ./ . / N e:w:.";o o_ ? . "\ res npe »Q\Q N \ o ' N
AN) /,, N e *Q\Eo.uemh b . So%ﬁu:q.ﬁ,u \ ;@.ﬁqsﬁ\ur
R N / KO 549 m& W AR AR B NN /mﬁlﬂ\//‘
A zci_i svor[v]3R)|N < NS N / colL 17U M T N
, ey s A ug.«‘uxﬁ..m . i Hi M \ nm\\, h /, Nx:no..u?_ﬁﬁ/
:w}w ¢ ;_1 N . N N\ i/ X N\
‘e V\vd.._s.fwx\, \uaWU uan- // ..\n..x*.ﬁWQk\AmQ\Blw N XLN!N dwd ./ N \.Oﬂw! Hb— 3% /

. NN NN N N\
pop b | | S | O /// w/,_ A ////, SN
.”\sﬁnx\ outf . Sl AAL S .*.Iw..XnM:,\ \ // + - L\A/
sLTh 11 N RRRREY Voo ZICrTa)

\M,\wv\ab | \f‘ué:&i 3.\. o& usm L io.lu_,,,.(o“\ﬁ, \m\x:oh_/.
L A\ . NN RN N T

————— T ST s h ey w e o e $ ——e—

mmnx_‘\%x W.\:
\\AN, a\. *‘z&.x\ﬂ
0

dnprals \E.:_.LL.
w.:xo_.q_.v.:u&\ \Q,_\FQ
Vo1 TEW_ VR L{ k O
»\..\;\.._v\.\k.r@\
\ﬂ.\‘v.& ._QF»\CTM.
L T
v.ﬁ»&&@ | A‘i 49
Y S
gQ.\qu t@zn\/
:qﬁma:o\ww 4OA ..N;
v %:U
A0SSo00. x\\m\@
- \v
GJPGQ\ ?GM

\\t:o.i._fwu deﬁmkxm -f- 3 DIk N \,\.,OZM 70 T] w

¢
A

| LEXICON

\ v

nx { !TQSK

LANGUNGE YNT
DISCRIPTION ESCan?IONJ * iozscnxpr:cn ,

y Y Y

‘ ACOUSTIC - i ! SYNTRCTIC

! RCCOONIZCR ' | RECOCNIZCR
|

| i

[shanTIC
i RECOGHIZER

i

v

K

¢ v

oo mmmem e o o

i

SYNTACTIC [i|f| sennuTic |
RULES © | 7{ RULES | —
. : - — 1| CURRENTLY
{ SRS LI i ACCEPTED
IS L1 pARTIALLY |
.:J - P o | i |Rrecosmizec
— > HYPOTHESIZER|: :|HYPOTHESIZER| [IHYPOTHESIZER! : ! yrTgrAncE

T Do T E . T

, . 5\| ACOUSTIC
‘ \ T RuLEs
! PREPROCESSOR :

g
-
<

i
o =
-

e

Il thatals)
QLN n

gy e g

-

/

cemssese
ceveme

csecrssnccas

|
—} [HvpoTHES |

|
| :
| PARTIAL : 7 m v
I cvsner v H I HE v H) :
b SYnaaLic ' ¢ . . i :
| UTTERANCE : -y Pl ¢ - A : -
l. CZSCRIPTION ol P Lo |
; ‘4_j>——7e> VERIFIER J !| VERIFIER k !] VERIFIER i :
L L 21 I i R
' : { P \ P { :

-

o

ROVER >

Fig. 1. Detail of the Recognition Process
in the CMU-HEARSAY1l System

3.4 Knowledge Acquisition and Deployment

Bibliography

(1]D. R. Reddy, L. D. Erman, R. Neely, A
Model and a System for Machine
Recog n it ion of Speech, /EEE Trans.
Audio € Electro-acoustics, AU-? 1, 1973.

3.5 Knowledge Deployment Research:
Inexact Reasoning

Often the knowledge acquired from Experts is
intrinsically ~ imprecise, i.e., although it
accurately ~ captures the Expert’s best
understanding of the situation, his
understanding is imprecisé. By what processes
can a program be made to reason with such
knowledge of a domain?

The intuitive and Inexact aspects of reasoning
are described by Helmer and Rescher [1] who
assert that the traditional concept of ‘exact’
versus ‘Inexact science, with the socialsciences
accounting for most of the second class, has
relied upon a false distinction usually
reflecting the presence or absence of
mathematical notation. They point out that
only a small portion of natural science can be
termed exact -- areas such as pure
mathematics and subfields of physics in which
some of the exactness “has even been put to
the ultimate test of formal axiomatization". In
several areas of applied natural science, on the
other hand, decisions, predictions, and
explanations are only made after exact
procedures are mingled with unformalized
expertise. Society’s general ~ awareness
regarding these observations is reflected in the
common references to the ‘artistic’ components
in science.

In a recent paper (submitted to Mathematical
Biosciences) we examine the nature of such
nonprobabilistic and unformalized reasoning
processes, consider their relationship to formal
probability theory, and propose a model
whereby such incomplete ‘artistic’ knowledge

35

might be quantified. We have developed this
model of inexact reasoning in response to the
needs of Al Knowledge-based systems. That
is, the goal has been to permit the opinion of
experts to become more generally usable by
programs and thus more availablet o
nonexperts. The model is, in effect, an
approximation t o conditional probability.
Although conceived with one problem area in
mind, it is potentially applicable to any
domain in which real world knowledge must
be combined with expertise before an
informed opinion can be obtained to explain
observations or to suggest a course of action.

Although conditional probability in general,
and Bayes’ Theorem in particular, provides
useful results in decision making, vast portions
of technical experience suffer from so little
data and so much imperfect knowledge that a
rigorous probabilistic analysts, the ideal
standard by which to judge the rationality of
decisions, is not possible. It is nevertheless
instructive to examine models for the less
formal aspects of decision making. Experts
seem to use an ill-defined mechanism for
reaching decisions despite a lack of formal
knowledge regarding the interrelationships of
all the variables that they are considering.
This mechanism is often adequate, in well-
trained or experienced individuals, to lead to
sound conclusions on the basis of a limited set
of observations.

A conditional probability statement is, in
effect, a statement of a decision criterion ot
rule. For example, the expression P(H|E)=X
can be read as a statement that there is a
100X % chance that hypothesis H is true given
evidence E. The value of X for such rules
may not be obvious (e.g., "y strongly suggests
that z is true” is difficult to quantify), but an
expert may be able to offer an estimate of this
number based upon experience and general
knowledge, even when such numbers are not
readily available otherwise.

A large set of such rules obtained from
textbooks and experts would clearly contain a

36

large amount of task-specific knowledge useful
to an intelligent program. It 1sconceivable
that a computer program could be designed to
consider all such general rules and to generate
a final probability of each H based upon
evidence gathered in a specific situation.

Programs that mimic the process of analyzing
evidence incrementally often use this version
of Bayes’ Theorem:

Let El be the set of all observations to date,

and e be some new piece of data.
Furthermore, let E be the new set of
observations once e has been added to El.

Then the probability of hypothesis H on
the combined evidence is expressed as:

P(e| H a El) P(H| El)
Z P(e | Hi AE)) P(Hi | El)

P(HIE) =

The successful programs that use Bayes’
Theorem in this form require huge amounts
of statistical data, not merely P(H | ek) for

each of the pieces of data, ek, in E, but also
the interrelationships of the ek within each

hypothesis H,.

Bayes” Theorem would only be appropriate
for such a program, however, if values for
P(e (| Hi) and P(ej| Hi A eg) could be

obtained. These requirements become
unworkable, even if the subjective
probabilities of experts are used, in cases
where a large number of hypotheses must be
considered. The first would requireacquiring
the inverse of every rule, and the second
requires obtaining explicit statements
regarding the Interrelationships of all rules in
the system.

In short, we would like to devrse an
approximate method that allows us to compute
a value for P(Hi | E) solely in terms of

P(H,| ek), where E 1s the composite of all the

observed e’s. Such a technique willnot be
exact, but since the conditional probabilities

HEURISTIC PROGRAMMING PROJECT

reflect judgmental (and thus highly subjective)
knowledge, a rigorous application of Bayes’
Theorem will not necessarily produce accurate
cumulative probabilities either. Instead we
have sought (a) ways to handle decision rules
as discrete packets of knowledge, and (b) a
quantification scheme that permits
accumulation of evidence in a manner that
adequately reflect; the reasoning process of an
expert using the same or similar rules.

We believe that the proposed model is a

plausible representation of the numbers an
expert gives when asked to quantify the
strength of his judgmental rules. We call

these numbers “certainty factors,” or CF’s. He
gives a positive number (CF>0) if the
hypothesis is confirmed by observed evidence,

suggests a negative number (CF<0) if the
evidence lends credence to the negation of the

hypothesis, and says there is no evidence at all
(CF=0)if the observation is independent of
the hypothesrs under consideration. The CF
combines knowledge of both P(h) and P(h | e).

Since the expert often has trouble stating P(h)
and P(h|e) in quantitative terms, there is
reason to believe that a CF that weights both

the numbers into a single measure is actually a
more natural intuitive concept (e.g., “I don’t
know what the probability is that all ravens
are black, but 1 DO know that every time you

show me an additional black raven my belief
is increased by X that all ravens are black.*)

In accordance with subjective probability
theory, we assert that the expert’s personal
probability P(h) reflects his belief in h at any
gtven time. Thus 1-P(h) can be viewed as an
estimate of the expert’s Disbelief regarding the
truth of h. If P(h | e) is greater than P(h), the
observation of e increases the expert’s Belief
in h while decreasing his Disbelief regarding
the truth of h. In fact, the proportionate
decrease in Disbelief is given by the ratio:

3.5 Knowledge Deployment Research: Inexact Reasoning 37

P(he) - Plh)
1. Ph)

We call this ratio the measure of increased
Belief in h resulting from the observation of e,
ie., MBlhel

Suppose, on the other hand, that P(hle) were
less than P(h). Then the observation of e
would ciecrease the expert’s Belief in h while
increasing his Disbelief regarding the truth of
h. The proportionate decrease in Belief is in
this case given by the ratio:
"P(h |e)- P(h)
1 - P(h)

We call this ratio the measure of increased
Disbelief in h resulting from the observation
of e, i.e., MD[h.el.

In addition, we define a third measure, termed
a certainty factor (CF) that combines the MB
and MD in accordance wrth the followrng
definition:

P(h) - P(h |e)

P(h)

The certainty factor thus is an artifact for
combining degrees of Belief and Disbelief into
a single number. Such a number is needed in
order to facilitate comparisons of the
evidential strength of competing hypotheses.
The use of this composite number is described
in greater detail in the paper.

Bibliography

[I1 Helmer, O., N. Rescher,Onthe
Epistemology of the Inexact Sciences,
Project RAND Report R-353, RAND
Corp., Santa Monica, Cal., February 1960.

3.6 Knowledge Deployment Research for
Real-World Applications: The
Problem of Explaining a Program’s
Reasoning

As Al's research in knowledge-based systems
moves toward application to real-world
problems, it becomes essential for the
intelligent agents so constructed to be able to
explain to their users the knowledge and
inference paths used in solving problems (ot
suggesting solutions). Without this ability, it
is our belief that AI systems will not receive

widespread acceptance. Nor will it be possible
adequately to “debug” the knowledge in the
systems’ knowledge bases.

To conduct this research, we turned once more
to the specific task domain and program
(MYCIN) for diagnosis and treatment of
infectious disease (an NIH-sponsored effort).

Recent progress in the development of the
MYCIN system has included the development
of a capability for providing sophisticated
explanations of the program’s reasoning steps.

Several aspects of the implementation o f
MYCIN facilitate the accomplishment of this
goal -- the modularity of the program’s rules
simplifies the task of maintaining a record of
the program’s chain of reasoning, while the
use of an interpretive language like LISP
makes feasible the examination by the
program of its own knowledge base, as well as
the translation of the rules into English for
display to the user. This ability of the
program to keep track of Its reasoning and to
examine its own knowledge and data is the
central component in 1ts ability to explain
itself.

MYCIN normally takes the initiativeduring a
consultation session; the system asks q uestions
and uses the answers to determine the
applicability of the decision rule it has
retrieved. The user who desires an
explanation of the program’s motivation for a
particular question has available to him a set

38

of commands designed to make the
examination of the program’s reasoning both
simple and effective.

