MPL
'MATHEMAT | CAL PROGRAMM | NG LANGUAGE
Specification Manual for Committee Review

Prepared By: :
Michael McGrat h

Vincent Nicholson
Christiane Ried|

Stanley Eisenstat
Thomas Magnant i
Steve Maier

With Foreword By George B. Dantzig .

STAN-CS-70-187
NOVEMBER 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities-and Sciences
STANFORD UN IVERS ITY

MPL

MATHEMAT | CAL PROGRAMM | NG LANGUAGE

Specification Manual for Committee Review

Prepared By:

Stanley Eisenstat Michael McGrath
Thomas Magnant | Vincent Nicholson
Steve Maier Christiane Riedl

With Foreword By George B. Dantzig

Computer Science Department
Stanford University
Stanford, California

Research and reproduction of this report was supported by
the National Science Foundation, Grant GJ 320.

Reproduction in whole or in part is permitted for any purpose
of the United States Government. This document has been approved
for public release and sale; its distribution is unlimited.

vt

CONTENTS

FOREWORD,
ABSTRACT
ACKNOWLEDGEMENTS
THE NEED FORMPL *
GENERAL FEATURES OF MPL
OVERALL STATUS
DETAILED SPECIFICATION REVIEW .

RESEARCH PROGRAM

MPL AS A COMMUNICATION AND PROGRAMMING LANGUAGE . .

IMPLEMENTATION CONSIDERATIONS

ATTACHMENTS

‘MPL SPECIFICATIONS
TWO EXAMPLES OF MATHEMATICAL PROGRAMMING ALGORITHMS

12

12

14

FOREWORD

Abstract

Mathematical Programm}ng Language (MPL) is intended as a
highly readable, user oriented, programming tool for use in the
writing and testing of mathematical algorithms, in particular
experimental algorithms for solving large-scale linear programs.
It combines the simplicity of standard mathematical notation
with the power of complex data structures. Variables may be

implicitly introduced into a program by their use in the state-

ment in which they first appear. No formal def ining statement

is necessary. Statements of the "let'" and “where” type are part
of the language. Included within the allowable data structures
of MPL are matrices, partitioned matrices, and multidimensional
arrays. Ordered sets are included as vectors with their con-
structs closely paralleling those found in set theory. Al location
of storage is dynamic, thereby eliminating the need for a data
manipulating subset of the language, as is characteristic of

most high level scientific programming languages.

This report summarizes the progress that has been made to
date in developing MPL. It contains a specification manual,
examples of the application of the language, and the future
directions and goals of the project.

A version of MPL, called MPL/70, has been implemented using
PL/1 as a translator. This will be reported separately. Until
fully implemented, MPL is expected to serve primarily as a highly

readable communication language for mathematical algorithms.

Acknowl edgemen

Professor David Gries, before he took a new position,
laid out a substantial part of the general framework of the
language and helped guide its detailed specification. Miss
Christiane Riedl, his assistant and also mathematician at
__ SLAC took on an active role after Gries left for Cornell.
Important suggestions have been made by Dr. C. Witzgall and
Dr. R. Bayer of Boeing Scientific Laboratories, Mr. Paul
Davis of Unio\ﬁ Carbide, and more recently Professor R. Floyd
of Stanford. Professors Alan Manne and Richard Cottle are
currently not listed as principal investigators (as earlier)
because the coming phase will be concentrating on developing
an efficient compi ler. The work group S. Eisenstat, T.
Magnanti, S. Maier, M,McGrath,V. Nicholson, graduate students

in Operations Research and Computer Science are expected to

continue to contribute to the development.

THE NEED FOR MPL

The purpose of MPL (Mathematical Programming Language)
is to provide a language for writing mathematical
algorithms, expecially mathematical programming algorithms,
that will be easier to write, to read, and to modify than
those written in currently available languages (e.g.
FORTRAN, ALGOL, PL/1, APL).

The need for a highly readable mathematically based
computer language has been apparent for some time.
Generally speaking, standard mathematical notation in a
suitable algorithmic structure appears best for this
purpose. The reason is that most researchers are famil ier
with the “language” of mathematics having spent years going
to school and taking many courses on this subject. For the
mathematical programming application, the availability of
such a tool is deemed essential.

Mathematical programming codes tend to be complex.
(Some commercial codes have over a hundred thousand
instructions.) They are developed by persons formally
trained in mathematics using, for the most part, standard
matrix and set notations. Recently, research has been
directed toward structured large-scale systems. These
systems have great practical potential especially for
planning the growth of developing nations, the national

economy, or industry.

To date many methods have been proposed for solving
large-scale systems, but few have been experimentally tested
and compared because of the high cost and the long time it
takes to program them, and because it is difficult to debug
and to modify them quickly after they are written. It is
believed that highly readable programs would greatly
facilitate experimentation with these proposed methods and
would speed up the time when they can be used for finding
optimal growth patterns of developing nations and
industries. Moreover, experimentation is a valuable way to
develop ones Intuition and test conjectures prior to

-~

developing theoretical proofs.

GENERAL FEATURES OF MPL

Research on MPL to date has been directed towards

developing a highly readable language adhering as closely as

possible to standard mathematical notation. Considerable

attention has been given to keeping the definition structure
of MPL as general as possible.

Matrix notation is required for the mathematical

programming applications and this has been given special

emphasis-in MPL including partitioned matrices and matrices

with special structure.

Set notation is universally used in mathematical

proofs. However in statements of algorithms, as found in
theoretical papers, one finds what appears to be set
notation, but which turns out to be, on closer examination,

an ordered set concept i.e. there is an assumed underlying

ordering of the elements of a set. A convenient set-like
notation is part of MPL. Typically it is used with the
such-that construct which allows one to restrict or extend

the definition of a set through logical expressions.

Other important features of mathematical notation are
the “let” and “where” concepts. As commonly used, they
serve as either a symbol substituter (macro) or as a short
subroutine whose parameters are evaluated and the results

substituted for the symbol. LET and WHERE constructs are

also part of MPL..

Generally speaking, the literature of mathematics has
been devoted to proofs of theorems. Algorithms as such,
when they do appear, are often part of a constuctive proof
and have an ad-hoc. organizational structure. MPL has
adopted instead the formal block stucture of ALGOL with
minor variatlons. Alternatives are provided for those who
prefer not to see the words BEGIN and END used as
-punctuation marks for blocks throughout a program. The user
can optionally use less obtrusive special bracket symbols to
conveniently group several statements forming a block or to
group statements which follow and are subject to IF and FOR
clauses. It is also possible in MPL to conveniently
identify by labels parentheses pairs, complex statements and
algebraic expressions and thereby greatly increase
readabi 1 i ty.

In mathematics it is often desirable to change the
meaning of symbols (e.g. variable names). In computer

- languages a formal structure for **declaring” (defining)
symbols is used and also for stating the “scope” (the set of
instructions) where these definitions are to be applied.

Fdr example, in ALGOL names of variables defined within a
block cannot be used outside the block without redefinltton.
In MPL, definition of a symbol can be made anywhere inside
the block up to its first appearance in a statement;
moreover, it can also be implicitly defined by the statement

itself. Implicit definition is an important feature of MPL.

Y

fing the scope of a
L

variable if it extends outside the block. Finally, it is

Provision Is made for conveniently speci

possible to release the storage space assignhed for the
values of a symbol when no longer needed.

In defining a language it is natural to worry about
whether or not it is possible to reasonably implement it.
For example, the present form of MPL uses linear character
strings for exponents, superscripts or summations in place

of two dimensional notation like:

m
Jj=1

Thus, a; is written a(i). However, one of the members of

our task force group (V. Nicholson) hasrecently completed

a Ph.D. dissertation on this subject and we plan to

incorporate features of his already implemented two

dimensional notation into MPL.

Except for special functions like sin(X),
mathematicians avoid the use of multiple character variable
names. The reason for this historically appears to b e
two-fold: First, it is easier to visualize algebraic
manipulation of symhols when they appear as single
characters. Second, it avoids possible confusion with
implicitmultiplicatione.g. sin(x) meaning s-i-n-(x),

However, by requiring in MPL the explicit use of the

multiplication symbol, multiple character names are allowed

X

as in most computer languages.

Overal 1 status:

A draft of the MPL specifications in Backus Naur Form
has recent 1 y been prepared under the general guidance of
George B. Dantzig by our work group with Miss Riedl
serving as ¢general coordinator. This draft is now being
readied for general review by a committee probably
consisting of R:Jdolf Bayer, Paul Davis, David Gries, Robert
Floyd, Donald Knuth, and Christoph Witzgall.

A preliminary test version of MPL, referred to as
"MPL-McGra th, " was at the suggestion of Paul Davis
implemented in 1969 by Michael McGrath using PL/1 as a
translator into PL/! instructions. This version included

those features of MPL that were easiest to translate into

available PL/1 constructions.

DETAILED SPECIFICATION REVIEW

The first goal of the project was to specify the

language in implementable form. The language outlined in

the

preliminary proposal to NSF as of May 1968 was

systematically developed; the syntax was more closely

aligned with standard mathematical notation and kept as

general as possible. Many of the earlier constructs were

extended and improved, for example:

The vector construct was extended to Include set
notation in the form of ordered sets with logical

qual if iers.

More complex data structures were introduced, including
mul tidimensional arrays, partttioned matrices and

reference arrays.

The domain of_numeric constants was made the extended
g-—oﬂ;u;
real numbers ’;

In response to user requests, blocks were introduced as
a primary means of defining scope of variables.

The principle of dynamic allocation of storage was
adopted for all non-scalar quantities.

Both dynamic and static symbol substitution were

introduced into the language.

- Subscripting was generalized to include subscripting of -

expressions.

= Function Variables which allow a general function name
to be replaced by a specific name were introduced.

- Parameter passing for procedures was greatly extended
by developing several different types of procedures. In
particular, a function procedure was introduced which
acts exactly as a function in mathematics, (i.e. without

any side effects),

- This phase of the project is nearing completion.
Concurrent with the submission of this ‘proposal, the
language specification will be given to the review
committee. During the fall quarter the language will b e
used as a teaching tool to obtain feedback from potential
users. By the end of calendar year 1970 it is hoped that
the specifications can be frozen, so that implementation and
use as a communication language can begin in earnest.

The second goal of the project was to implement these
specifications. This involved development of a PL/1
translator and made possible evaluation of the language by
Operations Research graduate students and researchers from
bdth the academic and industrial communities.

Originally it was hoped that the compiler-compiler
system under development by David Gries could be used to
implement MPL on any installation on which his system was
made available. Unfortunately, the compiler-compiler was

never completed. Therefore, in order to produce an

vy PL/) ?

environment free compiler, a translator written in PL/1 was
developed. It was felt that this would provide the widest
possible circulation for MPL, since any installation with a
PL/1 compiler could then be used.

