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Abstract

In recent years several algorithms have appeared for modifying the

&
factors of a matrix following a rank-one change. These methods have always

been given in the context of specific applications and this has probably

inhibited their use over a wider field. In this report several methods

. -
are described for modifying Cholesky factors. Some of these have been

published previously while others appear for the first time. In addition,

a new algorithm is presented for modifying the complete orthogonal factor-

ization of a general matrix, from which the conventional QR factors

are obtained as a special case. A uniform notation has been used and

emphasis has been placed on illustrating the similarity between different

|
methods.
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1. Introduction

- Consider the system of equations

JAX =D

- where A is an n Xx n matrix and b is an n vector. It 1s well known

that x should be computed by means of some factorization of A , rather

: than by direct computation of al, The same is true when A 1s an

“ mx n matrix and the minimal least squares solution 1s required; in this

case 1t 1s usually not advisable (or necessary) to compute the pseudo-

inverse ofA explicitly (see Peters and Wilkinson, 1970).

- Once x has been computed it is often necessary to solve a modi-

fied system

. AX =D0b.,

Clearly, we should be able to modify the factorization of A to obtain

factors for A , from which X may be computed as before. In this paper

‘ we consider one particular type of modification, in which A has the form

| B= A + ayzt

|
whereo 1s a scalar and y and z are vectors of the appropriate

dimensions. The matrix ayz’ 1s a matrix of rank one, and the problem

1s usually described as that of updating the factors of' A following a

|
rank-one modification.

There are at least three matters for consideration in computing

modified factors:

| Co
(a) The modification should be performed in as few operations

¢
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as possible. This is especially true for large systems when

. there 1s a need for continual updating.
(b) The numerical procedure should be stable. Many of the pro-

cedures for modifying matrix inverses or pseudo-inverses that

. have been recommended in the literature are numerically un-
stable.

| (c) If the original matrix 1s sparse 1t 1s desirable to preserve

. - 1ts sparsity as much as possible. The factors of a matrix
are far more likely to be sparse than its inverse.

Modification methods have been used extensively in numerical optim-

ization, statistics and control theory. In this paper, we describe some

methods that have appeared recently, and we also propose some new methods.

We are concerned mainly with algebraic details and shall not consider

“ sparsity hereafter. The reader is referred to the references marked with

an asterisk for details about particular applications.

1.1 Notation

|

The elements of a matrix A and a vector x will be denoted by

. By; and x respectively. We will use al to denote the transpose of
« A, and xl, to represent the 2-norm of x , i.e. 1x1, = (xTx)E .

The symbols Q, R, L and D are reserved for matrices which are respec-

tively orthogonal, upper triangular, unit lower triangular and diagonal.

In particular we will write D = diag (d;5d,5.005d )

.

|



2. Preliminary results

|. . Most of the methods given 1n this paper are based 1n some way upon

the properties of orthogonal matrices. In the following we discuss some

important properties of these matrices with the intention of using the

¢ material in later sections.

2.1 Gilvens and Householder matrices

| The most common application of orthogonal matrices in numerical

analysis 1s the reduction of a given n-vector z to a multiple of the

first column of the identity matrix, i.e. find ann xX n orthogonal

6 matrix P such that

Pz = +Ye, (1)

¢ This can be done by using either a sequence of plane rotation (Givens)

matrices or a single elementary hermitian (Householder) matrix. In order

to simplify the notation we will define the former as

¢ :

Ss

\ 2)Cc

L and call this a Givens matrix rather than a plane rotation since it

corresponds to a rotation followed by a reflection about an axis.

This matrix has the same favorable numerical properties as the

¢ usual plane rotation matrix (see Wilkinson, 1965, pp. 131-152), but is

now symmetric. The choice of c¢ and s to perform the reduction

+

C C S 24 _ | Y

S -C Zp, | 0

L
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1s given by

2 2 2
| Y = 2, + Z,

2

Y = sign (2) (3)
[ W and Cc = z,/Y s S = ZY .

Note that 0 < ¢ <1 . In order to perform the reduction (1) we must

embed the matrix (2) in the n-dimensional identity matrix. We shall use
& .

P] to denote the matrix which, when applied to the vector [2525500052 17,
reduces 2 5 to zero by forming a linear combination of this element with

Zio i.e.

i J

: .
25 Zq

3 1 |
Cc S : z

1 “1 iE

Py = . ’ =
J .

& 1 . *
-C Z, 0

1 J

1 z |
o- n 40

There are several sequences of Givens matrices which will perform the

« reduction (1); for example
1 n-2_n-1

P,P ce. LA zZ
or

L 1.1 1.1
FoPs cee n-1tn Z
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To perform the same reduction 1n one step using a single Householder

matrix, we have

C

T

where u= z + ie, .
RA (4)

- _ =
Yu,

6

This time P 1s such that

« ~ Pz = Ye, .

In the 2-dimensional case, we can show that

Co 3 | C s
“ P = = -

z | Ss -C

where ¢ , Ss are the quantities defined earlier for the Givens matrix.

‘ Hence the 2 x2 Householder and 2 X 2 Givens transformations are

analytically the same, apart from a change of sign.

) There are several applications where 2-dimensiongl transformations

.“ are used. The amount of computation needed to multiply a 2 X n matrix

| A by a 2 x2 Householder matrix computed using equations (4) 1s

4n + 0(l) multiplications and 3n + O(1l) additions. If this computa-

‘ tion 1s arranged as suggested by Martin, Peters and Wilkinson (1971) and

the relevant matrix 1s written as

I + -u. 1 [1 uy /uy]

“u,/

|
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then the multiplication can be performed in 3n + O(l) multiplications

and 3n + O(l) additions. Straightforward multiplication of A by a
“-

2 x2 Givens requires Un + O(l) multiplications and 2n + O(1)

additions. Again the work can be reduced to 3n + O(1l) multiplications

and 3n + 0(1) additions, as follows.
|

Let the Givens matrix be defined as in (3). Define the quantity

vA

_ 2

oravail Ll BS
1

“ |

Since Ss = z,/Y we can redefine s as

s = L(c+l) .

\

Similarly, we have

C = 1 - MS ]

|

A typical product is now of the form

Cc S Yq } C S Yq 5. =

s  =C Ys uw(e+tl) us-1 Ys

. _ ¥q€ + Yo8

« yk (ctl) + Vy (ks-1)

which will be defined as

y
‘ - 1

Yo

Consequently, in order to perform the multiplication (5) we form

[§ T

| 8
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d Vv. = Vv.) =
an CV uly Vy) my,

- Note that this scheme 1s preferable only 1f the time taken to compute a

multiplication is more than the time taken to compute an addition. pjgq

it may be advisable with both algorithms: to modify the computation of

~ Y to avoid underflow difficulties.

