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Abstract

Two efficient computer implemented algorithms are presented
Jor explicitly constructing all distinct labelings of a graph G

with a set of (not necessarily distinct) labels L , given the

symmetry group B of @G Two recursive reductions of the problem
and a precomputation involving certain orbits of stabilizer subgroups
are the techniques used by the algorithm.

Moreover, for each

lgdveling, the subgroup of B which preserves that labeling is cal-
culated.
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CONSTRUCTIVE GRAPH LABELING USING DOUBLE COSETSl

By Harold Brown, Larry Masinter and Larry Hjelmeland

1. Introduction. We consider in this paper the following graph

theoretical problem: Given a graph G with n nodes and topological
symmetry group B and a set L of n not necessarily distinct labels,
construct all topologically distinct labelings of the nodes of G
with the elements of L . This problem arises in numerous contexts,
and it has been investigated by Pél;a {7], DeBruijn [4] and others.
In particular, the number of such distinct labelings is given by
the generalizéﬁ Polya enumeration formula.2 We present here two
efficient computer implemented algorithms for explicitly con-
structing all topologically distinct labelings of G by L . More-
over, for each distinct labeling, the algorithms determine the
subgroup of B which preserves that labeling.
Our interest in the graph labeling problem initially arose
in the context of the DENDRAL project [2]. This project includes
among its objectives the application of computer implemented art-
ificial intelligence techniques to the analysis and classification
of organic compounds. Necessary to this work are algorithms to
systematically generate all the distinct valence isomers of a given
set of atoms. Routines to pe;fobm this task in the special case
where the isomers form only topologically tree-like structures
have been described in [3] and [5]. For the general case, algorithms

are required which generate all distinct cyclic structures formed



from a given set of atoms with pre-assigned free valences. The
graph labeling problem is central to these cyclic structure gen-

eration algorithms.3

We now describe a group theoretic approach to the graph
labeling problem.

2. Algebraic formulation and notation. The graph labeling problem

admits a completely algebraic formulation as follows:

We index from 1 to n the nodes of the graph G in some fixed
order and index also from 1 to n the n labels in the set [ where,
for notational convenience, we index equal labels in sequence, i.e.,
if there are n, labels of the first type, n, labels of the second
type, etc., then we index the labels of the first type with
1y ceey nl,the labels of the second type with nl+l,..., nl+n2,
etc. With this indexing, any labeling of G by L can be considered
as a bijective map from the integral interval [1,n] (the node
indices) to [1,n] (the label indices). (Throughout, [a.b] will
always denote the interval of integers from a through b inclusive
if a ¢ b, and [a,b] =@ if a > b). Thus, the indexed labelings of

G by L can be bijectively identified with Sn » the full permutation
group on [l,n]-u

Any topological symmet;y‘éf G in the symmetry group B

can be considered as a permutation of the node indices, i.e., B

can be isomorphically identified with a subgroup B of Sn » and

for a € Sn and B ¢ B, the labelings a and aB correspond to



topologically equivalent labeled graphs.
The indexed set of labels also admits a symmetry group.

If there are ) labels of the first type, n, labels of the second

type, o o n labels of the k-th type, npta, ... 4n =0,

then the labels with indices in the intervals
§-1 E
1j=[<)jni)+ 1, In.13=122, ..,k
i=1 i=1
are indistinguishable as unindexed labels. These labels, therefore,
may be freely permuted in any indexed labeling without changing the

correspondingzlabeled graph. Hence, the indices of the labels admit

the symmetry group A = S( XS

(n

n)) 2

the (internal) direct product of subgroups in Sn and S (n.) denotes

) X .. X S(n ) where "X" denotes
° k

the full group of permutations on the interval I.J naturally embedded
in Sn' Explicitly, for o € Sn » & is in S(n ) if and only if

i
a(t) = t for t ¢ Ij' Note that this latter condition implies that

°(Ij) = Ij since a is bijective and { %., [1,n]/Ij } partitions

[(1,n]. The subgroup A will be called the label subgroup of Sn

* . . . + n = n

corresponding to the the (ordered) partition n_ + n K

1 2

of n.

We now define a relation 4 on Sn by YlAY2 if and only if
there exist a € A and B € B such that Yy =ay28. Since A and B
are subgroups of Sn’ A is an equivalence relation on Sn . In

. terms of the graph G , Yy and Y, determine topologically equivalent



labelings of the nodes of Gwith the labels in L if and only if
ylAy2 . Since A is an equivalence relation on Sn’ the equivalence
classes of A partition Sn' Hence, we can determine all topologically
distinct labelings of G by L by seiécting precisely one element
from each distinct A-equivalence class, i.e., by selecting a
representative set for the partition of Sn induced by A

For any v € Sn’ the A-equivalence class determined by y
is the set CY = {ayBlcls A, B € B } sy l.e., CY is the set

product AyB. This set product is called the double coset of

A and B in Sn determined by Y . Thus our graph labeling problem

can be algebraically formulated as follows:

Given a label subgroup A of Sn and a subgroup B of Sn’ determine
algorithmicai.y a representative set for the double cosets of A
and B in Sn’ i:a., determine a subset { Yo Yoo oo oYy } of Sn
such that S_ = ikzjlmia»and (ay;3) N (Ay.B) = 8 for i 7 j.

The correspondence between graph labeling and double cosets
and the use of double cosets as a basis for chemical nomenclature
have been investigated by Ruch, Hasselbarth and Richter [8].

Although the double coset formulation of the graph labeling
. problem presents the problem in a conceptually less obvious form,
it does permit the techniques of constructive group theory to be
applied directly to the problem. Moreover, our algebraic solutions
are directly implementable on a computer.
2.1. Example. Let G be the graph in figure la. Let L consist of
3 labels N and 7 labels C . The topological symmetries of (¢ are:
b.: The identity transformation.

0

bl: Reflection about the line Zl.

b2: Reflection about the line 12.



b3: 180° rotation about the center of G.

Index the nodes of G as in figure 1lb and the labels in L
a5 Xy T Xy T Xg = N and X = o0 T X c.
Tnen, the labelings of G by L can be considered as elements in
$19*+ E-g.» the permutation T (1256.73 849 10)in S10
corresponds to the labeling of G given in figure 2a and the per-
mutation Y, = (35498217 106) to the labeling in figure 2b.
Here, we use the notation for Sn which identifies v € Sn with the
n-VeC'tOI" (Y(l), 7(2)’ eee 9 Y(n))O

The topological symmetry group of G determines the subgroup

B of SlO via

bo* 8 =(123u456789 10),
by ++ 8, =(10987654321),
by By = (5432110987 8),
bé Byt (6 789101234 5).