3.6.1 WHY Questions -- Looking at
Goals

Since any questionis the result of an attempt
to determine the truth of preconditions of a
given subgoal, the simplest explanation of the
motivation for a question is a statement of the
current subgoal. By typing WHY, the user
will get a detailed explanation from the system
of the type of conclusion it is trying to draw,
and how the current rule is to be applied in
this case to establish that conclusion. Note
that the system first examines its current
reasoning chain to determine the “purpose” of
the question, then examines the current rule to
determine h o w 1tapplies in this pat ticular
case, and finally translates all of this
informatton from its Internal ~ LISP
representation Into uncierstandable English.

The user may understand why any particula:
question was asked, but may be unsure as to
the program’s reason for seeking the
conclusion mentioned. He can examine this
next step in the reasoning by simply repeating
“WHY”. This process can be repeated as
often as desired, until the entire current
reasoning chain has been displayed.

One problem we anticipatedin the use of the
WHY command, and one that is common with
explanations in general, is the issue of
presenting an explanation with the
appropriate level of sophistication.
Depending on the user, we might want to (a)
display explicitly all steps 1 the chain of
reasoning, (b) omit those which are
definitional or trivial, or perhaps, or the most
sophisticated user, (c) display only the
highlights and allow him to supply the details.

We have provided this capability by allowing
the user to indicate his level of sophistication
with an optional argument to the WHY
command. This parameter indicates how

HEURISTIC PROGRAMMING PROJECT

large a step in the reasoning process must be
before it Is to be displayed. Once again, this
can be repeated as often as necessary, allowing

~the user to follow the reasoning chain in step

sizes of his own choosing.

3.62 HOW questions: Looking at
Preconditions

We have seen that as the user examines the
current reasoning chain, he is informed of the
various subgoals the system needs to achieve
in order to accomplish the main goal. At some
point he may wish to examine all the ways
any subgoal may be achieved. For this
examination of additional reasoning chains,
he can use the HOW command.

The query allows the user to find out: (a) how
a rule WAS used in the reasoning, i.e., what
was known at the time the rule was Invoked
and what conclusions were drawn as a result;
(b) how a rule WILL BE used in the
reasoning, i.e., what will have to be known for
the rule to be invoked and what conclusion
will be drawn, and (c¢) how a fact was
determined that allowed some inference to be
made.

Two points should be noted about the design
of the program which generates these
explanations. First, consistent with the general
philosophy of MYCIN, the approach is quite
domain-Independent. =~ Although we have
written programs with explicit knowledge of
what is required for acceptable explanations,
all task-specific knowledge is obtained by
referring to the information stored in the
separate knowledge base of rules.

Second, in attempting to supply information to
the user, the system examines its own actions
and knowledge base in order to discover what
in fact it is “trying to do”. The explanation
program thus “keeps watch” over the actions
of the consultation program by keeping a
record of all of its past actions and mimicking
its normal control structure when examining
possible future actions.

3.7 Knowledge Representation:
Production System

“The problem of representation of knowledge
for Al systems is this: if the user has a fact
about the world, or a problem to be stated, 111
what form does this become represented
symbolically in the computer for immediate or
later use?”

The formal structures and techniques for
representing knowledge being explored by our
project are production rules and production
systems, a topic also being pursued vigorously
by the ARPA project at Carnegie-Mellon
University. Production systems offer a
“natural”, highly flexible, and modular way of
representing knowledge.__ The approach 1s
highly promising but much more work by us
and others needs to be done.

Judgmental rules of the form ‘If A then B’ are
commonly found in text and handbooks of
scientific and technical disciplines. These rules
not only describe formal relationships of a
discipline but rules of accepted practice and
hints of suggestive relations as well. For these
reasons, production systems are important
vehicles for encoding an expert’s inferential
knowledge in Intelligent programs. They have
been studied and used in such programs as
Newell’s PSC, Waterman’s poker-learning
program, S hortliffe’s M YCIN program and
the Heuristic DENDRAL h ypot hesis
formation program.

In the Heuristic DENDRAL program, a table
of productlon rules holds the knowledge
needed to explain empirical data from a
subfield of analytical chemistry (mass
spectrometry in particular). Part of the
sophistication of this program comes from
separating the program’s knowledge base from
the routines that use the knowledge for
problem solving. Also, the productions
themselves are more general than simple
conditional sentences, ‘If A then B’. The
antecedents may be Boolean combinations of
complex predicates and the conseq uents may

39

be either (1) one or more processes to execute
when the antecedent 1s true, (2) default
processes to execute when no special-case
antecedents are true (“else” conditions), or (3)
another production. Making the productlon
schema recursive (L.e., allowing any consequent
to be another production decreases the run
time and increases the storage efficiency of the
program because the more general predicates
separating large classes of special cases need to
be stated and checked only once. For
example, the schema might be written as:
If A then
If Al then (If A 11 then B 11)
(If AlI2 then B 12)
else B1
If A2 then B2
else B.

Or, less efficiently, it could be equivalently
represented as a set of simple productionsin
the form:
If AAAl AAl
If AAAl AAL2
If AnAl

then B1l;

then B12;

then Bl; - [All A Al2
are implicit in the ordering]

IfAAA2 then B2;

IfA then B.

The knowledge representation ideas developed
in the context of Heuristic DENDRAL have
been successfully mapped into another Al
program, using a different domain of
knowledge. E. Shortliffe, in consultation with
mem bers of the Heuristic Programming
Project (but under other financial support),
developed the MYCIN program for reasoning
about antimicrobial therapy.

The knowledge base of the program isa table
o f productions supplied by an expert,
containing definitions, “common sense” pieces
of knowledge, general scientific knowledge and
highly task-specific inference rules. MYCIN is
another successful application of Al to a
scientific discipline whose sophistication is
derived partly from the flexibility of a
production rule representation of knowledge.

40

Bibliography

(1] E. H. Shortllffe, S. C. Axline, B. G.
Buchanan, T. C. Merigan, and S. N.
Cohen, An Artificial Intelligence
Program to Advise Physicians Regarding
Ant im icrobiai Therapy, Computersand
Biomedical Research, 6, 544-560, 1973.

(2] E. H. Shortliffe, S. G. Axline, B. G.
Buchanan, S. N. Cohen, Design
Considerations for a Program to Provide
Consultationsin Clinical Therapeutics,
Proc. Biomedical Symposium, San Diego,
February 1974.

(3] E. H. Shortliffe, B. G. Buchanan, A Model
o fInexact Reasoning in Medicine,
(submitted to Mathematical Biosciences).

(4] E. H. Shortllffe, R. Davis, S. G. Axline, B.
G. Buchanan, C. C. Green, S. N. Cohen,
Computer-Based Consultations in
Clinical Therapeutics: Explanation and
Rule Acquisition Capabilities of the
MYCIN System, (submrtted to Computers
and Biomedical Research).

3.8 Application of Al Techniques to a
Programmer’s Task: Automatic
Debugging

We regard the tasks confronting computer
programmers to be especially interesting as
potential applications of our Al techniques.
In such tasks, the “Expert” and the "Compute
Scientist” usually merge into one person,
facilitating the development o f complex
knowledge bases.

The work on Automatic Programming has
been done 11 the context of a Ph.D. Thesis on
Automatic Debugging of Logical Program
Errors. The long-term goal of this research 1S
to provide a system whichwill detect,
diagnose, and treat logical programming

HEURISTIC PROGRAMMING PROJECT

errors. The Detection phase of debugging
involves the process of deciding that a
problem Indeed existsin the program. The
Diagnosis phase involves the process of
isolating the problem. The Treatment phase
involves the process of determining what
correction is to be made in the program and
making it. We make a distinction between
three classes of errors: (A) Syntactic errors, (B)
Semantic errors, and (C) Logical errors. A
syntactic error occurs when the text of the
program does not conform to the syntax rules
of the programming language. A semantic
error occurs when a syntactically correct
program attempts during its execution
operations whose results are not defined by the
semantics of the language. A logical error
occurs when a program which is syntactically
and semantically correct gives results which
are “wrong”. A prototype system is now up
which Is capable of detecting a small but
interesting class of bugs, and diagnosing and
treating a subset of the detected bugs. The
prototype has correctly repaired a ‘real’ bug in
a ‘real’ program. (See Brown, ‘Internal
Progress Memo’, available from Heuristic
Programming Project).

The prototype system operates by requesting
information from the user (programmer)
describing features of the execution of his
program. This description is then used to
detect errors. More precisely, during the
execution of the program, checks are made on
the consistency of the actual program
execution with the programmer’s expressed
intentions. If a discrepancy is detected, the
diagnosis phase of the system is invoked. An
attempt is then made to recognize what sort of
error has occured, and to determine its
probable source. If this is successful, the
treatment phase uses this information to
repair both the current executing environment
and the source program. The execution of the
program is then resumed in the new, hopefully
correct, environment. The goals to be
achieved in the short term are:
1. to discover a language for describing
programs which:
a. is easy and reasonably error-free.

3.8 Application of Al Techniques to a Programmer’s Task: Automatic Debugging 41

b. is able to describe those features of
programs most useful in debugging
programs.

2.to provide a system which interacts with
the user (programmer) to obtain a
description of aparticular program.

3. to provide a system which, given a
program, its description, and sample data,
can debug (or at least significantly help to
debug) the program.

The effort in part 1 in designing a language
for describing programs is closely related to
other Automatic Programming research. T his
language (and its recognizer) need not be as
rich or complete as a full-blown Automatic
Programming language, since a dialog need
only describe features of an existing program,
instead of describing a program to be created.
But the primitives of this descriptive language
should be useful in a more complete language.
‘The effort in part 2 is related to the "diagnosis
and therapy” paradigm of the MYCIN system
(mentioned earlier). In both systems, a dialog
between the user and the system generates
information about an Individual
(patient/program). This information isthen
used tn diagnose problems in the individual.
The +~ort in part 3 involves creation of a
knowledge base of common program
pathologies. This work has a traditional Al
flavor. The knowledge base must be
structured in such a way so as to be easily
modified (changes and additions), but yet be
effective in accomplishing its given task. A
DENDR AL-like production system is being
considered for knowledge representation 1n the
system being built.

3.9 Tools and Techniques

The major work during this period falis into
the categories of maintenance and
development of basic utilities. Various
projects that were completed are:

TRANSOR

A TRANSOR package in INTERLISP for
translating LISP/ 360 programs to
INTERLISP was completed. Emphasis was
on making the package complete (almost all
programs would translate without user
intervention) and in increasing the efficiency
of the resultant code (often a straight-forward
translation is not the most efficient).

COMPARE

A LISP program for comparing two
INTERLISP files and discovering the
differences. Similar to SRCCOM but tailored
to LISP expressions. The algorithm involves
heuristics about the most common types of
transformations made in editing a program
(extraction, switching expressions, insertions,
changing function calls, etc) in a tree search
for the set of “minimal” transformations from
one file to the next.

SYSTEM DEBUGGING

An incompatibility between KA-10 and KI- 10
TENEX was discovered which resulted in
obscure problems in INTERLISP on the KI-
10. The cause was determined after much
investigation. Other similar problems with
the interface of LISP and TENEX have also
been investigated and fixed.

TENEX utilities

The following utilities were produced: READ,
a simple minded READMAIL; SYSIN, a
program for starting up INTERLISP sysout
files without going through LISP first (later
modified at BBN); OPSAMP, a program for
monitoring the different instructions a
program is executing.

42

HPRINT, a program for printing and reading
back in circular structures, including user
datatypes, arrays, hash tables, along with the
interface to the INTERLISP file package and
read table facility.

System maintenance

Solving the problems of transfering files
between one TENEXsite and another via
tape where each site has a different
convention for formatting information on tape
involved a significant amount of time.
Utilities from other TENEX sites were
eventually brought over and put up on the
SUMES-TENET facility.

3.10 Technology Transfer: Chemistry and
Mass Spectrometry

The past year has seen heavy involvement by
other granting agencies in research which was
initiated by ARPA funding, or supported in
part by this funding. This demonstrates the
programs’ high levels of performance in the
task areas of chemistry and mass spectrometry.
These programs are, or soon will be, available
to members of the Stanford Chemistry
Department and to a nationwide community
of collaborators via the SUMEX computer
“facility and TYMNET and ARPANET.

Applications of and further research into
programs arising from activities of rhe
DENDRAL project have been funded by the
Biotechnology Resources Branch, National
Institutes of Health for a period of three years
beginning May 1, 1974. In addition, two
smaller grants have been awarded which
support ancillary areas of research, again
begun with ARPA support. There are (1) an
NSF grant to Dr. Harold Brown to support
further research into graph theory as applied
to chemical problems, and (2) an NIH award
to Prof. C. Djerassi and Dr. R. Carhart to
support applications of DENDR AL programs
to carbon- 13 nuclear magnetic resonance.

