
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM - 218

STAN-CS-73-393

PROOF TECHNIQUES FOR RECURSIVE PROGRAMS

De BY

Pe

| ANE. VUILLEMIN= JE LLEM

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 2494 B

"PROJECT CODE 3D30

OCTOBER 1973

COMPUTER SCIENCE DEPARTMENT
Schoo! of Humanities and Sciences

STANFORD UNIVERSITY =

NATIONAL TECHNICAL

| VS ER oo Springfield VA 2215]

Proof Techniques for Recursive Programs

Jean Vuillemin

Abstract

: The concept of least fixed-point of a continuous function can be

considered as the unifying thread of this dissertation. EERE

| The connections between fixed-points and recursive programs are

detailed in Chapter 2, providing some insights on practical implementa-

tions of recursion. There are two usual characterizations of the least

fixed-point of a continuous function. To the first characterization,

due to Knaster and Tarski, corresponds a class of proof techniques for

programs, as described in Chapter 5. The other characterization of

| least fixed points, better known as Kleene's first recursion theorem,

is discussed in Chapter Lk. Tt has the advantage of being effective |

| and it leads to a wider class of proof techniques.

The views and conclusions contained in this documentare those of the

author and should not be 1lnterpreted as representing the official policies,

either expressed or implied, of the Advanced Research Projects Agency of
the U.5. Government,

This research was supported by the Advanced Research Projects Agency, Dept.
of Defense under contract DAHC 15-73-C-0435

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

1b

Acknowledgments

First of all, IT am grateful to Dana Scott, Robin Milner, and

| David Park who, by their respective works, made this thesis possible. oo

| T am deeply indebted to: | |

Donald Knuth for his reading of the manuscript: his

| criticisms of Chapter 2 led to rewarding improvements

in the generality of the results.

Zohar Manna for his constant encouragement and help; he has

been a model adviser throughout my work.

Robin Milner for all the things I learned from him, and

the many interesting discussions we had.

T also want to thankmy friends Jean Marie Cadiou, Ashok Chandra,

Cyril Grivet, Gilles Kahn, Lockwood Morris, bteve Ness, Mark Smith,

and Phyllis Winkler who all helped me in their many different ways.

ii |

| | Table of Contents

INTrodUCTION + « vv 6 tv tt eh hh ee ee eee eee eee. 1

Chapter 1. Scott's Theory of Computation . . . « . . +. . ¢ . . 3

1. Data-TyPes +. + « vo vo vo so 0 oo oo oo oo 0 0 0. Ly

| 2. Computable Functions Over Data~Types « + +. + « + « « + . 9

5. Fixed-Poinbts « « + vv tv tv vt ee a eae eee eee 15

| Chapter 2. Fixed Points and Recursion + « + +¢ « « o « o « « o o 15

| 1. Computationsof Recursively Defined Functions 15

1.1 Description of lang Sand Lang P . . « « « « « « . 16

| 1.2 Conventions and Notations 18

1.2 Computation Rule +. « ¢ « v ov 4 « ¢ o o o o oo o 20

1.4 Computation Lattice of a Program . . « « « « « « . 22

| 2. Correct Implementationsof Recursion . « «+ « « « « + + 3%

2.1 Incorrect Computation Rules . . « « « « « « «+ + « 25

2.2 Safe Computation Rules . . + + ¢ + « « « « . . oe 3h

| | 3. An Optimal Tmplementation of Recursion in Leng 8 41

3.1 Never Do Today What You Can Put Off Until

TOMOTTOW + o + + o oo + 6 oe oe te te eee ew a

3.2 Optimality of the Delay Rule . « + « « « « + « « . h5

| 3.3 Sequential Functions + «+ « « + « « o + + « + + + . LE

Chapter 5. Proofs Based Upon Monotoniclity . + « + + «+... 5%

1. A Formal System for the Time Being te ee sae ee es 5%

1.1 Syntax ct es ee eee ee ee ee asa . 55

1.2 SemanbtiCs + « vv 4 «4 ee 4 + +e oe so oe eo os «so 5b

1.3 Axioms and Rules of Inference . . . + « « +« « «+ . 5h

1.4 SoUNANESS + « vv 4 4 4 4 be ee ee ee ee ee. BF

| iii

1.5 Pragmalics . « + « v « vv 4 vt 4 4h ve ee oe so. 57

1.6 A Possible Weakness of the System +. . . . 61

2. Justification of Some Proof Techniques Ce ee eee... Bh

| 2.1 Description of a Flowchart Language . . «. ©6h

| 2.2 The Inductive Asserbions Technique . . « + « « « « « 67

2.3 Termination of Programs = + « « « « « « o « « « + . 68

| Chapter 4. Proofs Based Upon Continuity . « « « + « « « « « « « + T0

1. Description of ICF + + «+ oo 000... TL

1.2 Axioms and Rules « vv vv vo 6 ov 0 oo so os 0 es 12

1.3 Some Remarks About the Logic . ce ee ee ee ee. Th

1.4 Some Examples of Proofs + « v « vo « « oo + « « « 76

2. Modelling Some Proof Techniques Within ICF 81

2.1 Structural Induction « « « «+ « « « « + « « « « + + . B81

2.2 Truncation Induction +. « « « « « « + « + « « « « + . 88

CONCLUSION ov = + «oo « « o o « + so 4 ov so 4 «vt a oe a vw vw Ob

References + « « vo ¢ 4 vs o 0 + so os so o oo os o a oo « os oo « «+ o 95

iv

| Introduction

| The goal of this work Was to study and hopefully compare in a

precise way the various techniques for proving properties of programs

existing in the literature. It soon turned out that nothing interesting

could be said if one did not state precisely what the various methods

really are within a common logical system. Aperfectly adequate system

for doing so was the Logic for Computable Function of Milner [18], which

is based on the work of Scott [29] and [30].

| In this framework, proof techniques fall rather nicely into two |

| | classes: for the first class, which includes the methods of Burstall [1],

Floyd [7], Hoare [9], Manna-Pnueli [16], the semantics needed for validating

the techniques only demand that programs be interpreted as monotone

functions in the sense of Scott [29]; for methods in the second class,

such as those of Scott [30] and Morris [2%], programs must be interpreted

as continuous functions.

The methods in the second class are then "more powerful” in that

they can be used for justifying the other techniques; furthermore,

provided that all methods are expressed within the same logical system,

we can exhibit properties of programs which are provable with The

proof-techniques in the second class, and not provable with the techniques

in the first class, and not vice-versa.

| Before studying the various proof techniques, we present a minimal

| background in Scott's Theory ofComputation in Chapter 1. One of the

points of the Theory which we thought needed clarification was the

relations between the abstract notion of least fixed-point and the

1

| concrete notion of trace of a program. Chapter 2, which is the most

original part of this thesis,is devoted to this question. We believe

that Theorems1, 3 and 4 are new while Theorem 2 is a generalization

of a result by Cadiow [2]. | |

| In Chapter 3, we study the proof-technique in the first class. The

formal system used is original, although a mere adaptation of Milner's

ICF to a different semantic domain. Reduction of the proof techniques

| presented to the rule of fixed-point induction are due to Park [26].
| In Chapter 4, we describe reductions of some methods to the rule

of induction of Scott [30]; some ofthese reductions are also used,

| implicitly or explicitly in deBakker-Scott [6], Scott [30], Milner [18],

and Milner-Weyrauch [21]. | |

| 5

Chapter 1. SCOTT'S THEORY OF COMPUTATION

In this chapter, we shall present an overview of Scott's theory

of computation, whose goal was to give a "mathematical as opposed to

"operational" semantics for high-level programming languages. Only the

parts of the theory which are relevantto this dissertation will be

described. In particular, one of Scott's most impressive achievements

was to construct a model for the A-calculus, which in turn provides a

mathematical semantics for programming peculiarities such as self-modifying

machine codes or procedures taking other procedures as arguments. We

shall not concern ourselves with this problem, and the kind of procedure

| we are willing to consider has a definite type -- a function from

| individuals to individuals, or a functional from functions to functions,

| ete. Limited as it is, the theory that we shall describe is nevertheless

| powerful enough not only to describe the semantics of non-trivial subsets

of any programming language, but also to justify all the existing proof

techniques for those languages. The presentation of this chapter, whose

| only purpose is to make the thesis more or less self-contained, is based

on Scott [29] except for some minor technical details.

| We assune that the reader has some knowledge of elementary lattice
| and recursion theories. |

| p

| 1. Data Types | : |

As a first step, let us consider some examples of what one would

like to call data types: | a

(a) the boolean values true and false;
(b) the set of integers; |

(c) the n-dimensional arrays of integers;

(d) the set of subsets of integers;

(e) the set of computable partial functions over some data-type;

(f) the set of non-negative real numbers.

~~ Some of those sets contain as elements objects like total functions or
- irrational real— which we shall call "infinite elements". They

cannot be described entirely, but one can give better and better finite)

approximations to what they really are. Tor example, the intervals

[3,4], [%3.1,3.2], [3.14,3.15], ... form a sequence of approximations |

of Tm . oo | oo |

| | This suggests that data-types ought to be partially ordered sets.
The notation x = y means that x approximates y , and LC must

| therefore be a reflexive, transitive and antisymmetric relation over

the data-type. For example, if A and B are some subsets of the

integers, A © B means that A is a subset of B . Similarly, for

any two intervals [%,x'] and [y,y'] of non-negative real numbers

[x,x'] CC [y,y'] will mean that x <y and y' <x', i.e. [voy]

gives us a better idea of where the real number lies than [x,x'] . |

| Considering now two integers k and £2 , we do not wish to say

that one is an approximation of the other. However, it may be the

| case that k is not explicitly known, but has to be determined as

| the result of some computation. As we all know, this computation may

| never terminate, in which case k 1s said to be undefined; we denote

this by k = UU and clearly UU<= {f for any ££ . We use a different

equality sign " =" in order to avoid confusions with the regular

| equality " =" over the integers. Here, x =y means that XC y

and y=x , while x =y is true whenever x and y are the same

integer. For example, 1 =1 and 1 = 1 are both true, while UU = 1

is false and UU = 1 1s undefined. To be precise, one should write

(UU, = 1) =UU, vhere the subscripts are here to remindus that uu,

is an undefined integer, while UU, is an undefined boolean.

| To clarify those ideas, it is helpful to describe more precisely

the partial orderings over our favorite data types. oo

. . . TT FF

(a) Tor the boolean values, the data type looks like ANY pe 5
I [S18]

where AN means that b covers a , i1.e., aCb with a # je
a

and a cb for some c¢ implies either a =¢c or ¢c=bD .

(b) Although there are infinitely many integers, the corresponding

data type 1s not much richer:

1 ~~ n ce |TT
Data types of this kind, where elements are either completely specified

or undefined will be called discrete.

p)

| (¢) The data type of pairs of Boolean has already a richer

structure:

Id
| (IT,0U0) NL (UU, FF) (FF,UU) |

(4d) In the data type of subsets of some set, ACB means that A

is a subset of B ; the least element UU is the empty set. |

(e) As indicated before, the elements of the data type of real

numbers are closed intervals [x,x'] with 0 <x <x' and

|x,x'}1© [y,y'] whenever x <y and y' <x' . It is convenient

to complete the real line with an element « , thus allowing [7.1,«]

| for example, to be a real number. The interval [0,«] reflects a

complete lack of information and should therefore be identified with

the undefined real UU. |

(f) If BH is a data type partially ordered by =I the partial

functions mapping JS into 4 are ordered by: | |

| fog iff f(x) cpe(x) forall x in JB. |

The minimal element Wap is the partial function which is everywhere

undefined, i.e., UU(x) = UU for all x in 5 .

Infinite Elements as Limits

Let us contemplate again the sequence

(3,471, [3.1, 3.2], [3.14, 3.15], We would like to be able to

6

define mw as the "limit" of these intervals. Abstractly, this will

x

require that any chain

Xp EX Cn EX EXE |

has a limit y in the data type JS , which is the least-upper bound

of the x's , that is, x, CF for every J and, for any z in the

data type, x, z for every J implies yz . We write y = U x. .
y i>0 *

According to this notation, in the data-type of real numbers

| [1,2] = U [i/(i+1),(2i+1)/i] and for sets of integers,
| i>0

{k|kx is oad} = U {1,3,...,2i+1} . Let us define the constant
1>0

function one as one(x) = 1 for any integer x , while one(UU) = UU ;

this function can also be defined as a limit of partial functions

| one = UU [Ax. ifx <1 then 1 else UU] .
1>0

Computability |

Asking that the infinite object LU x. be computable will
1>0

require that the Xs themselves be computable. We therefore postulate

| the existence of an effectively given subset E of the data type 5,

such that any element of J is the limit (not necessarily effective)

of some chain of elements of ® . Such a set E will be called a

recursive basis of J . Tor example, a data-type in which there are

no infinite ascending chains (booleans, integers, arrays) is its own

. |
| id Strictly speaking, we only need denumerable chains to have a limit.

However, when data-types have a denumerable basis (see below), |
| requiring that countable chains have limits implies that any chain

(and in fact directed set) also has a limit.

1 |

basis provided that it is recursive. The finite sets of integers

constitute a basis for the set of subsets of the integers. Similarly,

| the set of functions which are undefined for all but a finite number
| of arguments is a basis for the data type of partial functions.

B Finally, a basis for the real numbers is the set of rational-end-point
| | intervals. | |

We can remark that the recursive basis ofa data type 5H must be

| denumerable. Consequently, all of its elements being obtained as

limits of denumerable chains in the basis, §/ itself has at most a |

continuum number of elements. In particular, since there are at most

| denumerably many computable objects (i.e., objects defined as limits of

effectively given chains), a non-denumerable data-type will possess

| many non-computable elements. |

We can summarize the above discussion by the postulate |

. | Adata-type is a partially ordered set with a
I minimal element, possessing a recursive basis

and in which every ascending chain hag a limit. |

Note: This notion of data-type is slightly different from the one

advocated by Scott [29], namely that data-types ought to be complete

| lattices. The main technical reason for this choice was the difficulty |
which seems TO arise for defining our notion of sequential function

| in Chapter 2, with complete lattices.

| 8

2. Computable Functions over Data Types

The next step is to consider programs as functions mapping data

| types into data types, and to derive some mathematical properties of

such functions. |

Programs as Monotone Mappings |

Let f be a partial function computed by some program. Whenever

the input x is less defined than the input vv , the output f(x) must

be less defined than f(y) , i.e., x Cy implies f(x)© f(y) . This

| motivates the hypothesis that functions computedby programs are monotonic

mappings over the data type. |

Examples |

— The successor function [Ax. x+1] over the integers is monotone

if we choose UU+1l = UU . |

— The conditional if p then x else y where

if UU then x else y = UU

| if TT then x else y =X |

if FF then x else y =y

is monotone with respect to p , x and y . (A function of several

variables is monotone when it is monotone in each of its arguments.)

— As for sets, the functions A UB and A NB are both monotone

in A and B .

— The following definition of division over the reals makes it

a monotone function:

9

oy]/ [xy] = [ovsgr] where

— 0 and = = « for all xclO,=] .