The label subgroup of S 0 associated with L is A = 5(3) X 8(7),

1
a subgroup of order 3!7! . For example, the permutation
a=(21347106 59 8) is in A, and the permutations Y, and Y,

are A-equivalent since Y, =a7183, i.e., the labeled graphs in
figures 2a and 2b are topologically equivalent.

By Polya's enumeration formula, there are 32 distinct double

cosets of A and B in S i.e., there are 32 topologically distinct

10’
labelings of G by L.



3. General theory. Let A and B be subgroups of the finite group

G. A straightforward group theoretic argument shows that the

double cosets of A and B in G partition G. This partition, unlike
a single coset partition of G, is generally not a partition into
subsets of equal size, and there is no simple analogue to LaGrange's
theorem. There is, however, a certain regularity in a double

coset partition as evidenced by the following known theorem:

3.1. Theorem. For any g € G, let Rg be a set of right coset
representatives of (g_lAg N B) in B. Then the double coset

AgB consists precisely of the union of right cosets U Agx.
xeR

Moreover, this union is disjoint. Symmetrically, if é; is a set
of left coset representatives of (A N ng-l) in A, then AgB is the

disjoint union | ygB.

e L

y g
Proof. kLet I% = { X)s Xoy o v ey Xy } » i.e., B is the disjoint
union U (g-lAg N B)xi, and let u € AgB, say u = agb. Now b

i=1
in B implies that b = hx:.L for some 1<i<k and h € g-lAg N . Also,

h is of the form édalg, a, € A. Thus u = agg—lalgxi = (aa,)gx,,

and u € U Agx, i.e., AgB = U Agx. If Agxi = Agx]., then

XEeR XER
g g
-l - "l . . . .
xixj = g axg for some a, ehA: Since Xy and xj are in B,
XiX.J_l € g'lAgn B. Therefore, (g tAg N B)x, = (g-lAg N B)xj,

and, since Rg is a right coset representative set for g'lAg n B



in B, we must have i = j, Hence the union is a disjoint union.1 |
For any finite set T, we denote by |T| the number of elements

in T. From Theorem 3.1 and LaGrange's theorem we have:

3.2. Corollary. |AgB| = |A]|B] /hlg_lAgﬂ B|

|al[8] 7 |a O gag™t|.
Theorem 3.1 does yield the following algorithmic method for
determining a list D of double coset representatives of A and B
in G:
1. Determine a list of right coset representatives for A in
G, say R = { a,b, ..., t } , and form the list D with
initially D = @.
2. TFor the first member m in K, place m on D and determine

lAm N B)

a set of right coset representatives of (m_
in B, say Tm= { XYy ... 2Z } .
3. For each w in Tm, determine the unique element h in R

such that Ah = Amw and eliminate h from the list R.

4, If R =@, stop, otherwise go to step 2.

The difficulty with the above algorithm is that any direct
implementation is computationally prohibitive in terms of both
machine time and core store even for relatively small groups, e.g.,
G = Slo' Our objective now is to derive certain modifications to
this algorithm in the case G = Sn and A is a label subgroup so

that the modified algorithm admits efficient machine implementation.

The main device used is the natural ordering of Sn'



The group Sn admits a natural linear ordering. This ordering
is a very powerful computational tool, and it has been used by
Sims [9] and others in devising group theoretic algorithms. The
ordering is defined as follows:

Consider S as the set of bijective maps from {1,n] to
itself. For 7 € S, identify 7 with the integral n-vector
(r(1),7(2), ..., m(n)). Using this latter representation of Sn’
the natural linear ordering is the lexicographical ordering on
the n-vectors induced by the usual ordering on [1,n], i.e., if

we denote the order relation on Sn by "<<"  then “l << m, if

and only if either m,=m, or for some k € [1,n], wl(i) = wé(i) for
1<i<k and ﬂl(k) < ﬂz(k). This relation can be extended to sub-
sets of S, via T << U if and only if for every T € T and n € U,

T << n .,

Given any partition P of Sn’ this linear ordering permits us
to easily specify a canonical representative set for P. Namely,
we choose as the representative for P € P the 'least" element in
P with respect to <<, i.e., we choose the unique 7 ¢ P satisfying
n << P,

Let A and B be subgroups of Sn' The canonical representative
sets for the right cosets of 5 in S,» the left cosets of B in Sn’
and the double cosets of A and B in Sn are
a5y = {ae S, | @ <<aa }, S = {BeB | B<<pB}

and S o = {wne S, | = << AmB } , respectively.’ Since A and B



contain the identity element of Sn’ if 7 is in SnB’ then =

A
must satisfy w << Aw and w << 7B, The converse, unfortunately,
is not true. We will call a double coset representative set small
if it is contained in,S_. In particular, ,S _ is small.

A™n A™nB

The following technical lemma , which is due to Sims [9],

gives a criterion for when w << 7B.

3.3. Lemma. Let B be asubgroup of Sn. Let Hi be thesubgroup
of B fixing elementwise [1,i~1], and let 0i be the orbit of i with
respect to Hr" i.e., 0:.L = { (i) ] T € Hi } . Then for any 7w ¢ Sn’
n << 7B if and only if w(i) £ w(x) for eachx ¢ Oi’ i=21,2,.. .40

Proof. For any 1<i<n and anyx € Oi, there is a B; « € B such
’

that 8, x(j) = j for 1g<j<i and BL x(:'L) = x. Assume that 7w << uB.
Then © << 78, _, and since #(j) = wB, _(j) for 1<j<i, we must have
i,x i,x
n(i) < B x(i)= m(x). Conversely, assume that w(i) < w(x) for
]

every X e 0i° For any B € B, if = # =B, let iB be the least

argument for which 7 and g differ, i.e., w(j) = wB(j) for 1‘5_'j<iB

and n(iB) #uB(iB). Since m is bijective, B(j) = j for l;j<iB.
tience 8 ¢ H. and B(iB) € 05B . Thus w(iB) < wB(iB) and 7 << ng. | |

B
The subgroups Hi in this lemma form a descending sequence

B = HDH, D... DH ={2} where 1 denotes the identity element
of s, Thus if k is the least index such that H = {1,} , then
ns = {1,} and Oj = {3} for k<j<n. Hence in applying lemma 3.3,

we need only check those indices i with i < k. For example, if B
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is transitive, i.e., if 0l = [1,n], and if Hj = {i} for j 2 2,
then n << 7B if and only if =w(1l) = 1.

