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1., Introduction

Consider the system of equations
.Ax =D

where A is an n x n matrix and b is an n vector. It is well known
that x should be computed by means of some factorization of A , rather
than by direct computation of A_l. The same is true when A is an

mx n matrix and the minimal least squares solution is required; in this
case it is usually not advisable (or necessary) to compute the pseudo-
inverse of A explicitly (see Peters and Wilkinson, 1970).

Once x has been computed it is often necessary to solve a modi-

fied system
AX =0 .

Clearly, we should be able to modify the factorization of A to obtain
factors for & , from which X may be computed as before. In this paper

we consider one particular type of modification, in which A has the form

K=A+ozsz

where o 1is a scalar and y and z are vectors of the appropriate
dimensions. The matrix asz is a matrix of rank one, and the problem
is usually described as that of _updating the factors of' A following a

rank-one modification.

There are at least three matters for consideration in computing
modified factors:

(a) The modification should be performed in as few operations



as possible. This is especially true for large systems when
there is a need for continual updating.

(b) The numerical procedure should be stable. Many of the pro-
cedures for modifying matrix inverses or pseudo-inverses that
have been recommended in the literature are numerically un-
stable.

(c) If the original matrix is sparse it is desirable to preserve
its sparsity as much as possible. The factors of a matrix
are far more likely to be sparse than its inverse.

Modification methods have been used extensively in numerical optim-—

ization, sgétistics and control theory. In this paper, we describe some
methods that have appeared recently, and we also propose some new methods.
We are concerned mainly with algebraic details and shall not consider
sparsity hereafter. The reader is referred to the references marked with

an asterisk for details about particular applications.

1.1 Notation

The elements of a matrix A and a vector x will be denoted by
a.lj and x. respectively. We will use AT to denote the transpose of
A, and ||x||, to represent the 2-norm of x , i.e. |ix]|, = (XTX)% .
The symbols Q, R, L and D are reserved for matrices which are respec-

tively orthogonal, upper triangular, unit lower triangular and diagonal.

In particular we will write D = diag (dl’dE""’dn)'



2. Preliminary results

Most of the methods given in this paper are based in some way upon
the properties of orthogonal matrices. 1In the following we discuss some
important properties of these matrices with the intention of using the

material in later sections.

2.1 Givens and Householder matrices

The most common application of orthogonal matrices in numerical
analysis is the reduction of a given n-vector z to a multiple of the
first column of the identity matrix, i.e. find an nXx n orthogonal

matrix P such that

Pz = +Ye, (1)

This can be done by using either a sequence of plane rotation (Givens)
matrices or a single elementary hermitian (Householder) matrix. In order

to simplify the notation we will define the former as

S ()

and call this a Givens matrix rather than a plane rotation since it

corresponds to a rotation followed by a reflection about an axis.
This matrix has the same favorable numerical properties as the
usual plane rotation matrix (see Wilkinson, 1965, pp. 131-152), but is

now symmetric. The choice of ¢ and s to perform the reduction

+Y

s -C Z 0



is given by

Y = sign (zl)JY (3)
and c = zl/Y s S = 22/Y

Note that 0 < ¢ <1 . 1In order to perform the reduction (1) we must
embed the matrix (2) in the n-dimensional identity matrix. e shall use
P; to denote the matrix which, when applied to the vector [zl,z2,...,zn]1

reduces z'j to zero by forming a linear combination of this element with

i i.e
i J
-1 - - - - -
Zl Zl
1 .
c s z. z
1 * “1
P.z = . ‘ =
1 . .
-C Z, 0
1 d
1 Zn zn
- .. - - -

There are several sequences of Givens matrices which will perform the

reduction (1); for example

1 n-2_n-1
Iépg : Pn-l n !
or
1.1 11
fbf% e e n-an Z .



To perform the same reduction in one step using a single Householder

matrix, we have

P=I+—uu ,
T
where u= z + Yel '
(&)

- = -Yul
and Y - sign (z))llzll,.
This time P is such that

Pz = -'Yel .

In the 2-dimensional case, we can show that

where ¢ , s are the quantities defined earlier for the Givens matrix.
Hence the 2 x2 Householder and 2 X 2 Givens transformations are
analytically the same, apart from a change of sign.

There are several applications where 2-dimensional transformations
are used. The amount of computation needed to multiply a 2 X n matrix
A by a 2 x2 Householder matrix computed using equations (4) is
4n + 0(1) multiplications and 3n + O(1) additions. If this computa-
tion is arranged as suggested by Martin, peters and Wilkinson (1971) and

the relevant matrix is written as

I + -u.y [1 u2/ul]

“u,/



then the multiplication can be performed in 3n + O(1l) multiplications
and 3n + O(l) additions. Straightforward multiplication of A by a
2 x2 Givens requires U4n + O(1l) multiplications and 2n + O(1)
additions. Again the work can be reduced to 3n + O(1) multiplications
and 3n + 0(1) additions, as follows.

Let the Givens matrix be defined as in (3). Define the quantity
Ve ey o s

Since s = z2/Y we can redefine s as

w(c+l) .

1%
Il

Similarly, we have

c=l"“,Sc

A typical product is now of the form

c ] A B ¢ s Yy
i (c+1) 1 o
S c y2 uic ps= y2
yi€ + yes

v (etl) + y,(us-1)

which will be defined as

Consequently, in order to perform the multiplication (5) we form

yl = Cyl + Syg



and Y =ulyy + 7)) -y,

Note that this scheme is preferable only if the time taken to compute a
multiplication is more than the time taken to compute an addition. pjgq
it may be advisable with both aigoriﬂmm-to modify the computation of
Y to avoid underflow difficulties.

In the following work we will consider only 2 X 2 Givens matrices,
although the results apply equally well to 2 x 2 Householder matrices

since as noted earlier, the two are essentially the same.

2.2 Products of Givens matrices

The following lemma will help define some new notation and present
properties of certain products of orthogonal matrices.
Lemma I.