Programs as Continuous Mappings

As it stands now, the theory is already quite adequate for
expressing and proving properties of programs, and Chapter 3 describes

some results which can be derived from the assumption that mappings

| between data-types are monotone functions.

However, we are still missing an essential property of computable

functions. Knowing the values of a monotone function over the basis of

| a data-type does not determine in general its values over the data-type.

For example, the function

| | 0 if A or B is finitefunny-union(A,B) =
N if A and B are infinite

| where A and B are two subsets of N , is monotone but clearly not

computable.

Intuitively, the value f(x) of a computable function f at an

| infinite object x should be obtained as the limit of the values

f(x,) over the finite approximation Xs of x . More precisely, let

us consider an arbitrary chain

| ep Ce CT --Ce Ce LC... | |

| of elements in the basis of the data type. Since f 1s monotone, the

| set {i >0 | £(e,) is also a chain

fey) = fe) =... = fle) - fle 1) =o...

| 10

| and the computability of f demands that

f(Ue) =U fle) (a)
n>0 n>0

A monotone function satisfying equation (a) for arbitrary chains will

| | be called continuous. We shall therefore postulate that

Computable functions are continuous mappings between ;

data~-types. |

Again, a functionof several arguments is continuous if it is contintious.

in each of its arguments. |

Examples

— The function [Ap,x,y. if p then x else y] is continuous.

| Addition of two integers, union of two sets, division of reals are also

continuous operations. The functional [AF.[Ax. if x = O then 1 else x.F(x-1)

over the data-type of natural numbers is continuous, both in F and in x .

— Let us define the mappings x p(x) and vx p(x) which associate

a boolean to each function Pp from natural numbers to booleans as

follows:

— ax p(x) is equal to TT if p(n) = TT for some natural

number n and ejqual to UU otherwise.

— ¥x p(x) is equal to TT if p(n) = TT for all natural

numbers n # UU and equal to UU otherwise.

We shall verify that [Ap.(8x)p(x)] is continuous while [Ap.(¥x)p(x)]

is monotone but not continuous in general. Let PE CD. CPi Eee

11

be a chain of partial predicates over the natural numbers. We easily

verify that (U p;) (%) = (p; (x) . Now, if (u p;) (%) =
i>0 1i>0 1>0

| u p; (x) = TT for some x , there must exist an i, such that 1 >i,
1>0

| implies p, (%) = TT ; otherwise, either (ud ps) (%) = FF and again there
120 |

| is an i, such that p, (x) = FF or (dl p;) (x) = UU and p, (%) = UU
| 0 1>0

for all 1 . In all cases we have (3x) (U p;) (x) = Ul (8x) p, (x) and
| 1>0 1>0

Hd dis indeed continuous. One shows that V is monotone in a similar way

and the chain p, (%) = (x < 1) provides a counterexample to the continuity
of V .

| Let us now discuss some properties of continuous functions. First

of all, it is possible to define a topology over data-types such that a

| function is continuous in the above sense if and only if it 1s continuous

in the topological sense (see Scott [31]). Without describing the

topology, we can nevertheless say that a subset X of the data-type 8

is directed if for all x,yeX , there exists a zeX such that x C z

and y C= z . Together with the existence of a denumerable basis for 5,

the fact that continuous functions preserve limits of denumerable chains

implies that continuous functions also preserve least-upper-bounds of

directed sets. Continuous functions do not however preserve least-upper-

bounds or greatest-lower-bounds (when they exist) of arbitrary sets.

| 12

3. Fixed Points |

Let f be a function over a data-type BH . We say that xef is

a fixed-point of f if x = f(x) 3; we say that y is the least-fixed-

point of f if wy = f(y) and y = x for any other fixed-point x .

Note that, whenever it exists, the least-fixed-point of f must be

unique; we shall denote it either by ux.f(x) or by Xo

Theorem (Kleene). Any continuous function over a data-type JH has |

a least-fixed-point Xo and | |

x, =U frou). E
| n>0

Proof. . Here ©(UU) means f(£(...(£UU))...) (n times) and, by |
n

monotonicity of f£ , the set {f (UU)} for n>0 is indeed a chain. We first

prove that Li (UU) is a fixed point of f . This is easy since
n>o0

f(U fu) = wu £7) = U (UU) by continuity of f .
n>0 n>0 n>0

We now prove that LJ (uu) must be minimal. Let vy be an
| n>o

| arbitrary fixed-point of ff, i.e., vv = f(y) . Tt is easy tO prove by

induction that (uu) Cv for any n . The conclusion U f(UU) Cy
n>o0

follows immediately.
C]

Examples |

— In any data type, UU = [py.y] and x = [py.x] .

If 7 = M.[Ax. if x = 0 then 1 else x.f(x-1)]

| and 0 = AM{.[Ax. ifx > 100 then x-10 else f(f(x+11))] over the

natural numbers,

15

+

then 1° oun) = [Ax. if x <n then x! else UU]

and oun) = [Ax. if x > 100 then x-10

| else if x-100 > -n then 91 else UU] ;

therefore, f. = [Ax.x!] and fs = [Ax. if x > 100 then x-10 else 91] .

From these examples, the reader may already suspect that there

must be a relation between recursively defined functions and least

fixed points. The next chapter will be entirely devoted to this

question.

| 1h

Chapter 2. FIXED-POINTS AND RECURSION

The object of this chapter is to detail the connections between

fixed-points of continuous functionals and recursively defined functions

in a very simple programming language. We first illustrate that the

| semantics of recursively defined functions will dependon the implemen-

| tation. A careless implementation of recursion will introduce unnecessary

computations, which may even prevent the program from terminating.

A general criterion for the correctness of an implementation will be

proved. We then describe an implementation of recursion which is both

correct and optimal in a general class of sequential languages and

therefore constitutes an attractive alternative to both "eall by value"

and "call by name". oo

| 1. Computations of Recursively Defined Fanctions
Before defining a computation rule, we must describe two programming

languages, langS and lang P . Although those two languages were

chosen for their extreme simplicity, their use of recursion is as general

as any, and the results of this chapter provide some insight into

semantics and implementation of more complex programming languages.

Lang S permits only sequential computations, and corresponds

precisely to a certaln "typed" subset of Algol or LISP.

Lang P requires some parallel operations, and thus departs from

| more classical programming languages, although we could undoubtedly

write an interpreter for lang P in any of those classical languages.

15 |

1.1 Description of lang S and lang P |

| Syntax |

Both languages have the same syntax:

(program) ::= F(Xy5 eX) <= (term)

(term) ::= AJA

| x,x

| | 6, ((Berm 1)... (berm P17)

|, ((term 1Y, «e., {berm Py)

: |F((term 1),..., (term n)) .

We limited ourselves to a single recursive equation, the extension

of the results in this chapter to systems of mutually recursive

equations being straightforward. |

| Here, Ashos eves Gps ees Gy denote fixed constants and functions

- respectively. It is convenient to use a more standard syntax, e.g.,

F(X) <= IF X = 0 THEN 1 ELSE X.F(X-1) instead of

F(X) <= Gy (Py (5,45) 54,6,(X,F(G5(X))))

The meaning of a program will be a continuous mapping in

[Bx cee XB — B] where each By and JS are some data-types; for

simplicity, the B.'s will be identical to J unless explicitly

specified.

Semantics of terms in lang P |

The meaning of a (term) is a (continuous) functional

MAX 5 esx JA((berm) where the semantic function / is defined
inductively as follows:

(1) (A) =a, where a. eh

16

(ii) JX) = x,

(iii) #(G ((term 1y,..., {term Py)) = g, (((term 1)),...,o({term Dy)

where g is some continuous function in Gk -~ 5 .
(iv) L(F({(term 1Y,..., {term n))) = £(H({term 1)),...,.2({(term n))) .

Here we have to prove that this is continuous, 1l.e., that continuous

| functions are closed under composition,)-abstraction and fixed-point

operation. The reader can find these proofs either in Scott [30] or in

Milner [19]. |

Semantics of Terms in lang S

The semantics of lang § is defined in preciselythe same way as

| that of lang P , the difference lying in restrictions on the interpreta-

tion of base functions. In lang S ,we require functions to be sequential,

i.e., roughly that thelr arguments can be computed in sequence. We shall

give later a precise definition of this notion. For expository purposes,

however, we shall limit ourselves for the moment to studying a particular

sequential language.

The data-types on which our particular lang S is computing are

discrete, 1.e., they look like: |

bo: EE TERI SEE or 3: iN in .| J |AT uu

In what follows, we use ww instead of ung and Q in place of usp

in order to help the eye avoid type confusions. Among the base functions,

| we point out a particular one, denoted IF-THEN-ELSE whose interpretation

is the usual conditional, i.e., if uu then x else y = w ,

if tt then x else y = x and 1f ff then Xx else y = y . |

17

All other base functions are required to be strict, i.e.,

gi (eerwsees) = w : they are undefined as soon as at least one of their

arguments becomes undefined. They are meant to correspond to the

| "hardware"I add , addone , test-for-equality ,
It will be shown that all functions definable in lang S are

| sequential. The symmetric OR defined by the table:

Ba

Xx OR ¥y

or The symmetric multiply * where O¥x = x¥0 = O are not sequential,

and are therefore not definable in lang S , nor in Algol for that matter.

Semantics of Programs in both lang S and lang P |

The functional 1 = MAX sx S((term)) as defined in lang S |
| or lang P can be shown to be continuous. It must therefore have a |

| least fixed-point 4 and it would be nice to define the meaning MM of

the corresponding program as ({(program)) = f_ .
This is unfortunately not true for all implementations of recursion,

and our goal will be to characterize the implementations for which the

| computed function is equal to this least fixed-point.

1.2 Conventions and Notations

The reader has already noticed that syntactic entities are denoted

by upper case letters, while the associated semantic objects are

| represented by the corresponding lower-case letters. We shall keep this

convention throughout this chapter. For example, if T dis the term

18

IF X = 0 THEN 1 ELSE X.F(X-1l) , then its meaning +t is

AMAx ifx = 0 then 1 else x.f(x~1) , where = in this last expression

means the equality function over the natural numbers, OO the number Oo,

etc.

From now on, we use upper case letters other than. A, DD, X , F

| and GG to denote (syntactic) terms. If T and S are terms, we denote

by T{s/X; the result of replacing all occurrences of the letter Xs
- by the term SS in T . By T{P/F} , wemean the term obtained by

replacing in all subterms of the form F(Ty50+45T) by

| P{T,/Xq5 ++ 5 T, /X . For example, |
| | if T= Gy (F(X, F(X5%,)),%,) and P = G(F(X5,%,))

then T{P/F] = G, (G(F(G(F(X55%1)) 5X1) 5%) :

oo Whenever we only wish to substitute P for some occurrences of TF

in T , we rename, say Fy , the occurrences that we shall substitute

and Fy the others. The result of the substitutions 1s then
T{P/F,,F/F,} . The same kind of notation also applies to semantic terms.

We use F(X) and f(x) as abbreviations for F(Xq5-05X)) and |

£(Xp5 00 e5%) respectively. |

Also, it will be convenient to consider only programs F(X) <= P

N where P is of the form G(Pys eves PB) with the additional restriction
that each of the letters F , Xs RTD. occurs at least once in P .

That is, P is required not to ignore any of its program variables,

to depend upon F (i.e., to be recursive) and not to be of the

uninteresting form F(X) <= F(T 5-05 T) . The main results of this

| chapter generalize without this restriction, but the proofs are made

longer by an addition of special cases.

19 oo

1.5 ComputationRule

A computation rule ¢ 1s an algorithm for selecting some occurrences

of the letter F in each term. For any such rule and input D , we

construct the computation sequence Tyo Tysons Tse of the term T

by the program F(X) <= P as follows: Ty = T{D/X} and Tiiq is the

| result of substituting P for the F's chosen by ¢ in I; . For

example, if P = IFX < 2 THEN X ELSE F(X-1)+ F(X-2) , the computation

sequence of F(X) according to "call-by-value" for input X = 2 is:

T, = E(2)

T, = IF 2 <2 THEN 2 ELSE F(1) + F(0)

T, = IF 2 < 2 THEN 2 ELSE (IF 1 < 2 THEN 1 ELSE F(0)+ F(-1)) + F(0)

T, = TF2 < 2 THEN 2 |
ELSE (IF 1 < 2 THEN 1 ELSE F(0) + F(-1)) + |

| IF0 < 2 THENO ELSE r(-1)+ ¥(-2) .

T= T. = ... = |
I ty

(Here, TF(1) is in fact an abbreviation for F(2-1) , etc.)

In I, s we underline the F's selected by the computation rule

for substitution. It is interesting to see precisely how the underlined

I' is selected in this last example. For this purpose, we must introduce

the notion of simplification. The simplification mechanism is discussed

at length in Cadiou[2], and we refer the interested reader to this

work. In our particular example, it is possible to define a simplifi-

| cation mechanism AT simpl(T) such that

20

simpl(T,) = F(2) |

| simpl(T,) = F(1) + F(0)

| simpl(T,) = 1+ F(0)

| simpl(T;) = simpl(T)) = ... = 1 }

| (Note that now, F(1l) is no longer an abbreviation since simpl(2-1) = 1 .)

The rule "call-by-value" then selects the leftmost-innermost

occurrence of F in simplified terms. Similarly, "call~by-name"

selects the "leftmost-outermost" one.

In its most general form, simplification can be an extremely

| powerful computation tool. For example, if our program is

F(X) <= IF X = O THEN O ELSE F(X~1) it is perfectly all right to use

F(X) - 0 as a simplification rule over the natural numbers, and there

| is no room left for substitutions! Our purpose however is to study

| computations which are performed by substitutions and not by

simplifications. | |

We must therefore restrict the power of simplifications whichwe

| allow, and, for this purpose, we merely borrow Cadiou's notion of

standard simplifications (see Cadiou [2] for a precise definition).

Roughly, standard simplifications force us to know everything about

| base functions, and nothing a priori about the recursively defined

function F , since simplifications of the type F(D) - AL are not
permitted. In effect, we have to compute without any "built in" value

| of the recursively defined function, stored for example in memory from

a previous computation. |

We will not study standard simplifications in lang P , since this

would require describing completely the data-type on which computations

21

are performed but we will describe them in lang S .

For all constants Appr ohyg and base function Gy there
exists a standard cimplification of the type

In effect, this says that the values of the base-functions over the domain

are known, and these functions are total. Accordingly, the conditional

admits the simplifications

IF TRUE THEN B ELSE C - B and |

IF FALSE THEN B ELSE C -»C .

| These are the only standard simplifications in lang S and we say

that a term is simplified when all of its subterms have been simplified.

1.4 Computation Lattice of a Program

Instead of considering computation sequences for each input and

| computation rule,we can apprehend the set of all possible computations

- in one infinite diagram.