In the following work we will consider only 2 X 2 Givens matrices,

' although the results apply equally well to 2 X 2 Householder matrices

.
since as noted earlier, the two are essentially the same.

2.2 Products of Givens matrices

S$ ~,
The following lemma will help define some new notation and present

properties of certain products of orthogonal matrices.

Lemma I.

| | J
Let Pip be a Givens matrix defined as in (3). Then the product

n-1_n-2 1

Pl Po- . 8

‘ is of the form

Pig; Vy

H (p,B,Y) = . ) ) ]
& . . . Yn-2

Pr-1P1 Pp-1P2 Pp-1P3 SRR J « FECP

PB PPo PBs SE Prfn

L
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where the quantities Ps / B 5 and Y; are defined by eit ier ot the
following recurrence relations:

|.

Forward recurrence

1. Pl = cy/m ’ By =T UE = s./T Yy = S, 4 where © 1is
an arbitrary non-zero scalar;

2. p.. = c.Mn, Y. =-s. |
Py ja-1 7 J

y J = 2355e.e,n=1;. = —C. : LE

P; ANAT UF SiM4-1
. 3. _ _ -5+ Pp o= Tyg Py Cp-1/P,

Backward recurrence

1, = —_ = =. — —_

. Pn I=1 Ph Cpt/ g Mh-1 Spo/™ g Yn-1 “nal?
wherenm is an arbitrary non-zero scalar;

2. . = c./M. Y. = 8S.Py alr SE a SE
J = n-1,...,3,2;

. =-C, : =8. .

'Y 5 3-5 Tyan 5-113

5. Py =c/By » By = Ty -

Proof

‘ We will prove the lemma in the forward recurrence case; the

remaining case can be proved in a similar way. Assume that the product

. ~ k-1 52.1 i
Prer1 Fie Coe Pp + Fh (k < n-1) 1s glven by

A

PB V3

PoPy PB

& | * . .

BiB Pb vo BB Vy (6)

TePr MhBo  TiBy -
1

¢
1

1

‘
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This 1s true for k=1 by definition. The next product

k+l k k+l 21

“ Profi tk I 9-5

1s given by

P1Pq "1

PoP PaPy

&

Pb PB + oo BP x

“erlPr CenMBo oc Gea MPr TOC Spm

SprMePy SeaMePo oo 0 Sear Spi Can
1

6 .

It we define Pri - Cex ! Vi+1 Sk+1 ! Bt - -e My > Ther — Spi >

then the product prtl pr 1s of a similar form to (6). ContinuinLC p wan ©. 0B : g

in this way, and finally setting P, = ny, 1 and Bo = ec _/?, yr gilves
- the required result.

L For later convenience we shall use the notation

T

H, (P58 ,Y) = Hy (2:8 ,Y) .

C The matrices H,(p,B,Y) and H, (p,8,Y) are defined as special upper and
lower Hessenberg matrices respectively. In the same way we define a

special upper triangular matrix R(p,B,Y) as having the form

L
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Y, BP, BPs Tere o BP

Y » . . . . .1 BPs | B,D,

Y . . . . ° .

| 3 | °Pn

R(p,B \Y) = | |
¢

| Yn-1 Pr-1Pn

Y
| n

" The particular recurrence relation used to form H (p,B,Y) will depend
upon the order in which the Givens matrices are generated. por example,

if pi 1s formed first then the backward recurrence relation can be
used.

¢ |

Lemma II

. Let D = diag(d), dys»... 4), Tp =daglY vy, ov, 1),
: _ T

I's = diag(1, Yio Ys «cee. Y, 1) and e = (1, 1, ..., 1, 1)”.

- L. DH, (P,8,Y) = H, (P,8,Y)D

tL where 8, = B./d, ,» Py = 4p; , 1i=1,2,...,n, Y. = d.¥s/dsy
i=1,2,...,n-1 .

2. R(p,B,Y)D = DR(P,B8,Y)

C where B, = B./d, , py = dp. , i=1,2,...,n.

35. R(p,B,Y) = DR(p,B ,e)

L 4, H (P,8,Y) = rH (5,8)
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where p, = py/Y; (1 < n), Pp, = P, ’

hb, If Hy (P58 ,Y) = H, (p,8,Y) then Y4 = Ys and

Pi/Pi = B./Bs = constant , for all i=l, 2, . . . . n .

¢

The next three lemmas show how the product of special matrices

with various general matrices may be computed efficiently.

¢ Lemma III

Let B be an mX n matrix and H, (p,8,Y) an n xX n special

« lower Hessenberg matrix. The product B = BH can be formed using either
of the following recurrence relations:

Forward recurrence

1 - 1 .

I! j-1i,j-1 i=1, 2" ,, «5, Mm,

b (3) J =2, 3, «co,nn= + .

TYP5 TRY
¢

Backward recurrence

fh :1. We )- pbs» 3 = Lh 2s Ll,
5. = + (J)

$ = b.., Y5o1Ps J-1 P wy =1, 2" ..., mm,
(3-1) _ + @) {5 =nn0l1 ....2;

Wit 0% PyaPiya1 Mi

3. by = JN ) i = 1, Sy o,.y mM.
$

Proof

We will give a proof for the forward recurrence case. The backward

‘ ) recurrence case can be shown in a simila} way. The first column of B is

&
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given by

n

¢ = _ . _

J=1

If we define (1) = Bp ,
|©

(1) _ | :
or i= bs Ps > i=l, 2, ..., m, (7)

J=1
|

— 1then = ( =
by Bw: , i=l,2, .. . .m.

¢ Forming the-second column we have

n

b., = Yb. +B, by 5Ps , i=l, 2, . .. .nm. (8)
© Jj=2

From equation(7) we have

¢ 1 _ )LS ) = b. Py = b, .p, 1d ; 1=1, 2, eee m
J=2

and 1f this vector 1s defined as (2) then (8) becomes
£

—_ 2)b = + ( l=
{9 Y by Bows , i=l,2, . .. .m.

C The other columns of B are formed in exactly the same way.

The backward recurrence 1s more efficient unless the product Bp

is known a priori. It is also more convenient if B occupies the same

storage as B.



The forward and backward recurrence relations require approximately

‘ 75% of’ the work necessary to f’orm the same product by successively multi-

plying B by each of the individual Givens matrices. Since H, (p,8,Y)
1s an orthogonal matrix there exists a vector v such that

«

and we can regard H (p,8,Y) as the matrix which reduces vv to ae,
¢ An equivalent reduction can be obtained by multiplying v by a single

Householder matrix. If we have a product of the form

« . H (p58 5Y ) oH (p,B VY )B

the computational effort involved applying lemma III 1s less than that

using a similar product of the equivalent Householder matrices. This

| .
1s because if D 1s a diagonal matrix, the product can be written as

DH, (PysB,5€)......H (P,.,B ,e)B
¢

using lemma II, parts 1 and bk.