Let P§+l be a Givens matrix defined as in (3). Then the product

n-1_n-2 1
Pn E-L" . . Pé
is of the form
- -
PiB; Yy

p561 p582 p585 .
Hy(0,8,Y) = S '
. . . Yn—2
Pn-1P1 PpoaPo pn-laj SRR N |
pnBl pnB2 pnsj ot pan-l pan




where the quantities pj , Bj and Yj are defined by eit ier of' the

following recurrence relations:

Forward recurrence

1. p1 = cPhT s By=m o, My = srhT, Y, =s; , where m is

an arbitrary non-zero scalar;

2. p.. = c.n Y. =s.
P ji-1 '3 J
J =2,3,...,n-1;

J-1

B3 7% M > My = sy
5Py = Thyp o By = -Cn-l/pn

n

Backward recurrence

L.py =1T, By = -cn—l/“ > My = Sn-l/Tr > Yp-1 T Spo1 0

where m 1is an arbitrary non-zero scalar;

2. p. =c./M. Y. = S,
p J/nJ 2 J-l J"'l
J = n-1,...,3,2;

=S. .
JdﬂJ

Py 7% 0T
3‘ Pl.=cl/Bla El=ﬂl-
Proof

We will prove the lemma in the forward recurrence case; the

remaining case can be proved in a similar way. Assume that the product

k-1 21 o
Pk+lPk C e P? .i?¥2 (k <n-1) is given by

PRy N

PR PRy

DBy Pifp - BB Y (6)

NPy Thbo - o MyBy oy

1
1
1
L -




This is true for k=1 by definition. The next product

K+l k _k+l 21
Peoben® - 4%
is given by
—~ -
P8y Y1
P8y PRy )
Pyby BBy - - o BBy Yk
“eMP1 CkrMePo - 0 Gt MPr TS S
SrPl S MePo - 0 S MeP TSa%% Oka
1

Lf we define Pyy; =y v il = Seen 7 Pt T My s T = Sy

then the product Piié . . 3; is of a similar form to (6). Continuing
in this way, and finally setting P, = nn 1 and Bn = -Cn_l/Prl r gives
the required result.

For later convenience we shall use the notation

H-U(P:B Y) = HL(P:B aY)T .

The matrices HU(P>B,Y) and HL(p,B,Y) are defined as special upper and
lower Hessenberg matrices respectively. In the same way we define a

special upper triangular matrix R(p,B,Y¥) as having the form
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rYl 8P,  ByPs - - B1pn-|
Vi PPy ' BaPy
Y . .
3 B5Pn

R(P,B 9Y) =

The particular recurrence relation used to form HLQ%B>Y) will depend

upon the order in which the Givens matrices are generated. ggp example,

if Pg_l is formed first then the backward recurrence relation can be

used.
Lemma II

Let D = diag(dl, d., . . . . dn) , r, = diag(Yl,ye, T 1),
r, = diag(1, Yis Yoo - - Yy l) and e = (1, 1, ..., 1, 1)

1. DHL(P,BsY) = HL(-I;,-B—:V)D

where Ei = g./d

i i H pi = d.Pi ’ i=l>23”':n: Yi = diYi/d !

1 i+l
i=1,2,...,n-1 .

2. R(p,B,Y)D = DR(P,B,Y)
where B, = Bi/di , Py = 4P, i=1,2,...0 ;.

3. R(p,B,Y) = DR(p,B,e)
where Ei = Bi/Yi 12 i=l,2,..-,n-l ’ di = Yi ’ i=l,23"03n°

4., HL(P:B:Y) = FlHL(ﬁ:B,e)

= HL(p,E’e)FE .
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where 5{ = pi/'Yi (l < n), fn = Pn )
and Bi = Bi/Yi (1 > l)’ Bl = Bl
5. If HL(ﬁ,E,Y) = HL(p,B,Y) then Vi = Yi and
Pi/Pi = Bi/gi = constant , for all i=l, 2, . . . . n .

The next three lemmas show how the product of special matrices

with various general matrices may be computed efficiently.

Lemma III

Let B be an mX n matrix and I&jp,B,Y) an n X n special

lower Hessenberg matrix. The product B =

of the following recurrence relations:

Forward recurrence

BH can be formed using either

1w 2, l=alw§1), i=1,2, ..., m;
(J . s .

2. v (i) _ W§J 1) P51% 51 4 - g m,
BM S ijij) J=2,3, ..y

Backward recurrence

LR T SRS O T

2. b= Yy gby gq ¥ By -1, 2 ,m
W§J"'l) T wla) 5 =10, n-l, L2

5. 5, - Bl"’:i(l) i=1, 2, .., m

Proof

We will give a proof for the forward recurrence case. The backward

recurrence case can be shown in a simila® way.

The first column of B is



given by

J=1
If we define OO R
(1) .
or i biij , i=1, 2, ..., m, (1)
Jj=1
- (1 o
then bil = Blwi s 1=l,2, . .. .m.

Forming the-second column we have

n

biy = Vb + B, E bijpj , i=,2, ... .m. (8)

Jj=2

From equation (7) we have

1 = E .
w$ ) bilpl = oW, i=l, 2, ..., m

J=2

!

and if this vector is defined as w(g), then (8) becomes

b, =Y.b, +8 w(2)

i2 1P51 oV , i=l, 2, . . . . m.

The other columns of B are formed in exactly the same way.
The backward recurrence is more efficient unless the product Bp
is known a priori. It is also more convenient if B occupies the same

storage as B.
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The forward and backward recurrence relations require approximately
75% of’ the work necessary to f’orm the same product by successively multi-
plying B by each of the individual Givens matrices. Since Hi(p,s,y)

is an orthogonal matrix there exists a vector v such that

H-L(P,B >Y)V = Q’el

and we can regard HL(p,B,Y) as the matrix which reduces v to e,

An equivalent reduction can be obtained by multiplying v by a single

Householder matrix. If we have a product of the form

) H (pysBysY ) e H (p,.,B Y )B

the computational effort involved applying lemma III is less than that
using a similar product of the equivalent Householder matrices. This

is because if D is a diagonal matrix, the product can be written as
DHL(Pl’elae) ct L. -HL(pI"BI"e)B

using lemma II, parts 1 and k.
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Lemma IV

Let R be an upper triangular matrix and HU(p,s,y) a special
upper Hessenberg matrix. The product H = Hﬁ(p,s,Y)R is an upper Hessen-
berg matrix which can be determined using either of the following recur-
rence relations:

Forward recurrence

oset () 5Ty

T —a (1) -
hlj Ble , J=1, 2, , n
2. For i =2, 3, ; no, set
By T Yia1Tio1,4-1 0
S ) L (3-1)
Y3 Y5 T PiaTia,g
j=i, i+l, n,
T (1)
hl,J l-lri-l,J Biwj
Backward recurrence
1. w(n) = p.r .
n n nn
2. For i=n, n-1, . . . . 3, 2, set
T _ (i-1) _
Bi,i-1 T Y4-1%4-1,4-1 0 W1 0 T Py aTio1,4-1 0
T (i)
iy = YiaaTio,y * P
1) j=i, i+l, ..., n.
i-1 (1)
= +
"3 Pia1%i-1,5 " Y5
_ (1 .
o Ry - W e s

Proof

This lemma is proved in a similar way to Lemma III.
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Lemma, V

Let R be upper triangular and R(p,B,Y) a special upper triangular
matrix. The product R = R(p,B,Y)R can be found using either of the

following recurrence relations:

Forward recurrence
(1) _ T

1. set w/ =Rp.
2. Fori=l, 2, . . . . n, set
Tii T Y4T30

D)

= W. - A
j g T PiTiy
J=i+l, i+2, . . . . n .
~ - (i+1)
.= Y.r.. + B,
rlj erlg B:Lw,j
Backward recurrence
1. For i=n, n-1, . . . . 1, set
(i) _ -
" T PiTig o0 Tyg T YiTig o0
T, =Y.r.. + B.w(lﬂ')
1] 11g
J=i+l, i+2, . . . . n .
, "
w(.l) = w(.:L 1) + p.Tr,.
J J 11]

The forward recurrence relation can be formulated in the following
alternative manner:
1. Set W(l) = RTp .

2. For i=1,2,...,n , set \

T,. = Y.r,. ,
11 1 11
W(.l+l) = W(.1> - piri,
0 J J j=i+l,...,n .
r =

ig = Wy = Bypy)rys + ByW;
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This formulation requires an additional n?/2 multiplications. It has
been shown by Gentleman (1972) that the use of the more efficient relation-
ship can lead to numerical instabilities in certain applications.

If the products of n 2 X 2”Givens matrices are accumulated into a single
special matrix it has been demonstrated in lemmas I - V how certain savings
can be made in subsequent computations. The nature of the forward and
backward recurrence relations are such that when a value of Sj is very
small underflow could occur in the subsequent computation of nj . This
will result in a division by zero during the computation of the next aj
It will be shown in the following section how this difficulty can be
avoided by Jjudicious choice of the scalar m .

In certain applications the vector v which is such that
Hy(0:8,Y)v = [[Vllpe;

is known. Since HU(p,B,Y) is orthogonal we have

v =8, INl,p
and the vector v 1is parallel to the vector p . The value of 1-T can
be chosen such that the vector p is equal to v . This gives the

modified algorithm:

Forward recurrence

1. P, =V, ' By = cl/vl > Yy = Sy

2. p., =V, , Yj = Sj

c./vj

. c.
J J-1

J=2,3,...,0=1 ;

3
3 Pp=Vps By < -Cn-l/vn

We obtain this recurrence relation by writing m =(H/Vl . Asimilar
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modification can be applied to the backward recurrence formula. ;. pos-=
sible division by a near-zero vy causes no problems since this only
occurs when the corresponding Givens matrix is almost a permutation matrix
and Cj is o1 the same order as ) vj.

In the cases where vj is not known a-priori, M can be set at

2 , where the computation is carried out on a machine with a t-digit

binary mantissa. Since the value of nj,is such that

during forward recurrence, and

= T
- ﬂj sjsj+l"""sn-l/

during backward recurrence, this choice of m ig such that %_ is
unlikely to underflow.
If even this strategy is insufficient the product of the Givens

matrices can be broken into products of the form

|
I 0 . H (p”,87,Y") 1 0

HL(P,:B,,YI) 0 I1T
3 I 3

0

---4-—-

where Nk is zero or intolerably small, and HL(Pl,B',Y/) and
HL(p”,B”,Y”) are smaller special matrices of dimension (n-k) x (n-k)
and k X k respectively. Clearly a product of separate Givens matrices

can be viewed as being a product of special matrices in which a "split"

has occurred at every step.
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5. Modification of the Cholesky factor

In this section we consider the case where a symmetric positive
definite matrix A is modified by a symmetric matrix of rank one, i.e.

we have

A=A +wazzT.

Assuming that the Cholesky factors of A are known, viz.

we wish to determine the factors
7 - 5t

It is necessary to make the assumption that A and A are positive
definite since otherwise the algorithms for determining the modified
factors are numerically unstable, even if the factorization of A exists.
Several alternative algorithms will be presented and comments made upon
their relative merits. Any of these general methods can be applied when

A is of the form

and rows or columns of the matrix B are being added or deleted. In
this case it may be better to use specialized methods which modify the

orthogonal factorization of B ,

The reader is referred to section 5 for further details. The methods in
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this section are all based upon the fundamental equality
A= A +ozgz:
- 10 + app)T’

where Lp=z.
If we form the factorization

D + app = IDL' . (9)

the required modified Cholesky factors are of the form

3 = bttt

giving

since the product of two lower triangular matrices is a lower triangular
matrix. The manner in which the factorization (9) is performed will

characterize a particular method.
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Method Cl. Using classical Cholesky factorization

The Cholesky factorization of D + OlppT can be formed directly.

We will use this method to prove inductively that L is special.

Assume at the jth stage’of the computation that

(10)

~

£ . n,
rs

= prBs s r:J', j+13 *
s=1, 2' . ...l

and that all these elements have been determined. Explicitly forming

the jth column of iﬁiT gives the following equations for EJ, and
er, r=j+l, . . . . n:
- j_l
~ 2 ~ 2
dif,j.l+ d, = d. + osz. (11)
i=1
and
j-1
E di%i'l'ri + J"erj =P r=j+l, . . . . 0. (12)
i=1

Using the equation (10) with (11) and (12) gives

j-1
P2 525 +d, =d +ozp2
J i1 J J
i=1
and
j-1
b.p d BZ +dg = ap r=j+l, . n .
iPr AR e ’
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From the last equation we have
Pr » r=j+l, ... n

and defining

-1 -

P.
B, = —L |- E q.8°
J ] iti

J i=1

~

gives 4_. = p B

r3 P Hence the subdiagonal elements of the jth column

of L are multiples of the corresponding elements of the vector p

Now forming the first column of iﬁfT, we obtain the equations

2

dl = dl + apl ’

dl rl

I

a/plpr s r2, . ...n,

which shows that the sub-diagonal elements of the first column of L are

multiples of the corresponding elements of p . Consequently we have

~

proved that L is special by induction.

