PB 1897 161

I

STANFORD ARTIFICIAL INTELLIGENCE PROJECT)

MEMO AIM-138 S f > e
COMPUTER SCIENCE DEPARTMENT rd =7 ol
REPORT NO, STAN-CS-71-188 i

THE TRANSLATION OF 'GO TO' PROGRAMS
TO "WHILE' PROGRAMS

BY

EDWARD ASHCROFT
AND
ZOHAR MANNA

JANUARY 1971

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

springfield, Va. 22151

bO

Abstract:

THE TRANSLATION OF 'GO TO' PROGRAMS

TO 'WHILE' PROGRAMS

by
Edward Ashcroft

Zohar Manna

in this paper we show that every flowchart program can be
written without go to statements by using while statements.

The main idea is to introduce new variables to preserve the
values of certain variables at particul#r points in the program;
or alternatively, to introduce special boolean variables to‘
keep information about the course of the computation.

The 'while' programs produced yield the same final results
as the original flowchart program but need not perform computations
in exactly the same way. However, the new programs do preserve
the 'topology' of the original flowchart program, and are of the
same order of efficiency.

We also show that this cannot be done in general without

adding variables.

GENERAL DISCUSSION

: [Introduction

The first class of programs we consider are simple flowchart programs

constructed from assignment statements (i.e., assigning terms to variables)
and test statements (i.e., testing quantifier-free formulas) operating on

a 'state vector' x . The flowchart program begins/with a unique start

statement of the form

where iinput is a subvector of x , indicating the variables that have
to be given values at the beginning of the computation. It ends with a

unique halt statement of the form

where ioutput is a subvector of X , indicating the variables whose
values will be the desired result of the computation.

We make no assumptions about the domain of individuals, or about the
operations and predicates used in the statements. Thus our flowchart
programs are really flowchart schemas (see, for example, Luckham, Park
and Paterson [1970]) and all the results can be stated in terms of such
schemas.

Let Pl be any flowchart program of the form shown in Figure 1.

Note that, for example, the statement X ~ e(X) stands for any sequence

of assignment statements whose net effect is the replacement of vector x

a(E) % e a(x)

X « £(x) X « c(x)

Figure 1. The Flowchart Program Pl'

by a new vector e(X) . Similarly, the test p(x) , for example,
stands for any quantifier-free formula with variables from X »
The flowchart program Pl will be used as an example throughout
the paper.
Flowchart programs are usually easy to understand, but if the
program is to be written in a conventional programming language, goto
statements are required. There has recently been much discussion (see,
for example, Dijkstra [1968]) about whether the use of goto statements makes

programs difficult to understand, and whether the use of while or for

statements is preferable. It is clearly relevant to this discussion to

consider whether the abolition of goto statements is really possible.

Therefore the second class of programs we consider are while programs,
i.e., Algol-like programs consisting only of while statement; of the form
while {(quantifier-free formula) do (statement) , in addition to conditional,
assignment and blockf/ statements. As before, each program starts with
a unique start statement, START(iinput) , and ends with a unique halt
statement, HAET(ioutput) .

Since both classes of programs use the same kind of start and halt
statements, we can define the equivalence of two programs independently
of the classes to which they belong. Two programs (with the same length
of input subvectors iinput and the same length of output subvectors

) are said t; be equivalent if for each assignment of values to

xoutput
iinput either both programs do not terminate or both terminate with the

same values in xoutput

*
—/ A block statement is any sequence of statements enclosed by square
brackets.

2. Translation to while programs by adding variables

(a) Extending the state vector x .

-

We first show that by allowing extra variables which keep crucial
past values of some of the variables in X , one can effectively translate
every flowchart program into an equivalent while program (ALGORITHM I).

The importance of this result is that the original *'topology'! of the
program is preserved, and the new program is of the same order of efficiency
as the original program. However, we shall not enter into any discussion

as to whether the new program is superior to the original one or not.