Let A be a label subgroup of‘Sn, say A is the subgroup
corresponding to the partition n,t...tn =0 We claim that
the set of all w ¢ Sn satisfying n <<wA can be constructed as

follows:

1. Form all the distinct ordered partitions

P, = {Pil’ cees Pik} of [1,n] into k subsets Pij sat-
isfyi = n, = n!/n,!...n !
isfying lPijl nye There are ¢ = n!/n, n ! such
partitions.

2. For each Pi and for each P.l.J € Pi list the elements of

P,. in their natural order, say h., < h...< ... < h,.
ij 1j1 ij2 ijn,

) = %-ﬁl + s.

T
r=1
Lach Pi is a partition of [1,n], and the integral intervals

3. Fori=1l, ..., c, define LA by "i(%j%

J-1

Ij = [ Z n, + 1, % nl,j=1, ..., k, also partition [1,n].
r=1

Thus, since lPijI= leI » 1 < 3 < k, the m. are distinct, well-

defined elements of Sn'

e}
n
—

3.4, Lemma, {wn, |lgigec}={mes |m<<an}.
Proof. For a €A, assume that LA # an,. Let t be the least integer

in [1,n] for which = (t) # ani(t). Say t € ?é. and t = qjé for
some 1 < j <k and 1 < s < n.. Now m.(t) = % n_+s e I.. Since
A is a label subgroup, { a(m) | m ¢ I } = I'j. Also, by the choice

of t, "x(hij ) = am(hy. ) for 1 <p <s. Thus, since m,(t) # am (1),

P 135 5-1
we must have am.(t) = a{ [ n_+ s) > ]} n_ + s = m(t). Hence,
* rz1 * r=1 *



1.1

. << an, nd w. << Av.,. By the above
nl a 1 and | i y ’

L=

{n; ] s igc}C{mes |n<<An].Since the latter set
forms the canonical set of right coset representatives of A in Sn’
by LaGrange's theorem |{= €S, | 7 << An } = ISHI/[A| = c. Hence
(ngllsisel={nes |n<an}.||

3.5. Corollary. The set Asn ={re Sn | © << An } can be

naturally identified with the set D of all integral n-strings

containing n,, 0-digits; n_is l-digits; ... s (k-1)-digits.

k,
More explicitly, definé t : [1,n] + [0,k-1] by 1(s) = k-j where s ¢ Ij‘

Then the map y : Sn + D given by y(w) = (tn(1l), ..., t(n)) is

A

a bijection.

Proof. For T and 7, in Asn’ let gj' = [ h e [1,n] I wi(h) € It },

i=1,2; 3 =1, +..y ke Now w(nl) = w(w2) if and only if Hlj = 25°
1 < j < k. Linearly order the sets Hlj’ say hjl< h'j§ .. < hjsj,
1 <3 < k. Then, since T and m,are in ASn?j?f the proof of

lemma 3.4, Hyg sz implies that nl(hjs) = iz=1ni +s = ﬂ2(hjs).

thus ,w(wl) = w(wz) implies that T, = 7y, and y is injective. Since
lASnI = n!/nll...nk! = |D] , v is bijective.

In the special case where k = 2, i.e.,.A is the label subgroup
S of Sn corresponding to a partition of n of the form m + (n-m) = n,
the identified set of canonical right coset representatives takes

a particularly simple form. Namely, it is the set D: of all n-bit
binary strings with m, 1l-bits and (n-m), 0-bits. Moreover, the
natural ordering of the elements of D:lconsidered as binary integers
agrees inversely with the ordering << on Sn. Explicitly, if for

ain Dx we denote by a the permutation in Sn associated with a,

i.e., a = y(a) where y is the bijective map of corollary 3.5,
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then:
3.6. Lemma. For any o and g8 in Dg, a 2 B if and only if o << B,

Procf. Let o = (a Vo an) and B = (b1b2 bn). Assume that

1%2

a > 8. Let i be the least index such that a, # bi' Then we must

have a; = 1 and bi = 0. Hence,by the definition of @ and B ,

3(§) = B(j) for 1 < j<4i, and a(i) < m < B(i). Thus a << B.

Conversely, if @ << B,a # B , the converse argument yields that o > B N
~Let ¢ be the collection of all linearly ordered m-element

subsets of [1,n], i.e., C is the collection of all linearly ordered

combinations of the elements of [l,n] takenmat a time. Any o

in DE uniquely determines an element w(a) : 1 < a, <a, <...<a n

<

Ll § 2 m =
of C where the a;-th digit (from the left) of a is 1. w is a
bijective map from D: to € , and we have:
3.7. Lemma. For any a and B8 in D:, a > B (as binary integers) if
and only if w(a) < w(B) (lexicographically).
Proof. Let w(a) : 1 <a; <a, <...c a <n, and
o) @ l;bl<b2< <bm;=:_n. Then, a > B if and only if

there exists an index i, 1 £ i < m, such that aJ. = bj’ 1l <j<i,

and a, > b, if and only if w(a) is lexicographically less than w.B).
We can combine the correspondence between D:, Asn and m-element

combinations with lemma 3.3 to.give a method for describing the

canonical right coset representatives of Ain Sn which are also

canonical left coset representatives of B in Sn' Namely, if we

let Oi’ i=1, ..., n, be as in lemmna 3.3, then:

3.8. Lemma. Let Dbe the set of all linearly ordered m-element

subsets 4 of [1,n] satisfying oiﬂ A =g ifi ¢ A . Then there is
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a bijective map y from D to the subset R of all q ¢ D:l satisfying

a << aB. Explicitly, for A: 1 < a, <a,

vl = (elez...en) where ej 21 if j e A and 0 otherwise.

<...<a <mn, ind,

Proof. Let [1,n]/A = { b, <b, <... < b } , and let W(A) = y.

. 1 2
t s J at
Then y(j) =<{ . Choose any j ¢ [1,n] and x ¢ 03.

mtt, J bt

If j = as then x 2 a, and y(x) > t. Hence y(j) = t < v(x).

If j bt’ then j €A and, by hypothesis, x ¢ A, Thus x = b, for

some s > t, and y(j) =m+ t < m+ s = y(x). Therefore, v(j) £ v(x)

v( 4A) << u(A)B. Hence v

for any x ¢ oj’ and by lemma 3.3, y
is a map from pto R. The converse argument shows that v is surjective.
Clearly, v is injective, and thus v is bijective. ||

Note that in the special case when B is transitive,
0y = [(1,n], and hence for any allowable m-element subset 4in p,
a0 01=A¢¢, and we must have 1 ¢ 4.