This result implies that we need only compute the values of g, 5
J
Bj, j=l, . . . . n 1in order to obtain the factorization of D + appT .

In practice we define the auxiliary quantity

-1

o]

]

Q

]

-

Qi

W
e PO

e
1l
[

~

The recurrence relations for ?j’ d and Bj then become
J
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@, =
d, =d, +a P,
J
B =°'jpj/dj $ =,2, ... .n.
. =o. d. d
J+l J° J/ ] J

The product L = LL can be computed in terms of the Bj by forward
recurrence using Lemma V. ©Note that L and I are both unit lower
triangular matrices and that this results in some simplification of the

(1)

algorithm. The vector w needed to initialize the recurrence relations

. (1) _ i, 2 (3)se
are known since w Ip =z . Asoeach of the vectors w'(j=l,2, . . , n)
can be obtained during the jth stage of the initial back substitution

Ip =2z , since

n j-1
(3) _ _ S ' i s
v, - zripi =2, - Lripi , r=j, j*l, ..., n.
A |
i=j i=1

The final recurrence relations for modifying L and D are as follows:

Algorithm C1

1. Define al = o, w(l) =7z .
2. For j=1, 2, ..., n, compute
(3)
. T W,
pJ J
- 2
d, =d, t a.p.
J J Jd d
. =p../d,
SJ pJ J/ dJ
o, = d.o./d.
J+l JJJ
L) - () o4
r r Jrd
i . r=j+1, ..., n.
- +
L. =4 .+ B.W(J 1)
rj rj Jjr



. . j+1 .
Using the expression for wga ) we can rearrange the equation

for Lrj in the form

- - gs (w'd) -
Lp5 = Ayt B 0wy pjzrj)

- (3)
(1 ijj)zrj + B,

= (3)
(dj/dj)”'rj * B

which is the form of the algorithm given by Gill and Murray (197'2).
However, this increases the number of multiplications by 5@%.
One of the earliest papers devoted to modifying matrix factoriza-

tions is that by Bennett (1965), in which LDU factors are updated following

a rank m modification:
I50 = U + Xcy© |
where X, Y are nX m and C is mX m . It should be noted that
(i) The algorithm given by Bennett is numerically stable only
when L = UL , X = Y and both D and D are positive
definite.

(ii) Algorithm Cl is identical to the special case of Bennett's

algorithm when m=1, C =« and X =Y =12 .

The number of operations necessary to compute the modified factor-
ization using algorithm Cl 1is n2 + O(n) multiplications and n2 + 0(n)
additions.

If the matrix A is sufficiently positive definite, that is, its

smallest eigenvalue is sufficiently large relative to some norm of A ,
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then algorithm Cl is numerically stable. However, if ¢ < 0 and A is
near to singularity it is possible that rounding error could cause the
diagonal elements 36 to become zero or arbitrarily small. In such cases
it is also possible that the Ejn could change sign, even when the modifi-
cation may be known from theoretical analysis to give a positive definite
factorization. It may then be advantageous to use one of the following
methods, because with these the resulting matrix will be positive definite

regardless of any numerical errors made.
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Method C2. Using Householder matrices

In this method the factorization (9) is performed using Householder

matrices. To do this we must write

A= Lﬁ%(l + ava)ﬁ%LT

b

where v is the solution of the equations
I&#v =z .

The matrix I + ava can be factorized into the form

I+owt = (I+ cva)(I +-ova) (13)

by choosing

o
g =

1+ (1 + oszc',\%

The expression under the root sign is a positive multiple of the
determinant of A . If A is positive definite o will be real.
We now perform the Householder reduction of I + cva to lower

triangular form

We will only consider application of the first Householder matrix Pl .
The effect of the remainder can easily be deduced.

Let
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and partition v in the form

The (1,1) element of I + oV is then
6 =1+ cvi

and Pl must reduce the vector [ g cvle ] t0 a multiple of ef . Using

the relations of section 3 we define

Y2 - e2 + cQV?LWTW ,
u, = 6 +v ,
d = -
an T Yul .

S
(Note that we have taken Y:=-FVY“ s, because we know that 6 > 0 .)

Nowu has the form

i.e. elements Uss e sn un are multiples of the vector w
The result of applying the first Householder transformation can

therefore be written as
(I + cv'vT)(I + %r— uuT)

8w I+EWT

for suitable values of the scalars & and ¢ which will be determined
as follows. The first column is given by

-\

- T L

= (I + ovv )(el = ulu)
dw
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2 1
+ —_
1 cvl ov,w 1+ - uy
oV,W I +-cwa — U.0V.W
1 11
which implies that
1 2 1 T
bw = (1 + — + —
( . ul)cvlw . ulcvl(l + oW W)W .
SO
A small amount of algebraic manipulation gives
v
5= 0 —— (2 + oviv)
Y
Similarly for the scalar 0 we have
T Wovyw
I +3wa = [ oV W I+ owa ]
I+ — ogvﬁww
-t
giving
- 2.2 1 22 1 32T
0 =zl uoc v, to0 + —o0C + —
- £ v . vy - oTViW W
which can be shown to be equal to
= 1 a(l +v)
O = o =— + = .
T o(L+Y) Y6 +Y)
The (n-1) x (n-1) submatrix I + St has the same structure as

I+ cva and a Householder matrix can be applied in exactly the same

fashion. It can be shown that
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1+ EWTW = —.3—- 1 + C’VIV)

and SO the sign choice in the definition of each of the Householder matrices

remains the same.

For notational convenience we will write Yj : % ’ 6j , and
o} for the quantities Y , o, 6 , and o at the jth step of the

j+l
reduction, and use Y , & for the vectors (Yj) ’ (éj) .