This result, considered in terms of schemas, can be contrasted with those
of Paterson and Hewitt [1970] (see also Strong [1970]). They showed that
although it is not possible to translate all recursive schemas into
flowchart schemas, it is possible to do this for 'linear' recursive
schemas, by adding extra variables. However, as they pc’'nt out, the
flowchart schemas produced are much less efficient than the original
recursive schemas.

As an example, ALGORITHM I will give the following while program

which is equivalent to the flowchart program Py (Figure 1):

START(X) 3
X « a(x);
Cehile p(®) do X e e(®; !
YV « X3 |
! 1f q(%) then [% «b(%); wnile r(¥) do X « A(®)1; |
while q(¥y) A s(x) do
[X «cl(x); .
[Twhile p(X) then % - e(X);]
¥ - X3

l__ig q(x) then [x « b(x); while r(x) do X ~ d(illj];
if q(¥) then X « f(x) else X « g(x);
HALT (x).

N

If the test q(X) uses only & subvector of X , then the algorithm will
indicate that the vector of extra variables y need only be of the same
length as this subvector.

Note that on each cycle of the main while statement, the state
vector x is at point B , while y holds the preceding values of X
at point « .

llote also that the two subprograms enclosed in broken lines are
identical. This is typical of the programs produced by the algorithm.
Ore might use this fact to make the programs more readable by using

'subroutines' for the repeated subprograms.

(b) Adding toolean variables.

Inspection of the above example will suggest that we do not need
to introduce a whole vector 7y , but rather a single boolean variable t
which is assigned the value g(x) , as illustrated below. This while
program, which is still equivalent tc the program Pl’ will in practice be
more efficient than the preceding while program, since t requires only

one memory bit whereas y may be a very large vector.

START (X) 3
i'—a(i);
while p(X) do X ~ e(X);
t - q(X);
if t then [X - b(X); while r(X) do X ~ d(X)];.
while t A s(x) do
[x = c(x);
while p(X) then X - e(x);
t - q(x);
if t then [X « b(x); while r(xX) do x « d(x)]];
if t then X «~ f£(X) else X ~ g(X);
HALT(X) .

The translation of flowchart programs into while programs by the
addition of boolean variables is not a new idea. BOhm and Jacopini [1966],
Cooper [1967] and Bruno and Steiglitz [1970] have shown that every flowchart
program can be effectively translated into an equivalent while program
(with one while statement) by introducing new boolean variables into the
program, new predicates to test these variables, together with assignments

to set them true or false. The boolean variables essentially simulate a

program counter, ;nd the while program simply interprets the original
program. On each repetition of the while statement, the next operation

of the original program is performed, and the 'program counter' is updated.
As noted by Cooper and Bruno and Steiglitz themselves, this transformation
is undesirable since it changes the 'topology' of the program, giving a
program that is less easy to understand. For example, if a while program
is written as a flowchart program and then transformed back to an
equivalent while program by their method, the resulting while program will
not resemble the original.

We give an algorithm (ALGORITHM II) for transforming flowchart programs
to equivalent while programs by adding extra boolean variables, which is an
improvement on the above methods. It preserves the 'topology' of the
original program and in particular it does not alter while-like structure
that may already exist in the original program.

For the flowchart program P., for example, ALGORITHM II will produce

1l
the following while program.

START () ;
X « a(x);
t « true;
while t do
[while p(X) do % « e(3);
if q(x) then [X « b(x);
while r(x) do x « d(x);
if s(x) then x « ¢(x)
else [x ~ £(x); t ~ false]]
else [X - g(x); t ~ falsell;
HALT (%) .

Note that each repetition of the main while statement starts
from point 7y and proceeds either back to 7 or to & . 1In the latter

case, t is made false and we subsequently exit from the while

statement.

3. Translation to while programs without adding variables

It is natural at this point to consider whether every flowchart
program can be translated into an equivalent while program without adding
extra variables (i.e., using only the original state vector x) . We
show that this cannot be done in general, and in fact there is a flowchart
program of the form of Figure 1 which is an appropriate counter-example.