The results of this section admit a straightforward general-
ization. For any subset X of [1,n], say X = { SCIRIETI }
denote by Sx the full permutation group on X, i.e., the group of
all bijective maps from X to X. The natural bijective map A from
[(1,m] to X defined by A(i) = Xy induces the isomorphism t from

' SX to Sm by 1(w) = A-lwl . We call a subgroup A of Sx the label

subgroup of Sx corresponding to the partition My teoo t m =M
of m if and only if t(A) is the label subgroup of Sm corresponding

to this partition of m. Also, we take as the linear ordering on

Sx the ordering induced via t by the natural ordering of Sm’ i.e.,
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for a and B8 in S, a << B if and only if t(a) << 1(B). This

x)
ordering is dependent on the indexing of X. With these definitions,
all of the above results immediately generalize to SX'

4. Basic recursive schemes. We sce from section 3 that for com-

puting double coset representatives on a binary machine, it would
be advantageous to reduce the general double coset representative
problem to the special case where the label subgroup corresponds
to a partition of n of the form m + (n-m) = n. In terms of the
graph, such a reduction is conceptually clear. For example, we
can label an m-node graph G with n, labels Ll’ n, labels L2 and
n3 labels L3, nl + n2 + n3 = n, as follows:

1. Determine all topologically distinct labelings of G with
n, labels L] and (n-nl) blanks.

2. For each such labeling, determine all distinct labelings
of the blank labeled nodes with n, labels L, and ny
labels L3.

The following procedure formalizes this concept and yields

the desired recursive scheme:

Let X be a subset of [1,n], say X = { X009 X5 10, X } .

_ and let B be a subgroup of Sx. For any subset Y of X and any

3 € B such that g(Y) = Y, denote by Bly, B restricted to Y, and
denote by B|y the group { 8|, | B € B with B(Y) = Y }. Then, if
A is the label subgroup of Sx corresponding to the partition

motmy,t...tmo=m of my k > 2, we claim that a double coset

representative set R for A and B in Sx can be obtained as follows:



1. Determine a double coset representative set Rl of Al and

B in Sx where Al is the label subgroup of Sx corresponding

to the partition m, + (m'ml) = m.

1

2. Do for each a in Rl:

. - -1
a) Determine Na =a ({ xml+l’ o me X }) ona BlNa@”
Index the elements of Na s say Na = {yl, ' wwvm_ml} y

b) Determine a double coset representative set R, of

A and BlN in S, where A  is the label subgroup of
a a
SNq corresponding to the partition m, t oot mo = memg.
3. SetR = LJ { y¥a | vy € R } , where yY¥®a ¢ Sx is defined by
B ueRl

G(X), X € Na

% =
Y#*a(x) x x € N andy(x) =y

ml-’.j ? j )

4,1, Lemma. R is a double coset representative set for A and B in SX'
Proof. Since a(X/N ) = { Xis oo xml } and { X+ | vj e Y(Na) }

!

partition X, each y¥*a is a well-defined element of SX'
We will first show that R contatins a representative set.

For any w ¢ Sx, since R, is a representative set for A, and B in

1

1 € Al and Bl ¢ B such that Glnel =qa.

Define (nBl)' by(nel)'(x) = yj where n8(x) =% -
l ]

1
Sx, there exist a ¢ Rl’ 6

X € Na .

, - v s s Y . .
(nBl) (Na) Na , and (usl) is in SN .. Since Ra is a representative
set for A and BlNain Sy ; there exist y € R , 6,

' - =
By € BIN“ such that §,(78,)'B, = vy . Choose 8 € B, B(N ) = N ,

€ A and
o

satisfying BIN = B,. Define § by
a
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) xrrii's’ x = x_ . and 62(yt) =y
§(x) = 11 1
aB “a “6,(x), x € { Xps e X }
L

A direct computation shows that 6 € A and.én(816)= y%a, Hence R

S

contains a representative set.
Now, assume that for someYl‘"al and 72*a2 in R there exist

§ € A and B € B such that 6Yl*alB = Y2*a2. Then,

Yo¥a (X/N ) = ay)(X/N )
= {xl, o xml}
= 6(Yl“al)B(X/Na)
= alB(X/Na)
Thus,(alB)a_{f{xl, cees xml}) = {xl, o vos xml} ,andﬂls and @,

differ only by an element of Al' Since Rl is a representative set,

al = 02.

Y2“al (%)

From Gyl*ala = 72*al, we have that for x € Na’

= = 43 = e
Xml+j 671=aﬁ (x), where Yz(x) y] Therefore
B(x) € N,» and yj = GYlB(X) =Y2(X)- Hence, 6lNa YlaiNa - Yo
L
Since R, is a representative set, Y5, and Yl“al = YyNo,.
Thus the members of R determine distinct double cosets, and R is

a representative set for the double cosets of A and B in SX.][

Let B be a subgroup of S, |X|] = n, and let A be a label

subgroup of S The computation of a representative set of the

x

- double cosets of A and B in Sx admits a further recursive reduction

based on the orbits of B. By lemma 4.1, we can assume for this
recursive scheme that A corresponds to the partitionm+(n-m)=n.

Conceptually, the reduction scheme works as follows:
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1. Choose a fixed node x of the graph G , and let ¥ be the
image nodes of x under the symmetry group B of G,
2. Do for i, max( 0, |¥|#+m-n) < i < min( v, m):

i, Determine all distinct (with respect to B) labelings
of § with i labels of the first type and |V|-i
labels of the second type.

ii. For each such labeling of ¥ , let U be the subgroup
of B which preserves that labeling of ¥, and de-
termine all distinct (with respect to U) label-
ings of the remaining nodes of Gwith (m-1i)

-~ labels of the first type and (n-|N|-mti) labels
of the second type.

iii. Compose each labeling of N and its associated
labelings of G/N.