&

& |

6



Lemma IV

$ Let R be an upper triangular matrix and H,(p,B,Y) a special

upper Hessenberg matrix. The product H = H,(p,8,Y)R is an upper Hessen-
berg matrix which can be determined using either of the following recur-

| rence relations:

Forward recurrence

1. Set (3) = RTD ’

8 T =a (1)
8, Biv; , J=k, 2, ..., n.

2. Fori =2,3, ..., n, set

h, | =Y., Ir. .

« 2 on ?1 i-1

50 TW TC PiaaTiag
=i, i+l, .... n,

= (1)
Bi 3 Yi-1%i-1, 3 Biv

| &

Backward recurrence

1. ne —- p.r
n n nn

t 2. For i=n, n-1, . . . . 3, 2, set

a (1-1) _
fy 5-1 - Yi-1%i-1,1-1 > WT - Pi 1¥i-1,i-1 g

= (i)
C By. Yi-1%i-1, 3 Biv;

: j=i, i+1l, ..., n.i-1 (1)= +

"3 Piaiti-1,5 7 Y;
— (1 .

3. By; - pw j=l, 2, .., n.
L

Proof

This lemma 1s proved 1n a similar way to Lemma IIT.

L

L
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Lemma V

Let R be upper triangular and R(P,B,Y) a special upper triangular

matrix. The product R = R(p,8,Y)R can be found using either of the

following recurrence relations:

|
Forward recurrence

l. Set (1) = Rip .

| | 2. For i=l, 2, . . . . n , set
% |

Pip T YiTi4 0

-

ne 1) = es - p.Tr..
J J 1 1]

j=i+l, i+2, . . . . n .
¢ - = (i+1)

r.. - Y.r..+ B.w:
iy 1713 175

Backward recurrence

l. For i=n, n-1, . . . . 1, set
¢

, (1) = pP.T r = ¥Y.r
1 itii °° ii i“ii

T. = Y.r.. # gy itl)
iy 0 I ly 1°]

L$ J=i+l, i¥2, . . . . n .
:

Wo GU)
J J 1 1]

The forward recurrence relation can be formulated in the following
|

alternative manner:

l. Set me = Rp :

2. For i=l,2,...,n , set

T.. = Y.r.. [
ii 171i

J J J j=i+l,...,n .

hh vy PiPyIT5 Biv
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This formulation requires an additionaln/2 multiplications. It has

. been shown by Gentleman (1972) that the use of the more efficient relation-
ship can lead to numerical instabilities in certain applications.

If the products of n 2 X 2 Givens matrices are accumulated into a single

. special matrix it has been demonstrated in lemmas I - V how certain savings

can be made 1n subsequent computations. The nature of the forward and

backward recurrence relations are such that when a value of ° 1s very

«© small underflow could occur in the subsequent computation of Mj . This

will result in a division by zero during the computation of the next B
It will be shown in the following section how this difficulty can be

avoided by judicious choice of the scalar m .

In certain applications the vector v which 1s such that

H(p,B,Y)v = [vile
|

is known. Since H(p,B,Y) is orthogonal we have

v= 8,Ivll,p

‘. and the vector v 1s parallel to the vector p . The value of 1-T can

be chosen such that the vector p is equal to v . This gives the

) modified algorithm:

¢ Forward recurrence

l.p, =v, ' By = c,/v, s Yy = Sq

2. . = V., Y. = 8S.

« Pi TT TT |
; J=2,55...40n=1 3B. = =-c. c./v,

J J-13" J

5. P, =V, B = -c_ Jv, .
8

We obtain this recurrence relation by writing m = c,/v, . Asimilar
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modification can be applied to the backward recurrence formula. The pos<

o sible division by a near-zero vy causes no problems since this only
occurs when the corresponding Givens matrix 1s almost a permutation matrix

and 4 1s Ol the same order as vs .

« In the cases where vs is not known a-priori, T can be set at
-t oo

2 , where the computation is carried out on a machine with a t-digit

binary mantissa. Since the value of Ny. is such that

Ny = 5850 S/T

during forward recurrence, and

| ~ M5 ® 3 J+1 Sp-1/

during backward recurrence, this choice of m is such that 1 is
unlikely to underflow.

L © ]
If even this strategy 1s insufficient the product of the Givens

matrices can be broken into products of the form

J /” /” 4
6 I 0 k H, (p”,B Y") i O

0 H, (p BLY ) 0 11
‘ 3 3

« where Ni 1s zero or 1intolerably small, and H (p58 ,Y") and

H, (p”,8",v") are smaller special matrices of dimension (p-k) x (n-k)

and kXk respectively. Clearly a product of separate Givens matrices

C can be viewed as being a product of special matrices in which a "split"
has occurred at every step.

L
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5. Modification of the Cholesky factor

. In this section we consider the case where a symmetric positive

definite matrix A 1s modified by a symmetric matrix of rank one, 1.e.

we have |

’
— T
A=A+azz .

: Assuming that the Cholesky factors of A are known, viz.

A = pL’ ,

we wish to determine the factors

[ -

—  IZ=oT
A = LDL™

It is necessary to make the assumption that A and A are positive

“ definite since otherwise the algorithms for determining the modified

factors are numerically unstable, even 1f the factorization of A exists.

Several alternative algorithms will be presented and comments made upon

their relative merits. Any of these general methods can be applied when

A 1s of the form

T
A =BB

“

| and rows or columns of the matrix B are being added or deleted. In

this case 1t may be better to use specialized methods which modify the

- orthogonal factorization of B ,

R

. The reader 1s referred to section 5 for further details. The methods in
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this section are all based upon the fundamental equality

“ A= A +aiz,

= L(D + app’) ,

| NS where Lp=2z.

If we form the factorization

T eel

~ D + app = IDL (9)

the required modified Cholesky factors are of the form

= _ Lox~T T
“ - A = LILDL™L

giving

w 1 = LL and D = D ,

since the product of two lower triangular matrices 1s a lower triangular

matrix. The manner in which the factorization(9) is performed will
&

characterize a particular method.

& .

&

.

| ©



| Method Cl. Using classical Cholesky factorization

“ The Cholesky factorization of D + opp © can be formed directly.

We will use this method to prove inductively that L is special.