For example, the computation diagram of the term F(F(X)) by the

program F(X) <= G(X, F(F(X))) looks like

22

Ho

=
. ST

E |

S |

Fr

| 3 JE

~ -

” Io

| & |

=

= Ne

J =

5

fl
&

| o

: 03 |

| A computation rule is then an algorithm for selecting a path in such |

a graph for each input. This computation diagram has a very rich

structure which we shall now study. |

Computation of a term according to P -

We say that B > C or simply B -C whenever C can be obtained
oo by substituting P for some occurrences of F in B .

| | The notation B 5 C or B at C means that there exists a
P

finite sequence of terms DysDy5 ce esD such that Do =B , D = C

and Dy = Dy, for 0 <1i<m. |

Definition

| ~The computation diagram of T by P is the set of terms U such

that T =U , partially ordered by < where B <C whenever B ~ .

It is clear that < is reflexive and transitive. In order to prove

| that it is also antisymmetric, we notice that, if B > C , the size
iCl] (where size is, say the number of symbols) of the term C is

strictly larger than the size of B if at least one substitution has

| been performed (this is due to our restriction on P). It follows

| that B LC and c 5p implies B =C.

Clearly, the computation diagram of T by P has the Church-Rosser

property of the A-calculus. (This follows from the work of Rosen [28]

for example.) However, it also has a property which is not true of the

A-calculus, namely:

| 2h

Theorem 1

The computation diagram of T by P 1s a lattice under the

ordering < , and we shall name it the computation lattice of T by P .

*/ LJProof. In order to study the structure of the computation diagram of

a term To by a program P , we need to relate the structure of C to
*

that of B when B - C .

P

Lemma 1

W * |

(1) A, »C if and only if C =A, and X, -C if and only if C =X. .
i — 1 —— 7] en PH en y

x

N (ii) 6 (Bys ves) »C _if and only if C = (Cpe aCp) and
EB]LSF-r]HHR°P A O. -
B. -C, for 1<i<<mp, .
1 1 —- — i

113 Cif and only ifC = F(C C ith 5| (iii) F(Bys-+-5B) — if and only 1 = F(120 0) wi B, :

for 1 <i<n or P{B/X;,-.-;B/X}~C.

Proof. Claims (i) and (ii) are easy and we only prove (iii).
*

If B = F(Bys+-+5B) -» C and C is not of the form F(Cqysev+5C) ,
M |

there must be a point in the computation B —» C where the outermost FT

x *

of B is substituted, i.e., F(Bys-++3B) ~ F(B},«-+5B}) —-
| P{B"/X. ,..., B®/X_} 0 with B! - BY (and therefore B iy) forEA "n/n i 1 i Ti

any 1 <1i<n.
*

It follows from our definitions that B, ~ BY for 1 <1<n
x .

implies P{B,/X;J B /X] - P{BI/X, JR BY/X, and consequently
» |

P{B/X 5+ B/X,} »C , as claimed in (iii). In order to get the

Xx

| J TI am grateful to Jean-Marie Cadiou for his help with this proof.

| 5 |

other part of the implication (iii), we simply notice that

F(Bys-«-»By) - P{B;/X sexes B,/% 1 by substituting P for the outer
F in F(B,,...,B) . |

1 n -

If B <C , we can define a distance dist(B,C) between B and C

as follows:

(i) if B = A, or B = x, then ¢ =B and dist(B,C) =0 ;

(ii) if B = Gy (Bye sBy) then C = Gy (Cqpen Cp) with B, <C,
for 1 <i <p. and dist(B,C) = max {dist(B.,C.)} ;

TTY 1<j< JJ| J <p.
| ~~ ==

(iii) 4if B = F(Bys-++5B) then (by Lemma 1), either C = F(CqseesC)

| and dist(B,C) = max {dist(B,,C,)]} or
1<i<n

| P{B /X{ 5-45 B/X] <C and dist(B,C) = 1+ dist (P{B,/X,...;B /X 1,C)

| Tt is easily seen that the distance between any two terms B <C is

finite.

Lemma 2 |

If B = F(By; «+58) , C = F(Cysev-5C) , B! = P{B;/X;5-+-5B, /X } |

and C' = P{C,/X,,...,C/X } then B <C implies B' <C' and |

~ dist(B',C') < dist(B,C) .

Proof’. By a straightforward induction on P| , one proves that

| dist(P{B,/Xq ,-++5 B /X L,P{C/X; 5-45 C /X D) < | Tex {dist (B,,C,)] ;<1i<n

hence dist(B',C') <dist(B,C) . |
]

| oF |

| We now start the proof of Theorem 1:

For any two terms B,C in the computation diagram of T by P,

we must show the existence of min(B,C) and max(B,C) such that

| B | C

IN | |
and for any Q and H

Q | Q < min(B,C)

VAN]
| B C implies and .

H oo max(B,C) <H |

Existence of max(B,C)

We shall describe an algorithm for computing max(B,C) and then

prove the correctness of this algorithm: let o0(B,C) be defined |

| recursively as

| (1) o(B,B) =B

(18) 0(0y(BysvsBy056 (Cs ensC)) = G4 ((BysC)5en es0(B50)
i 1 i i

| (iii) 0(F(Byy-+-5B),F(Cqs--25C)) = F(o(B5C1)5-++50(B_,C)) ;

| (iv) O(F(ByseevsB),6(Cp55C0)) = 0 (P{By/Xy 5-5 By/Xp3sG (Cs 5C 0) =

| (GCs ees)5F (Bes 5B))

(v) in all the other cases, 0(B,C) yields an error symbol, (say a

German gothic letter) which is not part of our set of letters.

27

| We shall prove that o(B,C) = max(B,C) in two parts:

Part 1. For any terms T , B , C

B B

I To, implies . 0 (B,C) |
Nuc re

The proof is by induction on couples (dist (T,B) + dist (T,C), ||| ordered |

lexicographically by < . Assuming the result to be true for all

triples T' , B' , C' with (dist(T',B')+dist(T',C'),||Tt]|) <

(dist (T,B) + dist (T,C),||T||) , we prove it for T , B , C by a case

analysis on the structure of T .

Case 1. T=A, or T =X, .

* *

By Lemma 1, T -B and T -C implies T =B and T =C ; hence |

* *

B =C =0(B,C) and indeed B -0(B,C) and C - o(B,C) .

Case 2. T = (Tyres Tp) :
By Lemma 1, B = G3 (Bs esBp) and C = 63 (Ops ensCp) , with

* * |

T, »B, and T, -»C, for 1<i<p, . Since dist(T,,B,) + dist(T,,C,) <

dist (T,B) + dist(T,¢) and ||T,|| <||T}| for any 1 <i <p, , the
* *

induction hypothesis tells us that B. -0(B.,C.,) and C. - o(B.,C.)
1 i771 1 1771

for each 1 <1 <p; . Regrouping everything, the conclusion
* * |

B -0(B,C) and C - 0(B,C) then follows from the definition

| 0 (Gy (Bys +o osBy)5G;(CqsenisCy)) = Gy (0(B1,C)y ev s0(B 5C 1) :
| 1 i i i

Case 3. T = F(T 50 5T) :

By symmetry, we only need consider the subcases:

| 28 |

Case 3.1. B = F(Bys---5B) and C = F(Cqse-esC)

The proof is similar to that of Case 2.

Case 3.2. B = F(By, «5B) and C = SICEFRERFLN .
Let T' = P{T,/X;,...,T/X } and B' = P{B,/X;,-+»B/X } .

¥ *

By Lemma 1, we know that T' -C and Ts - B, for 1 <i <n, hence

T' » B' . By Lemma 2, we know that dist(T',B') < dist(T,B) . Since

| dist (T',C) < dist(T,C) , we can apply the induction hypothesis to the
* %

terms T' , B*' , C , i.e., B' -0d(B',C) and C - o(B',C) . Since

B -» B' and 0(B,C) =0o(B',C) by definition of 0 , we have established
W *

that B - 0(B,C) and C - o(B,C) .

| Case 3.3. B = G(Byy--e5B) and C = SCIPRRRFIN :
*

Let T' = P{T/X; 5 cons IT /X 1 . By Lemma 1, we know that T' - B
*-

and T' -C . Since dist(T!',C) < dist(T,B) and dist(T',C) < dist(T,C) ,
x%

we can use the induction hypothesis in order to get B - 0(B,C) and

BS

C -o(B,C) .

Part 2. For any terms B , C , Q |

B

a
Q implies o(B,C) <q . oo

C | |

The proof is by induction on (dist(B,q) + dist(C,q),llall) -

| Case 1. Q = As or Q =X,
> .

Then Q =B =C =0(B,C) and o(B,C) —- Qq -

29

Case2. Q = F(Qqs ++ +5Q) or Q = 63 (0p +e 0Qp) where G, is not G .
The proof goes mutatis-mutandis as that of Part 1, Case 2.

| Case 3. Q = G(Qqs ++ +50)
We only need consider the cases: |

| Case 5.1. B = G(Bys «5B ‘and C = G(Cys 00500) .
Back to Case 2. |

Case 5.2. B= F(Bqys+-+5B,) and C = G(CpseeesC) :

Let B' = P{By/X{ ++, B /X } . Since dist(B',C) < dist(B,q) ,
*

we know by the induction hypothesis that o(B',Q) = 0(B,C) - Q .

Case 3.3. B = F(By,«-+5B) and C = F(Cqs--45C) :

Let B' = P{B,/X;,...,B/X } and C'= P{C /Xq 5-5 C/K] :

| The induction hypothesis tells us that o(B',C')5 qQ . One then proves

| by induction on ||P|| that o(B',C') =

| 0 (P{By/Xq5 +e B/XLP{C/X5 eves C /X DY = P{O(B5C)/Xsees 0(B,C)/XTY

We conclude the proof by noticing that o(B,C) - o(B',C') since

| o(B,C) = F(9(B1,Cq)5+++59(B,,C)) — P{o (B,C)/Xy 50x) 9 (BsCp)/ =
| o(B*,C') .

| Existence of min(B,C)

For any terms B , C in the computation diagram of T by P the

| set {x | L<B,L<C} of lower bounds of B and C is not empty

because T <B and T <C and it is finite. We know from elementary

lattice theory that, 1f any two elements in a partially ordered set have

a least-upper-bound, any non-empty finite subset also has a least-upper-

| bound. We then define min(B,C) as max{L |L <B,L <C} and verify |

easily that min has all the desired properties.
n

| Relation Between the Computation Lattice and the Data-type of Continuous

Functions over J

In order to characterize computed partial functions in terms of the

semantic interpretation of a given computation lattice, we notice that

Lemma C

For any terms B,C in the computation lattice of T by P , |

B <C implies b(Q) TC c(Q)

| Proof. The proof is straightforward by induction on 1B|| :

If B=4A, or B =X, then B =C and b(Q) = c(Q) .

If B = G; (By .. Bp) 5 then C = G,; (C1 +eoCp) and we know by
induction that b. (0) = c+(Q) for 1 <j <p, . Since

[hx .. op 28; (Fp .. op) is monotone with respect to any of its

arguments, b(Q) = g. (b1(Q); . bp (9) L- g, (c1(Q), .. 2p, (0) = c(Q).
Finally, if B = F(Bys-++5B,) then Db(Q) = QE c(Q) -

| -

In particular, to any computation sequence To — Ty — ee T, - T +1 — es

according to some rule CG and input D , we associate the chain

t,()(3) = t(a)(d) =... ct (@)(d) Zt (d=...

The corresponding computed partial function ¢&_ is therefore

characterized as: ¢&_ = Ad U t_(Q)(d) :
P n>o0

| From these definitions follows an easy generalization of a theorem

of Cadiou [2]:

| Theorem 2 (Cadiou)

| Any fixed-point of the equation f = p(f) is an extension of any

oo function computed by the program F <= P . |

Proof. For any natural number m , let P" be defined as i= = F(X) |
N :

| and PT. Lo P{F/F} . Tt is easily seen that 7p(Q) = pl(p(...p(Q)...))

(i times). Since Cadiou [2] proved that for any computation sequence

~ i

Tq,Tys+-+5T ~where T, = F(X) we have T, <P for all natural

numbers 1 , it follows from Lemma C that t,(Q) 2 (Q) for all i .
The function p being continuous, f_ = U p(Q) , hence +.(Q)= f

Piso | a

for any i . It follows that ¢& = U t,.(Q) =f and, since f ©f
b : 1 -— DP Pp —

| 1 >0

| for any fixed-point ff of pp , the conclusion Cp E f holds. :
| 0

52

2. Correct Implementation of Recursion

In this section, we try to characterize the computation rules |

such that Co = t for any program F <= P , called fixed-point

computation rules.

Here are some computation rules we shall consider, both in lang S

| and lang P : : |

(1) Call by value: substitute for the leftmost-innermost occurrence

| of TF after simplifications.

(2) Call by name: substitute for the leftmost-outermost occurrence

| of I after simplifications.

(3) Parallel innermost: substitute for the occurrences of F having

all of their arguments free of F's . |

(4) Parallel outermost: substitute for all the F's which do not |

occur in any argument ofanother F .

(5) Free argument: substitute for all the occurrences of F having

at least one of thelr arguments free of F's after simplifications.

(6) Full substitution: substitute for all the occurrences of F .

2.1 Incorrect Computation Rules

Proposition 1.

In lang P , the rules (1), (2), (3) and (5) are incorrect.

Proof. Consider the program F(X,Y¥) <= IF X = O THEN O ELSE

F(X+1, F(X, Y))*F(X-1,F(X,Y)) where ¥* is the parallel multiplication

function O%x = x*¥0 = 0 . The least fixed-point over the integers

25

(considered as a discrete data-type) of the corresponding functional

is the zero function Ax,y if x = @ then w else O . The computation

| of F(1,0) wusing (1), (2) or (3) is infinite. As for rule (5), we

| | can take the program F(X) <= X.F(F(X)) in the data-type of sequences

of letters as a counter-example. -

Proposition 2 (Morris [23])

In lang S the rules (1) and (3) are incorrect.

Proof. Consider F(X,Y) <= IF X = O THEN O ELSE F(X-1,F(X,Y)) . The

corresponding least fixed-point over the non-negative integers is again

the constant function O while the computation of F(1,0) using rules

(1) or (3) is infinite. | -

2.2 Safe Computation Rules

We now define the class of safe computation rules, and show that

they correspond to "correct" implementations of recursion.

| Let (¢ be a computation rule and B an arbitrary term in the

computation lattice of T by P . In order to describe the effect

| of ¢& on B , we rename Fy the occurrences of F selected for

substitution by ¢ in B for some input D , and F, the others.

Definition

We say that ¢ is a safe computation rule if, for any term

| B{F/F{ F/F,} in the computation lattice of T by P and for any

input D p{Q/£y,£/£,3(d) = p{Q/£,0/£,3(d) : |

5h

| Intuitively, the computation is safe if the values of the F's

which are notsubstituted (renamed F }) are insufficient: as long as

more information is not obtained about the other arguments (the F's) 5

the information about B cannot be improved.

In order to clarify this definition, let us prove the safeness of

} some of our computation rules. |

| Proposition % |

In lang S , the rules (2), i.e., call-by-name and (5), i.e.,

free argument are safe.

| Proof. By induction on cl where C = simpl(B) : we first notice

| that, because of the semantic definition of lang S , if F occurs

| in C then ¢(Q)(d) = w (remember that C has been simplified and,

when a simplified term has the form IF Cq THEN Co ELSE Cx , we must

have F occurring in Cy)

Case C = Ag then any rule is safe.