The current version of the MPL/PL1 translator
encompasses many of the unique constructs available within
MPL. The translator was successfully used in a large scale
systems optimization seminar with enthusiastic student
response. Much valuable information was obtained from this
exchange, and it is hoped that this practice can be
continue& Of particular note, is that many students found
the language easier to use and less tricky than either
FORTRAN or ALGOL.

The MPL language was presented to the industrial
community through the Stanford “Computer Forum” by M.
McGrath in 1969 and C. Riedl in 1970; to the academic
community through lectures by the proposer; and to the
professional community by R. Bayer and C. Witzgall in talks
on their matrix calculus which is expected to play a role in
the generation and manipulation of special matrix
structures. Some work was also done on using MPL as a tool
in developing new algorithms and in presenting some of the
existing algorithms in the field of Operations Research. It
is hoped that this will become one area of future
concentration in the further development of the MPL
language. This has particular importance in gaining wider

acceptance for the language.

- 11 -

RESEARCH PROGRAM

MPL as a Communication and _Programming Language

To date the primary objective of the MPL project has
been the formal language definition. The result of this
effort is the Language Specification Manual written in
Backus Naur Form which should function as a basis for an
implementation. Since this manual is intended for computer
specialists, it is not very suitable for an applied
mathematician not trained in computer science. Accordingly,
a next step for the project (and its proposed continuation)
is the development of an MPL user’s manual. This document
would serve in two capacities:

(i) by giving an introduction to MPL for a wide spectrum
of possible users, and

(ii) by expanding and interpreting the more involved
features of the language found in the MPL
specification manual,

To accommodate both of these objectives, the user’s
manual would endeavor to present MPL in a simplified form
and at a level in which most of its constructs are
explained. In this manner, the reader at the beginning or
intermediate level, knowing only a subset of the language,
would nevertheless be able to write MPL programs compatible -

with the full Ianguage.

With a user’s manual available, the project would
proceed into a testing and evaluation phase. An important
contribution to this phase would-be feedback from potential
users. From this feedback we would be able to ascertain
what modifications, if any, are required to give us the
“best” language for the user. It is probable that MPL will
be equally useful for statistical and numerical analysis
appl ications, particularly in conjunction with special
sub-routines useful in these fields. Though we would
encourage investigation of MPL's use in other areas, we
propose to concentrate primarily upon applications to
Mathematical Programming.

Testing MPL as a language for Mathematical Programming
would proceed along two fronts. First, standard algorithms,
such as Generalized Upper Bounding (see attached), would be
programmed using MPL. This would allow us not only to
evaluate MPL as a programming tool but also to assemble a
library of algorithms for use in further research. Second,
MPL would be used to write and test new algorithms,
c&sequent 1y, evaluating its potential as a research tool.
We believe that the language could have a great impact in
this area - especially in academic research where the time
and expense in programming for large scale systems has been
prohibitive in other languages.

As a user’s tool, MPL has been developed to parallel

much of standard mathematical notation. Thus most

- 13 =

algorithms written in mathematics could almost as easily be
written and read in MPL. This aspect of the language makes
it attractive as a standard. communication language for
algorithms. As one further phase of this proposal, we hope
to explore this in greater depth. In particular, we would
investigate whether it would be plausible to use MPL as a
standard vehicle for presenting algorithms in journals
especially for the newly proposed Mathematical Programming
Journal. Not only would this have the beneficial effect of
standardization, but it would also mean that published
algorithms could be easily tested or implemented via MPL,
Some of the objectives outlined above can be partially
met with the current version of the MPL translator. in
order to fully test the language and implement it as a
user’s tool, however, the translator will have to be
expanded or a compiler written. An investigation of these
possibilities constitutes the next major task of the

continuing project.

Implementation Considerations

A complete, “machine-independent” implementation seems
essential in gaining broad acceptance of MPL as a
mathematical programming language. Such an implementation
could take two directions:

(i) Extending the current translator to encompass those

- 14 -

MPL concepts not presently handled (e.g. subscripting
as an operator, partitioned data structures,
concatenation, and set generators).

(i1) Writing a full-scale compiler into some ideal machine
language (e.g. three address code or reverse Polish).

The translator would be less work but the more
efficient code produced by a compiler would make the
solution of large scale problems more practical. However,
of -equal, if not greater, importance is a “How to Implement**
manua 1, a compendium of suggestions on implementing some of
the more powerful MPL constructs as well as techniques for
handling large scale data structures and codes involving
many thousands of instructions on a computer.

For the most part, the techniques would be machine
independent, i.e., the method of implementation outlined in
the manual should be of help in implementing any large-scale
mathematical programming system.

Part of the manual would be concerned with the analysis
of an MPL program. Items included would be parsing
techniques, symbol table organization, a precedence grammar
if possible, suggestions for the internal representation of
the program after analysis, and an outline of code emitted
for advanced features of MPL (e.g. function variables,
indexing sets, dynamic LET statements).

Runtime organization which is essentially MPL

independent would require a study of data structures

- 15 =

hecessary for large scale systems, dope vectors, algorithms
for handling the non-first-in-first-out data structures of
MPL.

If an easily modifiable translator were written,
experiments could be made with different runtime data
structures, data handling algorithms, and computational

algorithms (such as matrix expression evaluation).

Section 0.

Section 1. .

1.
2.

3.

Section 2.
1.

2.
e
4.

Section 3.
1.

2.

MPL

LANGUAGE SPECIFICATION
TABLE OF CONTENTS
Notation

Basic Concepts
The character set of MPL
Basic elements of the language
1. Identifiers and reserved words
2. Digit strings
3. Delimiters
4, Character strings
5. Blanks
6. Comments
Structure of a program
1. Insertions and insert statements

2. Programs

Attributes and Values
The type attribute
1. Simple types (ARITHMETIC, LOGICAL,
2. Reference types
3. Procedure types
The dinensionality attribute
The domain attribute
The shape attribute

Expressions

Operands
1. Constants

1. Arithmetic constants

2. Logical constants

3. Character constants
2. Variables
3 a Vector generators

1. N tuplets

2. Index ranges

-3 Sad. glenerators

4, Procedure calls

5. Relations

6. Synonyms

Operators

1. Arithmetic operators

1. UOnary operators (+ and =)
2. Rinary operators

CHARACTER)

1. Addition (#) and subtraction {=)
2. Scalar multiplication (*) and division (/)

3. Exponeniation (#¥)
4, Inner product (¥)
2. Concatenation

Oct, 70, p. 1

3.

Section 4.

1.
2.

=~ W

Section 5.

1.

C oo w
L]

3. Logical operators
1. Negation (=)
2. Binary logical operators
1. AND and OR
2. Logical inner product (MULT)
4. Subscripting
Expressions

Statements

Blocks and the scope of identifiers
Variable control statements

1. Define statements

2. Defining assignment statements
3. Release statement

Assignment statements

Sequence control statements

1. Labels and GOT0 statements

2. RETURN statements

Procedure statements

Conditional statements

Iteration statements

LET statement

INPUT / OUTPUT statements

Procedures

Procedure definitions

1. EXTERNAL procedures

2. INLINE procedures

3. The procedure head

4. The procedure body

5. The procedure attributes
1. FUNCTION procedures
2. INDEPENDENT procedures
3. One-line procedures

6. Examples of procedure heads

Procedure calls

1. VALUE parameters

2. NAME parameters

3. Serial actual parameters

4. The return parameters

Library procedures

Oct.70, p.

2

SECTION 0

. NOTATION

In the following language specification, we useamodification of
BACKUS-NAUR FORM (BNF) to describe the syntactic structure of MPL.

A syntactic rule or production consists of a LEFT PART (a syntactic
class name), followed by a ::= (read "is defined as"), followed by a
right part (a string of symbols-which define the leftpart). Syntactic
class names are enclosed in angular brackets <,>; MPL symbols stand by
themselves.

Notes:

(1)

Example:

(I1)

Example:

(ITT)

Example:

Example:

(Iv)

v

Example:

(VI)

Example:

If a syntactic class 1is defined to be oneof several strings of
symbols, the alternates are separated by a | (read "or").

<character> s::= <letter> | <digit> J <special character> reads
A character is defined to bea letter, a digit, or a special
character.

If part of the right side of a production may be omitted, it is
enclesed in square brackets {denoted by $,% in this document).

<number> ::= <number base> $<exponent>$ is equivalent to
<number> ::= <number base> | <number base><exponent>

A list of one or more symbols all belonging to the same
syntactic class X is denoted by <<£X> LIST>.

<digit string> ::= <<£digit> LIST> stands for
<digit string> s:= <digit> | <digit string><digit>

If the symbols in the list must be separated by a delimiter,

then the delimiter directly precedes the word LIST.

<variable LIST> s::= <<variable>, LIST> is equivalent to
<variable LIST> ::= <variable> | <variable LIST>, <variable>

The syntactic class <empty> represents the null string of
symbols.

The right side of a production may be partly described bya
comment enclosed in guotes. The comment gives semantic
restrictions on the right part.

<VA expression> :3= <Vector valued" arithmetic expression>

Certain delimiters and reserved words may be substituted for
other delimiters or reserved words. If y may be substituted
for x, this is indicated by x <=- y at the first occurrence of
x in the language definition. If x <==- y and y <=- x, this is
indicated by x <==> y.

1= &—- = means that = is an alternate assignment symbol
IN <==> means that IN and are interchangeable

Oct. 70, p. 3

SECTION 1. BASIC CONCEPTS
1.1. The Character Set of MPL

The set of characters available in MPL w¥ill depend on the particular
implementation. As this language specification is independent of any
implementation, we here define a basic character set which will be used
throughout this manual and suggest possible extensions to it.
<character> 3= <letter> | <digit> | <special character>

<letter> ::= A|B|CIDIEIF|G|H|TI|I|K|L|N|N|O{PIQIRISITIOIVIWIX]IY]2Z]
a|bicldjelfigihiitjikilininjolpigicisitiuivivixiylz

<digit> ::= 0})1}213141516})78}19

<special character> z:= #]=1*|/]1*¢|<bar>{#|<{<==~=1>={>]:={(]) 100}]
el d Tt "IKLID>] Lt 1<blank> €| €]
<opening rector bracketd>|
<closing vector bracket>

<bar> ::= | =

<blank> ::= "one blank space"

<opening vector bracket> ::= <]

<closing vector bracket> ::= >

Notes:

(I) An implementation may allow the use of any other symbols (e.g.,
the Russian or Greek alphabet) in addition to the letters
defined above.

(IT) () <=> , 3 00 <==> INFINITY
1.2. Basic Elements of The Language
1.2.1. Identifiers and reserve words
<identifier> 3= <letter> $<<idchar> LIST>$ | <identifier>*
<idchard> ::= <letter> | <digit> | _

Jdentifiers bare no Inherent meaning, but are used to represent ,
simple variables (see 3.1.2), expressions (see #.8), labels (see 8.8.1),
and procedures (see S«1). The scope of identifiers 1is controlled by the
block structure of the 'program (see 4.1).