Assume at the jth stageof the computation that

“

L.. = PB , r=j, j+¥l, . . . .n, (10)

s=1, 2' .... 71

.“ and that all these elements have been determined. Explicitly forming

the jth column of iFosia gives the following equations for a, and
Lry r=j+l, . . . .n:

“ ~ j-1

\ ~ ~2 ~ 2d.£..+ d, = 4d, + op, 111 J1 J J P; (11)
i=1

« and

7-1

dbs bry + ait = @p r=j+l, . . . . 0 . (12)
i=1

Using the equation (10) with (11) and (12) gives

1-1
« J]

2 2~ ~ 2
. .d. +d, =d, + op.P; i 1 J J ®;
i=1

and

7-1

p.p 3.85 + a.4 = ap, r=j+l, . . . . 0 .J Tr 1 1 J Ir] Fr ' ’
| i=1
&
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From the last equation we have

7-1

by TE od - d.B. Pr s r=j+l, ...,n

and defining

j-1

PD. 5
Bg. = — | oa - d.B%
J i | ivi

J i=1
.

gives L. = PB . Hence the subdiagonal elements of the jth column
of L are multiples of the corresponding elements of the vector p .

« Now forming the first column of IDL, we obtain the equations

~ 2
dy = dy + ap, ,

d. 4 4 = P,P, r=, . . . .n,

which shows that the sub-diagonal elements of the first column of L are

multiples of the corresponding elements of p . Consequently we have

6 proved that L is special by induction.

: This result implies that we need only compute the values of 4g. ,
J

- 8 , =, . . . . n 1in order to obtain the factorization of D + appt .
. In practice we define the auxiliary quantity

7-1

0, = a ) 1.85J ivi

& i=1

| The recurrence relations for si d and B. then become| | J J

L
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a, =a

3 qd + « p°d, = Qa, i +)“ J J J vu

or. =o. d./d, )Jtl J* 5 ]
-

The product L = LL can be computed in terms of the P by forward

recurrence using Lemma V. Note that L and L are both unit lower

“ . triangular matrices and that this results in some simplification of the

algorithm. The vector (1) needed to initialize the recurrence relations

are known since W(1) = Ip =z . Asoeach of the vectors G8) (521, 2, . . , n)

can be obtained during the jth stage of the initial back substitution

Ip = 2 , since

n 7-1

(3) y CL= = -— = + ee .wo L.:Ps Z. LPs , r=j, Jt+i, y 1
A

i=] i=1

The final recurrence relations for modifying L andD are as follows:

Algorithm Cl

1. Define ay =o , Hey =z .

& 2. For j=1, 2, ..., n, compute

(3)
. TW.

P; J
— 2
d. = d. + @.p.
J J J J

.=p.o./d,P; P; i J

o = d.o./d.J+l 2/3
| yp :

J TJ

EPEC EE
ri rj jr



Using the expression for WIL) we can rearrange the equation
for L, ; in the form

L..= 4 + BS wi) pg)J rd r J I'd

: — (1 -Bp i, + Ba)
J J Td J T

- (d5/a5)8,.; + p wid) :
.

which 1s the form of the algorithm given by Gill and Murray (197'2).

However, this increases the number of multiplications by 50%.

¢ One of the earliest papers devoted to modifying matrix factoriza-

tions is that by Bennett (1965), in which LDU factors are updated following

a rank m modification:

" I50 = DU + XY

where X, Y are nX m andC is mX m . It should be noted that

(i) The algorithm given by Bennett is numerically stable only

& when L = ul , X = Y and both D and D are positive

definite.

; (ii) Algorithm Cl is identical to the special case of Bennett's

L algorithm when m=1, C =o and X =Y = z .

| The number of operations necessary to compute the modified factor-

ization using algorithm Cl 1s n° + O(n) multiplications and n° + 0(n)

: additions.
If the matrix A 1s sufficiently positive definite, that is, its

smallest eigenvalue is sufficiently large relative to some norm of A ,
L

L
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then algorithm Cl is numerically stable. However, 1f og < 0 and A is

near to singularity it 1s possible that rounding error could cause the
“

diagonal elements a, to become zero or arbitrarily small. In such cases

it 1s also possible that the 4, could change sign, even when the modifi-
cation may be known from theoretical analysis to give a positive definite

.

factorization. It may then be advantageous to use one of the following

methods, because with these the resulting matrix will be positive definite

regardless of any numerical errors made.
“

|

“« |

&

&

|

| ©

| ©
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Method C2. Using Householder matrices

“ In this method the factorization (9) is performed using Householder

matrices. To do this we must write

A = LE (1 + on) ET ,
“

where vv 1s the solution of the equations

Ey = Z .
&

The matrix I + avy? can be factorized into the form

I + vv = (I + ov) (I +ovv! (13)
| ~.

by choosing

g .—  %

¢ 1 + (1 + LS

The expression under the root sign 1s a positive multiple of the

. determinant of A . If A is positive definite 0 will be real.
We now perform the Householder reduction of I + ove to lower

triangular form

‘ Y=(I +ovy )P.P .P

We will only consider application of the first Householder matrix P .

$< The effect of the remainder can easily be deduced.

Let

1

|



and partition v in the form

“ v= [v we] :
1

The (1,1) element of I + ove is then

- B = 1 + ov’

and Py must reduce the vector [ g ov. ut ] t0 a multiple of e) . Using
« the relations of section 3 we define

ve = 5° + “vay ’
u, =6 +Y

&

d T = =
an Yu, .

D

(Note that we have taken Y = Ne , because we know that 6 > 0 .)
|

Nowu has the form

| T T

ut = [uy OV ]

1.e. elements Uys oe ss u, are multiples of the vector w .

The result of applying the first Householder transformation can

therefore be written as

¢ -Y

(I + ov) (I + he wu) =
SW I Tg

¢ for suitable values of the scalars & and 0 which will be determined

as follows. The first column is given by

T 1

¢ = (I + ovv ) (eq + = uu)
Ow

L
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2 T 1 2
l +0 —

2) ov Ww 1 + - uy
6 —_—

OV, W I + owwt 2 uov.w
1 | T 1" 1

which implies that

|

lL 2 1 T
bw = (1 + — u + —_—( . NaN - uov, (1 + ow wW)W .

SO

| §

A small amount of algebraic manipulation gives

Vv
1

§ = ~o —— (2 + aviv)
Y

Similarly for the scalar oc we have
¢ .