A similar negative result has been demonstrated by Knuth and Floyd
[1970] and Bruno and Steiglitz [1970]. However, the notion of equivalence
considered by those authors is more restrictive in that it requires
equivalence of computation sequences (i.e., the sequence of assignment

and test statements in order of execution) and not just the eguivalence

of final results of computation as we do. Thus, since our notion of
equ}valence is weaker, our negative result is stronger.

Our counter-example is a program of the form of Figure 1 in which:

r identical to q , s 1identical to p, o and e identical

to g, and ¢ and d identical to f .
There is also another similar counter-example in which:

r identical to q , s identicalto p, d and e identical

to g, and b and c¢ identical to T .

The fact that these restricted forms are counter-examples is especially
interesting since we have found while programs, with no extra variables,
which are equivalent (in our sense) #o most of the programs of the form
of Figure 1. 1In particular, we can do this fbr any flowchart program of
the form of Figure 1 with only two distinct tests and two distinct

operations in which

¢ 1is identical to e,
or b is identical to 4,

or f is identical to g .

ALGORITHM I: TRANSLATION BY EXTENDING THE STATE VECTOR X

Our algorithm depends on the fact that every flowchart program can
be put effectively into a normal form (see Cooper [1970] and Engeler [1970]).

A flowchart program is in normal form if iU is of the form

)

HALT (xoutpu‘t

where & block is defined recursively as follows:

j A basic block is any tree-like, loop-free, one-entrance piece of

flowchart program (without start and halt statements). For example,

N

10

2. Composition
LT l and l are blocks, so is

B t B)l

|
B l
T —] =

3. Looping
If L is a block, so is

B []
T\ QS
I

We shall consider only flowchart programs in normal form. By
induction on the structure of the blocks we show how to associate with
each block B(X) (with state vector Xx) a piece of while program

= f/ & =
aB(x,y) »—/ and with the i-th exit of the block a pair (cpi(x,y),'ri(x)) ¥

where mg(i,i) is the 'exit-condition' and 'ri(i) is the ‘'exit-term’,

27 y is a (possibly empty) vector of additional variables introduced by
the translation.

11

such that B(x) comes ow: of the i-th exit with £ if and only if

CZB(;c,i;) terminates with some £' s.t. cpi(E',:;') T and £ = Ti(E') "
Each cpi is a quantifier free formula constructed from the

tests and operations in the flowchart. The @i's for a given block are
complete and mutually exclusive.

In each of the three cases we have to consider, the above relationship

between aE and (qai,ri) is preserved.

1. B(x) is a basic block (i.e., tree-like, loop-free, one-entrance flowchart)

In this case O'.B(i) is always null (the empty program), cpi(i) is
the condition that control will take exit i for input x , and 'ri(i)
is the result of performing the assignment statements on the corresponding

path. For example,

X - fl(i)

r —l_"_"_ Bx) |
|

|

l

|

X - fe(i) X - f3(:‘:)

|
(Pl(fl(i)) fe(fl(i) ¥ *‘—!—-——' @

% - £, (%) % - 2(%)

l l I

(~py (£, (8) A D52 () 5 £, (£5(£, (D))

(~py (£ (X)) A ~p,(£5(£,(X))) 5 £5(£5(£,(X))))

where aB(i) is null.

2. B(x) is constructed from B'(x) and B"(x) by composition

We cconsider two cases:
(a) B" is a basic block.