HEURISTIC PROGRAMMING PROJECT

Three major Al programs have been planned,
developed and transferred to working
chemists. These are outlined below.

PLANNER - our efforts at modelling the
processes of scientific inference resulted in a
program for analysis of mass spectral data.
This program has been successfully
demonstrated in applications to important
chemical problems in the steroid field. With
NIH support we are extending the generality
of this program and adding an interactive
user interface.

STRUCTURE GENERATOR - As in every
heuristic search program, an ex haustive legal
move generator is central to our applicatiorns
program. We have finished a complete and
irredundant generator of chemicai structures
and recently added inechanisms for
constraining the generation process.

The generator alone is a useful working tool
for chemists with structure elucidation
problems because it can build molecular
graphs from inferred units much more
thoroughly than a human chemist can. It has
recently been successfully demonstrated to
several groups of chemists, and is currently in
use by members of the Stanford Chemistry
Department. Work will continue under NIH
support to improve the program’s
performance, as it represents a framework for
more general applications of Al techniques to
chemical structure problems.

DATA INTERPRETATION AND
SUMMARY. The INTSUM program (for
INTerpretation ~ and SUMmary) was
developed as the first stage of aprogram for
modelling scientific theory formation. This
program is applied to a large collection of
mass spectral data in an attempt to uncover
regular patterns of fragmentation across a
series of related chemical compounds. It has
proven, by itself, to be a powerful assistant to
chemists in their interpretation of large
quantities of data. As a result, an interactive
version of this program is now available and

3.10 Technology Transfer: Chemistryand Mass Spectrometry 43

is being applied to problems in the mass
spectrometry laboratory.

3.11 Technology Transfer: to Biology and
Medicine

For many years, ARPA contract support to
this project for basic research in Intelligent
Systems has been the seed from which has
grown grant support from other federal
agencies with different missions. For example,
the research on Heuristic DENDRAL, initially
supported by ARPA, was later supported by
NIH (and recently renewed by NIH). The
AR PA-supported work on knowledge-based
systems led to NIH support for the
development for a program to diagnose
bacterialinfections and advise treatment (the
MYCIN program). NSF has Indicated
considerable interest in funding the hypothesis
formation program in protein crystallography,
begun under ARPA support.

The most significant event of this type,
involving the transfer of concepts and
techniques developed under ARPA support to
another area of science and another source of
support, occurred during this period. The Co-
principal Investigators of this project were
successful in obtaining grant funds from the
Biotechnology Resources Branch of NIH to
establish a computing facility to satisfy not
only the expanding needs of thisproject, the
NIH-sponsored DENDRAL project, and the
other - NIH-sponsored activity; but also the
needs of an embryonic but rapidly growing
national community of scientific work in the
application of artificial intelligence techniques
to Biology and Medicine. A computing
facility (with staff) called SUMEX has been
established at the Stanford Medical School.
Its complement of equipment is similar to that
at the ARPA-sponsored Al laboratories -- the
main frame is a PDPIOI, operating under the
TENEX operating system. It is currently
connected to the TYMnet, and in the near

future will be connected to the ARPAnet by a
VDH connection.

SUMEX, as mentioned, will serve not only
Stanford interests but also the interests of
AIM (Artificial Intelligence in Medicine), a
name given to a national community of
investigators interested wn applying the
techniques of Al research to Medicine and
Biology. Such investigators include, for
example, professors and students at the
Computer Science Department of Rutgers
University; and Dr. K. Colby, now at UCLA.
AIM 1s constituted to have 1its own Advisory
Committee to allocate its portion of the
SUMEX resource, and to advise NIH and the
SUMEX Principal Investigator, Professor
Lederberg, on the needs of the national
community and on how best to satisfy those
needs.

In considering the technology transfer aspects
of SUMEX-AIM, it is important to note:

1. that a federal science funding institution
that has traditionally been very
conservative in its funding of advanced
computer science research (NIH) --
certainly much more conservative than
ARPA and other DOD agencies -- has
been persuaded to take this major step at
the computer science research frontier.
The credit for this is in no small measure
due to the massive evidence developed
with ARPA support that such a step
would have great payoff to the medical
science community;

2. that the previous NIH computer funding
policy -- of funding computer facilities
for geographically local communities of
interest (like “researchers at the Baylor
University Medical School”) -- has been
changed to one that supports facilities for
scientific communities of interest not
necessarily geographically local. The
credit for this is due primarily to the
ARPAnet, and the networking concepts
developed in conjunction with ARP Anet
development.

44

3.12 Technology Transfer: to Military
Problems

At ARPA’s request one of the co-principal
investigators was asked to investigate the
applicability of the concepts and techniques
developed in the DENDRAL project to a
surveillance signal interpretation problem of
considerable importance to the Defense
Department. Since this work is of a classified
nature, it sbeing performed not at Stanford
University but at a local research company.
However, the Heuristic Programmrng Project’s
work 1s of key Importance in shaping the
development of that military application of
artificial intelligence. Further details
concerning this application can be obtained
from Professor Feigenbaum or from Dr. J.C.R.
Licklider of the ARPA IPT Office.

3.13 Publications of the Project, 1972/1974
Research Supported by ARPA and by N1H
Bibliography

(1] D.H. Smith, B. G. Buchanan, R.S.
Engelmore, A.M. Duffield, A. Yeo, E.A.
Feigenbaum, J. Lederberg, and C.

D jerassi, Applications of Artificial
Intelligence for Chemicallnference

VIIl, An approach to the Computer
Interpretation of the High Resolution
Mass Spectra of ComplexMolecules.

. Structure Elucidation of Estrogeuic
Steroids, Journal of the American Chemical
Society, 94, 5962-5971(1972).

(2] B.C. Buchanan, E.A. Feigenbaum, and
N.S. Srid haran, Heuristic Theory
Formation: Data Interpretation and Rule
Formation,in Machine Intelligence 7,
Edinburgh University Press (1972).

HEURISTIC PROGRAMMING PROJECT

[3] Lederberg, J., Rapid Calculation of
Molecular Formulas f rom Mass Values,
J. Chemical Education, 49, 6 13 (1972).

(4] Brown, H., Masinter, L., Hjelmeland, L.,
Constructive Graph Labeling Using
Double Cosets, Discrete Mathematics, 7
(1974), 1-30; also Computer Science Memo
318, (1972).

(5] B.C. Buchanan, Review of Hubert
Dreyfus’ What Computers Can’t Do: A
Critique of Artificial Reason, Computing
Reviews, (January, 1973); also Stanford A.
I. Memo AIM-181.

(6] D. H. Smith, B. G. Buchanan, R. S.
Engelmore, H. Aldercreutz and C. Djerassi,
Applications of Artificial Intelligence for
Chemical Inference IX. Analysis of
Mixtures Without Prior Separation as
lllustrated for Estrogens, J. American
Chemical Society, 95, 6078 (1973).

{71 D. H. Smith, B. G. Buchanan, W. C.

White, E. A. Feigenbaum, C. Djerassi and
J. Lederberg, Applications of Artificial
Intelligence for Chemical Inference X.
Intsum. A Data Interpretation Program
as Applied to the Collected Mass Spectra
of Estrogeuic Steroids, Tetrahedron, 29,
3117 (1973).

(8] B. G.Buchanan and N. S. Sridharan, Rule
FormationonNon-Homogeneous Classes
of Objects, Proc. T hird International Joint
Conference on Artificial Intelligence,
Stanford, California, August (1973); also
Stanford A. I. Memo AIM-215.

[9] D. Michie and B. G. Buchanan, Current
Status of the Heuristic DENDRAL
Program for Applying Artificial
Intelligence to the Interpretation of Mass
Spectra, to appear in Computers for
Spectroscopy, (ed. R.A.G. Carrington),
Adam Hilger, London; also: University of
Edinburgh, School of Artificial
Intelligence, Experimental Programming
Report No. 32 (1973).

3.13 Publications of the Project, 1972/1974

(10] H. Brown and L. Masinter, An
Algorithm for the Construction of the
Graphs of Organic Molecules,Discrete
Mathematics, (in press); also Stanford
Computer Science Dept. Memo STAN-CS-
73-361, May 1973.

(11]D. H. Smith, L. M. Masinter and N. S.
Srldharan, Heuristic DENDRAL:
Analysis of Molecular Structure, Proc.

N ATOICN N A Advanced Study Institute
on Computer Representation and
Manipulationof Chemical Information, (W.
T. Wipke, S.Heller, R. Feldmann and E.
Hyde, eds.), John Wiley and Sons, inc.,
1974.

[12] R. Carhart and C. D jerassi, Applications
of Artificial Intelligence for Chemical
Inference XlI: The Analysis of CI3 NMR
Data for Structure Elucidation of
Acyclic Amines, J.Chem. Soc. (Perkin II),
1753 (1973).

[13] L. Masinter, N. S. Sridharan, R. Carhart
and D. H. Smith, Applications of
Artificial Intelligence for Chemical
Inference Xll: Exhaustive Generation of
Cyclic and Acyclic Isomers, submitted to
Journal of the American Chemical Society;
also Stanford A. I. Memo AIM-216.

(14] L. Masinter, N. S. Sridharan, R. Carhart

" and D. H. Smith, Applications of
Artificial Intelligence for Chemical
Inference XIll: An Algorithm for
Labelling Chemical Graphs, submitted to
Journal of the American Chemical Society

[I5]N. S. Sridharan, Computer Generation
of Vertex Graphs, Stanford CS Memo
STAN-U-73-38 |, July 1973.

[16] N. S.Sridharan, et.al., A Heuristic
Program to Discover Syntheses for
Complex Organic Molecules, Stanford CS
Memo STAN-CS-73-370, June 1973; also
Stanford A. I. Memo AIM-205.

45

[17] N. S. Sridharan, Search Strategies for
the Task of Organic Chemical Synthesis,
Stanford CS Memo STAN-CS-73-39 1,

. October 1973; also Stanford A. 1. Memo
AIM-217

(18) D. H. Smith, Applications of Artificial
Intelligence for Chemical Inference XIV:
The Number of Structural Isomers of
CoxNuyOsZ, x +y +z2 = 6. An
Investigation of Some Intuitions of
Chemists.

(19] D. H. Smith, Applications of Artificial
Intelligence for Chemical Inference XV,
in preparation.

(20] D. H. Smith and R. E. Carhart,
Applications of Artificial Intelligence for
Chemical Inference XVI: OnStructural
Isomerism of Tricyclodecanes, to be
submitted to Journalof the American
Chemical Society.

[21)R. G. Dromey, B. G. Buchanan, D. H.
Smith, J. Lederberg and C. Djerassi,
Applications of Artificial Intelligence for
Chemical Inference XVII: A General
Method for Predicting Molecular Ions in
Mass Spectra, submitted to Journal of
Organic Chemistry.

Other references, relating to the MYCIN
system, under NI1H support.

(22] E. H. Shortliffe, S. G. Axline, B. G.
Buchanan, T. C. Merigan, and S. N.
Cohen, An Artificial Intelligence
Program to Advise Physicians Regarding
Antimicrobial Therapy, Computers and
Biomedical Research, 6 (1973), 544-560.

(23] E. H. Shortliffe, S. G. Axline, B. G.
Buchanan, S. N. Cohen, Design
Considerations for a Program to Provide
ConsultationsinClinical Therapeutics,
Proc. Biomedical Symposium, San Diego,
February 1974.

46 HEURISTICPROGRAMMING PROJECT

[24] E. H. Shortliffe and B. C. Buchanan, A
Model of Inexact Reasoning in Medicine,
submitted to Mathematical Biosciences.

[25] E. H. Shortliffe, R. Davis, S. G. Axline, B.
G. Buchanan, C. C. Green and S. N.
Cohen, Computer-Based Consultations in
Clinical Therapeutics: Explanation and
Rule Acquisition Capabilities of the
MYCIN System, submitted to Computers
and Biomedical Research.

4. NETWORK PROTOCOL
DEVELOPMENT PROJECT

4.1 Internetwork Protocol Design

During this period, a design for an
experimental internetwork protocol was
completed [1] and has been circulated both to
IFIP WG 6.1 and to other interested ARPA
research centers. In addition, an article
describing the basic concepts was published in
May 1974 [2]). An updated and more detailed
design was prepared and circulated only to the
sites participating in -~ ARPA sponsored
internetworking and is now undergoing
further revision.