1 u.ov !
T 1°71"

T +3 ww = [ OVW I + _—— ]
‘ 1

1 + = ov wt
~ 1

) giving

‘ 2 2 1 22— 1 327
0 zee luo v., to + —0O + —

a Fv . vy . CTV WW

which can be shown to be equal to

‘ - 1 1 + Y)T = - —= 5(1 + _ a(l + ]CES

The (n-1) x (n-1) submatrix I + WH has the same structure as

I p— and a Householder matrix can be applied in exactly the same

fashion. It can be shown that
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&

1+ oww = — (1 + oviv)
“~

and sO the sign choice in the definition of each of the Householder matrices

remains the same. )

« For notational convenience we will write Ys ’ 3 ’ 8 , and

0 541 for the quantities Y , 6 , 8 , and o¢ at the jth step of the

reduction, and use Y , 6 for the vectors (v5) (6) .

«© The full reduction 1s now

T _ wT
(I + ovv JP. P,. LWP = R(v,8,=Y)

“ which gives

— 1 T Lp
A = ID®R(v,8,-Y) R(v,8,-Y)D=L .

« From lemma II we have

py = LR(v,8,-Y)D? = R(D*v, 0, -D&Y) ’

L -L

= D=R(p, D =s, -Y) >
|

= DIR(p,B,e)

where r = diag(Y,)
* :

p, = dv.
J J J |

1 \ j=l,. . . .n.= =§./(d=Y,BS ACHE
.

(Note that p 1s the solution of Lp = z , as before.)

Following our convention for unit-triangular matrices we define

T

. L(p,B,e) = R(p,B,e)” .

“
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The net result 1s that

L - LL e- (p,B,e)

and D =IDI ,

which must be analytically equivalent to the factors obtained by algorithm

~ Cl. What we have done 1s find alternative expressions for P 5 and d. the
most important being

- J J J

Since Y, 1s computed as a sum of squares, this expression guarantees
that the computed a can never become negative. In algorithm Cl, the

“ corresponding relation 1is

— 2
d. =d, + a_p.
J J iv

« where sign(a;) = sign(e) . If o < 0 and IDL’ is nearly singular,
it 1s possible that rounding errors could give d, < 0 . In such cases
algorithm C2 1s to be preferred.

- The analytical equivalence of the two algorithms can be seen

through the relation between @ and oF For example, equation (13)
- implies that

“ a, =0.(2 +0 viv)1 1 1

and 1f this 1s substituted into 4, = d, + @.v’ we get

“ -= 2
dy = Y,d4 /

which agrees with D = IDI’ . In general if we define
n

.

a, =0_ (2 + : vi, )J J i'l

mr

\



the expression for 6 simplifies, giving

6. o.v, a .p. ¥Y p.
. I EE AI:1 IR

8, 3 =d=y. aEv° a.¥ d.
J J Jd J J J J

which 1s the expression obtained for B in algorithm Cl. In practice

- | we retain this form for algorithm C2. The method for computing L from L

and L(p,B ,e) is also the same as before. The iteration can be summarized

as follows.

“ Algorithm C2

1. Solve Lp=2z.

2. Define ne =z.
« } J J

n n j=l, 2, . . . .n

S = /a =j Pi/ds =) 9
i=] i=]

- ¥) =

0. = 1+, = ofl + Ve as, |]
5. For j=, 2, . . . . n, compute

| 2
a . Jad.(a) a; ps/ 5

b 8. = 1 +0 .q.(0) 8; vio)

“ (c) Sie1 TS TG;
2 2 2

d) Y, =f. + 0.q.S.(a) Y, 95 7 75955541
- 2

Bo d. = Y.d.(e) J J J
L.

ff) B. a p./d.(£) 8; Pr 4;

(8) oo... =a/¥
Jl JJ

.“ h) oo. =o(1 + Y.,)/IY.6.+ Y.)]

|

\



y L (3+1) (3)
(1) vo. = Wo Pik. s

r=j+l, j¥2, . . . . n .

“ } ~ gp +p tt)
rd rj PW

Note that the 1nitial back substitution takes place separately from the

. computation of L(p,B,e), because of the need to compute the vector p
2

before computing Sy - This adds — + O(n) multiplications to the method
but ensures that the algorithm will not break down under extreme circum-

\ stances and allows IL to be computed by either the forward or backward

recurrence relations given 1n Lemma V. The method requires Zn + O(n)
multiplications and n+l square roots.

“

“

|

“

‘“ t

|.
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Method C3. Using Givens matrices |

“ One of the most obvious methods of modifying the Cholesky factors

of A in the particular case when o > 0 is as follows.

Consider the reduction of the matrix & + | to lower tri-
= angular form, i.e.

&

where P is a sequence of Givens matrices of the form

1.2

We have —-

ki 0] R| = ®R,
0 |

‘¢ £2 T T = T= | fz R™ PP | Zz ,

R

= RR + vzZ .

Consequently R 1s the required factor.

This algorithm can be generalized when « < 0 . The rank-one
.

modification will be written as

RR= RR - azz" , a>0,

‘ for convenience. The vector p 1s computed such that

Rp = Z 4
T

and we set 6S = LPP
| n o

¢
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We now form the matrix

& P R

6, 0

6 and pre-multiply by an orthogonal matrix P of the form

P = phtl ptipntl
1 n-1n

& such that the vector p is reduced to zero. This gives

jr R 0 R
P =

T

¢ ~ on 0 % 5 r

in which case the following relations must hold

T 2 2

. PP +O =, (14)
T

. RR = BF + rev (16)

2 1

Equation (14) implies that 85 = =~ + Equation (15) implies that
) 1 5

r rN z = a<z, and finally (160) gives
RR = RR + ozz' ,

as required. This method requires —- n° + O(n) multiplications and
|S n+l square roots.

LC
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Method Ck. Using Givens matrices II

- For this method we will be modifying the factorization

RR = R'R + — .

From this equation we have

b> :
— T T
A =R (I + app )R , (17)

. where Rp = Zz .

b =
We can write A 1n the form

A = RUPTP(I + ppt ) PPR , (18)

. where P is an orthogonal matrix. The matrix P is chosen as a product

of Givens matrices such that

1 2 n-2 _n-1
= * . = Y 1Pp = P,P,.5. WPUP Tp = Ye, (19)

LC

where |Y| = Ipll,. The equation (17) can be written as

A = RUPT(T + @Ye el )PR :
b

As each Givens matrix PY 1s formed it 1s multiplied into the upper
. triangular matrix R . This has the effect of filling in the sub-diagonal

L ] elements of R to give an upper Hessenberg matrix H . We have

H = PR ,

A= HJM,
b

where J is an identity matrix except for the (1,1) element which has

py —
the value (1 + aptp)E. If A 1s positive definite, the square root will

¢ be real. The formation of the product JH modifies the first row of H
to give

Lb



H = JH

< | which 1s still upper Hessenberg. A second sequence of Givens matrices

| are now chosen to reduce H to upper triangular form, 1.e.

== n-1_n-2 2. 1=

| -F .