The full reduction is now

e P . P . = R(v,6,-¥)]

(I + oW )PPye . Py

which gives_
_ 1 T ir
A = ID2R(v,6,-Y) R(v,6,-Y)DEL .

From lemma II we have

1 % 1
R(v,6,-Y)D? = R(D%v, 6, -D¥) ,

1 -1
= D2R(p, D 25, -Y) ,

= D%FR(P,B >e) ,

where r = diag(Y 3 )
P, = d%.v.
SIS A .y
B.=-5,/(d%,\(_) =1, . . . . n.
J J J J

(Note that p is the solution of Lp = z , as before.)

Following our convention for unit-triangular matrices we define

L(P:B>e) = R(P:B,G)T .
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The net result is that

L IL(p,B,e)

and D =IDr ,

which must be analytically equivalent to the factors obtained by algorithm
Cl. What we have done is find alternative expressions for Bj and Eﬁ’ the

most important being

Since Y? is computed as a sum of squares, this expression guarantees
that the computed 53 can never become negative. In algorithm Cl, the

corresponding relation is

- 2
d. =4, + o_p.
J JPJ

J
where sign(aj) = sign(e) . If o < 0 and DL is nearly singular,
it is possible that rounding errors could give Ej < 0 . In such cases

algorithm C2 is to be preferred.
The analytical equivalence of the two algorithms can be seen
through the relation between aj and Gj For example, equation (13)

implies that

vTv)

@ 1

1 =0,e+0

and if this is substituted into El =d, + alpi we get

1
= 2
dl = Yldl r
which agrees with D = I'D . In general if we define
n

o =Oj(2 +z v;fvi)

i=]
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the expression for 6,j simplifies, giving

5 a.v, o.p @ p

B, = -yl =44 . _JJ __JJI
J a%y. aEy a.¥Y q.
Jd JJ JJ J

which is the expression obtained for BJ. in algorithm Cl. 1In practice

we retain this form for algorithm C2. The method for computing L from L
and L(p,B ,e) 1is also the same as before. The iteration can be summarized
as follows.

Algorithm C2

1.  Solve Lp=2z.
2. Define w(.l) =z,
J J
n n J=1, 2, n
S = 2/d =
J Py i~ 9
i=j 1=]
) =a,
= + .
o, =af[1+ ¢1 as, ]
3. For j=1,2, . . . . n, compute
2
a . . p./d.
() oy . pY/e
b . =1+0._q.
(b) 05 595
(c) iy TS T
2 2
d) Y, =0, + 0.q.s, !
(@) ¥, 5 7 %5%%%
= 2
e d, =Y.d,
(e) J J J
f) B. -o.p./d.
(£) 8, Pl

2
o, a /Y
(&) g+l J/ J

(h) o, | =cj(1 + YJ.)/[YJ.(GJ, + YJ.)]
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. (3+1) (3)

(1) wy = wpt ' T Psbog
_ (5+1)
I‘rj - !'r,j * ijr

r=j+l, j¥2, . . . . n .

Note that the initial back substitution takes place separately from the
computation of L(p,8,e), because of the need to compute the vector p

2
before computing sy - This adds r; + O(n) multiplications to the method

but ensures that the algorithm will not break down under extreme circum-

stances and allows L to be computed by either the forward or backward
. . . . 2

recurrence relations given in Lemma V. The method requires -j-n + O(n)

2
multiplications and n+l square roots.
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Method C3. Using Givens matrices |

One of the most obvious methods of modifying the Cholesky factors
of A in the particular case when o > 0 is as follows.

Consider the reduction of "the matrix [Q’%z RT] to lower tri-

) - (]

where P is a sequence of Givens matrices of the form

angular form, i.e.

-
P - PE.?-.. IE_I_l .

We have ——

= |
=
o
w
=l
1
g
o]

1 1
[ oZy RT] ppt | 2T |,

R

RIR + az? .

Consequently ﬁT is the required factor.
This algorithm can be generalized when @« < 0 . The rank-one

modification will be written as

ﬁTﬁ = RTR - azzT , >0,

for convenience. The vector p is computed such that

RTP=Z/

and we set 8
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We now form the matrix

and pre-multiply by an orthogonal matrix P of the form
n+1 n+an+1

=P .
P RN i

such that the vector p 1is reduced to zero. This gives

in which case the following relations must hold

T 2
PP +E =6, (14)
Rp =61 (15)

P O ’
RR = TR + rr! (16)

Equation (14) implies that ég = 7%— Equation (15) implies that

and finally (16) gives

RTR = §T§ + a/zzT p

as required. This method requires —gL n2 + O(n) multiplications and

n+l square roots.
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Method Ch. Using Givens matrices II

For this method we will be modifying the factorization
RE = RR + azz
From this equation we have

A = R(I + appl)R , (17)

where Rp=2z

We can write A in the form
3 = RUP'P(I + appt)PUER , (18)

where P is an orthogonal matrix. The matrix P is chosen as a product

of Givens matrices such that

2 n-2_n-1

1
Pp = P2P5. . .Pn_an P = Yel , (19)
where |Y| = Ipll,. The equation (X7) can be written as

A = RIPT(T + ozYzele?)PR .

As each Givens matrix P§+1 is formed it is multiplied into the upper

triangular matrix R . This has the effect of filling in the sub-diagonal

elements of R to give an upper Hessenberg matrix H . We have
H = PR,
A=Wy,

where J is an identity matrix except for the (1,1) element which has

1 -
the value (1 + apr)g. If A is positive definite, the square root will
be real. The formation of the product JH modifies the first row of H

to give
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H = JH

which is still upper Hessenberg. A second sequence of Givens matrices

are now chosen to reduce H to upper triangular form, i.e.

B = pPipPe. . P?P;‘l_{ )

n “n-l ’
=R
Then i=FH
- P PH
- R'R
. . . . 9 2 o .
as required. This algorithm requires —%— n + O(n) multiplications

2

and 2n-1 ééuare roots.
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Method C5. Using Givens matrices III

If we write equation (17) as in method C2, viz.