- 1

B (%) | m— o, (%,5")

7N

(@1(;(:}-{:');11(52)) (@n(i:§'):7n(i))

» I

B'(X) | €TR— (%) , e, mu

VX

(¥ (x)564 (%)) (v, (%), 6, (X))

then

g |

B"(i)
| 1/ z _
(q)l(;(){") A wl(‘rl(i)) 2 51(71(;:))) <m2(i)§’!)912(i)) (q)n(iﬁi'))'rn(i))

(@1(’-‘:3_") A ‘Q’m(Tl(i))s 5m(Tl(i)\))

where aB(:-c,i") is OLB,(}-c,ff’) "

15

(b) B" is a non-basic block.

i L
BY(X) | €, (5,§)

/N

(‘-'Pl(iﬂ;"):Tl(i)} .:' (@n(iyl—"'):'fn(i))

i

and L

B" (X) =S

7N

W (63758, (X)) (¥, (5,356 (%))

then let io be the subvector of X which is used in exit

conditions Ql,...,¢ . Let §b be a new vector of the same

n

length as io . Then y = f&',&",io} and

[= —L_B(?c)—l

B! (x)

| 1[2 n !

(@l(io:sf') A "’1(’-"5'")’51(’-‘” (q32(5'0,§"):72(;{)> <¢n(§0’§')"rn(i))

(q’l(i;oz 3-7')A‘é’m(;f-x if")) 5m(i))
where aB(ﬁ,i) is &B,(i,i')§
YO = xO;

if 9, (%,¥") then [X = 7,(X) ;05 (X,3")]

1k

3. B(x) is constructed from B'(x) by looping.

If | JL

B! (}_() (""'Z—— CIB‘ (!.{,5’)
/N
(CPl(J-C, Iﬁ-f) 3 Tl(;c)) (@n(’-‘:i).v Tn(i))
then
T — 7 =@
| B' (%) ‘
1 n
L= %
(52 (i: 3-') 2To (i)) ((Sn(;cx 3-").' Tn(}-t))

where aB(i,§) is QB.(J-CA-I);
while 9, (X,¥) do [x ~ 7,(X); o, (%,¥)]

and 52, ”"511 are complete and mutually exclusive and

?;(%,¥) 29,(xy) , 2<j<n.

Comment: To find {5j} note that the algorithm ensures that each o

J
is a conjunction of literals (i.e., atomic formulas and negations of atomic

formulas), and therefore we can represent {cpj} by a binary tree; e.g.

fPAQAT, PAQA~T, PA~Q, ~p} is represented by tree (a).

15

)
If we remove the node in the tree leading directly to the terminal node

representing ®y the new tree represents the desired conditions {t'f)j} .
For example, if we remove p A ~q from the above set of conditions, we
get the new tree (b) which represents the new set of exit conditions

fpAa, pA~T, ~p}.

Conclusion: This covers all cases of blocks we need to consider. To find

the while program equivalent to a given flowchart program (in normal form)

we find aB(i,S;) and {((Pi(i,ff),'ri(}-!))} - The desired while program is then

START (xinlmt

%(is}-’) 3

)

if cpl(a'c,;}) then x ~ rl(i)
else if q>2(i,§-) then X ~ 12(;:)

else ... X '—Tn(i);

16

Example: = Let us consider again the flowchart Program P, (Figure 1). It is
already in normal form, and the blocks are indicated in Figure 2. The

exit conditiohs and exit terms for the exits of all blocks are also
indicated. The corresponding «'s are given below:

(x) is null. /
QBl is n

o (x) is whi\.'l’.e p(x) do X ~ e(x) .
o —=r

gy (x) is null.
3
a (x) is while r(x) do X « d(X)
L
aBS(x,ir)-:_ is agg(i); ¥ = Xy5 if q(X) then [X ~ b(X); “Bh("” .
Note that io is the subvector of X occurring in the exit

conditions of B, , i.e., in q(X) .

QBG(;‘,{’) is aBb_(i:l-f); while Q.(:;') A s(x) do [x ~ e{X) ; QBS(§’§)} .

Thus the original flowchart program is equivalent to the following while

program;

START(X) ; !
x - a(x);
while p(x) do X = e(X);
Y - Xy
if q{x) then [x - b(X); while r(X) do X ~ 4(X)];
while q(y) A s(x) do
[x - c(x);
while p(x) do X = e(X);
¥ =X
if q(x) then [Xx = b(X); while r(x) do X « d(X)11;
if a(§) then & - £(3) else % - g(®);
HALT(x) .