Then A = AH

_ I==

= RR

as required. This algorithm requires 5 n + O(n) multiplications

“ and 2n-1 square roots.

|

. |

.

|

.

.
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Method C5. Using Givens matrices III

“. If we write equation (17) as in method (2, viz.

—- rT, --_..1T IA=R (1+ app )(I + OPP )R,
 -

where g = re
1+ (1 + ap p)®

. If P is the matrix defined in (19) we can write

— T
A = RY (I + appr )PLP(I + opp )R .

TT
- RH IR (20)

S 2

T
where H = P(I +opp’)

=P +0VYe pl .
1

.

According to lemma I, P 1s a special upper Hessenberg matrix of the form

P= H,(P,8,Y)
“ —

for some vectors Pp, B and ¥Y . Now the first row of P is a multiple

-— T
of p by definition, and furthermore Pp = Ye, implies that p = YP ey

so the first row of P is also a multiple of p . From lemma IT 1it
“.

follows that by choosing P, = DP when forming P as a special matrix,

we can ensure that

- P = H,(p,8,Y)

for some 8 and Y .

Assuming this choice of D 1s made, we have
. _T

H = H, (ps8 ,Y)+ oYe, Pp

“
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| | H,(P,8,Y)

- where B differs from B only in the first element, i.e.

Toa
B =8 co Ye, .

L NowH can be reduced to upper triangular form R by a second sequence

of Givens matrices P :

Sy | pi~l n=2 2 =

ob
It can be readily shown that R is of the form

R = R(p,B,Y)

¢ where the vectors B and V are given by the following recurrence rela-

tions:

¢ ~ —
2. B. = c.M. + s.B.

J 3"; i? )
Y. = c¢c.NN.p. + s.Y. j= . . . . n-1;

i Ry 37 1 [ j=1, 2, n-1 ;. = s5.N. - c.B.- M541 513 CP

3. Y, = My, .

. The quantities % and 5 3 are the elements of the Givens matrices in
P . They reduce the sub-diagonal elements VY. of H to zero at each

J

stage, and are defined in the usual way. The final product R = RR

‘ can be computed using lemma V.

This algorithm requires 2n + O(n) multiplications and 2n-1

square roots. The work has been reduced, relative to method C4, by

¢ accumulating both sequences of Givens matrices into the special matrix

R and modifying R just once, rather than twice.

LC
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4, Modification of the complete orthogonal factorization

| If A 1s an mx n matrix of rank t,m > n, t <n, the complete

orthogonal factorization of A is

| QAZ =] R 0) (21)
< |

0. 0

where Q is a mX m orthogonal matrix, Z an n X n orthogonal matrix

¢ andR a tX t upper triangular matrix (see Fadeev et. al. (1968),

Hanson and Lawson (1969)).

The pseudo-inverse of A 1s given by

| ~. N 1
A =2Z | R Ol1aq.

0 0)

¢ In order to obtain the pseudo-inverse of A=2+ yzr , where y and
z arem and n vectors respectively, we consider modifying the com-

plete orthogonal factorization of A. (With no loss of generality we have

« omitted the scalar o .)

From equation (21) we have

. | _ .
QAZ = | R + Pg

¢ | |
0

_ _ oT CL
where p = Qy and q = Zz . If the vectors p and q are partitioned

as follows:

¢

ul lt W 1t
Pp = P) q = b)

u | Im-t Ww |}in-t
«

|
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we can choose ol and ZI to be either single Householder matrices or

. products of Givens matrices such that

= =I, _a.T
Qu = oe, and w 4 Bey ,

« where @ and B are scalars such that. ja] = Juli, and |B| = wll, :
Note that application of these matrices leaves the matrix R unchanged.

For convenience we will' now work with the (t+1) x (t+1) matrix SI which

1s defined as
|

S_ = | Toe).
C

We next perform two major steps which will be called sweeps.

First Sweep

¢

Choose an orthogonal matrix Ary such that

al t-1.t —
ar | %] ~ PF Fy Pel ® "

t o or

2 2 2 Ca

where Y = all; + ao . If St 1s multiplied on the left by Qr1 and

C the resulting product defined as SII , we have

T T —T
_ _ 0 Yc =

Srp = Qr°1= KN + Yye lw gl N0

LC Rep Rpg ©

where Ro: is an upper triangular matrix. The t diagonal elements of

Rog are filled in one at a time by the application of each 2 X 2 ortho-

L gonal matrix. We have defined

roo rly vowt
II "II 1

.
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Second Sweep

¢ We now construct an orthogonal matrix Qrpp Which, when applied

to S11 from the left, reduces S11 to upper triangular form. If this

triangular matrix 1s defined as Srop we have
|&

S vo Y.B = R S
IIT = QIII IT 1 III ITI ’

Ry : : 111
I

¢ h j f the f£
where ITI 1s of the form

a. 2_1

QIII = br. FES

¢ The matrix “8117 may or may not be the upper triangular matrix required,
depending upon p(A) , the rank of A . The different cases that can

arise are summarized 1n the following table:

¢

RIE fo
. o(A) = t or t-1 p(A) = t

i CaseI. o # 0, B #0

C

In this case SIII has full rank and

= R
Brrr SrA Ro

: O17

The final orthogonal matrix Q is given by



TT

L # 41

a= la..! o EL To (22)III | IT | Q

.
0 I 0 IT 0

! | | I of

t+1 Lo t+1 t

“ _

-—

0) : Z1
— |

$ t

Case II. a # 0. 8 = 0

¢ If the first and second sweeps are followed carefully it can be

seen that SIII is of the form

t

¢ -

= t
STIT 0 |

0)

i 0 1 O

L

1.e. Str © 0 and 8 1g = 0 . As 1n Case I, S111 1s 1n the required

form and we define the modified factors accordingly.

. Case III. o=0,B #0

The first orthogonal transformation of the first sweep 1s an iden-

tity, and the matrix SII has the form
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———
|

“ S11 = 0

0

oie emi el wes em -

0 1 0 0.

& ——
t-1

Application of the second sweep (Q17) gives the matrix SIII i the
« form ~.

t

- Bro |
III = bs t

¢ | |0

0 gs O

&

l.e. 8111 = 0 .

An orthogonal matrix ZII is now applied on the right to reduce

¢ S111 to zero, thus:

t t-1_t-2
P’ Pp .STT41T = SITE tL tl £41 . Fe

C = | R lo .
—_——de
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The modified factors are Q as defined in (22), and

| — '
= ! .

“ Z = 7 1 Let |
| 21 | I
\. | ) |

- Case IV. oo = 0, B = 0, o (A) = t

The matrix SIII has the form

“ .

: 0
a. .

SITII = t+1

0

| 0 | 0
. : I.

t .