- — T
A= RT<1 + apﬁr)<1 + 0PP )R

o
1+ (1 + apr)

where o =

L
2

If P is the matrix defined in (19) we can write

A = RT(I + cppT)PTP(I + cppT)R .
- R'HR (20)
T
where H = P(I +opp’)
_ T
_P+0Y%p

According to lemma I, P is a special upper Hessenberg matrix of the form

P = Hy(p,B,Y)

for some vectors 5,6 and Y . Now the first row of P is a multiple

- T
of p by definition, and furthermore Pp = Yel implies that p = YP e
so the first row of P is also a multiple of p . From lemma II it

follows that by choosing in = pn when forming P as a special matrix,

we can ensure that

P = H-U(P:B ,Y)
for some B and Y

Assuming this choice of P, is made, we have

T
H = H-U(P>B9Y)+ GYelP
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= H{J(Pagay)

where B differs from B only in the first element, i.e.

B =8+ cYel

NowH can be reduced to upper triangular form R by a second sequence

of Givens matrices P :

B - Pn-an-Q

2 -
n n-l. . 0P3P2-H - R

!

It can be readily shown that R is of the form

R = R(p,B,Y)

~

where the vectors B and ¥ are given by the following recurrence rela-

tions:
Lony o= B
2. By = eyt sgEy ]
Yj = céﬂﬁgj + sij =1, 2, . . . . n-1;
Mje1 = SiNy = c-By
5.0¥, = n, -

The quantities (3. and Sj are the elements of the Givens matrices in

P . They reduce the sub-diagonal elements Y. of H to zero at each
J
stage, and are defined in the usual way. The final product R = RR
can be computed using lemma V.
This algorithm requires 2n° + O(n) multiplications and 2n-1
square roots. The work has been reduced, relative to method Ch, by

accumulating both sequences of Givens matrices into the special matrix

R and modifying R just once, rather than twice.
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4, Modification of the complete orthogonal factorization

If A is an mx n matrix of rank t, m > n, t < n, the complete

orthogonal factorization ot A is

QAZ = | R 0 (21)

0. 0

where Q@ 1is a mX m orthogonal matrix, 2 an n x n orthogonal matrix
and R a tX t upper triangular matrix (see Fadeev et. al. (1968),
Hanson and Lawson (1969)).

The pseudo-inverse of A is given by

A=z ]|R olq.

0] 0]

In order to obtain the pseudo-inverse of A =21+ sz , where y and

z are m and n vectors respectively, we consider modifying the com-
plete orthogonal factorization of A. (With no loss of generality we have

omitted the scalar o .)

From equation (21) we have

- T
QAZ = R + Pg
0
T
where p = Qy and q = Z7z . If the vectors p and q are partitioned
as follows:
u)lt w)lt
p = > 9 7 ’

In-t

]
ed
o
ot

=|
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we can choose Ql and ZI to be either single Householder matrices or

products of Givens matrices such that

_ =T, T
QIu = oe, and w AI = Bul s

where @ and B are scalars such that. |o| = ”ﬁug and |B] = Hﬁng .
Note that application of these matrices leaves the matrix R unchanged.
For convenience we will' now work with the (t+1) x (t+1) matrix SI which

is defined as

T

We next perform two major steps which will be called sweeps.

First Sweep

Choose an orthogonal matrix QII such that

1 t-1_t —
= . . -
@rp | @ P2P§ Py Peeq ¥ 1%
o o
2 2 2 . .
where Yl = HuH2 + o . If SI is multiplied on the left by QII and

the resulting product defined as SII , we have

S, = QS = rc:EI oY + Ylel[wTB] = -1%1 I
RII 0 RII 0
where RII is an upper triangular matrix. The t diagonal elements of
R are filled in one at a time by the application of each 2 X 2 ortho-

1I

gonal matrix. We have defined

=T T T
rII = rII + Ylw



Second Sweep

to SII from the left, reduces 8§

o]

triangular matrix is defined as 'S

1T we have

S = ve =[x

III = QIII I 1 111 511 )
Ryt OI 0 111

where OTII is of the form

. 1
OIII = 1i>t+1'. ‘ngz .

II to upper triangular form.

Lo

We now construct an orthogonal matrix QIII which, when applied

If this

The matrix %SIII may or may not be the upper triangular matrix required,

depending upon p(A) , the rank of A .

arise are summarized in the following table:

Case I. 0 #0, B #0

In this case SIII has full rank and

= R
Rrr1 Std’ R .

0 o111

The final orthogonal matrix 6 is given by

The different cases that can
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= ' ' S .
Q 1z, r y © I 0 (22)
o ! 1 0 0T o !
! , | I 4
— - -
t+1 Lo t+l t
and Z =2 I ! 0 .
|
|
0 | ZI
t

Case II. o # 0.8=20

If the first and second sweeps are followed carefully it can be

seen that SIII is of the form

t
_ A
4 |
- ’ﬁ
RIII
= t
SIII 0 P
0
Cmy M mE =, e = o= --J
. 0 1 © A

l.e. sppp = 0 and 6III = 0 . As in Case I, SIII is in the required

form and we define the modified factors accordingly.

Case III. o =0, B #0

The first orthogonal transformation of the first sweep is an iden-

tity, and the matrix SII has the form



Application of the second sweep (QIII) gives the matrix SIII ;j the
form
St11 =
- 0 y O

b€ 8y =0

An orthogonal matrix ZII is now' applied on the right to reduce
SIII to zero, thus:

t t-1_t-2
5117211 = S11E 64D 40 t+1°. Pean

42
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The modified factors are Q as defined in (22), and

z=z | 11 z. !

Cf1T !
! \

bm—f—- - e - a—
V2 P I
1

i I

Case IV. o = 0, g =0, p(a) =t

The matrix SIII has the form

} t+1

: o)

|\ J

If the diagonal elements of RIII are all non-zero then rank (K) =
rank (RIII) =t and the factors are completely determined. Otherwise,

exactly one of the diagonal elements of ‘RII may be zero, since the

I
rank of A can drop to t-1 . In this case, two more partial sweeps
must be made to reduce RIII to strictly upper triangular form, as

follows.