Case C = C5 (Cys ens) . The letter F occurs necessarily in C ,
N |

otherwise we could simplify further. Since both rules select at least

one F on such terms, we know by our previous remark that

0/1,5 £/8,3@) = w= {of, 0/2 1D)

| Case C = F(Cyse-+5C) . The safeness of rule (2) is straightforward
since the outermost F is substituted. For the same reason, rule (5)

is safe if at least one of the Cs is constant. If none of the C;'s

is constant, then c, {/1y £734) = for 1<i<n and we must

prove that Ew +50) = w . This is ensured by imposing in lang S

55

that all program variables X,,...,X occur in simpl(P) hence

T (Wyeooow)= PIL (Wy eee) = Ww

ol ’ »®) p(op) { > yw) -

Proposition 4 |

The rules (4), i.e., parallel outermost and (6), i.e., full

substitution are safe in both lang S and lang P .

Proof. By induction on |[B|l .

Case B = As . Any rule is safe. |

Case B = Gy (By +s) . By induction, b {0/1 £3) =
b {off Q/f,3(d) for 1 <i <p in both cases, hence safeness is
also satisfied on Db .

- Case B = F(Bys--+5B,) . Both rules select the outermost F hence

Cpe,£0) = w= ple, o/£,)A) _

| Note that the computation rules that we already recognized as

incorrect are all unsafe. In order to prove that safe rules are

| correct, we need the following technical lemma;

| Lemma S

If ¢ is safe, then B SC and min(B,Q) = min(C,Q) imply

a(Q)(d)= b(Q)(d) for any terms B , C and Q in the computation

lattice of T by P, and input D .

36

| Proof. Let us first determine some properties of the min of two

terms:

Lemma 5

(1) min(Gy(Bys.-By)564(C, +00)) = Gy (min(B;,C,),---min(B,C_))
| 1 i i Fi

(ii) min (P{B,/X, Fores B/X 3,G(Cq, . C5) = PM, /X, yee, M /X
| where My, cee M are such that

F(MyseeesM) = min(F(By; +58), (Cy; +5) :

Proof. Property (i) is easy and property (ii) follows from the fact

* * *

that P{M{/Xy500 M [XY => M' = P{B,/X; +s B/X } with M, - B;

for 1 <i <n implies that M' = P{M}/X 5 Cees M/X 3 where | |
* *

M. - M! - B, for 1 <i<n.
i i i — 7 =

u

We now prove Lemma S: Let us rename Fy the occurrences of TF

selected by ¢ in B and Fo the others. Let M = min(B,Q) = min(C,q) .

We first prove by induction on (dist(M,B) +dist(M,C),|M||) that

Q < B{F/F, P/F, for some natural number m . (Here BP. means

p{F"™/F) for m >0 and P° = F(Xy5 05%) 2)

Case M =A. or M =X.
1 J

In this case, M =B =C =Q and we can choose m = 0 .

Case M = Gy (M5 +50) |
—_—

By Lemma 1, B = G; (By, eB) , C = G, (Cy, ++Cp and. | |

Q =G @Qy; esp) . By Lemma J, M, = min(B,,Q,) = min(C.,Q;) for

| | or |

| 1 <i<p. It follows by induction that Q, <B,{F/F , Pi/F,} .
We can then choose m = sup {m.} in order to get

1<i<p, =
| =" =F]

Q <B{F/F,, P/F} -

Case M = F (My : +sM)

| By definition of min , we need only consider the cases:

| Case B = G(Bq, .. 2B.) and Q = F(Qq> .. +5Qu)

| M Let M!' = PM /Xq 500, M/X and. |

I Qt = Pla /Xq Cee Q,/X . By Lemma 3,
/ \N M! = min(B, ') = min(C,Q"') . By Lemma 2, oo

B Q dist (M',B) + dist(M*',Q') < dist(M,B) + dist(M,qQ)

| | | so we know by induction that
C Q' |

Q' <B{F/F,, P'/F,} and, a fortiori

Q < B{F/F , P/F) for some m .

| Case B = F(B +++5B) and Q = GQ ees)

| M Since min(B,Q) = min(C,Q) , the term C is also

| of the form C = F(Cq, ++ CL) . Let
M?

AN MY = PIM [Xs MX), BY = P{B)/X; 5s C_/X]
| | Q and (C'= P{C,/X Cees C/%,} . By Lemma 3, we

5 know that M' = min(B',Q) = min(C',Q) .

NJ
| Ct | |

58

| By Lemma 2, dist(M',B') + dist(M',Q) < dist(M,B) + dist(M,Q) ,

and the induction hypothesis tells us that Q <B'{F/F,, F/F,} .
| Since the outermost F has not been selected by ¢ in B then | |

B' <B{P/F,} . Our last case is then treated since
+1 oo

Q <B{F/F,,P JE} .
IT is now easy to finish the proof of Lemma S.

m : i m

For any m , DP (0) = tf implies b{0/f, , D (@/f,} 2 vi{o/f, SESS :
By choosing m large enough, we know that q(Q) = b{o/f, , p (Q)/f,}

‘and therefore q(Q) = b{Q/f,, SESS . Since is safe,

b{o/£, £/%,3(d) = b(Q)(d) and the conclusion q(Q)(d)= b(Q)(d)
follows. |

O

Theorem >

Any safe rule is a fixed-point rule. |

Proof. In the computation lattice of Ty = F(D) by P, let

TysTyoee sTsee and 8.,8.,...,8 ,... (where 8, =T5) be the computation

sequences corresponding to respectively some safe rule (¢ and the

full substitution rule. Since s_(Q) = 0 (Q) then

Us (@) = U p(Q) = f_ . We know by Theorem2 that ¢ (3) = f£ (4)
n>o0 n>0 B P bp

| and it is therefore sufficient to show that s (0) (d) = J t, (0) (d) ,
n >0 n >0

in order to prove =f .
pb Cs D

Let S be an arbitrary term in LITRE . Since there are only

finitely many minorants of 5, in the computation lattice, there exists

some m such that min(T ,S) = min(T_ ,58) . The rule being safe,

it follows from Lemma § that s(0)(d) = t(Q)(d) , hence

| 5

Js @@e ut @@ .
n>0 m>0 |

O

As a corollary, rules (2) and (5) are fixed-point in lang S and

rules (4) and (6) are fixed-point rules in both lang S and lang P .

Lo

5. An Optimal Implementation of Recursion in lang S

Among the correct implementations of recursion, we now try to

determine which ones are efficient. This proves unsuccessful in

| lang P , but we shall describe an implementation of recursion for

lang S which turns out to be optimal. |

| We already know that, in lang S , "call-by-name" is a fixed-point

rule, while "call-by-value" is not. However, "call-by-name" is not an

efficient way of computing. For example, in the program

F(X) <= IF X >0 THEN X-1 ELSE F(F(X+2)) the "call-by-name" computation

of F(0) would be F(0) - F(F(2)) - IF F(2) > 0 THEN F(2)-1 ELSE |

F(F(F(2)+1)) — E(2)-1 0 .

| What happens here is that the term F(2) has been duplicated and |

subsequently computed twice. We shall describe a computation mechanism, |

| called the delay-rule, which avolds those duplications, and prove its

optimality.

5.1 Never Do Today What You Can Put Off Until Tomorrow

A natural way to keep track of duplications of terms is to assign

labels to all occurrences of F in a computation sequence, so that

copies of the same TF will receive the same label. This can be

| achieved by first labelling differently all Fy in P ; then,

if FP is labelled «a in 2. and 1s to be substituted, we label each
occurrence of F after substitution by « followed by whatever

labelling this particular occurrence had in P . For example, using

the same computation as before, and the labelling

IF X > 0 THEN X-1 ELSE Fy (F, (X+2)) for P , the previous computation |

can be described as: | | | -

F(0) - F (F,(2)) IF F,(2) > 0 THEN F,(2)-1 ELSE F11F (Fy (2)+2)

- IF 1 > O THEN Fy(2)-1 ELSE F11F10(F5(2)+2)

simplifies to F,(2)-1 - 0 .

The whole idea of the delay-rule is to modify 'call-by-name" so

that, whenever some occurrence of IF is substituted, all the occurrences

having the same label will also be substituted. Hence, the "delay-rule"

selects for substitution the leftmost-outermost TF in a simplified |

term, as well as all the other F's having the same label.

Consequently, the delay rule computation of F(0O) in the program

above is |

F, (0) — F, (F,(2)) - IF F,(2) > 0 THEN Fo(2)-1 ELSE F11F (Fo (2)+2)

| - IF x > 0 THEN 1-1 ELSE Fp, (Fo (1+2))

simplifies to O . At this point, it is clear that the "delay rule’ is

safe (proof similar to that of Proposition 1); what is not clear is that

| the "delay rule" should be more efficient than "call-by-name" and in fact,

in our last example, 1t was less efficient since it book four substitutions

versus three for "eall-by-name" in order to obtain its result. When |

"call-by-name" computed F102) twice, the delay rule has been computing

| it three times! It is a simple exercise in data structuring however to

- avoid all those recomputations: instead of actually copying various

occurrences of some Lp in a term, we simply set some pointers to a |

| unique copy of the term Fy . Whenever any occurrence of Fo 18 chosen
for substitution, the substitution is actually performed in the unique

| copy of Fo, so that all occurrences of Foy are substituted at the

price of one substitution.

Lo

| Going a little bit away from our particular programming language

| we can sketch an implementation of this idea for, say Algol. The

arguments of any procedure should be stored as pointers to formal

| expressions, together with a tag indicating that those arguments have

not yet been computed. Whenever the value of an argument is explicitly

needed, (for the evaluation of a conditional or on the right-hand side

of an assigmment), the tag is tested. Ie the value of the parameter is

already there, we use it; otherwise the corresponding formal expression

must be computed, its value kept for further references, and the tag |

is to be changed. In a machine like the Burroughs B5000 (see, for

example, Lonergan-King [12]), the so-called "operand call syllable"

would do very nicely: depending on a tag stored with the operand, a

load operation on the B5000 gets its argument either directly or through

a subroutine call. The delay rule would modify this procedure so that,

after the subroutine call, the result would be stored in place of the |

| tagged subroutine descriptor. Of course, one would then have to abandon

"side~effects" altogether?

Before proving the optimality of the delay rule let us compare the

efficiency of various computation rules on the programs

Zer(X) <= IF X > O THEN X-1 ELSE Zer(Zer(X+2))

 Ack(X,Y) <= IF X = O THEN Y+1 |

ELSE IF Y = O THEN Ack(X-1,1)

ELSE Ack(X-1,Ack(X,Y-1))

Ble(X,Y) <= IF X = O THEN 1 ELSE Ble(X-1,Ble(X-Y,Y)) |

Fib(X) <= IF X < 2 THEN X ELSE Fib(X-1) + Fib(X-2)

over the integers.

Ys

| | | Zer(-2) Ble(8,2)

Delay rule 7 | jn 9 15

| | Call by name 25 29 | 9 15 |
| Call by value 7 1h Sh1 15 |

| | Free argument - 7] 0% ~Lhooo | 15 |

| Full substitution 11 03 ~ 10000 15 B

The entries in this array indicate the number of substitutions

required for computing the values at the top of the corresponding

- column, according to the rules at the left of the rows.

If he has been through those examples, the reader may feel quite

| | disappointed because he can beat the delay-rule in almost all cases.
N For example, the hand-computation of Fib(5) only requires five

| substitutions if we are careful never to recompute an argument twice.

It would be interesting to study a mechanism in which this type of

| computation would be possible; namely one could imagine a set of

| simplification rules which could be sugmented dynamically, and allow |
some computations to be performed by simplifications of the style |

F(D) -» A . In our scheme of things, however, this type of "built-in"

values is not possible, since our only means of computation is through

substitutions, and we should blame inefficiencies on the program, not

on the computation rule.

| J Strictly speaking, we are using the full substitution only on
simplified terms, otherwise the computation would always be
infinite. |

5.2 Optimality of the Delay Rule |

So far, we know that the delay rule is safe, and that it never

recomputes copies of the same term. Using the same labelling as before,

we say that a label F, is maximal in a term if «& 1s not a proper

initial segment of B for any label Tg in the term. A term is simple
if all of its labels are maximal. In other words, a term is simple if

all computations of various copies of subterms have been pushed to the

same point. For example, if T, = F(F(X)) and Ty = G(X, 7, (Fy (X)))

then G(G(X, Fp (F(X), F (Fo (F(X))))) is not simple while

PGF, (F(X) is simple.
A computation is simple if all T's with the same labels are all

treated alike in all substitutions (if one of them is to be substituted,

all of them are to be substituted). All terms in a simple computation

are necessarily simple. If we are to count for one a substitutionof

all F's with the same labels, as Justified by our previous exercise

| in data structuring, simple computations are more efficient than others.

Namely, if we define length(T, 5 A) as the total number of substitutions
performed during the computation Ty SA, we have

Lemma E |

For any term A , There exists a simple term A with A<A such

that, for any computation To 5a and simple computation To 2 A, |
Length(T, : A) < length(T, at A)

Proof. Let r(C) be the number of maximal labels and s(C) De the

| sum of the lengths of the maximal labels in a term C , while gq and ©p

mean respectively the number of occurrences of F in Tq and P . It

45

is easily proven by induction on length (T, 50) that
| length(T,, 50) > @(C,p,q) where @(C,p,q) = if p = 1 then ali else |

a In a similar way, (C simple) and (Tq 3 C simple) imply |
length(T, = C) = @(C,p,q) - |

Given any term A , we can "complete" it into an A by substituting

P for all occurrences of F with non-maximal labels until there is none

left. An A constructed in this way will be simple and such that

| A <A while r(A) =r(A) . It follows that, for any computation

To Sa and simple computation T, oy , length(T, = A) = @(A,p,q) =
W

¢(4,p,q) < length(T, - A) . |

The intuitive meaning of this lemma is very simple: nothing is to

| be gained by working on individual coples of the same term. At the same

price, we get more information by substituting all copies of the same

occurrences. In particular, all the computation rules described so far

will be improved by "lumping" together occurrences of F with the same

labels, thus becoming simple rules. However they may still perform

unnecessary substitutions unless

Theorem U4 |

Any computation rule which is simple, safe and performs at most

| one substitution at each computation step is optimal.

Proof. Let T, be a term, F(X) <= P a program and c a safe and
simple computation rule performing only one substitution at a time.

Let Ty=T; = ...=>T =T ,=... the (simple) computation

sequence of T, according to ¢ for some input D .

Le

| If T dis a term in the computation lattice of To by PP, let us
consider an arbitrary computation Ty Sr , and prove that whatever

approximation t(Q)(d) of to (£,) (4) is computed by T
will be computed faster by ¢C . For this purpose,we construct |

| T as in Lemma E, and consider a simple computation To - T
(the argument in Lemma E not only proves the existence of T but also

that of a simple computation IT, LF).