The participants in the internetworking
experiment include the University College
London under the direction of Prof. Peter
K irstein, Bolt Beranek and Newman under
the direction of Dr. Jerry Burchfiel, and the
Stanford Digital Systems Laboratory under
the direction of Prof. V. Cerf. Plans were
laid to connect a TENEX system at BEN with
a PDP-9 at UCLA and with a PDP-11 at SU-
DSL, all running the proposed Transmission
Control Program (internetwork protocol).
Concurrently an experiment was outlined
between the National Physical Laboratory in
England under the direction of Dr. Donald
Davies and the IRIA research center neat
Paris under the direction of Mr. Louis Pouzin.
In the latter experiment, a Modula-I computer
at NPL is to be connected to a CII 100-70 at
IRIA running a protocol proposed by H.
Zimmerman and M. Elie of IRIA.

An agreement was reached regarding a
common basic addressing format for both
protocols [3] and it 1s intended that the results
of these two experiments will be used to settle
on a final protocol which could be used to
connect all 5 sites.

47

In a concurrent effort, plans were made to
study the problem of connecting the
TYMNET with the ARPANET using the
protocol proposed in [1). During the period
of this report, only modest progress has been
made in this effort, but enthusiasm for the
project remained high. It is expected that
more concrete progress will be made during
the second year.

IFIP Working Group 6.1 met in June 1973
and the National Computer Conference in
New York, in September of 1973 in Sussex as
the NATO Conference on Computer
Networks, and in January 1974 at the Seventh
Hawaii International Conference on Systems
Science. Plans were made to meet again at
IFIP 74 in August 1974, WG 6.1 was
reorganized into four subcommittees to make
working together easier:

Committee Chairman
Experiments Prof. P. Kirstein
Protocols Mr. L. Pouzin

Legal and Political Issues Prof. F. Kuo
Social Issues Dr. C. D. Shepard

In another step to make W.G. 6.1 as self
supporting as possible, and in the wake of the
reduced NIC services offered by ARPA after 1
July 1974, all W.G. 6.1 members were to pay
for the cost of reproducing and mailing of
committee notes and reports. It was expected
that this move would also shrink the size of
the group down to those who were seriously
interested in the work.

48 NETWORK PROTOCOL DEVELOPMENT PROJECT

4.2 PDP-Il Expansion

During January through March 1974, the

PDP- 1 1/20 installation was expanded using

funds from the Joint Services Electronics

Program sponsored jointly by the Army, Navy

and Air Force. The PDP-1 1 facility now

includes:

a) PDP-11/20 CPU with 28 K 16-bit words of
memory (maximum allowed).

b) 5.6 M word Diablo 44 moving head dual
platter disk. One disk is removable; each
will hold 2.8 M words.

¢) Unibus repeater to expand the number of
Unibus slots available.

d) Four asynchronous terminal interfaces, two
for hard-wired use and two for dial up
modems. Two Anderson- Jacobsen modems
and two Direct Access Arrangement
telephone lines also installed.

e) One OMRON microprogrammed CRT
terminal with 4K byte buffer memory.

f) One card reader (not new).

g) One upper case only printer (not new).

h) Two Dectape drives (not new).

i) One RS64 64K byte fixed head disk.

j) One 1024::: 1024 CRT (not new) withSU-
DSL designed controller and two joysticks
(latter two are new).

k) Three Texas Instruments Silent 700
portable terminals.

1) One 16 bit general purpose digital Interface
for experimental device attachments.

- m) One 50 Kbit/second modem with

ARPANET VDH Interface for use with

the ELF operating system (PDP-11 is

connected by VDH to SRI IMP).

The ARPA contract pays for the rental of the
Modems, TI terminals, and maintenance on
the PDP-1 1 during the summer months; the
Electrical Engineermg Department of Stanford
University pays for maintenance during the
rest of the academic year.

4.3 Software Systems
ELF

In January, an ELF I system was installed. It
proved to be fairly reliable although it had a
few bugs left. It did not support the Diablo
Disk or the dial-up facilities. Nor did it have
much of a File Transfer Protocol (text files
from the net could be printed on the line
printer). The ELF system was used
intermittently during this period for access to
the ARPANET, but owing to shared use of
the equipment for academic projects, the ELF
system was not up much of the time.

An attempt was made to integrate ELF with
the Disk Operating System (DOS), but this
proved impossible since DOS is configured for
single user function and simultaneous use of
DOS with ELF caused ELF to lose control of
itcritical interrupts. We investigated the
possibrlity of a Virtual Machine system, but
the PDP-1 1/20 does not have adequate
hardware to support virtual memory or
privileged instruction trapping needed for
Virtual Machine Monitors. We concluded
that only a PDP- 11/40 with hardware
modifications similar to those on the UCLA
system would serve for such a Virtual
Machine system and gave up that approach as
too costly and time consuming. Consequently,
the system still alternated between DOS and
ELF usage.

File Transfer Protocol

During the summer of 1974, an FTP was
written which would accept MAIL files from
the network and print them on the line
printer. The program was documented [4]
and plans were made to extend the system to
full FTP capability.

Simple Minded File System
As an aid to the ELF user community, we

proposed to implement a simple minded file
system which would permit ELF to read or

4.3 Software Systems

write contiguous files on the disk. The
detailed specification and implementation of
this package was seriously delayed owing to
lack of documentation of the new ELF Il
system to which SMFS was to be interfaced.
ELF II did not arrive duringthis period, so
only the basic SMFS design specification was
written using DOS I/O calls as the model for
user level interface.

Bibliography

(1] Cerf, V. G. and R. E. Kahn, Towards
Protocols for Internetwork
Communication!FIPW.G. 6.1 Document
33, September 1973.

[2] Cerf, V. C. and R. E. Kahn, A Protocol
for Packet Network Intercommunication,
IEEE Transactions on Communication,
Volume COM-22, No. 5, May 1974.

[3] Pouzin, L. (Revised V. Cerf), A Packet
Format Proposal, IFIPW.G. 6.1
Document 48, January 1974.

(4] Haugland, T., Anlmplementation of the
ARPANET File Transfer Protocol for
ELF, Stanford University Digital Systems
Laboratory Technical Note 46, July 1974.

(5] Cerf, V. and C. Sunshine, Protocols and
Gateways for Interconnection of Packet

© Switching Networks, Proceedings of the
Seventh Hawaiilnternational Conference
on Systems Science, January 1974.

(6] Cerf, V. An Assessment of Arpanet
Protocols, Proceedings of the Second
Jerusalem Conference on Information

Technology, July 1974.

49

Appendix A

ACCESS TO DOCUMENTATION

This is a description of how to get copies of
publications referenced in this report.

External Publications

For books, journal articles, or conference
papers, first try a technical library. If you
have difficulty, you might try writing the
author directly, requesting a reprint.
Appendix D lists recent publications
alphabetically by lead author.

Artificial Intelligence Memos

Artificial Intelligence Memos, which carry an
“AIM” prefix on their number, are used to
report on research or development results of
general Interest, including all dissertations
published by the Laboratory. Appendix B
lists the titles of dissertations; Appendix E
gives the abstracts of recent A. I. Memos and
instructions for how to obtain copies. The
texts of some of these reports are kept in our
disk file and may be accessed via the ARPA
Network (sce below).

Computer Science Reports

Computer Science Reports carry a “STAN-CS”
prefix and report research results of the
Computer Science Department. (All A. L
Memos publishedsince July 1970 also carry
Computer Science numbers.) To request a
copy of a CS report, write to:

Documentation Services

Computer Science Department

Stanford University

Stanford, California 94306

The Computer Science Department publishes
amonthly abstract of forthcoming reports that
can be requested from the above address.

51

Filim Reports

Several films have been made on research
projects. See Appendix C for a list of films
and procedures for borrowing prints.

Operating Notes

Reports that carry a SAILON prefix (a
strained acronym for Stanford A. 1. Laboratory
Operating Note) are semi-formal descriptions
of programs or equipment in our laboratory
that are thought to be primarily of internal
interest. The texts of most SAILONS are
accessible via the ARPA Network (see below),
Printed copies may be requested from:

Documentation Services

Artificial Intelligence Laboratory

Stanford University

Stanford, California 94306

Working Notes

Much of our working documentation is not
stocked in hard copy form, but is maintained
in the computer disk file. Such texts that are
in public areas may be accessed from the
ARPA Network (see below). Otherwise, copies
may be requested from the address given just
above.

Public File Areas

People who have access to the ARPA Network

are welcome to access our public files. The

areas of principal interest and their contents

are a follows:

(BIB,DOC] bibliographies of various
kinds,

[AIM,DOC] texts of some A.l. Memos,

(S.DOC] texts of most SAILONSs,

(UP,DOC] user program documentation,

(H,DOC] system hardware descriptions,

(11,DOCI] PDP- 11 subsystem
descriptions,

[P,DOC] “people-oriented” files,

including the lab phone
directory.

Network Access

On the ARPA Network, our system is site 11
(decimal), alias SU-AI. We use a heavily
modified DEC monitor. It types "."wheneve
it is ready to accept a command. All
commands end with <carriage return>. To
halt a program that is running, type
<Control>C twice.

It 1s possible to examine the contents of public
files withoutlogging rn. For example, if you
wish to know the names of all files in an area

called [P,DOC]. Just type:
DIR [P,DOC]

The system will then type the names of all
such files, their sizes, etc.

To type out the contents of a text file, say
“TYPE <file name>". For example, to type the

contents of our telephone directory, say
TYPE PHONE.LSTIP,D0C]

and be prepared for 18 pages of output.

There may be diffcultyinprinting files that
use the full Stanford character set, which
employs some of the ASCII control codes (1 to
37 octal) to represent specialcharacters.

If your terminal has both upper and lowet
case characters, let. the monitor know by saying
"try FuL'. If you are at a typewriter terminal,
you may also wish to type "rrv muw", which
causes extra carriage returns to be inserted so
that the carriage has time to return to the left
margin before the next line begins.

To get informationon other services that are
available, say "meLp RPR" or just plain "HeLP".

File Transfer

Files can also be transferred to another site
ustng the File Transfer Protocol.
Documentation on our FTP program is
located indiskhle FTP.DCS[UP,DOC] N o
passwords or account numbers are needed to
access our FTP from the outside.

Appendix A

Appendix B

THESES

Theses that have been publishedby (he
Stanford ArtificialIntelligence Laboratory are
listed here. Several earned degrees at
institutions other than Stanford, as noted.
This list is kept in our system indiskfile
THESES[BIB,DOC].

D. Raj Reddy, AIM-43
An Approach to Computer Speech
Recognition by Direct Analysis of the
Speech Wave,

Ph. D.in Computer Science,

September 1966. --

S. Persson, AIM-46
Some Sequence Extrapolating Programs: a
Study of Representationand Modeling in
Inquiring Systems,

Ph.D.in Computer Science, University of
California, Berkeley,

Septem her 1966.

Bruce Buchanan, AIM-47
Logics of Scientific Discovery,

Ph.D.in Philosophy, University of California,
Berkeley,

December 1966.

James Painter, AIM-44
Semantic Correctness of a Compiler for au
Algol-like Language,

Ph.D. in Computer Science,

March 1967.

William Wichman, AIM-56
Use of Optical Feedback in the Computer
Control of anArm,

Eng. in Electrical Engineering,

August 1967.

Monte Callero, AIM-58
An Adaptive Commandand Control System
Utilizing Heuristic Learning Processes,
Ph.D.in Qperations Research,

December 1967.

53

Donald K aplan, AIM-60
The Formal Theoretic Analysis of Strong
Equivalence for Elemental Properties,

PA.D. in Computer Science,

July 1968.
Barbara Huberman, AIM-65
A Program to Play Chess End Games,

Ph.D. in Computer Science,
August 1968.

Donald Pieper, AIM-72
The Kinematics of Manipulators under
Computer Control,

Ph.D. in Mechanical Engineering,

October 1968.

Donald Waterman, AIM-74
Machine Learning of Heuristics,

Ph.D. in Computer Science,

December 1968.

Roger Schank, AIM-83

A Conceptual Dependency Representation
for a Computer Oriented Semantics,
Ph.D. in Linguistics, University of Texas,
March 1969.
Pierre Vicens, AIM-85
Aspects of Speech Recognition by

Computer,

Ph.D. in Computer Science,

March 1969.

Victor D. Scheinman, AlM-92
Design of Computer Controlled Manipulator,
Eng. in Mechanical Engineering,

June 1969.

Claude Cordell Green, AIM-96
The Application of Theorem Proving to
Question-answering Systems,
Ph.D. in Electrical Engineering,
August 1969.