Formally we have:

Let X = { X)s 0000w }, and let 0 be an orbit of B, i.e.,
0= { ﬂ(xt) | m¢e B } for some fixed Xy € X. Then a representative

set R of the double cosets of A and B in Sx can be obtained as

follows:

1. Index the elements of Oand X/O # O, say {Yl’ o = Yk}

) and_{ Wis oo W y respectively. Since 0 is an

J
orbit, B(0) = 0 and 8(0) = 0 for any B € B.
2. Do for i = max(0, m+k-n), ..., min(k, m):
i. Determine a double coset representative set Ti

Of A, and B [oin $, where Aiis the label subgroup

of SO corresponding to the partition i + (k-i) = k.
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ii. Do for each ¢ ¢ Ti:
a) Form N_ = o~ {y y.}) and
a 1> 7y
a -
B -{neBlﬂ(Na)-Na}.
b) Determine a double coset representative
a , .
set Ha of Ai and B IU in SU where A{ is
the label subgroup corresponding to the
partition (m-i) + (n-k-m+i) = n-k.
c) Form R = {yoa |y € H_ } where
) a a
X,s X € Na’ a(x) = '
» x € O/N_, a(x) =y

m-it+t t
yoa(x) |
Xippr X € U,v(x) = We, t X mei
Xppp? ¥ € U, v(x) = LA t > m-i.
3. set R = U |UJ R, , max(0,m+k-n) g i g min(k,m).
i ceTi

4.2. Lemma. R is a double coset representative set for A and B in SX'

Proof. Foranynesx.letNl={x80|1r(x)=xt,t_<=m},

say Nl = {yt 9 ooy Yt.} and O/Nl = {ys ? ssey ys .} ) Define
1 i 1 k-1
LB} € SO by

Since '1‘i is a representative set, there exista € Ti’ 61 € Ai and

Bl € BO such that 6 w.B = a. Choose B € B satisfying Blo = 8

1171 1’
Let N, = {x'eale(x)=xt,t§_m},say N, = {wt, s W }
1 m=-1
and U/N2= {ws,...,w } . Define n2-eS5by

1 sn—k—mti



w.,chz,w=w

j t.

]
w £ N2, W = wsj )

n2(w) =
m-i+j,

Since H  is a representative set, there exist vy e H | 5, € A; and
) a
o
82 €B |-5 such that 62 112% = Y . Choose B' € B satisfying
- R §
B | g = B,> and let N, =Y ({wl, N wm-i})' 100
B(N ) = B, (N

- o=1l.-1
-wl 61

-l({yl’ LRI yi})

a(Na)

"-'1'[1

l.

Similarly, By'N = N,. Thus,

2.
wBB'(NaLJNy) = erlUuBN2

{xex|m(x)= Xep t S om }

wM%U%).

Hence, m8B' and Yoa differ only by an element in A and AmB = AyoaB.

Assume that there exist Yloal and y2oa in R, § ¢ A and

2
B € B such that 6YloalB =Y,00,. Then,

Y2oa2(Nu2) = GyloalB(N2)

{xl’ . .., Xi}'
< i < m Th i
for some 0 £ i & m us BNQ‘2 C Nal. Symmetrically,
-1
B Na C Na » and hence BN =N, - This implies that a, and a
1

D @, & 1 2
are both in the same T., and a %| anda, differ only by an

element of A;. Hence a, =a, and 8 ¢ BL, A similar argument using
NYi ={we0| (W) = Wes TS med } »1=1,2, shows that Y, = Y,

Thus the elements of R determine distinct double cosets , and

R is a representative set for A and B in S,.| |
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Since the only property of O used in the above proof is
that B(0) = 0 for all B € B, we have:
4.3. Corollary. Lemma 4.2 is valid if O is a union of orbits of B.
As we have seen in section 3, we can always choose a double
coset representative set R for A and B in Sx,lXI= n, such that
IICZZASX, the canonical representative set for the right cosets
of A in SX’ i.e., wWe can always choose a small double coset
representative set. Moreover, by corollary 3.5, such a small
representative set can be identified with a set of certain
integral n-strings. We will assume, henceforth, that such an
identification has been made. In particular, in the special case
where Ais a label subgroup corresponding to a partition of the
form m + (n-m) = n, any small double coset representative set
is a set of n-bit binary strings withm, l-bits and (n-m), O-bits.
If a is such a binary string, we will denote by & the associated
permutation in SX'

In many cases the following lemma when applied to the Ti

in step 2(i) of lemma 4.2 reduces considerably the number of
steps in the process:

4.4. Lemma. Let T be a small representative set for the double
© cosets of A and B in sx,lxl = n. Say A is the label subgroup
of S, corresponding to the partition k + (n-k) = n. Let A be the

label subgroup of S, corresponding to the partition (n-k) + k = n.

X

. >
Then asmall representative set T for the double cosets of & and

B in Sx can be obtained by simply forming the binary complements

T of each a in T, i, T={T = (2" -a|aec T}
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.« Note that § = 6-1.

Proof. Define 6 € S, by G(xi) = X o41-i

For anysmall representative a, let o be the corresponding
permutation in Sx. We will first show that T‘S = { sa Ia e T } is

s n s
a representative set for the double cosets of A and B in SX'

% éw is also in SX' Since T is a representative

For any m ¢ S
set, there exist a ¢ T, vy € A and B ¢ B such that én = y;B. Thus
§°m = v = SyaB = 6y8(Sa)B. Since y € A,

676({xl, cees Xn-—k}) = GY({xkﬂ.’ xn}) - 6({xk+l’ cee xn})
= {xl, Cees Xn_k}. Hence §v6 ¢ /R and 7 is in the double coset
determined by §a. Now assume that for some a, and a, in T,

76&_18 = 6;2 for some Y € 'R and 8 € B. Then,

6763-18 = 625—2 = ;2. As above, 6Y8 € A, and, since T is a
representative set, a) = 0 and Ga-l = 6'&-2. Hence we have that T6
is a representative set.

We will now show that for anyae T, 2 e /I\\G;B. By the

definition of ﬁ\, §(?l(xi)) = x for 1 £ i £ k, and

n-k+i
75(?1( .)) =%, for 1 £ i £ n-k. Therefore, for 1 £ i £ n-k,
1 1 . .
aa 5(Xi) -ﬁa (xn"'l i) - xn-k"‘l-i’ lleu,
é7'?_15(7%) € {xl, Cees X k}’ and Ba Y6 ¢ A. Thus § eAsaB, and

A
T is a small representative set for the double cosets of A and B

. . |
in SX .l
Using the results of 'this section, we now can describe the

two algorithms.
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5. Double coset algorithms. The analysis done in the previous sections

ields two efficient computer implementable algorithms for determining a
small double coset representative set of A and B in SX (x ¢ [1,n],
|x| = k) where A is the label subgroup of 8, corresponding to the
partition m mte ..t = k of k.

As 1s often the case, the form of the data structures in the
mechine implementations of the algorithms determines the form of the
aigorithms, and conversely. In the implementations, any subset X of
[1,n] is represented by the binary n-string ¢ where the i-th bit (from
the left) of UV is 1 if and only if i ¢ X. Thus, there is no distinction
between subsets and their associated binary strings, and the elements of a
subset are implicitly indexed, Each such string U is carried right
justified in a machine word.