Let 1 be some natural number such that Ts < T and Tirq £7 .
Since (¢ performs only one substitution at the time, this implies

T, = min(T,, .,T) = min(T,,T) . By Lemma S, we then know that

t(Q)(d) = t. (0) (d) . Using Lemmas E andC now, T <T implies

| t(Q) (4d) = T(q)(d) and Length(T ZT) < length(T, x T) . Since both
| Tq 5 T and T 4 I, are simple and, Ts <T , We have |

length(T, x T.) < length (T, > T) hence t(Q)(d) = t,(Q) (4) while |
length(T 2 T.) < length(T =m) : | |

0 1’ O C7]

We shall derive two applicationsof this theorem. |

Corollary 1 |

The delay rule is optimal in lang S .

Proof. The delay rule has all the properties required by Theorem L. |

a

| Corollary 2

In lang S , "call by value" is optimal whenever the least fixed-

point £ corresponding to the program F(X) <= P 1s a strict function.

(The function £ is strict if fol.) =w .)

ley

Proof. Since "call by value" 1s clearly a simple rule and performs

at most one substitution at each step, we only need proving that it is |

| safe whenever Ls is strict. We prove that the substitution B - Bf

is safe in that case by inductionon |C|| where C = simpl(B) :

: Case C = As . Any rule is safe. |

Case C = Gy (Cps ee esCy) Same argument as for the safeness of
| | | 1 | |

- "callby name". | |

Case C = F(Cyse-+5C) . If F does not occur in any of the C.'s 5

) then the outermost substitution is performed, which is clearly safe. |

| Otherwise, let Cs be the leftmost term in which F occurs. Then,

c, {o/f, £38) =o and C{o/f, £/3(d) = CRT = =
1 2

C]

5.5 Sequential Functions |

| The applications of Theorem IL given in the previous section do not

quite match with the generality of the result. In particular, the data-

| type on which lang S is computing has no chain of length more than two.

| What we shall now sketch is a theory of sequential functions, where | |

Theorem 4 finds its full application. |

The relevant notion here seems to be |

Definition oo

| A function SS ERERTEIRY-{CPRERVE 49 in [Dx ceo XD ~»D] is

sequential if, for all X €Dqs + ees X €D there exists an diell,n] such

| | L8 |

that, for all Yio ey, such that =n for Jjell,n] and

xX, Ey; We have g(Xys ees) = g(ys =v) .

| Intuitively, g is sequential if, at any given moment, the value

of (at least) one of its arguments is crucially needed in order to better

approximate the value of the result. For the purpose of our theory, we

need to check that sequentiality has the correct closure property,

namely

Proposition S

Sequentiality is preserved by composition of functions and

fixed-point operators.

Proof.

| — Composition. If Nags oes 2 8(%5 0052) and NE pee esx T(Xqse0esX)
for 1 <1 <n are sequential, then

| ¢ = Ax, ces x (fy (xg, ERPS SO PRREPE SC SP ce esX))

is also sequential: for any x,,...,X and ie[l,n] , let

Z, = fo (Xq5 005%) ; since g is sequential z,...,z determines

| some iyellsn] and., £, being also sequential, XpgeeesX determine
0 |

some Jel[l,m] which can then be used for the sequentiality of o .

| — Fixed-point operator. If the functions NE wees X To (Xs esx)

are sequential for any natural number i , the function

| P= AXopeeesX UU Fo(X,,e0eX)
1 1330 11 n

is also sequential: for any Xqp eee X) sequentiality of the £,'s

| determines a sequence Jgrdqr e+ where j;elln] . At least one of

49

| the jj's must occur infinitely often in this sequence, and it can be |
used for proving that ¢ is sequential.

| | J

For example, over a discrete data-type, conditional and strict

functions are sequential; hence, by Proposition S, all functions

| definable in lang S are sequential. | | |

© In a data~type which is a lattice, the functions X,Y sup(x,¥)

and Mx,y inf(x,y) are not sequential in general.

| The set © of finite or infinite words over some vocabulary =

becomes a data-type under the partial ordering: X Cy whenever X |

is an initial segment of vy . | |

| In xv , the functions |
Ax. first (x) (take the first letter of x),

| Ax.rest(x) (erase the first letter of x), |

and AK, T-XDy (append the first letter of x to vy) are

oo sequential.’ oo

This is clear enough for first and rest since any function of one argu-

ment is sequential. For x®y , if x= A, i.e., XxX is the empty word, then

the first argument is to be chosen Por sequentiality since A@y = w ; |

otherwise, x # A and any x' such that x = x' will have the same first

letter so that we can use the other argument y for sequentiality. |

| — Yet another programming language. We define a new language lang GS

similar to our previous ones except that all base functions must be

sequential. | | oo

5 The relevance of these functions and data-type to parallel programs
is shown in Xahn [11]. | |

20 |

| Let €& be a computation rule, called the generalized delay rule

| (GDR) defined as follows:

First, using the same type of data-structuring as for the delay

rule, & will be simple.

In any term T , rule €& will select at most one F (or rather

set of F's with the same labels) as follows: |

If T = As , no F 1s chosen.

If T = Gy (Ty 0s T) , the F will be the F chosen by ¢&

in I, where J is the index corresponding to the sequentiality

of g, with the arguments 6, (2) (a), st (Q)(d) . Of course,
1

this requires the choice of J to be effective; also, since we

| want €& to be simple, all F's with the same labels occurring

E in other subterms are also to be substituted.

| If T =F(T,...,T) the outermost F is selected by € .

We can apply Theorem 4 again in order to prove |

Corollary 3 |

The generalized delay rule is optimal in lang GS .

Proof. Since the GDR is simple and performs at most one substitution

| at each step, all we need to prove is that it is safe.

The proof is by induction on ||B|l where B is any term in the

computation lattice of

T, = T{D/X} by P |

The cases B =A, or B = F(Bys +.B) are easy. |

If B = G; (Bys os By) and Jj is the sequentiality index of
i |

| “

| 2; (02 (DD); +50, (2) (A) ; then Db. {g/f,, £/T,}(d) =D (Q)(d) by
induction. Since b, (Q) (d) cb {O/f £/£:3(d) , the very definition

of sequentiality gives us b{Q/f,, £/T,3(d) = p{o/f,, /£,3(d)
| | 0

| Conclusion |

oo The results of this chapter generalize quite nicely to a programming

language wherewe introduce assignments, goto!sand while statements.

What is less clear to the author is how to perform computation in a |

oo "typeless" recursive language where procedures can be passed as arguments,

| say in a full LISP for example. It might also be interesting to study |

| (or prove the non-existence of) optimal computation rules when the

simplifications allowed are less restrictive than the ones we chose.

oo 50 | |

Chapter 3. PROOFS BASED UPON MONOTONICITY

In this chapter, we investigate how far into the theory of

| computation can one get from the mere hypothesis that programs

| represent monotone mappings between data-types, thus ignoring continuity.

For this purpose,we introducea formal system in which the methods

of "inductive assertions’ and "structural induction" for proving

properties of programs can be expressed and justified.

The reader interested in the logic developed here is expected |

to be familiar with the work of Milner [19]. However, a detailed

knowledge of the formalism should not be necessary for understanding :

the various uses we make of it. In particular, the examples given are

described informally, despite the fact that all the proofs can be

| expressed within the logical system.

1. A Formal System for the Time Being

L.1 Syntax

Terms, which are meant to denote monotone functions of some type,

are defined as follows: |

| (i) Typed identifiers are terms. (We shall almost always omit the

type subscript.) |

(ii) If s is a term of type @ -B and t a term of type « ,

then s(t) is a term of type PB .

(iii) If x is of type « and tt of type B , then [Ax.t] isa

term of type O& -B . |

| | 52

| (iv) If P is a WEE, t a term of type « and x a variable,
then [U t] and [MN tt] are terms of type «o . |

| {x|P} {x|P] |

A well-formed-formula P is a conjunction of equalities or

| inequalities between terms of the form p= g,r=s, ..., ult .

A proof is a sequence of implications between wffs P t+ Q , each being

derived from the preceding implication by an axiom or a rule of inference.

Variables are bound by AN, UU and 1 . We write s{t/x} and

P{t/x} to denote the result of replacing all free occurrences of x

in s and P by © , after renaming the necessary bound variables.

1.2 Semantics

A standard model is a denumerable family of complete lattices Dy >

one at each type a Bach D, has a minimal element UU, end maximal
| element 00, - The two bage types are I and B . The domain of

individuals Dy can be any complete lattice while Dy is }
false

If a and pRB are types, then «a -» pg is also a type and Do =p is |

| the set of monotone mappings from D_ into Dg . It is easily checked

that, whenever D, and Dg are complete lattices, Pop is itself
a complete lattice. Terms of type & are intended to denote elements

of b, . |

1.5 Axioms and Ruleg of Inference

Here xXx , v , z , f represent variables s , t terms and P, Q , R

| wffls. Axioms and rules are meant at all syntactically correct types.

| 51 |

(a) Axioms | |

(Reflexivity) D1: FX Cx

| (Transitivity) D2: xCy, y= z XIX a

(Antisymmetry) D3: xCy, yCXxXx FF X=y

X =y FXCy, yEX |

(Minimality) D4: F UU C x

(Maximality) D5: Fx = 00

(Monotonicity) Fl: xy Fr f(x) f(y)

(A-conversion) F2: FIMxes](t) = s{t/x}

(bottoms -tops) Fo: F UU(x) = UU |

(joins) Fh Ply/x} + t{y/x}lec U t
{x|P) |

| (meets) F5: Ply/x} + U tc ti{y/x}

(Inclusion) Wl: | P t+ Q (Q is a sub-conjunct

| | of P) .

(b) Rules of inference

oY CL PtrQ PR
(Conjunction) R1: TP rao.R

(Cut) R2: Bima

| PQ |
(Substitution) R5: 5ls/=T F als/] -

PF f(x) C g(x)

| (Extensionality) Rb: — FT Tcs (x not free in P)
| P{false/x} F Q@ P{true/x} + Q

(Cases) R>: ES |

Here, false and true are abbreviations for Ug and

004 respectively.

55

WP Fy oo

(meets) | RE: Qaryc 0b (x not free in Q)
{x|P}

(joins) | RY: ar U toy (x not free in Q) |
| x|P} | |

1.4 Soundness |

In order to establish validity of the axioms and rules of inference,

one first ought to make sure that terms without free variables indeed

| denote elements of the complete lattice of the corresponding type. This

is easy for application and A-abstraction (see Milner [19]). For

meets and Joins , we have To prove in essence that if for each iel the

function Lr, 1s monotonic then IN Lr, and UJ £, are also monotonic.
iecT 1el | |

Let xcvy . For all 1iel , we have

| nex zx cil c Und .
1el ied

It follows by definition of 1M and J that

nf.(x) © nn f.(y) and f(x) = U f.(y) ,
: 1 - 1 . i - i

| lel Tel lel lel

| and by definition again |

| [Nn £.1(x) = [nf 1)
| . 1 . i

ied lel

| [Uf)(x) = [uf ly)
ieT lel | |

Using exactly the same approach as Milner [19], one can then go

through the axioms and rules of inference, and justify thelr validity.

56

1.5 Pragmatics | |

We shall use the following abbreviations: |

(1) By the Knaster-Tarski theorem, we can characterize the least-fixpoint

of Ax.f(x) as the greatest-lower-bound of {x | f(x) =x} . We shall

- therefore use px.f(x) as an abbreviation for al (x) . The
| | (x|f(x) cx}

equivalents of rules Fb and R7 are then: |

RG: Fof(px.T(x))= px. f(x)

R9: f(y) zy FF ux.f(x) cy

The rule RO was named fixed-point induction by Park [26].

We shall use the notations f <=1(f) and f, as alternatives

to (uf.1(f)] .

| true

(2) One should not confuse the domain Dp: 4 with the boolean
false

| TT IE

data-type NS . Here Dy should be interpreted as the
range of some semi-decision procedure.

| Let us now suppose that the domain Dy, is characterized by a

semi-decision predicate Ax.Hx) mapping D, into D. such that

| BH(x) = false if and only if x = Ul, - We can then interpret the |

logical formula Vyep: P(y) as M (P(y)) , where P
{v|5(y) = true}

belongs to D, - Dy - This justifies using VyeB.P(y) ,

or, when no confusion can arise, Vv.P(y) as an abbreviation for

mM (P(y)) . Similarly, Hy.P(y) will abbreviate
{v|8(y) = true} |

i (B(y)) -
{v|5(y) = true}

>

Rules F4, F5, R6 and R7 then translate into the following equivalents

| to the rules of first-order logic:

(i) Vy.P(y)= true, Ha) = true + Pla)= true

(ii) P(a) = true, H(a) = true + Fy.P(y) = true

(iii) from Q,H(y) = true + P(y) = true E (vy not free in Q)

infer Q | Fo ¥y.P(y) = true | |

(iv) from Q,5(y) = true + P(y) = false (vy not free in Q)

infer Q t dy.P(y) = false |

Examples of Proofs |

Example L. The proof that

[uf) =U £(1)(x)

Cn {1|1}

is quite instructive, and we sketch it here: |

First I + f(i)c U £1) (Fh)
{ln |

| I +f) clu £1) (Appl)
| {1]1)

(The rule (Appl) fog + f(x) © g(x) is derivable from FL and ¥2.)

FU fx) elu £1) I(x) (RT)
{1]1} {113

| then T + fA)= ou £5) (x) (F4) |

a | I + fi) cx. U £(1)(x)] (RL)
| {1]1}

| FU FL) eae U0 £1) (x)] (RT)
| {111} {1]1}

FLU fm ey (i) (x) (Appl) and (F2).
(1]1} {1{1}

| 58 |

Example 2. Let us prove that

(a) pf.s(f,f) = uf.s(f,uf.s(f,1))

(b) uf.s(f,f) = yf.s(f,s(f,1)) | |

| In other words, we must establish the equivalence of the following |

three programs: | | |

ff <= s(f,1)

g <= s(g, 1)

| h <= s(h,s(h,h)) .

Proof of (a). Since s(f,f) =f , we know by fixed-point induction

that g= f . By monotonicity of =s , this implies s(g,g8) =s(g,f) -

| Since g = sla, ©) , We have s(g,g8) = g and fC g follows by
fixed-point induction again.

| Proof of (b). By definition, f = s(f,f) = s(f,s(f,f)) and therefore,

| ho f by fixed-point induction. |

Cm order to prove that f=h , let us use the avi liary program
k <= s(h,s(h,k)) .

Since s(h,s(h,s(h,h))) = s(h,h) , the rule of fixed-point induction

tells us that

| k = s(h,h) (1)

but we know by (a) that k =h , and (1) becomes h = s(h,h) .

| By monotonicity of s , this implies s(h,h) = s(h,s(h,h)) which, by |

definition of h , reduces to s(h,h)= h . One last application of

fixed-point induction and we prove fCh . |

59

| Example 3. For any functions s and t , |

fi = s(f, .) ~

That is the programs f <= s(t(f)) and g <= t(s(f)) are related

| by fT = s(g) and g = t(f) . Since f= s(t(f,()) we have

oo tf = tstf and, by fixed-point induction, Ig C tf, . By

symmetry fo - st, | hence tf, = tet = fq .