James]. Horning, AIM-98
A Study of Grammatical Inference,

Ph.D. in Computer Science,
August 1969.

54

Michael E. Kahn, AIM- 106
The Near-minimum-time Control of Open-
loop Articulated Kinematic Chains,
Ph.D. in Mechanical Engineering,
December 1969.

Joseph Becker, AIM- 119
AnInformation-processing Model o f
Intermediate-Level Cognition,

Ph.D. in Computer Science,

May 1972.

Irwin Sobel, AIM-121
Camera Models and Machine Perception,

Ph. D. in Electrical! Engineering,
May 1970.

Michael D. Kelly, AIM-130
Visual Identification of People by Computer,
Ph.D. in Computer Science,

July 1970.

Gilbert Falk, AIM-132
Computer Interpretation o f Imperfect Line
Data as a Three-dimensional Scene,

Ph. D.in Electrical Engineering,

August 1970.

Jay Martin Tenenbaum, AIM-134
Accommodation in Computer Vision,
PA.D.in Electrical Engineering,

September 1970.

Lynn H. Quam, AlM- 144
Computer Comparison of Pictures,

Ph.D. in Computer Science,

May 1971.

Robert E. Kling, AIM- 147

Reasoning by Analogy with Applications to
Heuristic Problem Solving: a Case Study,
Ph.D. in Computer Science,

August 197 L.

Rodney Albert Schmidt Jr., AIM- 149
A Study of the Real-time Control of a
Computer-driven Vehicle,

Ph.D.in Electrical Engineering,

August 1971.

Appendix B

Jonathan Leonard Ryder, AIM-155
Heuristic Analysis of Large Trees as
Generatedin the Game of Go,

Ph.D. in Computer Science,

December 197 1.

Jean M. Cadiou, AIM-163
Recursive Definitions of Partial Functions
and their Computations,

Ph.D. in Computer Science,

April 1972,

Gerald Jacob Agin, AIM-173
Representation and Description of Curved
Objects,

Ph.D. in Computer Science,
October 1972.

Francis Lockwood Morris, AIM-174
Correctness of Translations of

Programming Languages -- an Algebraic
Approach,

Ph.D. in Computer Science,

August 1972.

Richard Paul, AIM-177
Modelling, Trajectory Calculation and
Servoing of a Computer Controlled Arm,
Ph.D. in Computer Science,

November 1972.

Aharon Gill, AIM- 178
Visual Feedback and Related Problems in
Computer Controlled Hand Eye

Coordination,

PAD. in Electrical Engineering,

October 1972.

Rutena Bajcsy, AIM-180
Computer Identification of Textured Visiual
Scenes,

Ph.D. in Computer Science,

October 1972.

Ashok Chandra, AIM-188
On the Properties and Applications of
Prograininirig Schenias,

Ph.D. in Computer Science,

March 1973.

THESES

Gunnar Rutger Grape, AIM-201
Model Based (Intermediate Level) Computer
Vision,

Ph.D.in Computer Science,

May 1972.

Yoram Yakimovsky, AIM-209
Scene Analysis Using a Semantic Base for
Region Growing,

Ph.D. in Computer Science,

July 1973.

Jean E. Vuillemin, AIM-2 18
Proof Techniques for Recursive Programs,
PA.D.in Computer Science,

October 1973.

Daniel C. Swinehart, AIM-230
COPILOT: A Multiple Process Approach to
Interactive Programming Systeins,

Ph.D. in Computer Science,

May 19'74.

James Gips, AIM-23 1
Shape Grammarsand their Uses

Ph.D. in Computer Science,

May 1974.

Charles J.Rieger IlI, AIM-233

Conceptual Memory: A Theory and
Computer Program for Processing the
Meaning Content of Natural Language
Utterances,

PA.D. in Computer Science,

June 1974.

Christopher K. Riesbeck, AIM-238
Compu tat ional U nderstanding: Analysis of
Sentencesand Contest,

Ph.D. in Computer Science,

June 1974.

Marsha Jo Hannah, AIM-239
Computer Matching of Areas in Stereo
Images,

PA.D. in Computer Science,

July 19°74.

55

James R. Low, AlM-242
Automatic Coding: Choice of Data
Structures,

Ph.D. in Computer Science,

August 1974.

Appendix C

FILM REPORTS

Prints of the following films are available for
short-term loan to Interested groups without
charge. They may be shown only to groups
that have paid no admission fee. To make a
reservation, write to:

Film Services

Artificial Intelligence Lab.

Stanford University

Stanford, California 94305

Alternatively, prints may be purchased at cost
(typically $40 to $#60) from:

Cine-Chrome Laboratories

4075 Transport St.

Palo Alto, California

(415) 321-5678

This list is kept indiskfile FILMS{BIB,DOC].

1. Art Eisenson and Gary Feldman, Ellis D.
Kroptechev and Zeus, his Marvelous
Time-sharing System, 16mm B&W with
sound, 15 minutes, March 1967,

The advantages of time-sharing over standard
batch processing are revealed through the
good offices of the Zeus time-sharing system on
a PDP- 1 computer. Our hero, Ellis, 1s saved
-from a fate worse than death. Recommended
for mature audiences only.

2. Gary Feldman, Butterfinger, 16mm color
with sound, 8 minutes, March 1968.

Describes the state of the hand-eye system at
the Artificial Intelligence Project in the fall of
1967. The PDP-6 computer getting visual
Information from a television camera and
controlling an electrical-mechanrcal arm solves
simple tasks involving stacking blocks. The
techniques of recognizing the blocks and their
positions as well as controlling the arm are
briefly presen ted. Rated "G".

57

3. Raj Reddy, Dave Espar and Art Eisenson,
Hear Here, I6Bmm color with sound, 15
minutes, March 1969.

Describes the state of the speech recognition
project as of Spring, 1969. A discussion of the
problems of speech recognition is followed by
two real time demonstrations of the current
system. The first shows the computer learning
to recognize phrases and second shows how
the hand-eye system may be controlled by
voice commands. Commands as complicated
as ‘Pick up the small block in the lower
lefthand corner’, are recognized and the tasks
are carried out by the computer controlled
arm.

4. Gary Feldman and Donald Peiper, Avoid,
16mm silent, color, 5 minutes, March 1969.

Reports on a computer program written by D.
Peiper for his Ph.D. Thesis. The problem is
to move the computer controlled electro-
mechanical arm through a space filled with
one or more known obstacles. The program
uses heuristics for finding a safe path; the film
demonstrates the arm as it moves through
various cluttered environments with fairly
good success.

5. Richard Paul and Karl Pingle, Instant
Insanity, 16mm color, silent, 6 minutes,
August, 1971.

Shows the hand/eye system solving the puzzle
Instant Insanity. Sequences include finding
and recognizing cubes, color recognition and
object manipulation. This film was made to
accompany a paper presented at the 1971
International Joint Conference on Artificial
Intelligence in London and may be hard to
understand without a narrator.

6. Suzanne Kandra, Motionand Vision,
16mm color, sound, 22 minutes, November
1972.

A technical presentation of three research
projects completed in 1972: advanced arm

58

control by R. P. Paul [AIM-177] visual
feedback control by A. Gill[AIM-178]), and
representation and descript 1on of curved
objects by G.Agin [AIM-1731.

7. Larry Ward, Computer Interactive
Picture Processing, (M AR s Project),
16mm color, sound, 8 min,, Fall 1972.

This film describes an automated picture
differencing technique for analyzing the
variable surface features on Mars using data
returned by the Mariner 9 spacecraft. The
system uses atime-shared, terminal oriented
PDP- 10 computer. The film proceeds at a
breath less pace. Don’t blink, or you will miss
an entire scene.

8. Richard Paul and KarlPingle, Automated
Pump Assembly, 16mm color, silent (runs
at sound speed!), 7 minutes, April, 1973,

Shows the hand-eye system assembling a
simple pump, using vision to locate the pump
body and to check for errors. The parts are
assembled and screws inserted,using some
special tools designed for the arm. Some titles
are Included to help explain the film.

9. Terry Winograd, Dialog with a robot,
16mm black and white, silent, 20 minutes,
(made at MIT), 1971,

. Presents anatural language dialog with a
simulated robot block-manipulation system.
The dialog is substantially the same as that in
Understanding Natural Language (T.
W inograd, Academic Press, 1972). No
explanatory or narrative material son the
film.

10. Karl Pingle, Lou Paul and Bob Boiles,
Automated Assembly, Three Short
Examples, 1974 (forthcoming).

Appendix C

Appendix D

EXTERNAL PUBLICATIONS

Articles and books by Project members that
have appeared in the last year are listed here
alphabetically by lead author. Earlier
publications are given in our ten-year report
[Memo AIM-2281 and in diskfile
PU BS.OLD[BIB,DOC). The list below is
kept in PUBS[BIB,DOC].

1. Agin, Gerald], Thomas O.Binford,
Computer Description of Curved
Objects, Proceetfings of the Third
International Joint Conference on Artificial
Intelligence, Stanford University, August
1973.

2. Ashcroft, Edward, Zohar Manna, Amit
Pnueli, Decidable Properties of Monodic
FunctionalSchemas, J. ACM, July 1973.

3. Ba jcsy, Ruzena, Computer Description of
Textured Scenes, Proc. Third Int. Joint
Conf.on Artificial Intelligence, Stanford U.,
1973.

4. Brown, H., Masinter, L., H jelmeland, L.,
Constructive Graph Labeling Using
Double Cosets, Discrete Mathematics, 7,
1974.

5. Buchanan, Bruce, N. S. Sridharan,
Analysis of Behavior of Chemical
Molecules: Rule Formation on Non-

Homogeneous Classes of Objects,
Proceedings of the Third International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

6. Carhart, R., C. Djerassi, Applications of
Artificial Intelligence for Chemical
Inference XI: The Analysis of CI3 N M R
Data for Structure Elucidation of
Acyclic Amines, /. Chem. Soc. (Perkin II),
1753, 1973.

59

7. Cerf, Vinton G., R. E. Kahn, A Protocol
for Inter-network Communications,
IEEE Trans. Communications, May 1974.

8. Cerf, V.G, D. D. Cowan, R. C. Mullin, R.
G. Stanton, Networks and Generalized
Moore Graphs, Proc. Manitoba Conf. on
Numerical Math., 1973, (to appear).

9. Cerf, V. C., D. Cowan, R. C. Mullin, R. G.
Stanton, Topological Design
Considerations in Computer-
Communication Networks, in R. L.
Grimsdale, F. F. Kuo (eds.), Computer
Communication Networks, Academic Book
Services Holland, Netherlands, 1974.

10. Cerf, V., C. Sunshine, Protocols and
Gateways for Interconnection of Packet
Switching Networks, Proc. 7th Hawaii
International Conf. on System Sciences,
Western Periodicals Co., Hawaii, January
1974.

11. Cerf, V. G, R. E. Kahn, A Protocol for
Packet Network Intercommunication,
IEEE Trans. Communication, Vol. COM -
22, No. 5, May 1974.

12. Cerf, V. G, D. D. Cowan, R. C. Mullin,
R. G. Stanton, A Partial Census of
Generalized Moore Graphs, Proc.
Australian National Combinitorics
Conference, May 1974.

13. Cerf, V. C., An Assessment of
ARPANET Protocols, Proc. Jerusalem
Conf. on Information Technology, July 1974.

14. Chowning, John M., TheSynthesis of
Complex Audio Spectra by means of
Frequency Modulation, J Audio
Engineering Society, September 1973.

15. Colby, Kenneth M., Artificial Paranoia: A
Computer Simulation of the Paranoid
M ode, Pergamon Press, N.Y., 1974,

60

16. Colby, K.M. and Parkison, R.C. Pattern-

17.

18.

19.

20.

21.

22.

23.

24.

matching rules for the Recognition of
Natural Language Dialogue Expressions,
American Journal of Computational
Linguistics, 1, 1974.

Dobrotin, Boris M., Victor D. Schernman,
Design of a Computer Controlled
Manipulator for Robot Research, Proc.
Third Int. Joint Conf. on Artificial
Intelligence, Stanford U., 1973.

Enea, Horace, Kenneth Mark Colby,
Idiolect ic Language-Analysis for
Understanding Doctor-Patient Dialogues,
Proceedings of the Third International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

Feldman, Jerome A., James R. Low,
CommentonBrent's Scatter Storage
Algorithm, Comm. ACM, November973,

Hieronymus, J. L., N. J.Miller, A. L.
Samuel, The AmanuensisSpeech
Recognit inn System, Pros. /1EEE
Symposium on S peech Recognition, April
1974.