» JSwtantifiers must start with a letter, followed byany combination of
letters, digits, and underscores: they ray end in one or more single ,

primes (apostrophes). Identifiers may not contain blanks. There is no
restriction on the length of . identifiers.

Oct. 70, p. 4

The following reserved words have special meaning and aay not
be used as identifiers:

AND ELSE LET RETURN
ANSWER EMPTY LOGICAL ROW
ARITHNMETIC END LOWER SCALAR
ARRAY EXECUTE MATRIX SPARSE
BEGIN EXTERNAL MOULT THEN
BLOCK FALSE NANE TRIANGULAR
BY FOR NOT TRUE
CHARACTER FUNCTION OR UNDEFINED
COLUMN GIVEN OTHERW¥ISE UPPER
DEPENDENT GO TO PARTITION VALUE
DEFINE IF PROCEDURE VECTOR
DIAGONAL IN PROGRAMN WHERE
DO INDEPENDENT RECTANGULAR WITH
DOMAIN INLINE RELEASE
DIMENSIONAL IS RESULT

Examples: CSA, BASIC_VARIABLES, X, X', X'*

1.2.2. Digit strings
<digit string> ::= <<digit> LIST>

Digit strings are used to form arithmetic constants (see 3.1.1.1)
and (enclosed in patentheses) to represent labels (see 4,4.1).

1.2.3. Deliaiters

The following special characters are used as operators,
brackets, and separators:

<del imiter> ::= +)=|*|/1**|<bar> | #|<) <= =~=>=]>12=]{]) |~]

Hsl21™<<I>>1<blank> € €1
<opening vector bracket>}<closing vector bracket>

1.2.4. Character strings
<character string> s:3= <<character> LIST>

Character 'strings are used in character constants (see 3.1.1.3).
1.2.5. Blanks

A blank space is required after an identifier or reserved word which
is followed by an identifier, reserved word, or number. Blanks are not
permitted within identifers. Blank spaces are ignored, except within
character strings.
1.2.6. Comments

My sequence of characters (excluding a quote {")) enclosed in

quotes (",™ 1is treated as a blank space except within character
strings. Such comments ray be used to insert remarks into the program.

Oct. 70, p.5

1.3. The Structure Of AProgram
1.3.1. Tnsertionsand insert. statements

A program submitted by a user consists of program text modified by
insertions which yield the actual MPL program. The insertions and
insert statements (which specify where insertions aretobe made) are
editing features and are therefore-; strictly speaking, not part of the
language.

An insertion

$INSERTION <identifier>
"arhitrary text"®
$TND <"same” identifier>

will be Aeleted from the program text and the "arbitrary text" will
replace the insert statement.

$INSERT <ident if ier>

wherever it appears in the program text. After each replacement, the
resulting program text is searched for fur*ther insertions.

Example: PROGRAM SHORTTE;
$INSERTTON ALPHA
ANSWER RESULT; GO TO
$END ALPHA
DEFPINE RBRESULT == 03
LNOP: IF RESULT>20 THEN BEGIN
$INSERT ALPHA FXIT END;
RESULT := RESULTe¢1;
$INSERT ALPHA LOOP;
EXIT: END

will be transformed into

PROGRAM SHORTIE;
DEFINE RESULT := 0;
LOOP: IF RESULT>20 THEN BEGIN
ANSWER RESULT; GO TO EXIT END;
RESULT := RESULT+1;
ANSWER RESULT; GO TO LOOP;
EXIT: END

1.3.2. Programs

<program> 2:= PROGRAM $<"program" label>;$
<<program unit>; LIST>
END $<"same" label>$

<program unit> ::= <statement> | <procedure definition>

Oct. 70, p. 6

A program consists of a sequence of statements and procedure
definitions. A program acts as a block (see 4.1) and the program label
may be used in a defining statement to delimit scope (see 4.2.1). R
transfer of control to the program label causes reexecution of the

program.

Oct. 70, p. 17

SFCTION 2. ATTRIBUTES and VALUES

The quantities on which the program operates are each characterized
by a set of attributes and a (set of) value(s). A scalar (SCALAR)
quantity represents a sinyle value; a non-scalar (VECTOR, MATRIX, ARRAY)
quantity represents a set of values, a single value corresponding *+o
each element of an underlying ordered domain. The range of possible
values is specified by the type attribute, the underlying domain by the
domain attribute,

Attributes are associated with variable names in defining statements
(see 4.2.1). Values are assigned to variables (see 3.1.2) in defining
statements and assignment statements (see 4.3). The attributes and
value(s) associated with expressions {see 3) are determine? by the rules
for operators (see 3.2).

<attribute> : := <type attribute> | <dimensionality attribute> |
- <domain attribute) { <shape attribute>

<trvpe attribute> ::= ARITHMETIC | LOGICAL | CHARACTER |
<reference variable attribute> |
<procedure variable attribute>

{reference variable attribute> ::= (<<attribute> LIST) |
t<type attribute>$ (PARTITION $< (<,LIST>) BY LIST>3})

<procedure variable attribute> ::= (<procedure head>)

<dimensionality attribute> ::= SCALAR | VECTOR | <matrix attribute> |
$<digit string>-DIMENSIONALS$ ARRAY

<matrix attribute> : := MATRIX | ROW VECTOR { COLUMN VECTOR
<domain attribute> ::= $WITH DOMAIN$ < BY LIST>

 ::= EMPTY | <SA expression> | <VA expression> |
DOMAIN (<expression>) | <"{VECTOR) VECTOR"™ expression>

<shape attrihute> ::= DIAGONAL | RECTANGULAR | "PPER TRIANGULAR |
LOWER TRIANGULAR | SPARSE

2.1 The Type Attribute

" The type attribute specifies the range of possible values. The
value UNDEFINED used in initialization is of universal type.

2.1.1. Simple types (ARTTHMETIC, LOGICAL, CHARACTER)

TYPE VALUE CAN BE

ARITHMETIC numeric, 00, -00

LOGICAL TRUF, FALSE (truth values)

CHARACTER any character provided by an implementation

Oct. 70, p. 8

2.1.2. Reference types

The reference variable attribute specifies the range of possible
values as the collection of all quantities whose attributes are
consistent with the attributes specified (or defaulted (see 4.2.1))
in the attribute list.

2.1.3. Procedure types

The procedure variable attribute specifies the range of possible
values as the collection of all procedure definitions (see 5.1) with
procedure head compatible with the specified procedure head. Two
procedure heads are compatible if their formal input (return)
parameter (s) agree in number and specified attributes.

-2.2. The pimensionality Attribute

The dimensionality attribute specifies the dimension (number of
component domains) of the associated domain for non-scalar quantities.

An ARRAY may have any number of 'dimensions. A VECTOR is a
1-DIMENSIONAL ARRAY; a MATRIX IS A 2-DINENSIONAL ARRAY. A RrOW (COLUMN)
VECTOR is treated as a special kind of MATRIX. For completeness, ve
define a SCALAR as a O0-DIMENSIONAL ARRAY.

The components of a REFERENCE ARRAY are themselves arrays. All
components of a reference array must have the same type and
dinensionality but they can differ in size. In order to access the
scalar elements of the components of a reference array two sets of
subscripts must be used (see 3.1.2.1).

APARTITIONED MATRIX is a two-dimensional reference array whose
components are matrices. All components in a row of a partitioned
matrix must have the same number of rows and all components in a column
must have the same number of columns, so that a 2 by 3 partitioned
matrix can be represented by a diagram:

P(1,1) P(1,2) P(1,3)

| P(2,1) i P(2,2) | P(2,3) |

2.3. The Domain Attribute

The domain attribute specifies the associated domain for non-scalar
quantities, Domains are restricted to Cartesian products of component

Oct. 70, p. 9

domains. A component domain may he any finite (possibly empty),
strictly increasing sequence of integers. A component domain of the
form <{1, 2oz +M> 1s said to be canonical. A domain is canonical if each
component domain is canonical.

The span EMPTY specifies the empty component domain. The span <SA
expression> specifies the component_domain <|1,. ..,<SA expression>|>,
The span <VA expression> spacifies the component domain <VA expression>.
The span DOMAIN (<expression>) specifies a sequence of component
domains, namely the component domains associated with the expression.
The span <"™(VECTOR) VECTOR" expression> specifies a sequence of
component Romains, namely the vector-valued components of the <" (VECTOR)
VECTOR" expression>.

2.4. The Shape Attribute

- The shape attribute is used to economize on the space required to
store large Adata structures and to produce more efficient code to handle
then.-

Oct. 70, p. 10

SECTION 3. EXPRESSIONS

An expression is a rule for computing a (set of) value(s) by
executing the indicated operations on the values represented by the
operands ofthe expression. In this section, we shall describe the
basic operands of expressions, the allowable operations on them, and
finally the syntax and manner of evaluation of expressions.

We shall use the following abbreviations to denote special classes
of expressions:

for arithmetic

for logical

for character

for reference type

for procedure type

for "scalar valued"
for "vector valued®

<<w»wmoXQ Lt >

Thus, the symbol <SA expression> used in the preceding section
abbreviates <"scalar valued” arithmetic expression>.

3.1. Opetand;'

3.1.1. Constants

3.1.1.1. Arithmetic constants

<nuaber> ::= <number base> $<exponent>$

<number base> ::= <digit string> | <digit string>. | .<digit string> |
<digit string>.<digit string>

<exponent> s::= E Wadding operator>$ <digit string>
<adding operator> ::= +|-
Examples: 1970, 3.1415926536, 6.0287B+23, 6.6254E-27
3.1.1.2. Logical constants
<logical value> ::= TRUE | FALSE
3.1.1.3. Character constants
<character constant> ::= <opening character quote>
<character string>
<closing character quote>
<opening character quote> ::=

<closing character quote> ::= >

Example: <<NOW IS THE TIME FOR ALL PARTIES TO COME TO THE AID OF MAN>>

Oct. 70, p. 11

A character constant is a CHARACTER VECTOR (with canonical domain)
whose componentvalues are the characters in the string. The character
string may not contain the sequences <€ or >»>», Blank spaces are valid
characters.

3.1.2. Variables

<variable> 2:= <simple variable> [<subscripted variable>

<simple variable> ::= <identifier> | <variable synonym>

<subscripted variable> : := <variable> (<<range>, LIST>)

<range> ::= <SA expression> | <VA expression> | *

Examples: A13_B, subvector (*), X {(3-3),

SUBMAT (*,<|3,4,5]>),ARRAY_EL (6,B/5,u%*X,8),
SUBARRAY (*,*,%,3), REFARR (3) (*,5,6)
PART-MATRIX (5,6) {*,<12,8,9,1>)

Variables represent storage locations where values are stored
which may change during execution of the program. At any given time
the value {or the ordered set of wvalues) associated with the var-
iable is the last value(s) assigned to the variable.