17

1

(—a(y),e(x))

X ~ b(x) __]

(= p(X) Agq(x),b(x)

| L= !
L (—wp(i)f\-wc%(i),s(i))w

;(qq(z})g(i)): (~a(x),e(x)) (q(X),b(X))

e P
.. i I_ - B_j_l p
3 ' RGN
|

| ’ !

i i '

| L= s e) l

(_‘r(il’\ S@ﬂ’_(i‘))_ _J
(S(i)’c(i))

{a(y) A s(x),e(x)?

(p(x),e(8)) ‘

|
i

i

A 4

(Q(b-f) »£(X))

Figure 2. The flowchart program P, (for ALGORITHM I).

18

Comment : In general the transformation of a program to normal form

results in exponential growth in the size of the program. This can

be reduced if we allow the following extra case in the definition of
blocks.

L. Merging (optional)

If ’ is a block, so is
B! |

The algorithm can be easily modified to cover this case, but since

it would complicate our notation, we will not discuss it here.

19

ALGORITHM II: TRANSLATION BY ADDING BOOLEAN VARIABLES

The second algorithm, ALGORITHM II, translates flowchart programs
to equivalent while programs by adding boolean variables. It makes use
of the fact that every flowchart program (without the start and halt
statements) can be decomposed into blocks where a block is any piece of
flowchart program with only one exit (but possibly many entrances).r/

This is obvious since in particular the whole body of the given flowchart
program can be considered as such a block. The aim, whenever possible, is
to get blocks containing at most one top-level test statement (i.e.,

test statement not contained in inner blocks) since such blocks can be
represented as a piece of while program without adding boolean variables.
In particular, if a while program is expressed as a flowchart program,
this latter program can always be decomposed into such simple blocks,

and the algorithm will give us back the original while program.

For any given flowchart program we construct the equivalent while
program by induction on the structure of the blocks. Since the ideas
behind the construction are intuitively simpler, we shall not be as
formael as in the presentation of ALGORITHM I.

For each entrance bi to block B we consider that part Bi of
the block reachable from bi . We then recursively construct an equivalent

I
piece of while program 75 {x:%) ——/ as follows. There are two cases to
 §
consider:

*
i Note that the tlocks used here are not related in any way to those
used in ALGORITHM I.

i JE ‘is a (possibly empty) vector of additional boolean variables
introduced by the translation.

20

Case 1: (a) Bi contains at most one top-level test statement,

or (b) Bi contains no top-level loops.

In both cases y, (x,£) is the obvious piece of while program
requiring at most one top-level while statement (and no extra boolean

variables).

Case 2: Bi contains two or more top-level test statements and at

least one loop.

In this case we choose a set of points on top-level arcs of Bi
(called 'cut-set' points) such that each loop contains at least one such
point. One point on the exit arc of the block is also included in this

set. We shall translate Bi into a piece of while program 7Bi(i,§) with
one top-level while statement in such a way that each iteration of the while
statement follows the execution of Bi from one cut-set point to the next.

In this case, 75 (x,t) includes boolean variables introduced to keep track
: §

of the current cut-set point. Note that n boolean variables tl’te""’tn

are sufficient to distinguish between k cut-set points, 2n-l <k« 2" .

Example: We shall illustrate the method using again the flowchart program
Pl (Figure 1). We decompose Pl into blocks as shown in Figure 3. Blocks
Bl and 32 are of type 1 and can each be written as a single while
statement. Block 33 is of type 2 with a single top-level loop. Thus

it is sufficient to choose points @ and g as the cut-set points. To
distinguish between o and B we need one boolean variable, t say.
Thus the following while program, using the boolean variable ¢t » can be

generated and it is equivalent to the given flowchart program Pl.

2l

Figure 3.

The flowchart program P, {for ALGORITHM I1).