Hieronymus, J. L., Pitch Synchronous
Acoustic Segmentation, Proc. [EEE
Symposium on Speech Recognition, April
1974.

Hilf, Franklin, Use of Computer
Assistance inEnhancing Dialog Based
Social Welfare, Public Health, and
Educational Services inDeveloping

-Countries, Proc. 2nd Jerusalem Conj. on

Info.Technology, July 1974.

Hueckel, Manfrcd 1-1., A Local Visual
Operator which Recognizes Edgesand
Lines, J ACM, October 1979.

lgarashi, S., R. L. London, D. C.
Luckham, Interactive Program
Verification: A Logical Systemand its
Implementation, Acta Informatica, (to
appear).

25.

Appendix D

Katz, Shmuel, Zohar Manna, A Heuristic
Approach to Program Verification,
Proceedings of the Third International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

26. Luckham, David C., Automatic Problem

27.

28.

29.

30.

31.

32.

33.

Solving, Proceedings of theT hird
International Joint Conference on Artificial
Intelligence, Stanford University, August
1973.

Luckham, David C., Jack R. Buchanan,
Automatic Generation of Programs
Containing Conditional Statements, Proc.
AlSB Summer Conference, U. Sussex, July
1974.

Manna, Zohar, Program Schemas, in
Currents in the T heory of Computing (A.
V. Aho, Ed.), Prentice-Hail, Englewood
Cliffs, N. J., 1973.

Manna, Zohar, Stephen Ness, Jean
Yuillemin, Inductive Methods for
Proving Properties of Programs, Comm.
ACM, August 1973.

Manna, Zohar, Automatic Programming,
Proceedings of the Third International
Joint Conference on Artificial intelligence,
Stanford University, August 1973.

Manna, Zohar, Introduction to
Mathematical Theory of Computation,
McGraw-Hill, New York, 1974.

Masinter, L., N. S. Sridharan, R. Carhart,
D. H. Smith, Applications of Artificial
Intelligence for Chemical Inference XlI:
Exhaustive Generation of Cyclic and
Acyclic Isomers, J Amer.Chem. Soc., (to

appear).

Masinter, L., N. S. Sridharan, R. Carhart,
D. H. Smith, Applications of Artificial
Intelligence for Chemical Inference

XIIl: An Algorithm for Labelling
Chemical Graphs, J. Amer. Chem. Soc., (to

appear).

EXTERNAL PUBLICATIONS

34.

35.

36.

37.

38.

Michie, D., Bruce G.Buchanan, Current
Status of the Heuristic DENDRAL
Program for Applying Artificial
Intelligence to the Interpretation of Mass
Spectra, 1 R. A. G. Carrington (ed.),
Compruters for Spectroscopy, Adam Hilger,
London, (to appear).

Miller, N. J,, Pitch Detectionby Data
Reduction,Proc.IEEE Symposium on
S peech Recognition, April 1974.

Moorer, James A., The Optimum Comb
Method of Pitch Period Analysis of
Continuous Speech, /[EEE Trans.
Acoustics, Speech, and Signal Processing,
Vol. ASSP-22, No. 5, October 19°74.

Jorge J. Morales, Interactive Theorem
Proving, Proc. ACM National Conference,
August 1973.

Nevatia, Ramakant, Thomas O.Binford,
Structured Descriptions of Complex
Objects, Proceedings of the Third
International Joint Conference on Artificial
Intelligence, Stanford University, August
1973.

39. Quam, Lynn, Robert Tucker, Botond

40.

41.

Eross, J. Veverka and Carl Sagan,
Mariner 9 Picture Differencing at
Stanford, Sky and Telescope, August 1973.

Sagan, Carl, J. Veverka, P. Fox, R.
Dubrsch, R. French, P. Gierasch, L. Quam,
J. Lederberg, E. Levinthal, R. Tucker, B.
Eross, J. Pollack, Variable Features on
Mars Il: Mariner 9 Global Results, J.
Geophys. Res., 78, 4 163-4 196, 1973.

Veverka, J., Carl Sagan, Lynn Quam, R.
Tucker, B.Eross, Variable Fcaturcs on
Mars Ill: Comparison of Mariner 1969
andMariner 1971 Photography, lcarus, 21,
3 17-368, 1974.

42.

43.

44.

45.

46.

61

Schank, Roger C., Neil Goldman, Charles
J. Rieger III, Chris Riesbeck, MARGIE:
Memory, Analysis, Response Generation
and Inference on English, Proceedings of
the Third International Joint Conference
on Artificial Intelligence, Stanford
University, August 1973.

Schank, Roger C., Kenneth Colby (eds),
Computer Models of Thought and
Language, W. H. Freeman, San Francisco,
1973.

Shortliffe, E. H., S. C. Axline, B. G.
Buchanan, T. C. Merigan, S. N. Cohen,
An Artificial Intelligence Program to
Advise Physicians Regarding
Antimicrobial Therapy, Computers and
Biomedical Research 6, 544-560, 1973.

Shortliffe, E. H., S. C. Axline, B. G.
Buchanan, S. N. Cohen, Design
ConsultationsinClinical Therapudics,
Proc. Biomedical Symposium, San Diego,
February 1974.

Smith, D. H., B. G. Buchanan, R. S.
Engelmore, H. Aldercruetz, C. D jerassi,
Applications of Artificial Intelligence for
Chemical Inference | X. Analysis o f
Mixtures without Prior Separation as
lllustrated for Estrogens, J. American
Chem. Soc., Vol. 95, No. 18, page 6078,
1973.

4°7. Smith, D. H., B. C. Buchanan, W. C.

48.

White, E. A. Feigenbaum, J. Lederberg, C.
Djerassi, Applications of Artificial
Intelligence for Chemical Inference X.
Intsum. A Data Interpretation Program
as Applied to the Collected Mass Spectra
of Estrogenic Steroids, Tetrahedron, Vol.
29, page 3117, 1973.

Smith, D. H, L. M. Masinter, N. S.
Sridharan, Heuristic DENDRAL:
Analysis of Molecular Structure, Proc.
NATOICNNA Advanced Study Institute
on Computer Representation and

62

49.

50.

51.

Manipulation o y Chemical Information,
John Wiley and Sons, 1974.

Smith,David Canfield, Horace J. Enea,
Backtracking inMLISP2, Proceedings of
the Third International joint Conference
on Artificial Intelligence, Stanford
University, August 1973.

Smith, Leland, Editing and Printing
Music by Computer, J.Music Theory, Fall
1973.

Sobel, Irwin, On Calibrating Computer
Controlled Cameras for Perceiving 3-D
Scenes, Proc. Third Int. Joint Conf. on
Avrtificial Intelligence, Stanford U., 1973;
also in ArtificialIntelligence J., Vol. 5, No.
2, Summer 1974.

52.Sridharan, N., Search Strategies for the

53.

Task of Organic Chemical Synthesis,
Proceedings of the Third International
Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

Tesler, Lawrence G., Horace J. Enea,
David C. Smith, The LISP70 Pattern
Matching System, Proceedings of the
Third International Joint Conference on
Artificial Intelligence, Stanford University,
August 1973.

" 54. Wilks, Yorlck, The Stanford Machine

55.

56.

Translationand Understanding Project,
inRustin(ed.) Natural Language
Processing, New York, 1973.

. Wilks, Yorlck, Understanding Without
Proofs, Proceedings of the Third
International Joint Conference on Artificial
Intelligence, Stanford University, August
1972,

Wilks, Yorlck, Annette Herskovits, An
Intelligent Analyser and Generator of
Natural Language, Proc. Int. Conf. on
Computational Linguistics, Pisa, ltaly,
Proceedings of the Third Internation Joint

Appendix D

Conference on Artificial Intelligence,
Stanford University, August 1973.

57. Wilks, Yorick, The Computer Analysis

58.

of Philosophical Arguments, C/IRPHO,
Vol. 1, No. 1, September 1973

Wilks, Yorlck, An Artificial Intelligence
Approach to Machine Translation, in
Schank and Colby (eds.), Computer Models
of Thought and Language, W. H. Freeman,
San Francisco, 1973.

59. Wilks, Yorick, One Small Head - Models

60.

61.

62.

63.

64.

65.

and Theories in Linguistics, Foundations
of Language, Vol. 10, No. 1, January 1974.

Wilks, Yorick, Preference Semantics, E.
Keenan (ed.), Proc. 1973 Colloquium on
Formal Semantics of Natural Language,
Cambridge, UK., 1974.

Wilks, Y. Semantic Procedures and
Information, in Studies in the
Foundations of Communication, R. Posner
(ed.), Springer, Berlin, forthcoming.

Winograd, Terry, A Process Model of
Language Understanding, in Schank and
Colby (eds.), Computer Models of Thought
and Language, W. H. Freeman, San
Francisco, 1973.

Winograd, Terry, The Processes of
Language Understanding in Benthall,
(ed.), The Limits of Human Nature, Allen
Lane, London, 1973.

Wmograd, Terry, Language and the
Nature of Intelligence, in G.]. Dalenoort
(ed.), Process Models for Ps ychol ogy,
Rotterdam Univ. Press, 1973

Wmograd, Terry, Breaking the
Complexity Barrier (again), Proc.
SIGPLAN-SIGIR Interface Meeting, 1973.

EXTERNAL PUBLICATIONS

66. Winograd, Terry, Artificial Intelligence
-- When Will Computers Understand
People?, Psychology Today, May 1974.

67. Winograd, Terry, Parsing Natural
Language via Recursive Transition Net,
in Yeh (ed.) Applied Computation Theory,
Prentice-Hall, 1974.

68. Yakimovsky, Yoram, Jerome A. Feldman,
A Sewantics-Based Decision Theoretic
Region Analyzer, Proceedings of the Third
International joint Conference on Artificial
Intelligence, Stanford University, August
1973.

63

Appendix E

A.. MEMO ABSTRACTS

Abstracts are given here for Artificial
Intelligence Memos that we have published in
the last year. For earlier years, see our ten-
year report [Memo AIM-2281 or diskfile
AIMS.OLD[BIB,DOC]. The abstracts below
are kept in diskfile AIMS[BIB,DOC] and the
titles of both earlier and more recent A. L.
Memos are in AIM LST[BIB,DOC].

In the listing below, there are up to three
numbers given for each report: an “AIM”
number on the left, a "CS" (Computer Science)
number in the middle, _and a NTIS stock
number (often beginning “AD...*) on the right.
Special symbols preceding the “AIM” numbet
indicate availability at this writing, as follows:
+ hard copy or microfiche,
® microfiche only,
= out-of-stock.
If there sno special symbol, then it is
available 1n hard copy only. Reports that are
out-of-stock are likely to stay that way because
of peculiat governmental contractual
requirements. Reports that are in stock may
be requested from:
Documentation Services
Artificial Intelligence Laboratory
Stanford University
- Stanford, California 94305

Alternatively, reports may be ordered (for a
nominal fee) in either hard copy or microfiche
from:

National Technical Information Service

P. 0. Box 1553

Springfield, Virginia 2215 1

If there is no NTIS number given, then they
may or may not have the report. In
requesting coptesinthis case, give them both
the “AIM-" and “CS-nnn” numbers, with the
latter enlarged into the form "STAN-CS-yy-
nnn”, where “yy” Is the last two digits of the
year of publication.

65

Memos that are also Ph.D. theses are so
marked below and may be ordered from:
University Microfilm
_P. 0. Box 1346
Ann Arbor, Michigan 48106

For people with access to the ARPA Network,
the texts of some A. I. Memos are stored
online in the Stanford A. I. Laboratory disk
file. These are designated below by “Diskfile:
<file name>" appearing in the header.

w AIM-21 1 CS-383 AD769673
Yorick Wilks,

Natural Language Inference,

24 pages, September 1973.

The paper describes the way in which a
Preference Semantics system for natural
language analysis and generation tackles a
difficult class of anaphoric inference problems
(finding th correct referent for an English
pronoun in context): those requiring either
analytic (conceptual) knowledge of a complex
sort, or requiring weak inductive knowledge of
the course of events in the real world. The
method employed converts all available
knowledge to a canonical template form and
endeavors to create chains of non-deductive
inferences from the unknowns to the possible
referents. Its method of selecting among
possible chains of inferences is consistent with
the overall principle of ‘semantic preference’
used to set up the original meaning
representation, of which these anaphoric
inference procedures are a manipulation.