Note that a variable may be a scalar, vector, matrix, or array.
3.1.3. Vector generators
<vector generator> ::= <N-tuplet> | <index range> | <set generator>

<N-tuplet> ::= <opening vector bracket>
<<expression>, LIST>
<closing vector bracket>

<index range> ::= <opening vector bracket>
: <SA expression>, $<SA expression>,$...,<SAh expression>
<closing vector bracket>

<set generator> :: = <opening vector bracket>
<expression><FOR phrase>
<closing vector bracket.>

3.1.3.1. N-tuplets

The expressions listed must be scalars or vectors all of the same
type. The n-tuplet is a vector (with canonical domain) of that type
whose set of values is the concatenation of the values of the scalars
in the list and the sets of values of the vectors in the list.

Examples:

<]TRUE, A OR B, =D, XKY|>
<] <KJOED>>, KKKIND>D>,KKAGE20>> >

oct. 70, p. 12

<|1,a-b,-3.5,<1.67E-3,e,12.5|>1> is the same as
<|<{t,a-b,~3.51>,.678-3 ,e,12.51> which is the same as
<| 1,&-b,-3.5,.673-3,e,12.5])

3.1.3.2. Index ranges

An index 'range is an arithmetic vector (with canonical domain).
The set of values generated by the index range

<] VFIRST, VSECOND, ..., VLAST >
is the sequence
VFIRST, VPIRST+ 1#VSTEP, VFIRST+2%VSTEP, ... , VFIRST#N*VSTEP

where VSTEP = VSECOND-VPIRST (if VSECOWD is omitted, then VSTEP is taken
. to be one) and

N = sup | n | a>=0 and (VPIRST+n*VSTEP-VLAST)*VSTEP <= 0 {.
Yf (VFIRST-VLAST) *VSTEP > 0, then the set of values generated is empty.

Examples: <171,0¢e,751> = <}71,72,73,74,751>
<l001.0.3,o..,008'> = <'o-1'0¢30005'007‘)
<'-"5'..|,-2'> =<!7'5'3,1'-1'>
€} 34000,01> is EMPTY,

3.1.3.3. Set generators

A set generator yields a vector having as many components as are
determined by the <POR phrase> (see 4.7). The values of the components
are given by the value of the <SA expression> as modified by the
successive values of the controlled variable of the <FOR phrase>. The
identifier denoting this controlled variable is local to the set
generator.

Example:) 1*%2 POR i=<C{1,00e,61> 2 1 == 4 |>
gives <} 1,4,9,25,36 {> with domain <{1,2,3,5,61>

3.1.4. Procedure calls

- A procedure call (see 5.2) may be used as an operand in an
expression provided that the procedure has precisely one formal return
parameter. The attributes and value(s) are taken from the actual return
parameter.

3.1.5. Relations

<relation> s3= <A expressiond><relational operator><& expression> |
<C expression><equality operator><C expression> |
<S expression> IN <V expression> |
<S expression> NOT IN <V expression> |’
<V expression> IS ERPTY |
- <variable> IS UNDEFINED

Oct.70, p, 13

<relational operator> ::= <equality operator> | < | <=] >=|)>
<equality operator> z:1:= ~=| =
*) IN, NOT IN <-->€ ,¢

Examples: 3.5< A+F(B+C), <<HUGO>> =~= <<HUGO >>,
2 TN <18,6,3,-1,21>, X IS UNDEFINED,
<1 10,000, 1> IS EMPTY

Relations are operands of logical expressions.
Their values are determined as follows:

(I) The two operands OP1,0P2 of an equality operator may
differ in kind and size.

OP1=0P2 is TRUE if oP1 and 0P2 have the same dimensionality and size
and every pair of corresponding components of them is equal, and
FALSE otherwise.

OP1-+=0P2 is TRUE if and only if OP1=0P2 is false.

Note that this implies for character tests that in the example
above, thevalud of <<HUGO>> -~= <<HUGO >»> is FALSE because of the

unequal length of the character strings.

(IT) If the relational operator is not an equality operator, then
the two operands must have the same dimensionality and size. The result
is TRUE if the relation holds for every pair of corresponding component-s

and FALSE otherwise.

(ITT) <S expression> TN <V expression> is TRUE if the value of the §
expression 1s the value of at least one of the components of the V
expression, otherwise it is FALSE.

Note that the result is FALSE if the V expression is EMPTY.

(YIV) <V expression> IS EMPTY is TRUE if the result of the V
expression is a vector with no components (i.e, it has the domain

_attribute EMPTY (see 2.3)) and FALSE otherwise.

(V) <variable> IS UNDEFINED is TRUE if and only if not all of the
components of the variable have been assigned a value yet,

3.1.6. Synonyms
<synonym> t:= <identifier> $§ (<<argument>, LIST>) $
<argument> s:= <expression>

<variable synonym> ::= <synonym> "defined by a let statement to stand
for a variable"

<expression synonym> ::= <synonym> "defined by a let statement to stand

for an expression which is not a
variable"

Oct. 70, p. 14

A synonym must be defined by a symbol suhstitutar in a LET
statement or WHERE phrase (see 4.8) before it can be used, and is not
defined outside the block containing the LET statement -(see also 4.1).

The synonym is replaced by the corresponding expression (enclosed in

parentheses). Variable synonyms,"” i.e., synonyms that stand for a
variable may also be used on the left side of an assignment statement
(see 4.3). In this case they are not enclosed in parentheses when

the substitution is made.

If the synonym depends on arguments, they will be substituted
(enclosed in parentheses) for the dummies occuring in the expression.
The modified expression will then replace the synonym.

The result of this replacement must be an allowable operand for the
expression containing the synonym

Examples :

LET A(J) == 2%jtloop(]) ; C = D - A(i+3) ;
is the same as C = D = (2% (i+3)+loop(i+3)) ;

LET S := <] £(j) FOR J IN T : j == 21> ;

C = <{2#i+¢3 FOR i IN SI> ;

is the same as

C = <) 2*#i+3 FOR 1 1IN <} f(j) FOR j IN-T 2 §~=2 |>1> ;

3.2. Operators
3.2.1. Arithmetic operators
<arithmetic operator> ::= #|=-|%]/|%*

The basic arithmetic operators (+¢,-,*,/.**) are defined for
ARITHMETIC SCALAR operands and have the conventional meaning (addition,
subtract ion, multiplication, division, and exponentiation). The

arithmetic operators defined for non-scalar arithmetic operands may be
described in terms of these basic arithmetic operators.

3.2.1.1. Unary operators (¢ and =)

The unary operators ¢+ and = are defined for all non-scalar
arithmetic operands and are performed componentwise, leaving the
dimensionality and domain of the operand unchanged.
3.2.1.2. Rinary operators
3.2.1.2.1. Addition (#) and Subtraction (=)

The binary operators ¢ and = are defined for all pairs of non-scalar
arithmetic operands with the same dimensionality and domain. The.

indicated operation is performed componentwise, leaving dimensionality
and domain unchanged.

Oct. 70, p. 15

3.2.1.2.2. Scalar multiplication(*) and division (/)

One operand (the first for division) may be any arithmetic
operand, whereas the other must be a scalar and in the case of
division not zero.

The dimensionality and domain 04 the result are taken from the
(dimensioned) operand and the value(s) obtained by multiplying
{dividing) each of its elements by the scalar.

3.2.1.2.3. Exponentiation (**)

If OP1 and 0OP2 are scalars, then 0OP1**%0P2 is defined if
(1) oP1> 0
(2) ot = 0 and OP2 > 0

(3) oP1 < 0 and CP2 is an integer.

Tf OP1 is a square matrix, then OP1**0P2 is defined if 0P2 is a
positive integer ¥ and denotes the result of Nmultiplications of 0OP1by
itself; OP1**0 denotes the identity matrix with the same number rows anti
colunns,

3.2.1.2.4, Inner product (¥)

The inner product of two non-scalar operands is algebraically a
generalization of matrix multiplication an? the vector inner product.
Let

A p=-DIMENSTONAL ARRAY M(1) BY ... BY M(p)
B g-DIMENSIONAL ARRAY N{1) BY ... BY N(q)

denote the two operands. Then the result C = A*B is defined if and only
if M(p) = N(1):

C (p*q-2) -DIMENSTONAL ARRAY
M(1) BY «ss RY M(p=1) BY N (2) BY ... BY ¥ (q)

C{I(M) goeesI(p=1),3(2)s0ee,d{D]))
= SUM (A(I(1)geee,I(p~1),k)*B(k,J (2) 4eee,J(3)) FOR k IN M(p))

for all I(i) IN M(i), 1 = 1,eee,p~1
J(3) IN N(F), §J = 2466449

In -particular, the inner product of two vectors (matrices) reduces to
the vector inner product (matrix multiplication). The inner product of
a matrix and a vector or a vector and a matrix is a vector.

3.2.2. Concatenation

<concatenating operator> ::= <horizontal concatenating operator> {
<vertical concatenating operator>

<horizontal concatenating operator> ::= |

<vertical concatenating operator> ::= &

Oct. 70, p. 16

Concatenation is defined for operands of all three types. Both
operands of a concatenating operator must have the same type which will
be the type of the result.

The operands of horizontal and vertical concatenation can be scalars
(interpreted as 1byl matrices) or matrices (including row and column
vectors). The result is the matrix (with canonical domain) obtained by
appending the elements of the second operand at the right side (or in
the case of vertical concatenation at the bottom) of the first operand.
The tvo operands of |musthave the same number of rows, the tvo
operands of # must have the same number of columns.

Examples: Let A be the 2 by 3 matrix |1 3 4}
16

-2 4y
B the 2 by 4 matrix 5 7 9 11
186 4 2y
C the rov vector (0 1 0 1)
then A|B is the 2 by 7 matrix 11 34579 11
- (6 2 4 86 4 2|
B#C is the 3 by 4 matrix 15 7 9 11
18 6 & 24
1010 W

61C}8 is the rov vector 60 1 0 1 8)
3.2.3. Logical operators
The basic logical operators (-, AND, OR) are defined for LOGICAL
SCALAR operands and have the conventional meaning (negation,
con junction, and disjunction). The logical operators defined for

non-scalar logical operands may be described in terms of thesebasic
logical operators.

3.2.3.1. Negation {(-)

The unary operator NOT is defined for all non-scalar logical
operands and is performed componentvise, leaving the dimensionality and
domain of the operand unchanged.

*) - <==> NOT
3.2.3.2. Binary logical operators
<logical operator> :2:= AND | OR { NOULT
3.2.3.2.1. AND and OR
The binary operators AND and OR are defined for all pairs of

non-scalar logical operands with the same dimensionality and domain.
The indicated operation is performed componentwise, leaving the

Oct.70, p. 17

dimensionality and domain unchanged.

Example:
(TRUE, A OR B) AND (PALSE,TRUE)
results TN (FALSE, A or B)

X2.3.2.2. lLogical inner product (HbLT)

The logical inner product of two non-scalar logical operands is
defined analogously to the (arithmetic) inner product except that
multiplication is replaced by AND and summation is replaced by OR.