Case V. o = 0, =0, p(A) = t-1

Suppose that the k-th diagonal of RIII is zero. The matrix

can be partitioned in the form
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t-k
> .
' 4 N
S W k-1
v
' ——
_ T
Rrmr I Trv
i
[
! Ry
t-k
[
[
[
where RIV’ RV are upper triangular with dimensions (k-1) x (k-1)
and (t-k) X (t-k) respectively. An orthogonal transformation QIV
rT
is now applied on the left to reduce the submatrix to upper

RV

triangular form in exactly the same way as the first sweep. Similarly,

a transformation ZII is applied (independently) from the right to
reduce SIV to zero in the submatrix [RIV SIV] . Thus
- -
: |
R )
RIV | 0 \ W
__._J._‘____.-
rvRrrlor = b
0 } By
)
.———-—-——--w
: o]
Lk k k Kk
where v T Pt @ g2kl
k-1_k-2 2.1

and Z =P P P



Finally a permutation matrix Z 7y 1is applied to move the column of zeros

to the right:

o B I 7 B .
R lo| w R W |
- o= —-LJ—— Z = - 'O = R .O
| = I1T 7| I
o 1 R va_
l -—— vy AR GRS e eED — ————-F-
o 0 J L o0 1o L O O
The modified factors are
l [ C .
Gyl Qrrd Qrr I
I |1 I lq
I
' | L J L v
N o I e
I Z 1 ' ZI |
- I IT -
and Z2-=272 |==4- -—4+-- ——4—-
I.ZI I 1 I I
| L | J L | .

The number of operations necessary to compute the modified factors

are summarized in the following table:

Description Order of multiplications
Compute p , q . ‘ m? + n2
Determine o , B - bm(m-t) + 4n(n-t)
First sweep 2t2 + 4mt
Second sweep 2t2 + 4mt
Additional computation for case III 2t2 + 4nt
*Additional computation for case V —g—t2-+ 2t (n+m)

*It has been assumed that if W(k) is the amount of work when the kth

diagonal element of R is zero, then the expected work is

111
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)

t
k=1

The maximum amount of computation necessary, which is of the order
of 6 % t2+ 5(m %n.a + 2t(3m-n) multiplications, will occur when case V
applies. In the special case when A and A are both of full column

rank then Z is the identity and the amount of computation is of the order

of 5m2 + br® + bmn multiplications. This reduces to l3n2 when m=n

4.1 Use of special matrices

The-number of operations can be decreased if some of the properties
of special matrices outlined in section 2 are utilized. Each Givens
matrix must be multiplied into a Q matrix, Z matrix or upper trian-
gular matrix, depending upon the current stage of the algorithm. These
multiplications can be performed by accumulating the product of each set

of Givens matrices into the associated special matrix. Each QI ) ZI ,
QII s ZII 5 .etc. will be either a special matrix or a permutation

matrix. The orthogonal matrices QI , 21 ,. . .etc. will be formed,

using Lemma I and Lemma II, as products of the form A q VZ. ,
IT' I"I

VIIZII 5. ..0tC. where AI ,VI,AII,VII,M

diagonal matrices and aI ’ §I 5. . .etc. are special upper (lower)

AIIQII , .etc. are
Hessenberg matrices with unit sub-(super-) diagonals. In addition we

assume that we modify the factorization

pil § o
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Atthe initial stage DLT is unaffected by the pre- and post- multiplica-

tion with AIQI and EIVI , The products

) l
I : 0 Il O
e o w -— e an o - -'.L——--
T=—=-e:; v/ .
O la o7

can be formed using Lemma III, the diagonal matrices being kept separate

from the orthogonal products.

During the first sweep we require the product

Ryt O
ol o

If this matrix is written in the form

DL*
~ ]
it S bt el B
0 : 0

it can be evaluated by bringing the diagonal matrix p to the left of

QII by suitably altering the special matrix QII to 6&1 as in Lemma

II. The remaining product involving aé and LT can be formed using

I )

Lemma III with backward recurrence. The multiplication of é: by the
1T

current orthogonal matrix is performed similarly to that involving o

I

\

except that again the diagonal AI must be brought through by altering

Qp o9 (say).
If the remainder of the computation is carried out using the same

techniques as those just described, the number of multiplications can be

summarized as follows:
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Description

Order of multiplications

Compute p , g

Determine o , B

First sweep

Second sweep

Additional computation for case III

Additional computation for case V

w4 no
2m(m-t) + 2n(n-t)
t2 + 2mt
2t2 + 2mt
2t2 + 2nt
4

—5—-1',2 + t(n+m)

The maximum amount of computation necessary is now of the order of

4 2 t2 + 3( 2

3 m~ + n2)+-t(5m-n) multiplications, and this reduces to

5(m2 + n?) + 2mn multiplications in the full rank case. When n=m=t

the algorithm requires 8r° + 0(n) operations.
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5. Special rank-one modifications

We now consider some special cases of the complete orthogonal fac-
torization Which occur frequently, namely adding and deleting rows and
columns from A . These cases deserve special attention because the

modifications can be done in approximately half as many operations as in

the general case. Since in most applications A is of full column rank,

we will deal specifically with this case and modify the factorization

where A i mx n, m > n

5.1 Adding and deleting rows of A

We first consider adding a row al to A . Assuming without loss

of generality that this row is added in the (m+l)th position, we have

o~ ' bd - r—~ -
! R
|
0 A
@ | = 0 =T
-—-—-J LK X X | - ovs
0 ‘l T T

Elementary orthogonal transformations are now applied from the left to
reduce aT to zero while maintaining the triangularity of R This 1is

done by defining the sequence

YW Ly g0 L ()

2 m+l B} j=l,2,...,1’1 4

J . ;
where P, reduces the (m+l,j) element of T W) 45 zero. Note in

particular the effect on the column el which has been added to aQ.
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The first n elements are filled in one by one, thereby forming the last

column of @ :

[}
]
n n-1L 1 - | —_
Pm+le+l' . 'Ph+1 Q :em+l Q
-y
CE
_ 1
= [:Qm : qm+£] say.
Elements n+l, nt2, . . .,m of 7§ remain 7ero.

m+1

To remove a row from A , we now simply reverse the above process.