If the diagonal elements of RIII are all non-zero then rank (a) =
.

rank (RIII) = t and the factors are completely determined. Otherwise,

exactly one of the diagonal elements of "Rit may be zero, since the

« rank of A can drop to t-1 . In this case, two more partial sweeps
must be made to reduce RIII to strictly upper triangular form, as

follows.

$ Case V. ¢ = 0, B = 0, 0 (4) = t-1

Suppose that the k-th diagonal of RIII 1s zero. The matrix

« can be partitioned 1n the form
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K-I t-k

n A

| S W k-1
Iv

. |
|

= T

&

| t-k

|.

where Royo Ry are upper triangular with dimensions (k-1) x (k-1)

and (t-k) X (t-k) respectively. An orthogonal transformation ry
-

| 1s now applied on the left to reduce the submatrix to upper

triangular form in exactly the same way as the first sweep. Similarly,

a transformation I 1s applied (independently) from the right to
|

reduce S1y to zero in the submatrix [Ry Sv] . Thus

- R !
Roy | 0 \ W

. ERRYI

AyRrrrlor = | _
R

0 Ly
| |

. . I

kok kk
where rv = FtPeo1t LO wok

| _Jk-1.k-2 2 1
L and 211 =F vk PF .

L
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Finally a permutation matrix 2111 is applied to move the column of zeros
to the right:

“ 9

R io] R |Ww R Ww | |v —

-—-=L1 I I _ R go} .I= "|4111 © ol =
= |Ee- | ve J

| o o lo | 0 40

The modified factors are

|

| [ x |_ | wl 1d 7 rl

| 1 | 1 I; loC I | |

I |

_ | Zrp | Zry7 | |
nd Boz [d= pith I EER IZ I I I

¢ | I

The number of operations necessary to compute the modified factors

' are summarized in the following table:

Description Order of multiplications

i Compute p , q . oe + ”
}

¢ Determine o , B - bm(m-t) + 4n(n-t)

First sweep 04° + 4mt

Second sweep 04° + 4dmt

LC Additional computation for case III 01° + 4nt
*

Additional computation for case V — + 2t (n+m)

*It has been assumed that if W(k) is the amount of work when the kth

diagonal element of RTT 1s zero, then the expected work is
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t

1
t $B &L QO []

~ k=1

The maximum amount of computation necessary, which 1s of the order

FG 2 2 = 5 Coo 0 5 t + 5(m ¥n ) + 2t(3m-n) multiplications, will occur when case V
applies. In the special case when A and A are both of full column

rank then Z 1s the identity and the amount of computation 1s of the order

~ of 5m + hn + bmn multiplications. This reduces to 13n° when m=n .

4.1 Use of special matrices

wo The—-number of operations can be decreased 1f some of the properties

of special matrices outlined in section 2 are utilized. Each Givens

matrix must be multiplied into a (Q matrix, Z matrix or upper trian-

“ gular matrix, depending upon the current stage of the algorithm. These

multiplications can be performed by accumulating the product of each set

of Givens matrices into the associated special matrix. Each Qr ) Zp ,

a Qrp 3 Zo1 so . .etc. will be either a special matrix or a permutation

matrix. The orthogonal matrices Qy , 2I ,.. .etc. will be formed,

. using Lemma I and Lemma II, as products of the form AQ . Vit :

“ Ar1Qr1 , VIIZIT ,... etc. where A, Vy Bppo Vppse--€te. are

diagonal matrices and Q , Zs ,.. .etc. are special upper (lower)
Hessenberg matrices with unit sub-(super-) diagonals. In addition we

g assume that we modify the factorization

il

pL” 4} O

QAZ = —==F--
L 0 0

¢
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Atthe 1nitial stage LY 1s unaffected by the pre- and post- multiplica-

< tion with AQ and ZV, , The products

| {

I 1 O I | 0

0 |Aa_q o | 3
197 | | 211

can be formed using Lemma III, the diagonal matrices being kept separate

« from the orthogonal products.
During the first sweep we require the product

)

Ry O 1}

C _ 17 more :0 0
|

If this matrix 1s written in the form

“ pit | oO

o lo

1t can be evaluated by bringing the diagonal matrix pj to the left of

Arp by suitably altering the special matrix Qpp to Qpy as in Lemma

) II. The remaining product involving Q and L' can be formed usingI )

- Lemma III with backward recurrence. The multiplication of Q.
11 by the

current orthogonal matrix 1s performed similarly to that involving 3
I

\

except that again the diagonal A must be brought through by altering

Qry to QT (say).

If the remainder of the computation 1s carried out using the same

techniques as those just described, the number of multiplications can be

- summarized as follows:
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Description : Order of multiplications

.- 2 2
Compute p , g m + n

Determine «o , B 2m(m-t) + 2n(n-t)
2

First sweep t+ Z2mt

- 2
Second sweep 2t + 2mt

2

Additional computation for case III 2t" + 2nt

4 2
Additional computation for case V —t + t (n+m)

eC 5

The maximum amount of computation necessary 1s now of the order of

C 4 £2 + 3 (n° + n°) + t(3m-n) multiplications, and this reduces to
3 (n° + n°) + 2mn multiplications in the full rank case. When n=m=t

the algorithm requires 8n° + O(n) operations.

|

|

&

|.

|

¢



¢ 49

5. Special rank-one modifications

We now consider some special cases of the complete orthogonal fac-

torization which occur frequently, namely adding and deleting rows and

columns from A . These cases deserve special attention because the

'u : modifications can be done in approximately half as many operations as in

the general case. Since in most applications A is of full column rank,

we will deal specifically with this case and modify the factorization

&

R R

QA -—— emf

o

| & .
where A 1 mX n, m > no.

5.1 Adding and deleting rows of A

¢ T
We first consider adding a row g to A . Assuming without loss

of generality that this row is added in the (m+l)th position, we have

[ =

| R

I = 0 = T.

I | _ er eo ap Sul =p aul

0 a! al al

s Elementary orthogonal transformations are now applied from the left to

reduce al to zero while maintaining the triangularity of R  7ni5 is

done by defining the sequence

(1) _ (3+1) _ od (3)
T =T, T = PT » J=1,25...,0n ,

where Py reduces the (mt+l,j) element of T(J) to sero. Note in

particular the effect on the column 1 which has been added to Q.
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The first n elements are filled in one by one, thereby forming the last

column of q :

n n-L 1 , | =

P15 m1” . Pol Q me = Q
. “70 ol

| _ =

&

Elements n+l, nt2, . . .,m of q 1 remain Tero.

To remove a row from A , we now simply reverse the above process.