Examples: Suppose A is |TRUE TRUE |
JFALSE FALSE]})

- and B IS (FALSE,TRUE)
then A MULT B is the vector (TRUE,FALSE)
and B MOLT A is the vector (PALSE,FALSE).
3.2.8, Subscripting

Subscripting as an operator is defined for all non-scalar operands
(a scalar operand with a non-scalar reference value is treated as a
non-scalar operand with the attributes and set of values associated
with the non-scalar reference value). The number of subscripts must
agree with the diaensionality of the operand. A <SA eXxpression>
subscript specifies one element of the corresponding component domain.
A <VA EXPRESSION> subscript specifies a subdomain of the corresponding
component domain. A #* subscript specifies the entire corresponding
component domain. The type of the result is the type of the operand.
The domain of the result is the Cartesian product of the domains of the
vector subscripts and the component domains corresponding to *
subscripts (if all subscripts are scalar, then the domain is
&dimensional and the result 1is scalar). The (set of) value(s)
associated with the result is the specified (subset of) component (s)
of the operand.

3.3. Expressions

<expression> ::= <arithmetic expression> j <logical expression> |
<character expression> | <reference expression> |
<procedure expression>

<arithmetic expression> ::= $<adding operator>$<A operand> |
<A expression><arithmetic operator><A operand> |
<A expression><concatenating operator><A operand>

<A operand> s::= <number> | <simple variable> | <procedure call> |

<vector generator> | <expression synonym> {
(<A expression>) | <A operand> (<<range>, LIST>)

Oct. 70, p. 18

<logical expression> :3= <L operand> {
<L expression><logical operator><L operand) |
<L expressiond><concatenating operator><L operand>

<L operand> ::= <logical value> | <simple variable> { <procedure call> |
<vector generator> | <relation> {| ~<L operand> |
<expression synonym> | {<L expression>) |
<L operand> (<<range>,LIST>)

<character expression> ::= <C operand> |
<C expression><concatenating operator><C operand>

<C operand> ::= <character constant> | <simple variable> |
<procedure call> | <vector generator> |
<expression synonym> | (<character expression>) |
CC operand> (<<range>, LIST>)

<reference expression> ::= Wadding operator>3 <R operand> |
<R expression><arithmetic operator><R operand> |
<R expression><logical operator><R operand> |
<R expressiond><concatenating operator><R operand>
<R operand> ::= <simple variable> | <procedure call> {}
<vector generator> | <relation> | -<R operand> |
<expression synonym> { {<R operand>) |
<R operand> (<<range>, LIST>)

<procedure expression> ::= <P operand> | _
<P expression><{concatenating operator><P operand>

<P operand> ::= <procedure identifier> | <simple variable> |
<procedure call> | <'vector generator> |
<expression synonym> | (<P expression>) |
<P operand>(<<range>, LIST>)

Examples: (£13,-7,51>#%<]6,8,4]>) *%({F0{a,b)~3)
~VAR IS UNDEFINED AND C€>0 OR D °
<1 <<3 LITTLE BEARSD>>,<<IN>D>,KLTHED>,<KKWOO0DS>> (>

Any simple variable, procedure call, vector generator, or expression
synonym used as an

} L operand | | logical type]

1 C operand | ! character type |
{Aoperand | must have | arithmetic or logical type | .
{ R operand 1 | reference type

{ P operand | | procedure type l

If a logical quantity is used as an arithmetic operand, then TROUE is
interpretted as 1 and FALSE as 0.

The sequence of operations within an expression is generally
executed from left to right, but the order of evaluation is modified by
the following precedence rules:

Oct.70, p. 19

Each operator has an associated precedence number indicating its
binding power. Operators with low precedence numbers take priority over
operators with high precedence numbers:

Operator Precedence
subscripting , first
*,1 second
** third
x,/ fourth
+,- fifth
€g€=,=,~=,>=,>,IN,NOT IN,IS sixth
MOLT seventh
~ eighth
AND ninth
OR tenth

The expression between matching left and right parentheses is
evaluated and the value(s) used in subsequent operations. Thus any
order of execution of operations within an expression can be specified
by appropriate parenthesizing.

Oct. 70, p. 20

SECTION 4. STATEMENTS

The units of operation in ®PL are called statements. Statements are
executed in sequence, as written, except when this sequence is modified
by sequence control statements or conditional statements.

<statement> s::= <empty> | <label>: <statement> |
<block> | <compound statement> |
<variable control statement> |
<assignment statement) |
<sequence control statement) |
<procedure statement> $<WHERE phrase>$ |
<conditional statementd> |
<iteration statement> |
<static let statement) |
<dynamic let statement) |
<input statement> $<WHERE phrase>$ |
<output statement> $<KWHERE phrase>$

<variable control statement> ::= <DEFINE statement> |
<defining assignment statement) |
- <RELEASE statement>

<{sequence control statement> ::= <GO TO statement> | <RETURN statement)>
#.,1. Blocks and the Scope of Identifiers

<block> ::= BLOCK $<label>;$
<<program unit>; LIST>
END $<"same™ label)>$

<compound statement> ::= BEGIN $<label>;$
<<program unit>; LIST>
END $<"same" labeld>$

*) BLOCK,END <--> L,] ; BEGIN,END <--> L,J
BLOCK <label>; <==> <label>: BLOCK
BEGIN <label>; <==> <label>: BEGIN
END <label> <==> :<label> END

_ Blocks control the scope of identifiers by introducing new levels of
nomenclature: an identifier declared in (local to) a block represents a
unique entity within that block but does not represent that entity
outside the block. An identifier declared in an embracing block is said
to be global to the block. If an identifier is both local and global to
a block, the global meaning can not be used within the block.

Identifiers may be declared explicitly by defining statements (see
4.2.1) or let statements (see 4.8); or implicitly by their appearance as
labels (see 4.4.1) or procedure identifiers (see 5.1). Certain other
syntactic units also implicitly delimit the scope of some or all of the
identifiers declared within them in the same way as blocks:

oct, 70, p. 21

(1) The conditioned (alternative) statement of a conditional
statement acts as a block with respect to labels (see 4.4.1).

(2) An iteration statement acts as a block with respect to the
control variable (see 4.7) and labels (see 4.4.1).

{3) A procedure definition acts as a block with respect to
identifiers used as (part of) formal parameters in the procedure
head (see 5.1).

(4) The identifier denoting the control variable in a set generator
{see 3.1.3.3) or a serial actual parameter (see 5.2) is local to the
set generator or serial actual parameter.

(5) Identifiers denoting dummy arguments in a symbol substituter
are local to the symbol substituter (see 4.8).

(6) Identifiers denoting synonym names in a WHERE phrase are
local to the statement qualified hy the where phrase.

If a block is labelled, then the block lahel may optionally follow
the closing END and may be used in defining statements to delimit
scope (see 4.2.1).

A compound statement is used to group together a sequence of
statements and procedure definitions. If the compound statement 1is
labelled, then that label may optionally follow the closing END.

4.2, Variable Control Statements
4.2.1. DEFINE statements

<DEFINE statement> ::= <DEFINF phrase><<defining phrase!>, LIST> |
<DEFINE phrase><defining phrase><{qualifier>

<DEFINE phrase> ::= DEFINE $IN <"block" label>$
.<defining phrase> ::= <<variable name>, LIST> <<attribute> LIST>
<variable name> ::= <identifier> | <reference variable name>
<reference variable name> ::= <variable name>

$< {<subset specification>)<blank> LIST>S$

{<¢simple subscript>)

<subset specification> ::= <subspan> | <simple subscript>,<subspan> |
<subset specification>,<range>

<subspan> ::= <VA expression> | *
<simple subscript> ::= <<SA expression>, LIST>

Examples: DEFINE A LOGICAL 3 BY 5, B SCALAR
DEPINE C(1,6) 8 BY 8 DIAGONAL

Oct. 70, p. 22

DEFINE statements, defining assignment statements (see #.2.2), and
GIVEN statements (see 4.9) are all defining statements in the sense that
they delimit the scope of identifiers, assign attributes to identifiers
and reference variable names, and allocate storage. Defining statements
are executable; an identifier must be defined before it is referenced.

The scope of an identifier is either the innermost block containing
the defining statement or the embracing block whose block label appears
in the defining statement.

A variable name is either an identifier or a reference variable name
(a single component of a reference variable; e.g., a submatrix of a
partitioned matrix). The attributes to be associated with the variable
name may be listed in any order in the defining phrase. The type and
dinensionality attributes must be consistently defined throughout the
scope; the domain and shape my change. Hissing attributes are
. defaulted in the following manner:

type: unchanged, 1if specified in another defining statement
ARITHNETIC, otherwise

dinensionality:
unchanged, if specified in another defining statement
SCALAR, if a domain is not specified
ARRAY (with appropriate number of dimensions),otherwise

domain: BMPTY BY ... BY ENPTY, for arrays
unspecified, otherwise

shape: ROY (COLUMN), f Oor ROW (COLUMN) VECTCRs
RECTANGULAR, otherwise

%hen a variable name(s) is defined, all expressions in the defining
phrase are evaluated, the variable name(s) is released (thus the
associated value(s) are lost) (see #.2.3), and storage is allocated.
Scalars are initialized with value UNDEFINED; arrays are initialized
conponentuise with the wvalue UNDEPINED.

When program control leaves a block, all identifiers defined local
to the block are released (see 4.2.3) and "un-defined" (lose
definition).

: DEFINE STATEMENTS BAY BE QUALIPIED BY FOR phrases, IF phrases, and
WHERE phrases (see 4.3).

B.2.2. Defining assignment staterents
<defining assignment statement> ::=
<DEFINE phrase><<simple defining assignment statememt>, LIST> |
<DEFINE phrase><simple defining assignment statement><qualifier>
<simple defining assignment statement> ::=

<variable name> := <expression> $<domain specification>$ |
(<<left side element name>, LIST>) := <procedure call>

Oct.70, p. 23

<left side element. name> ::= <variable name> | _

Defining assignment statements serve as def ining statements
(see 4.2.1) as well as assignment statements (see 4.3) .

The first. form of the (simple) defining assignment statement causes
evaluation of an expression. The variable name is defined with the
attributes associated with the expression and assigned the value(s) of
the expression. The domain of the expression may be redefined in a
domain specification (see 4.3).

The second form of the (simple) defining assignment statement causes
execution of a procedure. The left side element name(s) 1s defined with
the attributes associated with the corresponding formal return
parameter (s) and assigned the value(s) of the corresponding actual
return parameter(s). An underscore appearing on the left side means
that. the corresponding definition and assignment should be omitted.

Defining assignment statements may be qualified by FOR phrases, IF
phrases, and WHERE phrases (see 4.3).

4.2.3. Release statement
<RFLEASE statement> ::= RELEASE <<variable name>, LIST>
Fxanmple: RELEASE MAT , A, B{(3,6,7)

RELEASE statements serve to deallocate storage. Scalars are
assigned the value UNDEFINED; arrays are redefined vith domain EMPTY BY
... BY EMPTY (vith the appropriate number of dimensicns) and shape
RECTANGULAR. The value(s) associated with the variable name(s) is lost.