Any element i of [1,n] when considered as an element in the domain
of Sn is represented as the machine word 2n_i, and a small right coset
representative.is represented as an&vector in the form given by
* corollary 35if t>2 and as a binary word if t=2. For example, if A
is the label subgroup of S7 corresponding to the partition 2+ 2+ 3 =17

(respectively, 3 + 4 =17) and
4,3 ,2.1.,0

26 25 2 22 2 2 ) S
A = € 17 then the small double ooset
25 23 20 26 21 2h 22



representative of A is (2, 1, 0, 2, 0, 1, 0), (respectively, (1 0 01 01 0)).

This compact representation of subsets and coset representatives is

in practice
neededVsince for even relatively small values of n , the number of distinct
double cosets can be very large. This latter number is optionally computed
in advance via the generalized Pdlya enumeration formula, and it is used to
help decide if the desired construction is even feasible in-terms of time
and core store.

A permutation ® in a symmetry group B contained in ﬁ is
represented in the implementations in two ways. It isrepresented as the
n-vector of the images, c(m )=( n(en-l)=2n- "(l), e ooy n(21)= 21 "(n)) and
also as a list 5 ( n) where the members of P(y ) are the sets of elements
in the non-trivial cycles of s . For example,

7 & %
2' 27 27 24 23 22 21 20
5= is carried as c( w) =

29212320 27 22 0 &

(25.24,23,2°, 27, 22, 2%, 2') and as B(y )= {(20201000), (01000010)~

(00010001) } . For many of the necessary computations, the second representation
is the most efficient. However, the first representation is also needed
since P( w) does not uniquely determine = .
These representations permit most of the computations to be performed
as logical hardware operations,, For example, if A corresponds to the
partition m+(n-m)=n, e is a small right coset representative, s« ¢B,
and y is a subset of [1,n], then { j ez/lthe j-th digit of e is l}
is represented by UV A e, and v ( U)= U if and only if pAU=p or 0 for
all p e P(w ).

We will describe the algorithms using these representations,
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5.1. Algorithm I. This algorithm is recursive both in the number of terms
in the partition of k and in the orbits of B . The algorithm is presented
as three nested subalgorithms,

Subalgorithm Ic. The deepest level subalgorithms

Purpose. To determine the canonical set of double coset representatives
of A and B in SX in the special case where A corresponds to the
partition m + (k-m) = k of k= X , and B is transitive, i.e., B
has only one orbit.

Technique. The Bsubalgorithm is based on corollary 3.5 and lemmas 3.3,

-3.4, 3.6 and 3.8. It first generates the small subset

1 s, | m<wB}, P CD:; , i.e., the subset of canonical

AX 1

right coset representatives which are also canonical left coset
representatives. It then eliminates from Pl any elements gy not
satisfying ® << A wB.

Input. The binary n-string y corresponding to X , k =|¥ , m, and a
list which is the n-vector form of a set C of permutations in Sn

such that y(X) = X for every y € C and ClX = B.

OQutput. A list RO- of binary n-strings e, eA y= e, which corresponds
to the canonical set of double coset representatives of A and B in

S

Xa

Ordered lists: R Rl, DO’ D

o? 1

START
* [Determine the elements of X].

1. Determine s(i) e[l,n], 1 < i < k, such that s(i)A y# 0 and
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s(i) > s(j) 1f i <J.
[The following handles the special cases where there must be only
one double coset].

If m=0, Ry «+ 0; else if "m=l, R, € 8(1); else if m=k-l,

0

Ry <= U -s(k), else if w=k, Ry « U else go to L.

RETURN.

[Generate the orbits 0 of lemma 3.3].

L, Initialize: N € C.

5.
b.

7.

*
8.
9.

10.

11.

12.

13.

14,

15.

16.

*

17.
18.

19.

Do T, i=2, .... k.
N € { n eN | n(s(i-1)) = s(i-1) }.

0(i) & Vn(s(i)).
1 EN

[Generate all allowable m-element subsets as per lemma 3.8].

Initialize: R, & s(1) D, « 0, Ry <« g, D, « g.

DO 16, t"'l. e e e m_l.

Do 15 for each W in Rl using its corresponding D in D

Determine max { d | s(d)A W # 0)

ll

Do 1k, i =d + 1, . . . . (ke-mtl)+t,

If DA O(i) = 0, put WVs(i) on R, end- D on D.

D «= D VO(i).
Continue,

R, €« R,, Dl |t DO’ RO &« B, D0 « f.
[Eliminate redundant representatives].
Do 22 for e € Rl.

Do 21 for we C / {identity) ,

Do 20, i=1, .... k.
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20, " If w(s(i)) A e # 0 and s(i) A e =0, go to 1T;

else if 7(s(i)) A e =0 and s{(i)Ae # 0, go to 18.

21. Continue.
22. Put e on 'RO'
23. RETURN.

END

Subalgorithm Ib. The intermediate level subalgorithm

Purpose. To determine a small set of double coset representatives of
A and B in va in the special case where A corresponds to a

partition of k of the form m+(k-m) = k and B is any subgroup

of Sy

Technique. This ,subalgorithm is recursive and is based on lemma 4.2,
i.e., on recursion on orbits. It uses subalgorithm Ic.

Input. The binary n-string U corresponding to X, k= [x | , m, and
two lists which contain the n-vector form and the cycle set form,
respectively, of a set C of permutations in Sn such that «X) = x
for every y ¢ C and C lX= B.

output. A list R of binary n-strings e, eA'U=e, which corresponds
to a small double coset representative set of A and B in Sx.
Ordered lists: R, R(h,1i), V(h,3J).

START

1. Initialize: 0(1) €= U , C(1) <C, k(1) €k, m(l) €m, h <=1.

* [The following is the reduction part of the recursion].