This time we have
| -

: " RB 1 n= \

A Un ¢ Intl _ 0 } m-n

C | a | 0 } 1

giving

-— T
QA + Qed = QA .

‘ 1 1+ + +

Transformations Po Po se Br 1 are chosen such that
m m 1 1

p _ ptl o pm+1lpmtl _
C +1 © "1 0 m-1m ml ~“m+l

The last n transformations each introduce a non-zero into the bottom

row of

L R

0

0

4 (from right to left), giving

g
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R

“ LX ¥ FF XN J

| T
r

“ _
Looking at the effect on the various partitions of Q, we have

4
rq i

Sa- }

" and since PQ 1s orthogonal it follow immediately that u = 0 . Thus
- : ¢

— a ——t—

A Q 0 A
PQ | = i

ay oO 11 ar
- ) |

R

LC i V)

pL

so that r = a , and also
. |

R

L 0

as required.

. Often it 1s necessary to modify R without the help of Q. In
this case we really want R such that



RR = RR + ag. .

“ so clearly the methods of section 3 would be applicabe. Alternatively

we can continue to use elementary orthogonal transformations as just des-

cribed. Adding a row to A is simple because Qwas not required in any

case. To delete a row we first solve Rp =a and compute 5° = 1 - Ip)l
The vector

: P 11n

- 0 3} m-n (23)

6 }11

. now plays exactly the same role as d,.; above. Dropping the unnecessary
zeros 1n the center of this vector, we have

| '

! _
n+l n+l n+l | P| R Of R

¢ Pi x PoaFy = :

5! 0 1! rt
| -

6 where as usual, the sequence (PT has the effect of reducing p in
(23) to zero and introducing the vector rr beneath R . Since the phtl

J

. are orthogonal 1t follows that

| |
£ | | I _ |0 1 | T |

RI T |

| | ! l |
or

| - |
SIE ipl” + 6%1 PTR
Jomo I

| rg RK + rre Rb R'R| -
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T
so that r = RP =a , and

== T T
. RR = RR - aa

as required.

5.2 Adding and deleting columnsof A

Suppose a column 1s added to the matrix A , giving

| |
— I
A=] Al a .

~ |
|

Since

R.

QA = dy eeu amg a aly ’
0

we have

«

|

_ Riu
A = f-—d-—v , (24)

oO | Vv
|

¢ T T T
where [u {v1 = ag and u and v are n and m—-n vectors

) respectively. If an orthogonal matrix P 1s constructed such that

‘“

u

Pv = Yo ,

0

where Y = lvl, , then pre-multiplying (24) by P leaves the upper
triangular matrix R unchanged and the new factors of A are

L



{

R u

. R = |eme—=pee==]| and § = po.
|

0 Y
|

I

. This method represents jutt a column-wise recursive definition of the QR

factorization of A .

When Q 1s not stored or unavailable, the vector u can be found

& by solving the system

RTy = Ale .

The scalar Y is then given by the relation

2 2 2

YE = jal;- ull;

Rounding errors could cause this method to fail, however, if the new column

¢ a 1S nearly dependent on the columns of A . In fact ifR is built up

by a sequence of these modifications, in which the columns of A are

added one by one, the process is exactly that of computing the product

‘ B = Ata and finding the Cholesky factorization

B = R'R .

It 1s well known that this 1s numerically less satisfactory than computing

R using orthogonal matrices. In some applications the s-th column of @

1s avallable even when (Q is not and consequently Y can be computed
.

more accurately from the relationship

T

Y = a dg 7

L where ds 1s the s-th column of Q .

.
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Some improvement 1n accuracy can also be obtained on machines

« which have the facility for performing the double-length accumulation of

inner-products. In this case the i-th element of u is set to

.n 1-J |
1

TZ e— a.,.a.- u.r,. by rs (ardor)
J=1 Jj=1

where the two inner products are formed as a single sum. Despite these

. improvements this is still numerically less satisfactory than the pre-

vious method where (Q was available.

A further possibility of improving the method arises when one

4 column 1s being deleted and another 1s being added. A new column re-

placing the deleted column 1s equivalent to a rank two change in Ath

and can be performed by any one of the methods given in section 3. Even

< : this 1s still not 1deal, since the computation of the rank one vectors

require the matrix vector product at (a - a) where a is the column

being added and a is the column being deleted.

Finally we describe how to modify the factors when a column 1s

deleted from A . It will be assumed that A is obtained from A by

deleting the s-th column, which as usual will be denoted by a . Deleting
&

the s—-th column of R gives

| Ry I Ty 1 s-1
==

QA = 0 I, } n-s+1
|

0 1 0 11} mn
6 |

¢
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. where R, is an (s-1) X (s-1) upper triangular matrix, T; is an

(s-1) x (n-s) rectangular matrix and T, is an (n-s+l) X (n-s) upper

Hessenberg matrix. For example, with n=5,s=3 and m= Wwe have

|
X X§ X xX

I

0 x | x X

) m-m-j]-— — —
| fia hh 0 01x x

oO 1 IT, O O01 x x
a 0 0

0 y © Lore=
0 010 oO

I

¢ . o olo oO
'

Let partition I be of the form
|

= 1 .: )

N | n-s
LC We now choose an orthogonal matrix P which reduces I, to upper trian-

gular form, using one of the methods described earlier. Thus

'R } n-sPT = | 2
L © Jit

-

M
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_ h=s 1

where P 1s of the form P = LE . EE . The modified triangular
factor for A is

- -

| _

| _ SS J solR = —

. ] 0) i 0 } m-n+l

If Q is to be updated also, the appropriate rows must be modified,

thus:

|

@ |} st q | |

Q = } n-s+l , q = PQ, .
oo Q oo } m-n _

p, |« : EK

It 1s sometimes profitable to regard this computation from a

different point of view. The partitions of T, satisfy the relation
\ . -T- T T

RoR, = R5R, + rr, and this is analogous to the equation JTF _ gh 4 4 47

which holds when we add a row oT to A . We conclude that deleting a
column may be accomplished by essentially the same techniques as used for

|
adding a row.

|.

|

.

\
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6. Conclusions

“ In this report we have presented a comprehensive set of' methods

which can be used to modify nearly all the factorizations most frequently

used 1n numerical linear algebra, It has not been our purpose to recom-

“ mend a particular method where more than one exist. Although the amount

of computation required for each 1s given, this will not be the only

consideration since the relative efficiencies of the algorithms may alter

( when applied to particular problems. An example of this is when the

Cholesky factors of a positive definite matrix are stored 1n product

form. In this case the choice of algorithm 1s restricted to those that

< form the special matrices explicitly. The relative efficiency of methods

Cl and C2 are consequently altered.

CC |

‘

\

.

.
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