AIM-Z 12 cs-3s4 AD769379
Annette Herskovits,

The Generation of French from a Semantic
Representation,

20 pages, September 1973.

The report contains first a brief description of
Preference Semantics, a system of
representation and analysis of the meaning
structure of natural language. The analysis
algorithm which transforms phrases into
semantic items called templates has been

66

considered in detail elsewhere, sothisreport
concentrates on the second phase of analysis,
which binds templates together mito a higher
level semantic block corresponding to an
English paragraph, and which, inoperation,
interlocks with the French generation
procedure. During thisphase, t h e semantic
relations between templates are extracted,
pronouns are referred and those word
disambiguations are done that require the
context of a whole paragraph. These tasks
require items called paraplates which are
attached to keywords such asprepositions,
subjunctions and relative pronouns. The
system chooses the representation which
maximizes acarefully defined ‘semantic
density’.

A system for the generation of French
sentences IS cescribed, based on the generation
of French sentencessdescribed, based onthe
recursive evaluation of procedural generation
patterns called stereotypes. The stereotypes are
semantically context sensitive, are attached to
each sense of Englishwords and keywords
and are carriedinto the representation by the
analysis procedure. The representation of the
meaning of words, and the versatility of the
stereotype format, allow for fine meaning
distinctions to appear in the French, and for
the construction of French differing radically
from the Englishorigin.

. AIM-213 cs-385

Ravindra B. Thosar,

Recognition of Continuous Speech:
Segmentation and Classification using
Signature Table Adaptation,

37 .pages, September 1973.

This reportexploresthe possibility O f using a
set of features for segmentation and
recognition o f continuous speech. The
features are not necessarily distinctive or
minimal, in the sense that they do not divide
the phonemes into mutually exclusive subsets,
and can have high redundancy. This concept
of feature can thus avoid apriort binding
between the phoneme categories to be

Appendix E

recognized and the set of features defined in a
particular system.

An adaptive technique is used to find the
probability of the presence of a feature. Each
feature is treated independently of other
features. An unknown utterance IS thus
represented by a feature graph with associated
probabilities. It is hoped that such a
representation would be valuable for a
hypothesize-test paradigm as opposed to a one
which operates on a linear symbolic Input.

AIM-2 14 CS-3S6

Walter A. Perkins, Thomas 0. Binford,
A Corner Finder for Visual Feedback,
59 pages, September 1973.

In visual-feedback work often a model of an
object and its approximate location are known
and itsonly necessary to determine its
location and orientation more accurately. The
purpose of the program described herein is to
provide such Information for the case in
which the model is an edge or corner. Given
a model of a line or a corner with two or three
edges, the program searches a TV window of
arbitrary size looking for one or all corners
which match the model. A model-driven
program directs the search. It calls on another
program to find all lines inside the window.
Then it looks at these lines and eliminates
lines which cannot match any of the model
lines. It next calls on a program to form
vertices and then checks for amatching
vertex. If this simple procedure fails, the
model-driver has two backup procedures.
First it works with the lines that it has and
tries to form a matching vertex (corner). If
this fails, it matches parts of the model with
vertices and lines that are present and then
takes a careful look in a small region in which
it expects to find a missing line. The program
often finds weak contrast edges in this manner.
Lines are found by a global method after the
entire window has been scanned with the
Hueckel edge operator.

A. l. MEMO ABSTRACTS

= AIM-215 CS-387 AD 769380
Bruce G. Buchanan, N. S. Sridharan,

A nalysis of Behavior of Chemical Molecules:
Rule Format iononNon-homogeneous
Classes of Objects,

15 pages, September 1973.

An information processing model of some
important aspects of Inductive reasoning is
presented within the context of one scientific
discipline.Given a collection of experimental
(mass spectrometry) data from several chemical
molecules the computer program described
here separates the molecules into well-behaved
subclasses and selects from the space of all
explanatory processes the characteristic
processes for each subclass. The definitions of
well-behaved and characteristic embody several
heuristics which are discussed. Some results
of the program are discussed which have been
useful to chemists and which lend credibility
to this approach.

w AIM-2 16 CS- 389

Larry Masinter, N.S. Sridharan, J. Lederberg,
S. H. Smith,

Applications of Artificial Intelligence for
Chemical Inference: XII. Exhaustive
Generation of Cyclic and Acyclic Isomers,
60 pages, September 1973.

A systematic method of identification of all
possible graph isomers consistent with a given
‘empirical formula is described. The method,
embodied in a computer program, generates a
complete list of isomers. Duplicate structures
are avoided prospectively.
w AIM-2 17 cs-39 | AD770610
N. S. Srldharan,

Search Strategices for the Task of Organic
Chemical Synthesis,

32 pages, August 1973.

A computer program has been written that
successfully discovers syntheses for complex
organic chemical molecules. The definition of
the search space and strategies for heuristic
search are described in this paper.

67

AIM-2 18 cs-393

Jean Etienne Vuillemin,

Proof Techniques for Recursive Programs,
Thesis: Ph.D. in Computer Science,

97 pages, October 1973.

The concept of least fixed-point of a
continuous function can be considered as the
unifying thread of this dissertation. The
connections between fixed-points and recursive
programs are detailed in Chapter 2, providing
some insights on practical implementations of

recursion. There are two usual
characterizations of the least fixed-point of a
continuous function. To the first

characterization, due to Knaster and Tarski,
corresonds a class of proof techniques for
programs, as described in Chapter 3. The
other characterization of least fixed points,
better known as Kleene’s first recursion
theorem, is discussed in Chapter IV. It has
the advantage of being effective and it leads
to a wider class of prrof techniques.
« AIM-219 cs-394 AD769674
C. A.R.Hoare,

Parallel Programming: an Axiomatic
Approach,

33 pages, October 1973.

This paper develops some ideas expounded in
[1). It distinguishes a number of ways of
using parallelism, including disjoint processes,
competition, cooperation, communication and
“colluding”. In each case an axiomatic proof
rule s given. Some light is thrown on traps
or ON conditions. Warning: the program
structuring methods described here are not
suitable for the construction of operating
systems.

AIM-220 CS-396

Robert Bolles, Richard Paul,

The use of Sensory Feedback in a
Programmable Assembly Systems,
26 pages, October 1973.

This article describes an experimental,
automated assembly system which uses sensory

68

feedback to control an electro-mechanical arm
and TV camera. Visual, tactile, and force
feedback are used to improve positional
information, guide = manipulations, and
perform inspections. The system has two
phases: a planning phase in which the
computer i programmed to assemble some
object, and a working phase in which the
computer controls the arm and TV camera in
actually performing the assembly. The
working phase s designed to be run on a
mini-computer.

The system has been used to assemble a watet
pump, consisting of a base, gasket, top, and six
screws. This example sused to explain how
the sensory data is incorporated into the
control system. A movieshowing the pump
assembly is available from the Stanford
ArtificialIntelligence Laboratory.

AIM-221 cs-447
Luigia Aiello,Mario Aiello, Richard
Weyhrauch,

The Semantics of PASCAL in LCF,
78 pages, October 1974.

We define a semantics for the arithmetic part
of PASCAL by givingit an interpretation in
LCF, a language based on the typed A-
calculus. Programs are represented 1n terms of
their abstract syntax. We show sample proofs,
using LCF, of some general properties of
PASCAL and the correctness of some
particulat programs. A program
implementing the McCarthy Airline
reservation system 1s proved correct.

AIM-222 CS-467

Mario Aiello, Richard Weyhrauch,

Checking Proofs inthe Metamathematics of
First Order Logic,

55 pages, (forthcoming).

This 1s a report on some of the first
experiments of any size carried out using the
new first order proof checker FOL. We
present two different first orde:
axiomatizations of the metamathematics of the

Appendix E

logic which FOL itself checks and show
several proofs using each one. The difference
between the axiomatizations is that one defines

~the metamathematics in a many sorted logic

the other does not.

+ AIM-223 cs-400
C. A. R. Hoare,

Recursive Data Structures,
32 pages, December 1973.

AD772509

The power and convenience of a
programming language may be enhanced for
certain applications by permitting- data
structures to be defined by recursion. This
paper suggests a pleasing notation by which
such structures can be declared and processed;
it gives the axioms which specify their
properties, and suggests an efficient
implementation method, It shows how a
recursive data structure may be used to
represent another data type, for example, a set.
It then discusses two ways in which significant
gains 1n efficiency can be made by selective
updating of structures, and gives the relevant
proof rules and hints for implementation. It is
shown by examples that a certain range of
applications can be efficiently programmed,
ithout introducing the low-level concept of a
reference into a high-level programming
language.

e AIM-224 cs-403

C. A. R. Hoare,

Hints onProgramming Language Design,
29 pages, December 1973.

This paper (based on a keynote address
presented at the S/GACT/SIGPLAN
Symposium on Principles of Programming
Languages, Boston, October 1-3, 1973)
presents the view that a programming
language satool which should assist the
programmer in the most difficult aspects of his
art, namely program design, documentation,
and debugging. It discusses the objective
criteria for evaluating a language design, and
illustrates them by application to language
features of both high level languages and

A. I. MEMO ABSTRACTS

machine code programming. It concludes with
an annotated reading list, recommended for all
intending language designers.

® AIM-225
W. A. Perkins,
Memory Model For a Robot,
118 pages, January 1974.

CS-406 ,

A memory model for a robot has been
designed and tested in a simple toy-block
world for which it has shown clarity,
efficiency, and generality. In a constrained
psuedo-English one can ask the program to
manipulate objects and queryit about the
present, past, and possible future states of its
world. The program has a good
understanding o f its ~world and gives
intelligent answers in reasonably good English.
Past and hypothetical states of the world nre
handled by changing the state the world 1n an
imaginary contest. Procedures interrogate and
modify two globabl databases, one which
contains the present representation of the
world and another which contains the past
history of events, conversations, etc. The
program has the ability to create, destroy, and
even resurrect objects in its world.

+ AIM-226 cs-407
F.H.G. Wright II, R. E. Corin,
FAIL,

61 pages, April 1974.

This 1s a reference manual for FAIL, a fast,
one-pass assembler for PDP-10 and PDP-6
machine language. FAIL statements, pseudo-
operations, macros, and conditional assembly
features are described. Although FAIL uses
substantially more main memory than
MACRO- 10, 1t assembles typical programs
about five times faster. FAIL assembles the
entire Stanford time-sharing operating system
(two million characters) in less than four
mrnutes of CPU time on a KKA-10 processor.
FAIL permits an ALGOL-style block structure
which provides a way of localizing the usage
of some symbols to certain parts of the
program, such that the same symbol name can

69

be used to mean different things in different
blocks.

AIM-227 cs-408

A. J. Thomas, T. 0. Binford,

Information Processing Analysis of Visual
Perception: A Review,

? pages, forthcoming.

We suggest that recent advances in the
construction of artificial vision systems provide
the beginnings of a framework for an
information processing analysis of human
visual perception. We review some pertinent
Investigations which have appeared in the
psychological literature, and discuss what we
think t be some of the salient and potentially
useful theoretical concepts which have resulted
from the attempts to build computer vision
systems. Finally we try to integrate these two
sources of ideas to suggest some desireable
structural and behavioural concepts which
apply to both the natural and artificial
systems.

e AIM-228 cs-409
Lester Earnest (ed.),

FINAL REPORT: The First Ten Years of
Artificial Intelligence Research at Stanford,
118 pages, July 1973,

AD776233

The first ten years of research in artificial
intelligence and related fields at Stanford
University have yielded significant results in
computer vision and control of manipulators,
speech recognition, heuristic programming,
representation theory, mathematical theory of
computation, and modeling of organic
chemical processes. This report summarizes
the accomplishments and provides
bibliographies in each research area.

e AIM-229 cs411

D.B. Anderson, T.O. Binford, A.J. Thomas,
R.W. Weyhrauch, Y.A. Wilks,

AFTER LEIBNIZ...: Discussions on
Philosophy and Artificial Intelligence,

43 pages, April 1974.

70

This is an edited transcript of informal
conversations which we have had over recent
months, inwhich we looked at some of the
issues which seem to arise when artificial
intelligence and philosophy meet. Our aim
was to see what might be some of the
fundamental principles of attempts to build
intelligent ~ machines. The major topics
covered are the relationship of Al and
philosophy and what help they might be to
each other; the machanisms of natural
inference and deduction; the question of what
kind of theory of meanrng would be Involved
in a successful natural language understanding
program, and the nature of modelsin AT
resea rch.

e AIM-230 CS-412

Daniel C. Swinehatt,

COPILOT: A Multiple Process Approach to
Interactive Programming Systems,
Thesis: Ph.D.inComputer Science,

2 13 pages, August 1974.