2.sé—max{2d‘]2dAU(h)#0}.
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3. Obt(h) &« V =(s).
neC(h)

4. t(h) €= l-bit count of Obt(h).
5, 1i(h) €= max {0, m(h) + t(h) - k(h)) » u(h) < min {t(h), m(h).),

i & max { i(h), t(h) - u(h)} , w <—min {u(h), t(h) - i(h) b

1
6. Do 8, i e = [i), min {u, [t(n)/27 -1} 1.
7. Call subalgorithm Ic with input Obt(h), t(h), i, C(h);
getting as output R(h,i).
8. R(h, t(h) - i) & {obt(h) - e | e eR(h,i)} .
9. Do 10 for i e [i(h), u(h)] . (EV {t(h) -3 {[Jeu}.
10. Call subalgorithm Ie with input ovt(h), t(h), i, C(h); getting

as output R(h,i).
11. If t(h) = k(h), go to 17.
12. Remove the first element e(h) from R(h,i(h)).
13. C (b + 1) €« {me Cc(h) | pAe(n) = p or 0 for all
peP(r)} .
14. U (h + 1) €= U(n) - Obt(h), n(h+l) €= m(h) = i(h), k(h + 1) & k(h)-t(h).
15, h &= h'+ 1.
16. Go to 2.
* [The following is the expansion part of the recursion].
17. If h=1, R & R(1l, i(1l)) and RETURN.
18. h ¢ h-1.
19. Put the elements of { fVe(h) | £ R(h+l, i(h*1l))} on V(h,m(h)).
20, If R(h, i(h)) =@, i(h) €= i(h) + 1; else go to 12,
21.  If i(h) <u(h), go to 12.

22. If h=1l, R &=V (1,m) and RETURN.
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23, h &= h-1.
2h. Put the elements of {f¥e(h) |fe V(h+1, n(h+l)} on V(h, m(h)).,
25. Go to 20,

END

Subalgorithm Ta. The highest level subalgorithm.

Purpose. To determine a small set of double coset representatives
of A and B in Sn where A is the label subgroup of Sn
correspond%Pg to the partition B, fn, + ..o ¥+ ng'=1 and B is
any subgroup of Sn .

Technique. The main loop of the subalgorithm is based on lemma 4.1,
i.e., on induction on the number of terms in the partition of n.

The subalgorithm uses subalgorithms Ib and Ic.

fnputq, By, o . . ) nq, and two lists which contain the n-vector
form and cycle set form, respectively, of B.

OQutput. A list R of integral n-vectors if q > 2 or binary
n-strings if @ < 2 which corresponds (as in corollary 3.5) to a
small double coset representative set for 'A and B in %1; and

a list P of subgroups of B where if e is the i-th element of

—_] - 6
R , then the i-th element of P iS'éllenB.



Ordered lists: R, Rl’ P, Pl’ T, T
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ll

START

*

'1.

[Trivial partition case].

If q=1: R & 0, P «=B-and STOP.

* [Initialization procedure].

2.

5.
6.

9.

*

10.

11.

12.

13.

1k,

15.

16.

Call subalgorithm Ib with input En—l, n, n-n(.1 , B; getting
as output T.
Do 4 for e €T.
P & B(e) = {meB | pAe = p or 0 for every peP(m) }
If g=2, R <= T and STOP.
Do 8 for e e€T. 1, S A
Form w = (w(1), « « «, w(n)) where w(J) = { 0, otherwise

Put w on R.

no é- n.

[Induction section].

Do 18,i=2, . . . . g -1.
Initialize: n, < n, - nq +9-1° Rl <« R, Pl <P, Tl & T,
R ¢« f, P &« ¢, T « 0.
Do for 1T each w = (w(l), . . . . w(n)) tR, and its corresponding

e(w) eT, and B(w)e P..

Call subalgorithm Ib with input e(w), n., n

0° B0 T Uy +1-i°

B(w)

4

getting as output T.
Do 16 for f &T.

Form f*w = (v (1), ..., v(n)) where

. n-J
v(y) = {[Jq 2IAL £ 0

w(j), otherwise .
Put f*w on R, put B(f*w) = {meB(w)| pAf=D or 0

for every p €P( )} on P.
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17. Continue,
18. Continue.
19. STOP.

"END

5.2. Algorithm II. This algorithm is a variant of the first algorithm.

It uses recursion on the number of terms in the partition of n, i.e., it
uses the technique of subalgorithm Ia. We will describe only that part
of algorithm II which differs essentially from algorithm I.

Subalgorithm IIb.

Purpose. To determine a canonical set of double coset representatives
of A and B in 8y, X C [1,n], in the special case where A
corresponds to a partition of k = |X| of the form m+ (k-m) = k and
B is any subgroup of SX‘
Technique. This subalgorithm is based directly on theorem 3.1. It
also uses lemmas 3.3 and 3.6 and corollary 3.5. It systematically
generates the binary n-strings contained in X with m 1l-bits. As
each such string e 1is generated, the subalgorithm checks if e is
on BL (bad list). If e is not on BL, it is put on GL (good list),
and all other n-strings which correspond to small right coset
representatives of A in SX which belong to the double coset
determined by e are computed. These latter n-strings are merged

into BL. For each e in GL, the group 1 MeNB is determined

in the course of the computation and is saved on GLG.
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Input. The binary n-string U corresponding to X, k = [X], m,

and two lists which contain the n-vector form and the cycle set form,

respectively, of a set C of permutations in Sn such that
¥(X) = X for every Ye C and C |, = B

output. A list GL of binary n-strings e, eAU = e , which

corresponds to the canonical set of double coset representatives of

A and B in SX , and for each e on GL the set

1 mec¢ “wl €€ A EIlB on the list GLG.
{ | “xj e aEnB}

Ordered lists: GL, BL, GLG, OL, OB.

START

1.. Initialize: GL <= §, BL <« @, GLG <« @.

. * [Trivial cases].

2. If m=0, GL < 0; else if m=k, GL 4= U; else go to k4.

3. GLG <= C and RETURN.

* [Determine the elements of X].

4, Determine s(i)€([l,n], 1 <i <k, such that s(i)AU # 0 and
s(1)> s(J) if 1 < j.7‘l

* [Transfer out of main routine in special cases].

5. If m=1 or m=k~l, go to 29.

* [Main loop].

m
6. Initialize: e & V s(i); t(i) <= m+l-i, 1 < 1< m.
i=

T. Put e on CL.

# [Determine ! AENB].
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8. T &={ me C ilpAe = p or 0 for everj e P(’/m)};- ,
9. Put T on GLG.

* [Compute the orbits 0 of lemma 3.3 for T in B].
10, Initialize: N €= T / {identity} e

].].. DO 13, i=l’ ceey k-lo

12. 0(i) < {.%(s(1))| & n}.
13. N <= {ne N| n(s(i)) = s(1)}.
* [Determine the left cosets of T in B using lemma 3.3, and via

8
theoret 3.1 determine the right cosets contained in A€B].

14, Do 20 for % € C / {identity)

15. Do 18, i=1, . . . . k-1.
16. Do 17 for se& Oi).
17. If n(s) >n(s(i)), go to 1k,
18. Continue.
m

19. f < V w(s(t(J))).

J=1
20, I1f f#e, merge f into BL (largest first).
* [Generate the next binary string].