Example hk. Let f(x) <= g(f(h(x),f(k(x))) and y <= g(y,y) -

| We prove that f(x) =y . Since

g([Mx.y](h(x)) , Mx.y](h(x))) = g(y,y) =v = [M.y](x) , we know

by fixed-point induction that fC [Ax.y] hence f(x) Cy . On |

the other hand, g(£(UU),f(UU)) © g(f(h(uv)) , £(k(VU))) by monotonicity,

and g(f£(uU),£(UU)) = £(UU) follows from f£(UU) = g(f(h(UU), f(x(UU)))) .

We conclude y CC £(UU) by fixed-point induction and, since |

(UU) = f(x) , we proved that yC f(x) .

| Example 5. If the two functions Af.s(f) and Af.t(f) commute, i.e.,

st = ts then Example 2 tells us that f= s(f.) and f= tf)

so that f =f, and ref, (We can say that f, and f, are

weakly equivalent.)

The similarity between some of those results and better known

ones in linear algebra should not surprise us since linear algebra

can be used as a model of our formal system. The base domain D; will

be the set of vector-space over some space VV . The natural ordering

60

is inverted: V, EV, holds whenever V, is a subspace of Vy

The minimal element UU corresponds to the space VV itself while

the vector space containing only 0 corresponds to O00 . Linear

transformations over VV are then monotone mappings in D; - Ds; with
| | respect to that ordering, and, i1f the dimension of V is infinite, they

are not continuous in general. The least fixed-point of a linear

transformation Aepr — By is then the eigenspace of A having

maximal dimension. |

1.6 A Possible Weakness of the System

Let us consider the inference rule

| Px © g(x) + f(x) C g(£(x))
La N.SSSSS BH: I>>=»@® (x not free in P)

P+ px.f(x) © glpx.-£(x))

| Is RT provable or not within our system? Althoughwe have not

been able to settle this question, we shall be able to show that rule RT

must be valid in any standard model of our formal system.

Before doing so, let us point out that fixed-point induction can

be derived from RT and that using RT would somewhat simplify the

——— in the previous examples. For instance, the proof that fh,

oo where f = yx.s(x,x) and h = yx.s(x,s(x,x)) could go as follows:

Let us assume y= h and yC s(y,y) . In order to apply rule RT,

we shall prove that

y= h,yE s(y,y) F s(yvy) Sh, s(y,y) © s(s(y,y),s(y,y))

and therefore conclude that + fc h, f= s(f,f) so, a-fortiori

Ffch . | |

61

By monotonicity yc s(yv,y) Fb s(v,vy) C s(s(y,¥),s(y,y)) and

y C s(y,y) + s(y,y) s(v,8(v5v)) . Therefore, using monotonicity

| three times again yC s(y,y),y=h +t y= s(h,s(h,h)) . But

h _ s(h,s(h,h)) and, putting everything together, we get | |

yoh,ycs(yy) boyy) Chs(yy) C s(s(,5),8(37) -

We shall now justify the rule. To each monotone function ©

| mapping BH —- fF and ordinal number CO , we associate an element .

+X(UU) € p as follows: |

(1) tu) = wu

(11) tw) = +X)

| (iii) If a = lim (8) is a limit ordinal, tXWU) = u {tP(uu)l .
p<C | B <Q

| More concisely, +2 (UD) =+t(U (+P (uu) 1) , if we agree that U (9) = UU .
B <& |

This sequence has the properties that B <7 implies

| tP(uv) © t7(U0) © £, for all ordinals B and 7 , end +t(UU) = £2 (uu)
: implies + (uv) =f, for any ordinal a.

Hence, if we choose «O& to be the first ordinal not embeddable

in B - 5 , the sequence £2 (uu), (00), ct (UD) has hoo many"

| | elements and +2 (uv) = f, . (See Cadiou | 2] or Hitchcock-Park [8].) |
Now, from the hypothesis FC s(F) + t(F) = s(t(F)) , we can

deduce that, for all ordinals «& , |

(0) © seo) (1)

If « dis not a limit ordinal, (1) is easy to establish. If a is a

| limit ordinal « = lim (B) , then for all PB <Q we know that
B <Q

| £2 (v0) = s(+P (uu) . Since +P (uv) - + (UU) we know that |

| +P (uu) - s(+H(UU)) and therefore t(UU) = LU {+P (uu) jC s(+(ur))
| p<&

| | ~~ Choosing « such that +2 (uu) = fy then ylelds the conclusion of
rule RT . |

63 |

| 2. Justification of Some Proof Techniques

| Suitable choices of the semantic definition of programming languages

allow to reduce most of the proof techniques described in the literature

| to the rule of fixed-point induction. In particular, this applies to the

| methods described in McCarthy [13], Naur [24], Floyd [7], Manna [1k],

| Manna~Pnueli [16], and Hoare [9]. Since Hoare's technique has been

| justified in Manna-Vuillemin [17], and the connections between fixed-point

induction and the Manna-Pnueli method have been explicited by Park [26],

we shall limit ourselves to first indicating how the Floyd-Naur method

can be explained within our formal system and then sketch the connections

with structural induction. The basic ideas in this section are from Park [26].

2.1 Description of a Flowchart-language | |

A flowchart is a connected graph, with two distinguished nodes

and . Nodes can be of the type assigmment

| X: © F(X) or test. CPX) . Following Floyd [7], the

"meaning assigned" to such a program will be a relation V(x) over

~ the values of the program variables, at the node. This

output relation is obtained by "carrying along" an input relation P(x) 2

holding of the program variables at the node. The |

notation VV = 2% : : [= means that, whenever we start
6h

the execution of [2 with inputs satisfying ©¢ , the outputs, if any,

must satisfy Vv . |

As in Chapter 2, syntactic objects are represented byupper-case

letters and associated semantic objects by the corresponding lower-case

| letters. |

The semantic function 2 is defined recursively as: |

(1) + i) = (En) [n(y) Ax, = £23) A (A x, =y.)]ced J
JA

E]
(ii) &| ®, = a4 =n, ’

BOS | Co
(iii) =| =, = if q then: Ad, |B] else I TA ~~ a, By

B
| y

(iv) [-5 = gq A Eee 2)

65

Equation (iv), expressing the semantics of goto's, defines the

"minimum valid inductive assertion" described in Manna [14]. There will

| be essentially one such equation per loop in the program; this may

lead to systems of mutually recursive relations, depending on the

| nature of nesting of the loops. According to this definition,we

have for example:

Yq <0

Y, <1

| Ty « Yo+i

Tp TTY |

where t(r) (y5v,) = [(vy = 0) A (v5 =1)] v

Note that, in order to simplify our semantic description, we have in effect

| limited ourselves to considering a flowchart in block-form. If loops do

| not have this nice nested structure, the description would be slightly

more complex, and we would needto express the semantics of ill-nested

loops by systems of mutually recursive equations.

66

| 2.2 The Inductive Assertions Technique

| The meaning of a flowchart program is now a (partial) predicate,

defined as the least-fixed point of some equation, say r = t(r) . If

| we can find an "inductive assertion" q such that t(q) = gq , the rule |

of fixed-point induction allows us to infer that r. =a. This shows

that whenever the program terminates, that is, if r, (d) = true for

some input d , then we must also have qd) = true .

This will be best understood by using the same example as above:

The expression t(q)= gq is

= = . = + — .

| = alyv,)

Using the inference rules corresponding to those of predicate

calculus in Section 1, this formula is equivalent to

t q(0,1) = true |

and

= + V = .a(y>y,) Avy Fa=true tb q(y+l; (yy+1).y,) = true |

This last formulation is the direct translation within our formalism

of the verification condition derived by Manna [1M]. This justification

of the method gives us the additional insight that the inductive | |

assertions one may use for proving the partial correctness of some

program by the Manna-Floyd method are exactly the fixed-points of some

algorithmically constructed functional.

| 67 |

2.5 Termination of Programs |

Following Park [26], we shall now prove that the rule of fixed-

point induction allows us to derive instances of (mathematical) transfinite

induction. | |

| | Let fH be a domain, and < a partial crdering on fH . For any

true |
| relation R mapping 5 into } , let

false

t(R)(x) = [Vy. ify < x then R(y) else true] . The least fixed-point of +

is then the maximal well-ordered initial segment of the ordering <

over 5 . (Note that this is the first time that we use a monotone

| function which is not continuous.)

Example. Let us consider some orderings over the integers, and the

| corresponding Ry ‘

| If < is 1<2<3<... then R, = tY(gu) and R, (n) holds for |
every n .

| If << 1s +... x5 <2 <1 then Ry = UU never holds.

If < is 1 <3 <5 ... 2 <4 <<... , then Ry = £297) and R; (n) |
holds for every n .

| If < is 1<3<5 ... <6<k <2, then BR =t"(0U) and R, (n)
holds only of the odd natural numbers.

If < is 1 <3 <5 ...2<6<10< ...4<12<20<... «oe., then

2 |

| Ry = t¥ (Uy) and R, (n) holds for every n .
| Ol

If <«< is a well-founded relation over J# , then R, (x) holds for

| any element x of 5H > in which case the "program" R(x) <= t(R) (x)

can be thought of as defining recursively our domain.

68 oo

In other words, if |

| WO = pR.a <,x.[(Vy) if y < x then R(y) else true] ,

the equality WO{ <)(x) = B(x) characterizes the relation < as being

well-founded. (See also Hitchcock-Park [8] for a more elegant formula-

| tion of this equality.)

No matter what kind of ordering < is, fixed-point induction

translates into the following rule:

| [(¥y). if y < x then P(y) else true] =P(x) + WO(<)(x)© P(x) .

And in particular, if < is well founded over # , then P(x) = true

will hold for any x in 5 . Depending on the interpretation of <,

this 1s a formulation of structural induction or transfinite induction

(see Chapter 4, Section 3).

For example, the termination of the program

F(n) <= if odd(n) then n else

if G(n) = 1 then F(Z2) else Flo « Fn-~ 22) + =—2)— —— "V2 === “\G(n) G(n)’ 2¢(n)

G(n) <= if even(n) then G(n/2) else n

over the natural numbers can be established using the well ordering

| (L1<3<5<...)<(2<6<10<...)<I <12<20<...) <(...) ...

More examples of applications of this technique will be given in the

| next chapter. |

69

Chapter 4. PROOFS BASED UPON CONTINUITY

The previous chapter was a first attempt at proving properties of

programs, based on a rather weak theory of computation. We shall now use

our knowledge that programs are continuous functions, and justify some

other proof techniques. The presentation will again be quite informal.

However, it should soon be apparent that all the proofs given can be

formalized in Milner's Iogic for Computable Functions (ICF),as described

in Section 1 of this chapter.

Obviously we wish to preserve all the results obtained in the |

previous chapter. As far as formal systems are concerned, one could

achieve this by embedding ICF in the logic described in Chapter 3. In

this mixed system, terms wouldbe (syntactically) recognizable as being

monotone or continuous, and the appropriate rules of inference could be

applied accordingly. The logic would not be very different from the

| other two we describe in this work. For example, a good candidate for

the induction rule would be

P+ g(UU) Eh(UU) Pg(x) h(x) + g(f(x)) © h(f(x))
weM: —/m4m—m—m—m—— — @—@@ @ ——————— ——

Pt g(px.f(x)) © h(px.£(x)) |

where x must not be free in P and g must be continuous, while h

and f only need be monotone. (This rule was independently suggested

by Hitchcock-Park [8].) Its justification is very similar to that of

rule RT in the preceding chapter.

Remarkably enough, there seems to be no real need to get involved |

| in this rather canplex mixed system: as long as all the terms used in

the proofs denote computable functions, any of the results ofChapter 3

70 |

will still hold in ICF. For example, 1f we restrict ourselves to using

only computable assertions, the inductive assertions method can be

Justified in exactly the same way. The only technique for which this

| constitutes a real problem is transfinite induction, and we shall give

it special attention in Section 2.1.

1. Description of ICF |

The formal system that we shall use is, except for some trivial

changes, taken from Milner [18]. It is a typed A-calculus version of

a logic designed by Scott [30]. (We assume the reader who is interested

in the technical details to be familiar with Milner's work.)

1.1 Syntax | :

The terms of the logic are intended to denote the computable

functions of various types. Xach term should therefore be subscripted

with its type, but we shall almost always omit this subscript.

Terms are defined recursively as:

(1) Identifiers: g,p,F;7,0,%,yv... (at each type) or constants:

UU (at each type) TT,FF (at the type Boolean) are terms.

(2) If s is of type « —-p and t of type « , then s(t) is a

term of type PB .

(3) If s is of type a, and x of type B , then [Mx.s] is a |

| term of type B -»OU .

(4) If p is of type boolean, s and t of type « , then

if p then s else t

is a term of type CO .

71

| (5) If f and s are of type «a , then [uf.s] is a term of

type «& .

As an alternative to [pf.s] , we shall also use the notations £ ,

f <=1(f) and 71: f <= s , where 1 = [Nf.s] .

A wif 1s a conjunction of equalities s = t or inequalities sZt

between terms, separated by commas.

A proof is a sequence 25 + Yo cee 2, F Yo of implications

between wffs, each of which is obtained by application of the rules

of inference, or use of the axioms.

For any term s or wif & , we write s{t/x} and 3{t/x} to

designate the result of substituting t for all the free occurrences

of x in s and & . An occurrence of x is not free if it is bound

by Ax or ux .

| 1.2 Axioms and Rules of Inference

| In this description, x,y, 2, f denote variables, s and ©
terms, P , Q , R wifs. | |

(a) Axioms |

About the Domains |

(Reflexivity) D1: SS

(Transitivity) D2: xCy, yZz + XC

(Antisymmetry) D3: xCy,yCx + XZ=y

(Minimality) Dh: | Fo UU C x

72

About the Functions

(Monotonicity) Fl: xy + f(x) £(y)

| (Fixed point) Fo: Fo P(px. f(x) © px. F(x)

(N-conversion) F3: Fo [Mx.s](t) = s{t/x}

| (bottoms) mh: F UU(x) © UU

(conditionals) F5: | if UU then x else y = UU

F if TT then x else y = x

| tb if FF then x else y =

About Formulaes

(Inclusion) Wl: PF Q (@ is a subset of P)

(b) Rules of Inference .

| PrQ PEFR
(Conjunction) Rl: Friar

. PrQ QFR

(Cut) Re 2 —

3 . PF Q
gv :(Substitution) R3 Bls/x]+ Qle/x]

P + f(x) © g(x)

(Extensionality) Rk: ~ FT Tce (x not free in P)

(Cases) ps: PUU/x}tQ PITT/x} vo P{FF/x} tq
| : Pr Q

| (Computation RG: PF QiUU/X P,Q + Qf X) X (x not free
induction) P+ Qiux.f(x)/x :in P) |

75

1.5 Some Remarks Apout the Logic

Incompleteness

Using the fact that natural numbers can be defined implicitly

within the system, Scott [30] showed that the set of valid implications

| P+ Q 1s not recursively enumerable, i.e., the logic is incomplete.