This time we have

h _ R } 1 n
A = ' A e
U I+l _ ) 0 } m-n
| aT 0 11
giving
T

Pm+l m+1

Transformations Pm+l P h h th
m *im 1°° Py are chosen such that

- pmtl o pmt1pm+]
Pov1 P10 - - ol m %mel T Smel

The last n transformations each introduce a non-zero into the bottom

row of

- aw an ow

(from right to left), giving



PQA

Pq

and since PQ is orthogonal it

A
PQ =
--T_-
a
- -
so that r = a , and also
aF -

as required.

ol

)

)

)

i
--L--—-

|

J

S
R
0

.--T—“
r

N -

J

o

'_l

follow immediately that u

L.
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=0 Thus

Often it is necessary to modify R without the help of a. In

this case we really want R such that
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R'R = R'R + aa’ .

so clearly the methods of section 3 would be applicab e. Alternatively

we can continue to use elementary orthogonal transformations as just des-
cribed. Adding a row to A is simple because Qwas not required in any
case. To delete a row we first solve RTp =a and compute 52 =1 - ”p”%

The vector

} n
0 1} m-n (23)
) 11

now plays exactly the same role as 9,43 @above. Dropping the unnecessary

zeros in the center of this vector, we have

™ 0 N sl -
| | -
n+1l n+l n+1 P R (o} | R
S Sy | = |
sV o L
L ! o LT -

where as usual, the sequence {P§+l} has the effect of reducing p in
(23) to zero and introducing the vector rT beneath R . Since the P?+l

are orthogonal it follows that

1 1Y C.Y oA v A
ot R T |
l ° 1 F s |fe ) ®
®T T
S ty o o e oo
= ! e ! J e ! J e ! J
or
~ | - | b
1 : rt Iel® + 621 PR
——P————- = e s o) o T o o
b [
T R‘%(-+ rrT R% i RTR J
] ' »
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so that r = R % =a , and

R'R = RTR - aaT

as required.

5.2 Adding and deleting columns of A

Suppose a column is added to the matrix A , giving

|
]

|

(]
Al g

[}

|
Since

QA I DR — s

we have

!
- R tu
@ - [~ (21)
) v
|

T
where [u ‘ VT] = aTQ? and u and v are n and m-n vectors

respectively. If an orthogonal matrix P is constructed such that
p~ -y
u
Pv = Yi 5
0
- -

where Y = * ”v1|2 , then pre-multiplying (24) by P leaves the upper

triangular matrix R unchanged and the new factors of A are



r

Sk

r -
R : u
R = - e - and @ = Po .
|
0 Y
|
v l -

This method represents jutt a column-wise recursive definition of the QR
factorization of A
When Q is not stored or unavailable, the vector u can be found

by solving the system

The scalar Y 1is then given by the relation

v¥ = Jalls - 1l

Rounding errors could cause this method to fail, however, if the new column
a 1s nearly dependent on the columns of A . In fact if R is built up
by a sequence of these modifications, in which the columns of A are

added one by one, the process is exactly that of computing the product

B = ATA and finding the Cholesky factorization

It is well known that this is numerically less satisfactory than computing
R using orthogonal matrices. 1In some applications the s-th column of @
is available even when Q is not and consequently Y can be computed
more accurately from the relationship
T
'Y=a.qs,

where qq is the s-th column of Q



55
Some improvement in accuracy can also be obtained on machines

which have the facility for performing the double-length accumulation of

inner-products. In this case the i-th element of u is set to
. i-J
u = a,.a.~ u.r, . s
i i i
i ros {: 2 : J3J J 1J
J=1 J=1

where the two inner products are formed as a single sum. Despite these

improvements this is still numerically less satisfactory than the pre-
vious method where Q was available.

A further possibility of improving the method arises when one
column is being deleted and another is being added. A new column re-
placing the deleted column is equivalent to a rank two change in A?A
and can be performed by any one of the methods given in section 3. Even
this is still not ideal, since the computation of the rank one vectors
require the matrix vector product AT(a - a) where a 1is the column

being added and a is the column being deleted.

Finally we describe how to modify the factors when a column is
deleted from A . It will be assumed that A is obtained from A by

deleting the s-th column, which as usual will be denoted by a . Deleting

the s-th column of R gives

: “
) R, | T, |}s-1
A = 0 1 T, |} n-s+l
AN

|
! 0 : V] -]} m-n
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where Rl is an (s-1) X (s-1) upper triangular matrigx, Tl is an

(s-1) x (n-s) rectangular matrix and T, is an (n-s+l) X (n-s) upper

Hessenberg matrix. For example, with n=5,s=3 and m=7 we have

- ' -
X Xy X X
[
0 x b x X
- 0 m-m-1j-— — —
Rl| Tl‘1 0 O0Otx x
o T O OM1x x
2 I
0 4 O Lot =
- ! - o olo 0
[
o oto o
- . ‘

Let partition T2 be of the form

We now choose an orthogonal matrix P which reduces T‘2 to upper trian-

gular form, using one of the methods described earlier. Thus

ﬁz } n-s

0 11



o7

_ -s 1
where P is of the form P Pn-s+l --I§§é . The modified triangular
factor for A is
I -1
_ ey el R
R = | =
0 . R2 3 n-s
--- -— e b
0 -= O |} m-nt+l

If(Q is to be updated also, the appropriate rows must be modified,

thus:'

Q=-“:.'-}n-s+l,Q=-;>Q-2. .

- QB- - } m-n | QB

It is sometimes profitable to regard this computation from a

different point of view. The partitions of g
2

232 = R‘R + v,  and this is analogous to the equation FJIg ==R%{+-a_aT

which holds when we add a row aT to A . We conclude that deleting a

satisfy the relation

column may be accomplished by essentially the same techniques as used for

adding a row.
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6. Conclusions

In this report we have presented a comprehensive set of' methods
which can be used to modify nearly all the factorizations most frequently
used in numerical linear algebra, It has not been our purpose to recom-
mend a particular method where more than one exist. Although the amount
of computation required for each is given, this will not be the only
consideration since the relative efficiencies of the algorithms may alter
when applied to particular problems. An example of this is when the
Cholesky factors of a positive definite matrix are stored in product
form. In this case the choice of algorithm is restricted to those that
form the special matrices explicitly. The relative efficiency of methods

Cl and C2 are consequently altered.
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