21. Do 22, i=1, ...m.

22, If t(i) <k-i, go to 2k.

23. RETURN,

2i, e <%= e A binary complement (2+s(t(i))=1).

25. Do 27, J=l, ¢ *es i.
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26, e « evs(t(i)+)).

27. t(J) <= t(i) + (i+1-3).

28. If e is equal to the first member of BL, delete this member
from BL and go to 21; else go to T.

* [Special cases: Compute orbit represendatives for C].

29. Initialize: OL <= @, OB <= 9.

30. Do 35, i=l, s *09 k.

31. If OBAs(i) # 0, go to 35.

32. Put 1 on OL.

33. Do 34 for me C.

3k, OB <« OBV m(s(i)).

35. Continue.

* [Special cases: Determine double coset representatives].

36. Do 38 for i eOL.

37. Put s (i) on.GL.

38. Put { 7 e c | m(s(1)) =s(i) } on GLG.
39. If m=1, RETURN.

40. Replace each e on CL by its binary complement
41. RETURN.

END

5.3. There are significant operational differences in the two algorithms.
Algorithm I is computationally more complex than Algorithm II. Also,
subalgorithm Ic does initially construct a list of double coset representatives

with redundances which is later pruned, while in subalgorithm IIb the pruning
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process is incorporated directly into the main loop. A possible
compensation for the additional complexity of Algorithm I is that
for many graphs, most of the cases when subaléorithm Ic is called
are the trivial cases in which there must be only one double coset.

The first algorithm essentially as described and a variant
of the second algorithm not using recursion on the number of distinct
labels have been coded in LISP for the Stanford Computation Center's
IBM 360/67.° The recursive and list processing capabilities of
LISP make it well-suited for coding these algorithms.

The empirical evidence obtained in running the coded algorithms
clearly indicates that the key recursion in the described algorithms
is the recursion on the number of distinct labels. The coded
variant of Algorithm II is much slower than Algorithm I. The
typical running time for Algorithm I is under .01l per distinct
double coset. The described version of Algorithm II should be
even more efficient.

6. Example. Let G be the planar graph in figure 3. Using
Algorithm II we will determine all topologically distinct labelings
of G with one label 4, two labels b and three labels c.

The topological symmetry group of G consists of:

LI Identity transformation.

o Reflection about the line Zl.
T, : Reflection about the line 12.

m, : 180° rotation about the center.
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The input to Algorithm II 1is:

U= (111111); n=6;q=3;nl=l;n =2; n_=3; the two lists corresponding

2 3

to the symmetry group:

List 1. e List 2.
n (2% 2t 23 22, 21, 20
nor (23, 24 25, 2%, 2,2% (o1 ofio)
o (22, 28, 23, o 20, o {(0 102100), (000011)}
(23, 2P, 2 o, 2%, by, L1 01000,. 010100),00 00 11))

First, subalgorithm IIb is called with input:

U= (111111); k=6; m=3; List 1, List 2.

The initial input for the main loop at IIb is:
s(1) = (100000),s(2) = (010000), s(3)=(001000),
s(4) = (000100), s (5) = (000020), s (6) = (000001);

e = (111000); t(1) =3, t(2) =2, t(3) = 1.

The loop first determines:

2= Lomg, mo kg @(1) = {(000000)} ; 0 (3) =8, 2 <y < 5.
i 3 = 2 (07 = 2 = '

Since "j(2 ) S >ﬂ3(2) 3 for J=lend 3, % and T 4

produce no elements for BL (bad list). T produces

f = ’me (23) Vo, (22) waz (21) = (1001100) which is mergedinto

BL.



36

At the end of the first time through the main loop of IIb, we have:
GL: (1 11 © 0 0)

GLG: { mgyy }

BL: (1 0 11 0 0).

With the given input, IIb goes through'its main loop 8 times

producing:

GL | GLG
e (111000) {no, 1r13
€2F (110100 {10 "2
et (Lioo010) 0}
e, (110001) {N~0 3
®5* (101010 {my, w3
®° (100 0 11) {10 T23
7" (010110 {ro "1}
eg* (010 0 11) { J'o,-n'l }.

Next, the following 6-veetor list is computed from the elements

of GL:
wl=(1, 1, 1, 0, 0, 0), vy = (L, 1, 0, 1y 0y 0)
W3 = (l’ l’ 0/ 0/ ]-r 0)! wh = (lﬁ ]-r 0/ 0/ 0/ 1)

L]
"

(1, 0, 1, 0, 1, 0), v = (1, 0, 0, 0, 1, 1)

= (0. i, 0, l, 1, O)s

=
)

I
]
~~
o

-
[
-
o
.
(=]
-
-
-
[
S
L]
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Subalgorithm IIb is called for each LA For example, for Vo

ITb is called with input:

U = (110100); k=3; m=1; the two lists:

List 1 List 2
L (25, 2h, 23, 22, 21, 20) )
) (25, 22; 23, 2", 2°, 24) {(010100), (000011)}

With this input, IIb transfers to the special case section and

computes OL = -{1, 2} and

GL GLG
£y (1000 00) { Mo T }
£, (0 10 0 0 0) { “o} .

The main routine determines:
f % _: (2, 1, 0, 1, 0, 0)
f.%w_: (1, 2, 0, 1, 0, 0).

Wy Vo W and e each induce 2 distinct labelings of ¢ , and Wy

5
¥)s Vo and wg each produce 3 distinct labelings of G . The 20 distinct

labelings of G with a, b, b, e, ¢, ¢ are given in figure k.
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FOOTNOTES

This work was supported in part by ARPA Contract SD-183
and NSF Grant GP-16793.

A complete description of Pdlya's theory of counting can be
found, for example, in [1] and [6].

The cyclic structure generation algorithms will be described

in a later paper.

For consistency with our choice of notation, one should always
view a labeling & in Sn as a map from the nodes of G to labels
in L.

Note, however, that in terms of the graph this "canonicalness"
is completely dependent on the indexing of the nodes and labels.
T IA'e'(\B corresponds to the subgroup of the topological symmetry
group of the graph which preserves the labeling determined by

e. This subgroup is needed in many applications of the labeling
algorithm.

Recall that j € [1,n] is represented by 2",

Here we use the property that the inverse of a left coset
representative set is a right coset representative set.



Figure 1.

-10\9/8\,/6

(b)



N

ST



- — -1

Figure 3.

M—'————

3— —— 1




Piﬁuve 4,






SYMBOLS

C Set containment
U set union

(| Set intersection
N\ Logical and

\/ Logical or