It also follows directly from the undecidability of equivalence between

program schemas that the set of valid theorems ++ P is not recursively

enumerable.

On the other hand, if we just consider terms which correspond to

Tanov-schemas (Tanov [10]), the logic becomes complete. (This was

proved independently by J. W. deBakker and R. Milner.) Another

| decidable sub-theory of ICF is described in Courcelles-Kahn-Vuillemin [3].

The Induction Rule is a Generalization of McCarthy's Recursion Induction

| We shall use the fixed-point induction formulation of McCarthy's

rule: fly) cy k ux. F(x) Cy. This rule is easily derivable from

computation induction. In order to show that computation induction

cannot be derived from fixed-point induction, we shall exhibit a -

theorem of the logic which cannot be provedby fixed-point induction.

One such theorem is:

o(t(x)) =1(o(x)) ,0(UU) =1(UU) + px.0(x) = ux.7(x) .

In order to prove that it cannot be derived using only fixed-point

induction, notice that after removing the induction rule, neither the

5 More precisely, if we replace the induction rule of ICF by fixed-point
induction, The set of theorems of this modified logic is a strict
subset of the theorems of ICF.

Th

axioms, nor the inference rules require continuity in order to be

valid. We can thus define the following countermodel:

| Terms will denote the hierarchy ofmonotone functions constructed

over the following base domain: |

PAN
AN yd

| a

“2

| | 2

24 = UU

| The counterexample to our theorem is provided by the functions f and g

defined by

| f(a) = gla,) =a,,, 3 fa) = f(b) =Db ;

fc) = £(a) = g(b) =g(d) =a ; gla) =glc) =c .

These two functions satisfy the hypothesis but not the conclusion --

£(uU) = g(UU) , fg = gf while uxf(x) # uxg(x) =-- of our theorem,
W

which is therefore not provable within this system.’ Actually, the |
same example can be used to prove that rule RT (see Chapter 3,

Section 1.6) is also less powerful than computation example.

The theorem is in itself an interesting one and gives in some cases

an elegant way for proving equivalence between programs. For example, |

the functionals

*7
With some slight changes, this counterexample can be used to answer a
question raised by Scott [30].

| [WP

P, (F) (x,y) = if x = O then y else F(x-1,y+1)

P(F) (x7) = ifx = O then y else F(x-1,y)+1

and

Pz (F) (x,y) = if x = y then y else x.F(x+1,y)

| P) (F) (x,7) = if x = y then xelse y.F(x,y-1)

over The natural numbers are such that:

Pp, (UU) = P, (UU) , PP, =PP and P (UU) = Pp) (UU) » PzP, = BP;

| | The proofs of equivalence between F <= P. (F) » F <= P,(F) and

F <= P, (TF) , F <= P, (F) respectively then follow. oo

1.4 Some Examples of Proofs

In order to demonstrate some practical aspects of the method, we

shall present some examples of proofs by computation induction.

To improve readability, the following conventionswill be adopted

from now on:

(1) We shall omit the proofs that f£(...,0U0,...) = UU whenever they

| are straightforward.

| (2) We shall use freely the equality

f(...,if p then a else b, ...) = if p then f(...,a,...)

else £(...,b,...)

whenever it is easy to establish that £(...,UU0,...) = UU .

(3) In the arguments by cases on some variable 7p , we shall omit the

case Pp = UU whenever it causes no problem.

76

| (4) We shall use the parallel induction rule for systems of mutually
recursive definition. Let us describe the situation on

§ <= o(F,Q) |the example , The generalization to more complex
| G <=1(F,Q)

systems being straightforward. The rule we wish to use is

P + {uu/x}{Uu/y}

P,Q + Selgin aal/y)Y (x,y not free in P)

Actually, a more accurate notation would be F = uf.o(f,ug.7(f,g))

and G = ug.T(pf.o(f,g8),g) -

: | The justification of this rule in the general case can be
found in deBakker-Scott [6] or Hitchcock-Park [8].

| If F and GG happen to have the same type,we can also use

the following more intuitive justification of the rule:

Using the pairing function mw = ANe,y-[Ap.if p thenx elseyl ,

we can define ZF = m(F,G) . The components are then retrieved as

F=%(TT) and ¢ = #(FF) , and % can be defined by

F <= m(o(F(TT),F(¥F)),7(F(IT),F(FF))) . The previous rule is

then a direct translation of the ordinary computation induction

as applied to F .

(5) For all the examples where computations are meant over some

specific data-type =-- integer, natural numbers,

sets, lists, etc. ... =~ we assume implicitly that the axioms for

the corresponding data-types are put as premises of the

| Ways to axiomatize those various domains are described in

Milner-Weyrauch [21] and in Newey [25].

Tf

| Example 1. Let us consider the program schema

T* f(x) <= if p(x) then x else (n(x)

| Mo _ | : 0 _where (x) = £(£(...(f(x)...) (n times), and f(x) =x .

| We wish to prove that the equality £ = £ holds for all natural
n m

numbers n >1 and m > 1 . |

We shall first prove that | |

| eh =f for any k > 0 . (a)
n n

Let P[f] be rf f =f . We shall prove PLT, | by computation
n n

induction.

| Base If ff =UU then P(UU) is ef (UU) =U0 , i.e.,
Sl n |

| or (UU(x)) = UU(x) which is easily verified, assuming
n

p(UU) = UU . |

| Induction Assuming that P(f) is true, .

£5 (7 (£)(x)) = ef (if p(x) then x else 1 (h(x)))
Tn | n |

(definition of 7)

= if p(x) then x else ef h(x) |
n

(properties of £)
n

= if p(x) then x else 0 (x)

(induction hypothesis)

= 7 (0) (x) : |

78

Now that equation (a) has been proved, let us consider

T(E,) (x) = if p(x) then x else f,. h(x)
" — 1 |

= if p(x) then x else f h(x) (by (a))
— == 1 |

B = if p(x) then x else £ h(x) (by (a) again)
n

“1 (2 V(x) = £ (x)
| n n |

It follows by fixed-point induction that I, C 1 and by symmetry
| m n

Lt, CI, . |
n m un

Example 2. Let us consider the two "squaring" programs

7: F(x,y,2) <= if x = 0 then y else F(x-1,y+z,z)

and

0: G(x,y) <= if x = 0 then y else G(x-1,y+2x-1) ,

over the natural numbers. We wish to show that f_(x,0,x%) = g,(%,0) .
| | 2 2

Let P(f,g) be f(y,x(x~y),x) = g(y,x -y) . If we can prove

P(f_,8,) , the desired conclusion will follow by choosing x equal to v .

Base Proving P(UU,UU) is straightforward.

| Induction Assuming P(f,g) , consider

7 (£) (y,x(x-y),x) = ify = 0 then x(x-0) else f(y-1,x(x-y)+x,x)

| (definition of 7)

= if y = 0 then x else fy-1,x(x-(y-1)),x%x)

= ify = O then x“-0° else g(y-1, (x°=y°)+2y-1)

| (induction hypothesis)

2 2 |

= 0(G) (y,x"=y7) -

| 79

Example 3. (8. Ness) Let us consider the following two LISP

functions

F(x) <= if atom(x) then x.NIL else F(car(x)) * F(cdr(x))

ahd

G(x,y) <= if atom(x) then x.y else G(car(x),G(cdr(x),y)) ,

where * represents the append function. We shall prove by

computation induction that G(x,y) = F(x)¥y (over the domain of lists)

Base The equality UU = UU¥y is a consequence of the definition

of * .

Induction IT |

| A(x,y) = (if atom(x) then x.NIL else f(car(x)) * f(cdr(x))) *y ,

then |

A(x,y) = if atom(x) then (x.NIL)*y else (f(car(x)) *f(cdr(x))) *y

= if atom(x) then x.y else f(car(x))*(f(cdr(x))*y) .

(LISP axioms)

The conclusion

A(x,y) = if atom(x) then x.y else g(car(x),g(cdr(x),y))

follows then by using the induction hypothesis twice. .

80

2. Modelling Some Proof Techniques Within ICF

Looking back at Chapter 5, we realize that Section 2.5 on termination

of programs 1s the only place where we actually used functions which are

not continuous. We therefore have to demonstrate how the technique of

structural induction, as described for example, in Burstall [1] or

Manna-Ness~-Vuillemin [15] can be modelled within ICF.

Finally, a method which was not accounted for in Chapter 3, since

its justification requires continuity, is that of Morris [23] and we |

shall study it in Section 2.2.

2.1 Structural Induction

Actually, The word structural induction covers two rather different

techniques. The first one 1s a simple generalization of the induction

principle on natural numbers, while the other one is a statement of

Noetherian induction applied to arbitrary well-founded sets, which 1s

| the most general induction principle known to man.

Simple Structural Induction |

(a) Mathematical Induction

The usual formulation of this principlefor natural numbers is:

| from p(0) and Vx(p(x) = p(x+l))

infer TWxp(x) .

Let the predicate n(x) <= if x = 0 then TT else n(x-l) characterize

the natural numbers in our system. (We assume the usual axioms about |

0,1, =,+, - as described in Newey [25].) Tet p(x) be any

predicate which can be expressed as a term of the y-calculus.

81

From the premises

p(x) © TT , if x = O then TT else p(x-1) = p(x)

we can infer by fixed-point induction that n(x) = p(x) , i.e., that

p(x) holds for any natural number x .

In other words,

| from p(0) = TT and p(x) = Fop(x+l) = TT
infer n(x) = TT + p(x) =TT .

This method applies to any data-type which is recursively defined by a

semi-computable predicate. For example, The domain 5 of words over

some vocabulary 2X can be characterized by |

word(x) <= if x - A then TT else word (t(x))

and the corresponding principle is:

from if null(x) then p(A) else p(t(x)) = TT + p(h(x)-t(x)) = TT

infer word(x) = TT + p(x) = TT .

(We are again assuming axioms about A , =, + , h , t .)

Example I. Let us consider two programs for computing the factorial

function: |

F(x) <= ifx = 0 then 1 elsex x F(x-1)

| G(x,y) <= if x = y then 1 else (y+l) xG(x,y+1) .

| In order to show that G(x,0) = F(x) , we shall prove that n(x-y)= p(x,y)

where p(x,y) is G(x,¥y) xF(y) = F(x) . Let r be defined as

r(x,y) <= if x = y then TT else r(x,y+1) .

82

| We first prove that r(x,y) = n(x-y) . Then, since

p(x,y) = if x = y then F(x) = F(y) else (y+1)G(x,y+1).F(y) = F(x)

= if x = y then IT else p(x,y+l) |

we can conclude that r(x,y)C p(x,y) , i.e., n(x-y) © p(x,y) . This

last inequality is equivalent to y <x = TT t+ p(x,y) = TT .
Cl

This technique required p to be a computable predicate; if P

is an arbitrary well-formed-formula, ageneralization (Milner [18])

yields:

Q + P{O/x} Q,P t P{(x+1)/x}
| a a AL (x not free in Q)

where q = st means 1if g then s else UU = if gq then t else UU ,

and gq = WoW, means dq = wy , q = W .

| Example 5. Let

| rev(x) <= F(x,\)

F(x,y) <= if x = A then y else F(t(x),h(x)-y) :

In order to show that rev(rev(x)) = x , one can prove that word(x)= P,

where P is rev(F(x,y)) = Fly,x) . =

(b) Course of Values Induction

Another formulation of the induction principle over the natural

numbers 1s the following: |

from ¥x[¥yly <x = p(y)] = »p(x)]

| | infer Vxp(x) .

83

Whenever Pp 1s computable, this course of value induction can also be

modelled directly because the operation of bounded quantification is |

computable and can be defined as:

V = uf.[Mx,p. if x = O then TT else if p(x~1l) then f(x-1) else UU]

oo According to this definition, V(x,p) "means" Vy(y <x = p(y)) . We

can define the partial predicate m = pp.Mx[{V(x,p)] and prove that

m =n where n = pf.[Ax. if x = 0 then TT else f(x-1)] as follows.

(1) mon . |

| V(x,n) = if x = 0 then TT else if n(x-1) then V(x-1,n) else UU

Cif x = 0 then TT else n(x-1)

| (by cases using the fact that V(x-1l,n) = TT)

= n(x) . |

Hence, mC n follows by fixed-point induction.

(ii) ncn .

| Since x = 0 = FF + m(x-1) = V(x-1,m) by definition of m , we

have x = 0 = FF + (if m(x-1) then V(x-1,m) else UU) = m(x-1) (by

cases again, using the fact that m(x-1) = TT). It follows that

| m(x) = if x = O then TT else if m(x-1) then V¥(x-1l,m) else UU

= if x = 0 then TT else m(x-1) . |

The conclusion n =m then follows by fixed-point induction again.

[l

Having established the equivalence n =m , we can justify the

following rule of inference:

8h

from V(x,p) = TT + p(x) = TT |

infer n(x) = TT + p(x) = Tr .

A similar rule can be derived for well-formed-formulas.

Example 6. Let us consider a modified version of McCarthy's 9l-function:

F(x) <= if x < 0 then x+1 else F(F(x-2)) . |

In order to prove that n(x) = TT + (F(x) =0) =TT , let p= Mx.[F(x) = 0] .

The equalities (F(0) =0) =TT and (F(1l) = 0) = TT have to be checked

first and then, assuming V(x,p) = TT and x >1 = TT , we prove p(x) :

p(x) = (F(x) = 0) = (F(F(x-2)) = 0) (x <0 = FF)

| = (¥(0) = 0) (p(x-2) = TT) |

= TT (separate check)

| | C]

Transfinite Induction |

Let < be a well-founded relation over the domain BH . We showed

in Chapter 3 how to derive the following principle:

from Yxep{¥yeply <x =p(y)1 = p(x)}

infer Vxef{p(x)]} :

The proof given precluded continuity and is therefore not applicable in

the present context.

We shall describe a technique for deriving in ICF any instance of

the above rule one may need in ‘practical cases. Here, a "practical

well-founded relation is either one of The basic orderings described in

the preceding section or an ordering constructed as a well-founded

85

*

collection of well-founded relations.) Since we already know how to

handle the "base" case, all we need to model is the construction of

complex orderings from simpler ones.