No RELEASE statement is required before the terminating END of a
block since the END acts as an implicit RELEASE statement for all
identifiers defined local to the block.

4.3, Assignment Statements
<assignment statement> ::= <simple assignment statement> $<qualifier>$
<simple assignment statement> ::=
<variable> := <expression> $<domain specification>$ |
(<<left side element>, LTSTD) := <procedure call>
<left side element.> ::= <variable> | _

<domain specification> ::= WITHDOMAIN < BY LIST>

<qualifier> ::= <WHERE phrase> |
<<qualifying phrase>, LIST> $,<WHERE phrase>$

<qualifying phrase> ::= CPOR phrase> { <IF phrase>

*¥) 17 K== =

oct. 70, p. 24

Examples: {(a,b,c):= £ (x)
LOGIC (i) := a=e(i) OR 1i>20 POR i IN <{10,...,301>
PART (4,5) (*,4) := A*? & MAT
A 3= B*C - 3.37 * E + £|2,3,51>
X 2= AKB OR F 1IW <}6,8,9}>

Assignment statements serve to assign the value(s) of the expression
or procedure call on the right side of the assignment symbol to the
variable(s) on the left side. The variable(s) and the corresponding
value(s) must be assignment compatible:

(1) If the variable is character (logical), then the corresponding,
value must be character (logical), If the variable is arithmetic,
then the corresponding value may be arithmetic or logical (see 2.1).

(2) The variable and the corresponding value must have the same
dimensionality, except that a vector may be assigned to a
ROY (COLUMN) VECTOR and vice versa.

(3) The variable and the corresponding value must have the same
domain. If their domains differ, a defining assignment statement
(see 8.2.2) must be used.

(4) The variable and corresponding value need not agree 1in shape.

The first form of the assignment statement causes the evaluation
of an expression and assigns the value(s) to the variable on the left
side. The domain of the expression may be redefined in a domain
specification. The specified domain must be homeonorphic (corresponding
component domains have equal numbers of elements) to the domain of the
expression and compatible with the domain of the left side variable.

The second form of the assignment statement causes the execution of
a procedure and assigns the value(s) of the actual return parameter(s)
to the corresponding (in order from left to right) left side element(s).
The number of left side elements must be the same as the number of
formal return parameters in the procedure definition (see 5.1). All
variable(s) on the left side must be assignment compatible with the
corresponding formal return parameter(s) . An underscore appearing on
the left side means that the corresponding assignment should be omitted.

Examples: (Ret 1, _ , Ret 3,. _) 2= FO(x-y)
(FU0 has 8 return parameters, but only the first and third of

these are of interest).

(Obijective value, Basic-variables, Optimal-x,Peasibility) 3=
SIMPLEX (Matrix, Costs, RAS, BASIC_VARIABLES)

The effect of a simple assignment statement (DEFINE statement,
defining assignment statement) modified by POR phrases, IF phrases, and
symbol substituters \

<simple assignaent statement> <qualifying phrase "1*> ...
<qualifying phrase "a"», WHERE <<symbol substituter>, LIST>

Oct. 70, p. 25

canbe described by the following sequence of MPL statements:

LET <<symbol substituter>, LIST>;
<qualifying phrase "a">,

' ;qﬁalifying phrase "1">,
<simple assignment statement);

except that identifiers denoting synonym names in the let statement are
defined locally.

Examples: E := D* A WHERE A = (BJC) & (C|D)
X 2= X'#+1 WHERE x = XV
INCIDENCE (i,y) := TROE IF i IR ARCS (y)
A (P_ROW,y) := A(P_ROW,y) / A(P_ROW,P_COL)
FOR y IN COL_DIM (A)
(Y (i), 2 (i)) := FUNCTION(i) FOR i IN S

4,4, Sequence Control Statements

4.8.1. [Labels and GO TO statements
<label> ::= <identifier> | (<digit string>)
<G0 To statement) :3= GO TO <label>

A GO T0 Statement causes a transfer of control to the statement
immediately following the label. Since labels are inherently local
(see 8.1), NO CO TO Statement can lead into a block, a procedure
definition, the conditioned (alternative) statement of a conditional
statement, or an iteration statement.

8,4.2. RETURN statements

<RETURN statement) ::= RETURN

. A RETURN statement causes a transfer of control from a procedure
back to the main program or procedure calling that procedure. A RETURN
statement may not occur outside a procedure definition.

NO RETURN statement 1is required before the terminating END of a
procedure definition {see 5.1) since the END actsas an implicit RETURN
statement.

4.5. Procedure Stateaents
<procedure statement> ::= EXECUTE <procedure call>
Example: EXECUTE GENERALIZED-UPPER-BOUND (m,n,1,A,G,Db)

A procedure statement causes the execution of a procedure (that

specified in the procedure call (see 5.2)) with noreturn parameters.

A procedure with return parameters may be called in an assignment
statement (see 4.3).

Oct. 70, p. 26

4.6. Conditional statements

<conditional statement> ::= <simple conditional statement>
$SOTHERWISE <alternatioe statement>$

<simple conditional statement> :3= <IF phrase> THEN
<conditioned statement>

<IF phrase> ::= IF <SL expression>
<conditioned statement> ::= <statement>
(alternative statement> s::= <statement>
*) THEN <=- , ; OTHERWISE <--> ELSE
- Example: I? X(i) = LOWER_BOUND(i) THEN
{_IF GRADIENT (i) > 0, MODIFIED_GRADIERT(i) := O_}|
ELSE IP X (i) = UPPER_BOUND(i) THEN
{_IF GRADIENT (i) < 0, MODIFIED_GRADIENT(i) == 0_|
ELSE MODIFTED_GRADIENT(i) := GRADIENT (i)
A simple conditional stateaent is executed as follows:
(1) The <SL expression> 1s evaluated.
(2) 1f the value of the <SL expression> is TRUE, then the
conditioned statement is executed; otherwise the conditioned
statement is skipped and the next statement is execute&

The effect of a conditional statement of the form

IF <SL expression> THEN <conditioned statement>
ELSE <alternative statement>

can be described by the following sequence of MPL statements:

IF -~<SL expression> THEM GO TO ELSE_LABEL;

<conditioned statement>; GO TO NEXT_STATEMENT;

ELSE-LABEL: <alternative statement)>;

NEXT_STATEMENT:
‘each BLSE <alternative statement) is to be paired with the innermost
unpaired <simple conditional statement). The resulting syntactic
ambiguity, known as the dangling ELSE problem, can be resolved.

Reference: Paul W, Abrahars, ™A Final Solution to the Dangling ELSE of
ALGOL 60 and Related Languages," Comm, ACK O (Sept. 1966), 679-682.

4.7, Iteration Statements

<iteration statement> s:3= <POR phrase> DO <iterated statement>

Oct. 70, p. 27

<FOR phrase> ::= FOR <control variable> IN <VA expression>
$: <SL expression>$

<control variable> ::= <identifier>
<iterated statement> ::= <statement>
x) DO <-- ,

Examples: FOR i IN <§1,...,N1> ¢ i IN BASIS DO
CMIN := MIN (CMIN , C(i) =~ PRICES * A(*,i))
FOR x IN NODES, FOR y IN NODES :y IN SUCCESSOR(x),
CONNECTION (x,y) = TRUE

An iteration statement causes the iterated statement to be
repeatedly executed for a sequence of zero or more values of the
control variable in the FOR phrase. The control variable is implicitly
declared as an ARITHMETIC SCALAR local to the iteration statement; thus
its value is lostonexit wunless it is assigned to a globally define?
variable. The control variable may not be changed by assignment within
the iterated statement.

The sequence of values of the control variable is evaluated before
the iterated statement is executed, The effect of an iteration
statement can be described by the following sequence of MPL statements:

LET i := <control variable>;

DEFINE S := <] <{i FOR 1 TN <VA expression> $:<SL expression>${> |>;

I S IS EMPTY, GO TO NEXT-STATEMENT;

DRFIN® COUNT := 1;

LOOP: DEFINE 1 := S(COUNT); <iterated statement>;

COUNT := COUNT + 1;

IF CCUNT <= LENGTH(S), GO TO LOOP;

NEXT-STATEMENT :

4.8, Let Statements
<(iynamic let statement> ::= LET $IN <"block" label>$ <substitution list>
<static let statement) s::= $SLET $IN <"block" labeld? <substitution 1list>

<substitution list> ::= <<symbol substituter>, LIST> |
<symbol substitute0 <WHERE phrase>

<WHERE phrase> ::= WHERE <<symbol substituter>, LIST>

<symbol substituter> ::= <synonym name> := <expression>

<synonym name> ::= <synonym identifer> $ (<<dummy argument>, LIST>)$
<synonym identifier> s::= <identifier>

<dummy argument> ::= <identifier>

Oct. 70, p. 28

Examples: LET CBV := COST(BASIC-YARIABLES)
LET GUB(K) 2= <{G(K) seee,G{k¢N)=1]>

A (static/dynamic) let statement serves to declare a
(static/dynamic), synonym name. The scope of the synonym identifier is
either the innermost block containing the let statement or the embracing
block whose block label appears in the let statement.

A static synonym name acts as a compile-time macro: the erpressian
replaces (see 3.1.6) the synonym name in the source text between the let
statement and the end ofthe block or another let statement redeclaring
the synonym name.

A dynamic synonym name acts as an expression variable: the value
(an expression) replaces (see 3.7.6) the synonym nane at each run-time
reference within the scope of the synonym identifier. The dynamic let
statement serves as an assigneent statement for dynamic synonym names.

4.9, INPUT s OUTPUT Statements

<input statement> :3= GIVEN $IN <"block" label>$
~ <<defining phrase>, LIST>

<output statement) s:= ANSWER <<expression>, LIST>

Examples: GIVER @ ,n,1 SCALAR, AMATRIX a by n, G VECTOR 1le1,
b COLUMN VECTOR m
ANSWER Status, BV, XBY, YBP, s, KV, GUB_BV

The INPUT/OUTPUT provided in MPL at present is rudimentary and
intended merely as a first step toward more powerful concepts.

The GIVEN statement serves as a defining stateaent (see 4.2.1) as
well as an input staterent. The variable name(s) is definméa-amna
assigned the corresponding input value(s). The type and.dilensional1ty
of the variable name(s) must be specified in the defining phrase of the
GIYEN statenent;: the domain and shape ray be specified in the defining
phrase or vi.ll be taken from the data. The data is assumed to be r
labelled with the variable name(s) and to contain information on type,
dimensionality, domain, and shape. These data attributes mst be
consistent with those specified im the defining phrase.

The ANSWER statement produces labelled printed output; i.e., the
"name® of the expression precedes the value. Thus the statement

ANSWER x, SIN(2%PI*X)

vill produce the printed output

X = 0K ERE, SIN(2¢*PI*X) = Sxsssasrrs .