The addition of multiple processing facilities
to a language used in an interactive
computing environment requires new
techniques. This dissertation presents o n e
approach, emphasizing the characteristics of
the Interface between the user and the system.

We have designed an experimenta! interactive
_programming system, COPILOT, as the
concrete vehicle for testing anddescribing our
methods. COPILOT allows the user to create,
modify, investigate, and control programs
written 1n an Algol-like language, which has
been augmented with facilities f o r multiple
processing. Although COPJ LOT is compiler-
based, many of our solutions could also be
applied to an Interpretive system.

Central to the design sthe use of CRT
displays to present programs, program data,
and system status. Thiscontinuous display of
information in context allows the user to
retain comprehension of complex program
environments, and to indicate the
environments to be affected by his commands.

Appendix E

COPILOT uses the multiple processing
facilities to its advantage to achieve a kind of
interactive control which we have termed non-
preemptive. The user’s terminal is
continuously available for commands of any
kind: program editing, variable inquiry,
program control, etc., independent of the
execution state of the processes he is
controlling. No process may unilaterally gain
possession of the user’s input; the user retains
control at all times.

Commands in COPILOT are expressed as
statements in the programming language.
This single language policy adds consistency to
the system, and permits the user to construct
procedures for the execution of repetitive or
complex command sequences. An
abbreviation facility is provided for the most
common terminal operations, for convenience
and speed.

We have attempted in this thesis to extend tne
facilities of interactive programming systems
in response to developments ifi language
design and infoi mation display technology.
The resuitant system provides an interface
which, we think, is better matched to the
interactive needs of its user than are its
predecessors.

e AIM-231 cs-4 13
James Cips,
Shape Grammarsandtheir Uses,

Thesis: Ph.D. in Computer Science,
243 pages, August 1974.

Shape grammars are defined and their uses
are investigated. Shape grammars provide a
means for the recursive specification of shapes.
A shape grammar is presented that generates
a new class of reversible figures. Shape
grammars are given for some well known
mathematical curves. A simple method for
constructing shape grammars that simulate
Turing machines is presented. A program has
been developed that uses a shape grammar to
solve a perceptual task involving the analysis
and comparison of line drawings that portray

A. 1. MEMO ABSTRACTS

three-dimensional objects of a restricted type.
A formalism that uses shape grammas to
generate paintings i s defined, its
Implementation on the computer is described,
and examples of generated paintings are
shown. The use of shape

e AIM-232 cs-4 14
Bruce G.Baumgatrt,
GEOMED - A Geometric Editor,
45 pages, May 1974.

GEOM ED is a system for doing 3-D
geometric modeling; used from a keyboard, it
1S an Interactive drawing program; used as a
package of SAIL o1 LISP accessible
subroutines, it 1s a graphics language. With
GEOMED, arbitrary polyhedra can be
constructed; moved about and viewed in
perspective with hidden lines eliminated. In
addition to polyhedra; camera and image
models are provided so that simulators
relevant to computer vision, problem solving,
and animation may be constructed.

e AIM-233 cs-4 19

Charles J. Rieger, III,

Conceptual Memory: A Theory and
Computer Program for Processing the
Meaning Content of Natural Language
Utterances,

T hesis: Ph.D. in Computer Science,

393 pages, June 1974.

Humans perform vast quantities of
spontaneous, subconscious computation in
order to understand even the simplest natural
language utterances. T h e computation is
principally meaning-based, with syntax and
traditional semantics playing insignificant
roles. This thesis supports this conjecture by
synthesis of a theory and computer program
which account for many aspects of language
behavior in humans. It is a theory of language
and memory.

Since the theory and program deal with
language in the domain of conceptual
meaning, they are independent of language

71

form and of any specific language. Input to
the memory has the form of analyzed
conceptual dependency graphs which represent
the underlying meaning o f language
utterances. Output from the memory is also 1n
the form of meaning graphs which have been
produced by the active (inferential) memory
processes which dissect, transform, extend and
recombine the input graphs in ways which are
dependent upon the meaning context in which
they were perceived.

A memory formalism for the computer model
is first developed as a basis for examining the
inferential processes by which comprehension
occurs. Then, the notion of inference space 1s
presented, and sixteen classes of conceptual
inference and their implementation in the
computer model are examined, emphasizing
the contribution of each class to the total
problem of understanding. Among the sixteen
inference ¢l asses are: causative/resultative
inferences (those which explain and predict
cause and effect relationships relative to the
memory’s model of the world), motivational
inferences (those which infer the probable
intentions of actors), enabling inferences (those
which predictively fill out the circumstances
which were likely to have obtained at the time
of an action), action prediction inferences
(those which make guesses about what a
person might be expected to do in some
situation), knowledge propagation inferences
(those which predict what knowledge is
available to a person, based on what the
memory already knows or can infer he knows),
normative Inferences (those which assess the
“normality” of a given piece of information),
and state duration inferences (those which
predict the probable duration of specific states
in the world). All inferences are probabilistic,
and “backup” is deemphasized as a
programming tool.

The idea of points of contact of information
structures in inference space is explored. A
point of contact occurs when an inferred unit
of meaning from one starting point within one
utterance’s meaning graph either confirms

72

(matches) or contradicts an Inferred unit of
meaning from another point within the graph,
or from within the graph of another utterance.
The quantity and quality of points of contact
serve as the primary definition of
understanding, since such points provide an
effective measure of the memory’s ability to
relate and fill in information.

Interactions between the Inference processes
and (1) word sense promotion (how meaning
contest influences the language analyzer’s
choice of lexical senses of words during the
parse), and (2) the processes of reference (how
memory pointers to tokens of realworld
entities are established) are examined. In
particular, an important inference-reference
relaxation cycle s Identified and solved.

The theory forms a basis for a
computationally effective and comprehensive
theory of language understanding b y
conceptual inference. ~Numerous computer
examples are included to Illustrate key points.
Most issues are approached from both
psychological and computational points of
view, and the thesis is intended to be
comprehensible to people with a limited
background in computers and symbolic
computation.

AIM-294 CS+421
Kenneth Mark Colby, Roger C. Parkison, Bill
“Faught,

Pattern-Matching Rules for the Recognition
of Natural Language Dialogue Expressions,
23 pages, June 1974.

Mat-i-machine dialogues using everyday
conversational English present difficult
problems for computer processing of natural
language. Grammar-based parsers which
perform a word-by-word, parts-of-speech
analysis are too fragile to operate satisfactorily
in real time interviews allowing unrestricted
English. In constructing a simulation of
paranoid thought processes, we designed an
algorithm capable of handling the linguistic
expressions used by interviewers in teletyped

Appendix E

diagnostic ~ psychiatric interviews. The
algorithm uses pattern-matching rules which
attempt to characterize the input expressions
by progressively transforming them into
patterns which match, completely or fuzzily,
abstract stored patterns. The power of this
approach lies in its ability to ignore
recognized and unrecognized words and still
grasp the meaning of the message. The
methods utilized are general and could serve
any “host” system which takes natural
language input.

AIM-235 CS-432

Richard W. Weyhrauch, Arthur }. Thomas,
FOL: A Proof Checker for First-order Logic,
57 pages, forthcoming.

This manual describes a machine
Implementation of an extended version of the
system of natural deduction described by
Prawitz. This language, called FOL, extends
Prawitz’s formulation to a many-sorted logic
allowing a partial order over sorts. FOL also
allows deductions to be made in some
intuitionistic, modal and strict-implication
logics. It is intended to be a vehicle for the
investigation of the metamathamatics of first-
order systems, of problems in the theory of
computation and of issues in representation
theory.

AIM-236 cs-433

Jack R. Buchanan and David C. Luckham,
On Automating the Construction of
Programs,

65 pages, May 1974.

An experimental system for automatically
generating certain simple kinds of programs is
described. The programs constructed are
expressed in a subset of ALGOL containing
assignments, function calls, conditional
statements, while loops, and non-recursive
procedure calls. The input is an environment
of primitive programs and programming
methods specified in a language currently used
to define the semantics of the output
programming language. The system has been

A.1. MEMO ABSTRACTS

used to generate programs for symbolic

manipulation, robot control, everyday
planning, and computing arithmetical
functions.

AIM-237 CS-436

Yorick Wilks,

Natural Language Understanding Systems
Within the Al Paradigm -- A Survey and
Some Comparisons,

26 pages, forthcoming.

The paper surveys the majorprojects on the
understanding of natural language that fall
within what may now be called the artificial
intelligence paradigm for natural language
systems. Some space is devoted to arguing
that the paradigm is now a reality and
different in significant respects from the
generative paradigm of present day linguistics.
The comparisons between systems center
around questions of the relative perspicuity of
procedural and static representations; the
advantages and disadvantages of developing
systems over a per-rod to test their limits; and
the degree of agreement that now exists on
what are the sorts of information that must be
available to a system that is to understand
everyday language.

® AIM-238 cs-437

Christopher K. Riesbeck,

Computational Understanding: Analysis of
Sentencesand Context,

Thesis: PA.D.in Computer Science,

245 pages, forthcoming.

The goal of this thesis was to develop a
system for the computer analysis of written
natural language texts that could also serve a
a theory of human comprehension of natural
language. Therefore the construction of this
system was guided by four basic assumptions
about natural language comprehension. First,
the primary goal of comprehension is always
to find meanings as soon as possible. Othet
tasks, such as discovering syntactic
relationships, are performed only when
essential to decisions about meaning. Second,

73

an attempt 1s made to understand each word
as soon as it is read, to decide what it means
and how it relates to the rest of the text.
Third, comprehension means not only
understanding what has been seen but also
predicting what is likely to be seen next.
Fourth, the words of a text provide the cues
for finding the information necessary for
comprehending that text.

+ AIM-239 cs-43s

Marsha Jo Hannah,

Computer Matching of Areas in Stereo
Images,

Thesis: Ph.D. in Computer Science,

99 pages, July 1974,

This dissertation describes techniques for
efficiently matching corresponding areas of a
stereo pair of images. Measures of match
which are suitable for this purpose are
discussed, as are methods for pruning the
search for a match. The mathematics
necessary to convert a set of matchings into a
workable camera model are given, along with
calculations which use this mode1 and a pair
of image points to locate the corresponding
scene point. Methods are included to detect
some types of unmatchable target areas in the
original data and for detecting when a
supposed match isinvalid. Region growing
techniques are discussed for extend matching
areas Into regions of constant parallax and for
delimiting uniform regions in an image. Also,
two algorithms are presented to show some of
the ways in which these techniques can be
combined to perform useful tasks in the
processing of stereo images.

+ AIM-240 cs-444

C. Cordell Green, Richard J. Watdinger,
David R. Barstow, Robert Elschlager, Douglas
B. Lenat, Brian P. McCune, David E. Shaw,
and Louis |. Steinberg,

Progress Report onh Program-understanding
Systems,

47 pages, August 1974.

This progress report covers the first year and

74

one- half of work by our automatic
programmtng research group at the Stanford
Artificial Intelligence Laboratory. Majo
emphasis has been placed on methods of
program specification, codification of
programming knowledge, and implementation
of pilot systems for program writing and
understancltng. List processing has been used
as the general problem domain for this work.

+ AIM-241 CS-446

Luigia Aiello, Richard W. Weyhrauch,
LCFsmall:animplementation of LCF,
45 pages, August 1974,

ThisIs a report on acomputer program
implementing a simplified verston of LCF. It
is written (wtth mtnor exceptions) entirely in
pure LISP and has none of the user oriented
features of the implementation described by
Milner. We attempt to represent directly in
code the metamathematical notions necessary
to describe LCF. We hope that the code is
simple enough and the metamathematics is
clear enough so that properties of this
particular program (e.g. its correctness) can
eventually be proved. The program 1s
reproduced in full.

o AIM-242
James R. LOW,
Automatic Coding: Choice of Data
Structures,

Thesis: Ph.D. in Computer Science,
1 10 pages, August 1974,

cs-4 52

A system 1s described which automatically
¢ hooscs representations for high-level
infdrmation structures, such as sets, sequences,
and relations for a given computer program.
Representations ar e picked from a fixed
library of low-level data structures including
linked-lists, binary trees and hash tables. The
representations are chosen by attempting to
minimize the predicted space+time integral of
the user’s program execution. Predictions are
based upon statistics of information structure
use provided directly by the user and collected
by monitoring executions of the user program

Appendix E

using default representations for the high-level
structures. A demonstration system has been
constructed. Results using that system are
presented.