Let < be a computable well-founded relation over the recursive
1

domain By , and, for any xeby , let < be a well-founded relation- |

| over B(x) . We then consider the domain 5 ={(xy) |xeh, , ye, (x)}
together with the ordering < where (x,y) < (x',y') is equivalent

to x 2x or (x =x") A (y <y') . Assumingwe already know thatXx

the rules |

Q,x' <x =» P{x'/x} + P

(1) EE — (x and x' free in Q)
Q F By (x) = P

and

| Qy' <y = Ply'/y} + P

(2) = (y and y' free in Q)
Q + B(xy) = P

are valid, we want to justify the rule

Q (x',y') < (yy) = Plx'/x}{y'/y} + P

(3) Ray)) = PCAN br FoY) oy) Po (x,%x',y and y'’ free in Q)

where B/(x,y) = By (2) A Bb, (2:7) . Assuming rules (1) and (2) and the

| hypothesis of rule (3), we shall prove that Q + By (x) A By (257) = P
in two nested inductions, by distinguishing between the following cases:

* /
This is equivalent to multiplying the corresponding ordinals. The

operation corresponding to ordinal exponentiation can be modelled
just as well, although we could never find any practical application
for it.

| 1) x' <x = TT .
tt

The hypothesis of (3) is then Q,x’ x x = P{x'/x} + Pj
| hence rule (1) implies that Q + B(x) = P and, a-fortiori, /H{x,y) =P .

| 2) x' <x =FF . | |
1 | X

Since (x,x') < (y,y') = TT is the only interesting case, one

can assume that x = x' and vy° < y . The hypothesis of (3) then becomes

Q,v" <y = P{y'/y} + P which, by rule (2), implies that

| Q Ff 5, (2,5) =» P and the conclusion Q B{(x,y) =» P then follows.
| | } 0

Example 7. Using the technique we just described, we shall prove that

Ackermann's function

A(x,7) <= if x = O then y+1 else

| | B if y = O then A(x-1,1) else A(x-1,A(x,y-1))
oo is defined over the natural number. |

Let P be n(y)© n(A(x,y)) , where |

n = pf.[Mx.if x = 0 then TT else f(x-1)] . We shall prove that |

n(x) + P which "means" that, whenever x and y are natural numbers,

A(x,y) must also be a natural number, is true. |

The main root is by induction on xX .

Base: x = 0 . In this case, P{0/x} is na(y) = n(y+1) which is

always True, as a consequence of the axioms about O , 1 and + .

| Induction. Assuming P{x-1/x} , that is n(y) =n(A(x-l,y)) we must

prove P, i.e., n(y) = n(A(x,y)) . Let us argue by cases on
the predicate vv = 0 :

| .

case y = 0 =TT . Since in this case A(x,y) = A(x-1,1) , it

is sufficient to prove that

n(0) © n(A(x-1,1)) (a)

We know by the induction hypothesis that n(l) = n(A(x-1,1)) and

| equation (a) follows, since n{(0) =n(l) . |

case y = 0 = FF . Choosing v = A(x,y-1) in the induction

hypothesis P{x-1/x} gives us:

n(A(x,y-1)) © n(A(x-1,A(x,y-1))

Since in this case A(x,y) = A(x-1,A(x,y-1)) the last inequality

implies that n(A(x,y-1)) = n(A(x,y)) . Hence, by a "nested" |
fixed-point induction applied to the predicate q(y) = n(A(x,y))

we conclude that n(y) = n(A(x,y)) .
[]

2.2 Truncation Induction

Recalling Kleene's first recursion theorem, we can characterize the

least fixed-point of the program F <= 7(F) as the least upper bound

of the sequence of functions £5 £15 .. Ts ... defined by fy = UU |

| and f , = T(f,) . The rule of truncation induction, as Morris [23]

named it, can be formulated as

Rule TT |

| from Q p{f_/ f} for any natural number n

infer Q + P{f /f} .

Actually Morris [23] used the formulation

| from Q,¥m(m <n = PLE /£1) t P{f /f}
| infer Q + PLE, /f} for all n

88 |

which is equivalent to ours since Section 2.1 of this chapter shows

how to obtain the missing step, namely:

from Q,Vm(m <n = P{f /f} pif /f} for all n

| infer Q + P{f /f} for all n .

| | A first problem which arises with rule TT is that, since it |

requires knowledge about the integers in its formulation, it cannot

even be expressed in pure ICF. (This shouldbe regarded as an advantage

of Scott's formulation of the rule.)

More dramatic is the fact that, even in an ICF with integers

| (where TI can then be expressed), there does not seem to be any way to
justify it, Gespite the fact that it is clearly valid in any standard

model. It is possible to get around this difficulty by slightly extending

the logic. What is needed is a formal way to talk about limits. This

can beachievedby embedding data-types into complete lattices, thus

going back to the original definition of data-types in Scott [29]. This

idea entails the following extensions to ICF: |

(1) Introduce constant terms 00 (for overdefined) at each type. The

corresponding axioms are +t x CZ 00 and + 00 = 00(x) . In

the case-rule, the case P{00/x} +t Q should be added to the premise.

(2) If s and t are terms of type « , then sup(s,t) should also be

a term of type « . It is axiomatizedby + x =sup(x,y) ,

Fy © osup(x,y) and xCz,ycSz + sup(x,y)Ez .

(3) We could introduce inf(x,y) in the same way, although we won't

need it. Also, one should make up his mind as to what

| if OO then x elseyv ought to mean. Two extreme possibilities are

| Fo 1f 00 then x else y = 00 or FF 1f O00 then x elsey = sup(x,7) .

39

In this extended logic (along with the natural numbers) we can then

| justify rule TTI: |

First of all, one needs to express the rule within the formal

system, and we shall define f = (UU) as iter(r)(n) where

Definition 1. |

| iter = ,f.[M,n. if n = O then UU else t(f(n-1))] |

Using this definition, it is easy to prove that

Lemma, 1. |

iter(1)(n) = iter(r)(nt+l)

| and

| Lemma 2.

iter(t)(n) © fo

| We now wish to prove that £ = U {f,} and, for this purpose, let |
n >0

Definition 2. | |

U = uf.[M8,n. sup(B(n),f(p(n+1)))] |

Using an induction on this formal definition of |J , one can then

prove that

Lemma 3.

B(n) Cg + U(B,n) Cg

| and

Lemma &4. |

B(n) © B(n+l) + 7(U(B,n)) =UPx.7(B(x)),n)

90

| Note that Lemma 4 is particularly interesting since it proves that

any function 7 which can be expressed within the logic must be

| continuous. Kleene's first recursion theorem may now be expressed as

f= U(iter(r),n) (K)

and proved in two steps.

Firstly, combining lemmas 2 and 5 ylelds

U{iter(t),n) = £ .

Then, the other half of the proof is a little bit more complicated.

tT (U{iter(r),n)) = U(x. (iter(r)(x)),n) (Lemmas 1 and kt) |

| = (Ax. iter(r)(x+1),n) (Definition 1)

= U(iter(t),n) : ~~ (Lemma 1)

The conclusion |

| £, = U(iter(t),n)

follows by fixed-point induction.

We now have all the machinery required for justifying truncation

induction. Assuming for simplicity that the well-formed-formula we want

to use is of the form «(f) = g , we must prove that |

| a(iter(r)(n)) = g + a(f,) Cg.

Lemmas 1 and 4 tell us that

| U(ax.a(iter(z)(x)),n) = a(U(iter(r),n)) ,

and therefore

a(iter(r)(n)) = g + a(U(iter(r),n)) cg .

| a1

| Since £. = |(iter(t),n) by Kleene's theorem, this last implication
reduces to

a(iter(r)(n)) =e + af) ca

| which is what we wanted to prove. |

Applications |

-- First of all, some equivalence proofs seem to be more natural

(and may in fact require) using truncation induction.

For example, if two functionals s and t satisfy s(UU) = t(UU)
i |

and st = +°s 4 the natural truncation induction predicate wouldbe
ota n

t (UU) = ¢ (UU) , and therefore pf.s(f) = pf.t(f) . If one uses

| the machinery we just developed, this informal proof can very easily

be carried through within the extended logic. Actually, a more elegant

proof (not using natural numbers) would be the following:

Define |

M(g, fT) (x) <= sup(£(x),M(g,T)(£(x)))

| and

N(g,T) (x) <= sup(f(x),N(Mx.g(g(x)),f)(g(x))) - |

(M(s,Nf.£) (UU) represents LU s“ (UU) and N(t,Af.T)(UU) represents
n>0

ot1
Ut (UU) .) One can then prove that T = M(s,Nf.T)(UU) and

n>0

f, = N(t,\f.f) (UU) and finally that

s(UU) = t(UU), Mf.s(t(£)) = M.t(5(s(£))) F M(s,Nf.£) (UU) = N(s,NE.5) (UT) .

ry
This example is due to J. W. deBakker. Robin Milner has a proof of
it in pure ICF. The reader may find out for himself how tricky it is,
and further away from the intuitive proof than the one presented here.

92

e- oimilarly, let us consider the following version of the induction

rule

rule R6' |

Q + he £,P{h/f} Q,P + PE(L)/f}
— (f not free in Q)

| CQ fF Pf _/f]

where the base of computation induction is not taken at the undefined

“element UU but at any element h C £. .

Informally and assuming P to be a(f) = B(f) for simplicity,

the hypothesis of the rule implies that oar" (h)) = s(t" (n)) for any n .

On the other hand, UUC hc £ implies 7(WU) =7 (bh) © £ and

therefore IJ {1(h)} = f, . The conclusion a(t) - B(£,) then
n>0 |

| follows easily from the continuity of «& and monotonicity of B .

This argument can be carried through formally within the extended ICF.

In particular, it applies to the following theorem

a £, — fT- |

Ca cf or 1(e(D) Sof)

FT (f2) =f

which is provable in the extended logic; the author does not know how

to prove it (and conjectures are not provable) in pure ICF.

92

Conclusion |

In the actual state-of-the-art, Scott's approach to the semantics

of programming languages seems to be the most promising one. The |

oo theoretical foundations are sound, and a natural step would now be to

describe fully the semantics of a full-size programming language, along

| the lines of Scott-Strachey [32], Milner-Weyrauch [21], or Reynolds [27].

Another wide open and promising area seems to be that of semantics

of operating-systems and parallel processes. Steps in this direction
were taken by Kahn [11], Milner [20], and others.

Finally, the question of a "best" logic for expressing a theory |

of computation remains. As alternatives to ICF, the systems of

Hitchcock-Park [8] and deBakker- deRoever [5] have some interesting

features; in an unpublished work, Scott and Milner also considered the

possibility of extending ICF to a "type-free" logic whose semantic

domain is one of Scott's models of the A-calculus. oo

In any case, more efforts should be put in studying the existing

systems. In particular, ICH provides a nice framework for the area of

| schematology, where existing results can be expressed and sometimes

simplified, and where new and interesting questions arise. (See |

deBakker [4] and Courcelles-Kahn-Vuillemin [3].) |

| oh

References

| [1] R. M. Burstall, "Proving Properties of Programs by Structural

| Induction," Computer Journal, Vol. 12, (1969), L1-48.

[2] J. M. Cadiou, "Recursive Definitions of Partial Functions and

| Their Computations,’ Ph.D. Thesis, Computer Science Department,

Stanford University, (1972).

[3] B. Courcelles, G. Kahn, and J. Vuillemin, "Algorithmes 4d Equivalence

pour des Equations Récursives Simples," Rapport LABORIA, IRIA,

| 78-Rocquencourt, France, (1973).

| [4] J. W. deBakker, "Recursive Procedures," Mathematical Centre

| Tracks 24, Amsterdam, (1971).

[5] J. W. deBakker and W. P. deRoever, "A Calculus for Recursive

Program Schemes," Proceedings of IRTA Colloguium, North-Holland,

(1972). |

[6] J. W. deBakker and D. Scott, "A Theory of Programs," Unpublished

memo, (1969).

[7] R. W. Floyd, "Assigning Meanings to Programs," Proceedings of a

| Symposia in Applied Mathematics, Vol. 19, American Mathematical

Society, (1967), 19-32. |

[8] ©P. Hitchcock and D. Park, "Induction Rules and Proofs of Termination,"

Proceedings of IRIA Colloquium, North-Holland, (1972).

| [9] C. A. R. Hoare, "Procedures and Parameters: an Axiomatic Approach,”

Symposium on Semantics of Algorithmic Languages, Vol. 188,

| Springer-Verlag, (1971), 102-116.

110] Y. I. Tanov, "The Logical Scheme of Algorithms," Problems of

Cybernetics, Vol. 1, Pergamon Press, (1960), 82-140.

95> |

[11] G&G. Kahn, "A Preliminary Theoryof Parallel Programs," Rapport

~ LABORIA, IRIA, T78-Rocquencourt, France, (1973).

[12] W. Lonergan and P. King, "Design of the R5000 System," Datamation,

Vol. 7, No. 5, (May 1961), 28-30. | |
| [13] J. McCarthy, "A Basis for a Mathematical Theory of Computation,"

| | Computer Programming and Formal Systems, (Eds., P. Braffort and

D. Hirshberg), North-Holland, (196%), 33-70.

[1h] =z. Manna, "The Correctness of Programs," Journal of Computer and |

System Sciences, Vol. 3, No. 3, (1969), 119-127.

15] Z. Manna, S. Ness, and J. Vulllemin, "Inductive Methods for

Proving Properties of Programs," Proceedings ACM Conference, ACM,

New York, (1972).

[16] 7. Manna and A. Pnueli, "Formalization of Properties of Functional

Programs," J.ACM, Vol. 17, No. 3, (1970), 555-569.

[17] Z. Manna and J. Vuillemin, "Fixpoint Approach to the Theory of

| Computation,” C.ACM, Vol. 15, No. 7, (1972), 528-536. |

[18] R. Milner, "Implementation and Applications of Scott's Logic for

| Computable Functions," Proceedings ACM Conference, ACM, New York,

(1972). | | |

[19] R. Milner, "Models of ICF," AIM-186/CS-332, Computer Science

| Department, Stanford University, (1973). |

[20] R. Milner, "An Approach to the Semantics of Parallel Programs," |

Edinburgh Tech. Memo, University of Edinburgh, (1973).

[21] R. Milner and R. Weyrauch, "Proving Compiler Correctness in a

Mechanized Logic," Machine Intelligence 7, Edinburgh University

Press, (1972). |

9

[22] J. H. Morris, "Lambda-Calculus Models of Programming Languages,”

Report MAC-TR-57, Mass. Inst. of Technology, (1968).

[235] J. H. Morris, "Another Recursion Induction Principle,” C.ACM,

Vol. 14, No. 5, (1971), 351-35kL. |

[2k] P. Naur, "Proof of Algorithms by General Snapshots,” BIT, Vol. 6,

(1966), 310-316.

[25] M. Newey, Ph.D. Thesis, Computer Science Department, Stanford

University, (to appear). |

[26] D. Park, "Fixpoint Induction and Proofs of Program Properties,"

Machine Intelligence 5, Edinburgh University Press, (1969), 59-78.

[27] J. C. Reynolds, "Definitional Interpreters for Higher Order

Programming Languages," Proceedings ACM Conference, ACM, New York,

(1972) . |

[28] B. K. Rosen, "Tree-Manipulating Systems and Church-Rosser Theorems,”

| J.ACM, Vol. 20, No. 1, (1973), 160-187.

[20] D. Scott, "Outline of a Mathematical Theory of Computation,"

Oxford Mono. PRG-2, Oxford University, (1970).

[30] D. Scott, Unpublished paper.

[31] D. Scott, "Continuous Lattices," Oxford Mono. PRG-T7, Oxford

University, (1972). |

[32] D. Scott and C. Strachey, "Toward a Mathematical Semantics for

Computer Languages,” Oxford Mono. PRG-6, Oxford University, (1972).

97 |

= -