Oct.70, p. 29

SECTION S. PROCEDURES

Procedures are subprograms that can be defined anywhere in the
program and which are activated each time a procedure call is
executed. When the procedure is called the formal parameters are
replaced by actual parameters.

5.1. ProcedAure Definitions
<procedure definition> ::= EXTERNAL <procedure heal> |
$INLINES (procedure head>; <procedure hody> |
<one-line procedure definition>
<procedure head> ::= $<{procedure attribute>$ PROCEDURE
$<formal return parameters> :=$ <procedure identifier>
$ (<Kformal input parameter>, LIST>)$
$WHERE <<parameter specification>, LIST>$
<procedure attribute> ::= INDEPENDENT | DEPENDENT | FUNCTION
<procedure identifier> ::= <identifier>
<formal return parameters) ::= <identifier> | {<<identifier>, LIST>)
<formal input parameter> ::= <identifier> | <serial formal parameter>

<Serial formal parameter> ::= <"E"identifier> FOR <bound identifier>
IN <"vAmidentifier> $:<{"SL"identif ier>$

<bound identifier> ::= <identifier>
<parameter specification> ::=
<<identifier>, LIST><<attribute> LIST><parameter type> |
<<identifier>, LIST> $<procedure attribute>$ PROCEDURE
<parameter type> ::= VALUE | NAME | VALUE RESULT | RESULT | <empty>
<procedure body> ::= <statement>
<one-line procedure definition> 2:= <<attribute> LIST> $INLINES
$<procedure attribute>$ PROCEDURE
<procedure identifier> ${<<formal input parameter>, LIST>)S$
:=<expression> $WHERE <<parameter specification>, LIST>$
*) FPUNCTION PROCEDURE <=- FPUNCTION

5.1.1. EXTERNAL procedures
The attribute EXTERNAL denotes a procedure that has to be fetched

from a library outside the program; the procedure head in the program
supplies only the neccessary information on its parameters.

Oct. 70, p. 30

S.1.2. INLINE procedures

A procedure can be specified INLINE so that if the implementation
permits, the statements corresponding to the procedure asmodified by
the actual parameters (see 5$.2.) will be inserted at the place where the
procedure call occurs in the program. This enables the programmer to
avoid the overhead associated with procedure calls if he desires.

This process should, of course, Plot lead to a recursive situation.

5.1.3. The procedure head

The procedure head contains the name of the procedure and
information (at least type and disensionality) about its parareters. In
order to conform to mathematical function notation, the procedure head
is written as an explicit assignment to the return parameters. The input
and return parameters are formal parameters i.e. the identifiers used
here do not represent actual quantities and have to be replaced by
actual parameters each time the procedure is called.

Each formal parameter must be specified in the parameter
specification list. If a formal parameter represents a variable, at
least its type-and dirensionality must be indicated. The effect of the
attribute VALUE is explained in (5.2.1). A serial formal paraaeter
represents a list of actual input parameters depending on a POR phrase.
The <bound identifier> represents the control variable of the FOR
phrase. Imn a serial formal parameter only the attributes of the first
identifier need be specified; the attribotes of the cthers are implied
by their position in the FOR phrase(see 5.2.). The scope of the formal
parameters in the procedure head is the procedure definition. The
default parameter type is NAME independent and independent procedures.

S.1.8%. The procedure body

The procedure body consists of the actual statements to be executed
vhen the procedure is called (see 5.2.).

The procedure body is the scope for all identifiers defined within
the procedure. The scope of identifiers can not be extended outside a
procedure body. Procedure definitions may be nested, i.e. a procedure
body may contain procedure definitions.

S.t.5. The procedure attributes

The procedure attributes specify subclasses of procedures with
certain restrictions as to their parameters and to the way they
are handled.

The wmost general case is a DEPENDENT procedure. A DEPENDENT
procedure has free access to its environment and can use or change every
quantity defined in the block containing .the procedure definition.
DEPENDENT is the default value for the procedure attribute.

5.1.5. 1. POUNCTION procedures

PUNCTION procedures are closely related to the mathematical concept
of a function, i.e, they compute one or more return values from one or

Oet. 70, p. 31

more input parameters.

(i) They may not refer to any variable or label whose definition
occurs outside the function procedure.

(1i) They may reference function procedures only, i.e. all procedure
parameters of a function and all procedures defined inside a
function or called from within a function must themselves be

function procedures.

(1ii) They may not contain any input/output statement except ANSWER
statements (4.9).

(iv) No input parameters may be changed within the body of a
function procedure. All input parameters are treated as 1if
they were VALUE parameters. Assignment of values to input

parameters is illegal.

v) FOUNCTION procedures may not have serial formal parameters.

€.1.5.2. INDEPENDENT procedures

INDEPENDENT procedures are identical to FUNCTION procedures except
that they may have NAME parameters and serial formal parameters and may
refer to both FUNCTION and INDEPENDENT procedures.

5J.2.3 One-line procedures

The one-line procedure is provided as a short way ofwitting a
procedure which computes an expression (see 3). The wvalue of this
expression is returned to be used as an operand or in an assignment
statement. The <<attribute> LIST> specifies the attributes of the

computed expression.

5.1.6. Examples of procedure heads

PROCEDURE (OPT-X, OPT-7Z) == SIMPLEX(A,RHS,COSTS) where A
MATRIX, OPT_X,RHS COLUMN VECTOR,
COSTS ROW VECTOR, OPT_Z SCALAR

INLI N-E PROCEDURE RSLT 2= MAXIMUM (Y (i) FOR i IN S :L)
where Y{i), RSLT SCALAR

FUNCTION PROCEDURE A= EXP (B) WHERE A,B MATRIX

%5.2. Procedure Calls

<procedure call> ::= <procedure identifier>
$ ((<actual parameter>, LIST)$

<actual parameter> 3= <expression> | <procedure identifier> |
<serial actual parameter) |
"meaning the corresponding actual parameter
is omitted™

Oct. 70, p. 32

<serial actual parameter> ::= <expression><FOR phrase>

A procedure call causes the execution of the statement of the
corresponding procedare body after these statements have been modified
by actuwal parameters. Por a one-line procedure the expression 1is
considered the body.

Procedure calls may occur in the following contexts:

(1) A procedure without formal return parameters may be
called in a procedare statement (4.5).

{II) A procedure with one return parameter may be used as an
expression operand (3.1.%). In this case a dummy variable
is created having the attributes of the return parameter,
and it is used as an expression operand after the completion
of the procedure call.

(II?) Procedures with one or more return parameters can be called in
an assignment statement (4.3). In this case the actual return
parameters must he assignment compatible with the
corresponding formal return parameter. Upon completion of the
procedure call, the actual return parameters are assigned the
final values of the corresponding formal parameters. If an
actual return parameter is omitted (represented by"_"), then
no assignment is made. If no value has been computed for the
formal return parameter, then the actual return parameter will
be UNDEFINED.

The number of actual parameters (both input and return parameters)
must be the same as the number of formal parameters specified in the
procedure head. PBach actual parameter "replaces" the formal parameter
in the same position and must be compatible with it in terms of its
attributes (see 5.2.1, 5.2.2, S.2.3 for details).

The effect of the execution of a procedure call is equivalent to
the effect of executing the statements of the procedure body modified
as illustrated in the rest of this section ("equivalent" because an
implementation may choose any optimization strategy yielding the
sape result). After all modifications are completed, the procedure
body must yield a sequence of valid MPL statements.

5.2;L VALUE parameters

Input parameters representing a variable may be specified VALUE
in the procedare head.

In general, for each VALUE parameter there is an internal
procedure variable having the same attributes as the corresponding
formal parameter. (In certain cases, in particular for FUNCTION
PROCEDURES, this may be implemented differently).

Before execution of the procedure body begins, each actual
parameter is evaluated-and the result is assigned to the corresponding

Ooct. 70, p. 33

internal variable. Note, this implies that the internal variable
(whose attributes are given in the procedure head) and the actual
parameter must be assignment compatible as defined in 4.2.

If the actual parameter is omitted (i.e. it is "_", the underscore)
no assignment is made and the formal parameter will be UNDEFINED.

Any occurrence of the formal parameter identifier inside the
procedure body will then he replaced by the corresponding internal
parameter.

If the parameter were to be changed within the procedure body by
assignment, this will affect the internal variable only and not the
actual parameter itself.

5.2.2. NAME parameters

All procedure parameters and those parameters denoting variables
that have not been specified VALUE are called NAME parameters. The way
in which actual name parameters replace any occurrence of the
corresponding formal parameters is best described as textual
substitution, i.e.” the "name" of the actual parameter (enclosed in
parenthesis wherever this 1is syntactically necessary) replaces the
formal parameter,

Any change made to the formal parameter within the procedure hody
is reflected by the same change occurring to the actual parameter
(note the difference from VALUE parameters).

Actual parameters called by name must have their attributes
specified in the parameter specification. Actual procediure parameters
mist agree 1in their procedure attributes with the corresponding formal
parameters.

It is possible, but not advisable, to omit a NavE parameter. If
program control reaches a reference to an omitted NAME parameter, then
an execution error will result.

5.2.3. Serial actual parameters and serial formal parameters
A serial actual parameter (SAP) is of the form
<expression><FOR phrase>

A SAP does not stand for a vector, but rather for a list of
expressions controlled by the POR phrase. The control variable (CV)
of the POR phrase has as its scope the SAP itself, i.e. any occurrence
of the €V within the expression represents only the CV and not any
other identifier defined in the embracing block.

The cv, as well as the other components of the FOR phrase (the VA
expression and the SL expression, see #,7) are available to the
procedure individually and are accessed by means of the serial formal
parameter. The CV is passed by NAME to the <bound identifier>; the

Oct. 70, p. 34

<expression> is passed by NANR to the <"E"identifier>; the
<"VA"expression> of the FOR phrase is passed by NANE to the
<"VAmidentifier> ; and the <"SL"expression> of the POR phrase is passed
by RAME to the <"SL"idientifier>.

5.2.4. The return parameters

All formal return parameters must denote variables, and must be
specified by a defining phrase in the procedure head. (VALUE is not
meaningful for return parameters).

For each formal return parameter there is a internal variable
having the attributes specified for the return parameter in the
procedure head. This internal variable replaces any occurrence of the
formal return parameter within the procedure body.

- After execution of the procedure body the value of the internal
variable is assigned to the actual return parameter if one exists
(see 4.2.2) or 1s used as an operand.

5.2.5. The RESULT parameters

The RPESULT parameter is handled in exactly the same way as a
return parameter.

S.2.6. The VALUE RESULT parameter

VALOUB RESULT parameters are handled like VALUE parameters before
execution of the procedure body and like RESULT parameters, after
execution of the procedure body.

5.3. Library Procedures

This section describes the use of several procedures which are
provided in the NPL library. References to these procedures all have
the form P (P) where F represents the name of the procedure and P
represents a list of parameters. Where indicated, these procedures
return values with attributes as described below.

ABS (SCALAR)
SCALAR Any scalar valued arithmetic expression.
- VALUE The absolute value of *SCALAR'.