22

I -

START(x) 3
x - a(x);
t - true;
while t do
(while p(X) do X - e(%);
if gq(X) then [X - b(X);
while r(x) do X «~ d(X);
if s(x) then x ~ c(xX)
else [x ~ £(x); t - false]]
else [X - g(X); t ~ falsell;

HALT(x) .

23

THE NEGATIVE RESULT

We consider the flowchart program P, (Figure 4) which has the
structure of Figure 1. The domain D is the set of all pairs of strings
such that the first striqg, called 'head', is any finite string over
letters {f,g} , and the second string, called 'tail', is any infinitei/

string over letters {0;&,7} with at most one occurrence of 7y .

During a computation of Pg, the only changes in the value of the
program variable are deletion of leftmost letters from the tail and
adding letters f or g to the right of the head. The tests in the
program simply look at the tail, and therefore the computation is determined
by the tail of the initial value. Thus, since the program terminates if
and only if both tests @ and B are false, it implies that P2 terminates
if and only if the tail of the initial value contains 7 . Another important
feature of any computation of Pé is that whenever the leftmost letter of

the tail is a@ , the next but one operation must be operation g . Similarly,

whenever the leftmost letter is B , the next but one cperation must be f .

Let us assume that we have a while program PZ equivalent to P2 which
also has one variable and the seme domain D . Although the assignment
statements of P; may use any terms obtained by compositions of the operations
f and g , we assume without loss of generality that each assignment
statement in P; consists of a single operation f or g . The tests in

the conditional and while statements may only use quantifier-free formulas

obtained from tests @ and B, and operations f and g . Since we use

i/VNote that the domain is non-enumerabvle. However, we can in fact
restrict the tails to the enumerahble domain of ultimately periodic
strings, i.e., infinite strings which eventually repeat some finite
substring indefinitely.)

2k

where

F T

F T
—
E
test @ means "is letter 'a' the leftmost letter in tail";

test means "is letter 'A' the leftmost letter in tail";

operation f means "erase the leftmost letter in tail and add
letter 'f' on the right of head"; and

operation g means "erase the leftmost letter in tail and add

letter *g' on the right of head".

Figﬁre L. The Flowchart Program P, (for negative result)

25

only one variable, it follows that every sequence of values describing a
computation of P; is identical to the corresponding computation of P2'
Note also that since there is a bound on the depth of terms in the
quantifier-free formulas, there is a bound, M say, on the number of
leftmost letters in the tail that can affect the decision of any test

in P;. Finally, without loss of generality we shall make the restriction

¥
that there is no redundant while statement in Pe; i.e., there is no while

statement with a uniform bound on the number of its iterations.

*
Since Pé must contain some (non-redundant) while statement, let W

*
be any while statement in P2 which is not contained or followed by another

E'S
while statement. The point in P2 immediately after W we shall denote by A

Lemna
For all n (n >0) there exists strings a,c 6{055}* and

de {4, (le] =n) 5 such that for all strings be {a,a}* the

computation starting with tail abeyd passes A with some tail

abcyd , where ab is some rightmost substring of ab (possibly empty).

From this Lemma we immediately obtain the following corollary.
\

Coro};ggz

*
For every n , n >0, there exists a finite computation of P2

which passes through A with more than n operations still to be performed.

But this contradicts the fact that, since there is no while statement

-
following A , the number of operations that P2 can perform after A is

bounded.

»*
'—/-i.e., a and c are finite strings (possibly empty) over {a,},
d is an infinite string over {o,B} and the length of ¢ is n .

26

Proof of Lemmsa. By induction on n .

Base step. Choose any computation starting with tail a'a''btyd!
(a',a",b" ¢ 0,8}, d" € {24,B)" and |a"| = M) that enters W with
tail a"'yd' . (Such computation exists by non-redundancy of W .)
Since at most M leftmost letters of the tail can effect the
decision of any test, on entering W the main test can only look at a" .
Therefore the test will be true for any tail starting with a" .
In particular, the computation starting with tail a‘'a"bya"a' ,

*
for any b in {a,B} , also enters W at the same point, i.e., with

tail a"bya"d' . It must subsequently pass point A , but (noting that
the test in W must be false when passing A) it camnot pass A with
tail a"d!

Hence, with a = a'a" , d = a"d' , for all strings b in {a,ﬁ}* i
the computation starting with abyd must pass A with some tail

abyd where ab is some rightmost substring of ab .

Induction step. Assume we have strings a,c e {cz,s}* and de{o,p) ,
le] =n, such that for all strings b in {08} the computation
starting with tail abcyd passes A with some tail abcyd where ab
is some rightmost substring of ab .

We find a string c'«¢ {a,a}* > le'] = n*1, such that for all
strings b' in [Q,B}* the computation starting with tail ab'ctyd

passes A with some tail ab'c'yd where ab' is some rightmost substring

of ab' .

There are three cases to consider:

a7

(i) For all non-empty strings b , the corresponding substring ab

*
is non-empty. In this case we take c¢' to be Qc .—/

*
For any string b' in {a,s} the computation starting with
tail ab'acyd , passes A with tail ab'acyd , where ab’

is a rightmost substring of ab!

*
(ii) For some non-empty string b = db"a (b" e {@,B}) , the substring
ab is empty, i.e., there exists computation § starting with
ab"acyd that passes A with tail c¢yd . In this case we take c!'

to be Bc .

*
By earlier remarks about P2 and P2’ it follows that the next

operation in S after passing A must be g .

*
Now, for any string b' in {a,B} the computation starting

with tail ab'Bcyd must pass A with some tail ab'Scyd where
ab'g is some rightmost substring of ab'p .

ab'g cannot be empty because this would mean that this
computation passes A with the same tail c¢yd as for S
but in this case the next operation to be performed is f .
This is impossible, since the course of computation from A must
be determined by the tail at this point.

Hence, the computation must pass A with some tail ab'Beyd

(or equivalently ab'c'yd) where ab' is a rightmost substring of ab'

(iii) For some non-empty string b = b"B (b" ¢ Bx,ﬁ}*} , the substring ab

is empty. In this case we take c' to be Qc .

We proceed as in case (ii) with @ and B interchanged and
f and g interchanged.

Q.E.D.

*
—/7We could equally well take c¢' to be PBc and consider computations
starting with tail ab'Beyd .

28

Acknowledgment

We are indebted to David Cooper for stimulating discussions and
mainly for his idea of using cut-set points which we have adopted in

AIGORITHM II.

References

C. BOHM and G. JACOPINI [1966]
"Flow Diagrams, Turing Machines and Languages with only Two Formation
Rules". CACM, Vol. 9, No. 5, pp. 366-371 (May 1966).

J. BRUNO snd K. STEIGLITZ [1970] '
"The Expression of Algorithms by Charts", unpublished memo.

D. C. COOPER [1967]
"gdhm and Jacopini's Reduction of Flow Charts". Letter to the
Editor. CACM, Vol. 10, No. 8, pp. 436-L (August 1967).

D. C. COOPER [1970]
"Programs for Mechanical Program Verification", in Machine Intelligence
6, Edinburgh University Press.

E. DIJKSTRA [1968]
"GoTo Statement Considered Harmful", CACM, Vol. 11, No. 3, pp. 147-148
(March 1968).

E. ENGELER [1970]

"Structure and Meaning of Elementary Programs", in Symposium on the
Semantics of Algorithmic Languages,

D. E. KNUTH and R. W. FLOYD [1970]
"Notes on Avoiding 'GO TO' Statements™, CS 148, Computer Science
Department, Stanford University (January 1970).

D. C. LUCKHAM, D. M. R. PARK and M. S. PATERSON [1970]
"On Formalized Computer Programs", Journal of Computer and System
Sciences (June 1970).

M. S. PATERSON and C. E. HEWITT [1970]
"Comparative Schematology", Unpublished memo.

H. R. STRONG [1970]
"Translating Recursion Equations into Flowcharts", Journal of
Computer and System Sciences (to appear).

29