ARGMAX (VECTOR)
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic index of the first occurring
maximum valued element of *'VECTOR'.
ARGMIN (VECTOR)
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic index 'of the first occurring

minimum valued element of *VECTORG.

Oct.70, p. 35

COLDIM(MATRIX)
MATRT X Any matrix valued expression.
VALUE The scalar arithmetic number of elements in the range
of the second subscript of *MATRIX*. This function 1is
intended for finding the number of columns in a matrix,

so if 'MATRIX' is a column vector, '"VECTOR' := 1,
DTM (VECTOR)
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic number of elements in the range

of 'VECTOR',

IDENTITY (RANK)

RANK The scalar arithmetic rank of the square identity matrix
which is the *VALOR' of the function.
VALUE An identity matrix with '"RANK' rows and columns.
TNVERSE (MATRIX)
MATRIX A square, non-singular, matrix valued arithmetic expression.
VALUF The inverse of 'MATRIX',

MAX (VECTOR) B
VECTOR Any vector valued arithmetic expression.
VALUE The scalar arithmetic value of the minimum valued element
of 'VECTOR'.

MIN (VECTOR)
VECTOR Any vector valued arithmetic expression.

VALUE The scalar arithmetic value of the minimum valued element
of 'VECTOR'.
ONES (RORS,COLUMNS)
ROWS The integer scalar number of rows in 'VALUE'.
COLWMNS The integer scalar number of columns in 'VALUE®.
VALU® A matrix of ones with 'ROWS' rows and 'COLUMNS® columns.

ROWDIM (MATRIX)

MATRTIX Any matrix valued arithmetic expression.

VALUFE The scalar arithmetic number of elements in the range
of the first subscript of *MATRIX'. This function is
intended for finding the number of rows in a matrix,
so 1f 'MATRIX' is a row vector, 'VALUE® := 1,

SUM (VECTOR)

VECTOR A vector valued arithmetic expression.

VALUE The scalar arithmetic sum of the elements of ' VECTOR'.
TRANSPOSE (MATRIX)

MATRIX Any matrix valued arithmetic expression.

VALUE The transpose of 'MATRIX'. If 'MATRIX' has m rows and

n columns, then *VALUE' has n rows and m columns.

Oct. 70, p. 36

TRUNRCATE (SCALAR)
SCALAR Any scalar valued arithmetic expression,
VALUE sign of 'SCALAR' times largest integer < ABS('SCALAR').

ZEROES (ROWS, COLUNNS)
RONS The integer scalar number of rows in *VALUE',
COLUNNS The integer scalar number of columns in *VALUE?,
VALVE A matrixof zeroes with 'ROWS' rows and 'COLUNNS' columns.

Oct. 70, p. 37

Two Examples of Mathematical Programming Algorithms

Written In MFL

SIMPLEX ALGORITHM

GENERALIZED UPPER BOUND

-

The latter represents an algorithm for solving certain large scale problems.
Systems of this type , encountered in practice, have run over 30,000 equations
and half-million variables « In order to develop efficient codes, it is
necessary that experimental programs be highly readable, easy to debug,

so that various versions can be quickly tested and compared.

RECYCLE :

PROGRAM SIMPLEX -ALGORITHM:

"Find Max X(1), X(j) > O for j in {2,...,n}:
A*x = b, b > 0
where V= {V(1), V(2),.v...‘,V(m)}, the index set of
the initial basis, is given with V(1) = 1 corresponding
to objective x(1). It is assumed that

A(v) = Identity(m) ."

Given m, n scalars, A matrix m by n, b column vector m,

V vector m;
Let I ={1,...,m}; Let J = {1,...,n};

)

Define "incoming variablesand & the minimum relative cost”

(s,6) = ARG MIN [A(L]) for je J:;j #1];

If s> 0, |Answer -Bounded-, V, b; Go ta FINI];

“otherwise" define "Pivot row r and level 8 of incoming variable x(s)."
(r,8)= ARG MIN [b(i)/A(,s) for ie L:AG,s) >0];

If 8 = +=, |Answer <<Unbounded>>, V, b, s, A(%,s) ; Go ta FINI] ;
“Update” A = PIVOT [A,A,(%,s),r]; b =PIVOT [b,A(%,s),r]; V(r) =5 ;
‘where PIVOT pivots matriz A on A(r,S) and returns modified A."

Go to RECYCLE;

FINI:- End “program”

GENERALIZED UPPER BOUND

GIVEN A, m xn, FIND MAX xn:

Ax =b, X320 for] = {1,...,n-1} |

Xj =1,
j ¢ GUB(k)

where

k =‘ {],t..’l-]}

GUB(K) = |316(k) < § < G(k#1)-1

INITI ATE: Non-Key Basic Variables: BV
Costs, Values: CBV, XBV
Key Variables: KV
_ Inverse: R
Phase, m_Control
Y
Start Mjor Cycle No

Neg Delta_Control = 0

#

End Mjor Cycle
Did all GUB's price optimally?

{ If r = KV(k)

Price Out next GUB-—|
Find Incomng Var. §
.I":'e.:"'s,..Q)tinal in GUB?

:
pP— Find Otztgoing Var. r

Pivot, Update
v
~— Reprice GUB

BV, XBV, YBV, KV,
$» GUB_BV

10} ﬁ Yes
Lf none ChangeLes Feasible?|-d8S { Phase =1?
Phase |
¥ Mo Yo
Answer: . Answer: - Bounded>>,
<<Infeasible>> BV, XBV, KV, ’
GUB_BV
If none v =
w31 Answer:
<<Unbounded>>

PROGRAM GENERALIZED-UPPER-BOUND:

"The deseription of this algorithm is written in M.P. L. (Mathe-
matical Programming Language). Commentary such as this on the

algorithm are encl osed <in quotes. -Underlines, not part of the
Zanguage, are to help the reader identify the special (reserved)

words of the Zanguage. "

GIVEN m,n,Z scalar, A matrix m by n, G vector Z+1,b column vector m;

"The problem is to find
Max x(n), x(j) > O for j in {1,...,n-1}
“subgject to
(1) A*x =D
(i2) SUM[x(i) for 1 in GUB(k)] =1
for kK Cl,.. . J-13 where we"
LET GUB(k) = {6(K),...,G(k+1)-1} ;
‘which we call a’' GUB''set. The last variable x(n), iS to be
maximized. The set X(n-m+1),...,x(n-1)} contains the artificial
variables and the matrix [A(*sn-m+1) ,...,A(*n)] forns an identity
matrix. We also assume that
G(1) =1, G(i) < G(i+1), G(Z+1) = n-m+l
Note that GUB(Z) =16(Z),...,n-m} are the variables which have
_no partial sum conditions (Z%) associated with them. "
LET L =1{1,...,2} ; LET I =1Q,...,m};
"Initiate Non key Basic Variables BV. Let the GUB ser of the i-th
basic variable BV(1) be denoted by GUB_BV(1i)."
DEFINE BV _vector m, GUBBV vector m;
Fori inI do | BV(i)=n-m+i; GUB BV(i) =2+
“Key basic variables are .denoted by KV. In each GUB we initially

select for the key variable the one with lowest cost coef."

DEFINE KV vector Z-1;
KV(k) = Index_Mn [A(m,j) for j in GUB(k)]
f_O_f‘_ k m L : k] Z’;

"yhere Index_Min is the name OLf a funetion that yields the

index (or argument) where the mintmumie attained. "

"The Inverse of the columns corresponding to BV , as modi fied by
‘subtracting OL L their key colums,will be denoted by R.
Initially R is given by:"
DEFINE R = Identity (m;
"The modified RHS is denoted by b' . It is formed by setting
key variables= 1 ,substituting into (t) and subtracting from
b " i
DEFINE b' = b - SUM (A(%»d) for_j in KV):
For i inT: b'(i) <0 and i ®¥ml b (i) = -b'(i);R(1,i) = -1 J;
"ohere we have eorrected R and b' so that the initial basie

sotution is feastible. "

"Becquse R is an adjusted identity, the values of BV in the
initial basic solution XBV are"
DEFINE XBV = b’ ;
"InPhase = 1 the cost coefficients are all aero except for
j in{n-m¥1, . . , ,n-1} where the coef.are each one. For jin {1,.
the oost coef. remain aero after subtraction of their key
eolume. Non-key basic cost eoef. are denoted by CBV.
Initially"”
DEFINE CBVRow of ones(m); CBV(m) = 0;
"Pinally we set up two 8calar econtrol parameters, the Phase

control and the n_fontrol where the tatter, if 1, i8 a aignal to

-2 -

.. sN=m}

compute new wvalues for the next major or minor cycle. "

DEFINE Phase = 1; DEFINE =_Control=1;
"START MAJOR CYCLE"
MAJOR-CYCLE: DEFI NE Neg_Delta_Control= 0;
"here the latter counts the nunber of ecolwms that price-out

negative. We now get ready to price out the various GUB's k. "

FORkin L do
L1 “The FOR loop ends just after RECYCLE zabel”
MINOR CYCLE: If = Control =1 and Phase =1,

DEFINE r = -CBV*R;
If = Control =1 and Phase = 2,
~ DEFINE 7 = R(m,*) ;
"i.e. the above computes the price vector w. If n_Control=0,1t <s not
necessary to compute n and the above steps are skipped. "
"We are now ready to price out next GUB (or reprice the same
GUB). But first we reset'
m_Control = O;
"PRICE OUT GUB"
DEFINE (s,d) = ARG MIN[m*A(*,3) for j in GUB(k)I;
“where ARG MIN is a funetion that returnss andd. s is the
smallest argument (index) for which the minimmvalue d is
attained. Let § be the priced-out value of colum s after it is
corrected for the price on its GUB equation (for k<gz).”
If k <2, define § = d-mxA(*,KV(k));
If k =17, define s = d;
"PRICE OUT NEXT GUB"
Ifs>0, go to RECYCLE;

‘Where recycle is the label at the end of for loop of the minor

-3 -

eyele, so that k is incremented to k*¥1 and prieing starts again

with next GUB. However 1 £ 6<0, then we want to introduce columm

s into the basis and find (if possible) colum 1 1O drop from the
basis. "
"REPRESENT THE INCOMING CQLUMN s IN TEKMS OF BASIS"
If k =17, define YBV = RwA(x,s);
If k <2, define YBV = Rw[A(%,s)-A(#,KV(k))] ;
"DETERMINE COLUMN r TO DROP FROM BASIS"
"We first apply the usual ratio test £or the non-key basic
colums BY. "

DEFINE (r,8) = ARG MIN[[XBV(1)/YBV(i)] for 1 in I: i fm and YBV(1)>0];
"If 6 = ';w above, it means no pivot oan be found among the
variables BV(1). Thebasicvariable corresponding tor is BVY(r)
We are now interested in discovering if a key-basso variable j
witt drop because it has a lower ratio than those of BV(i).
If yes we reset v equal to thie j and denote Cts GUB ser as GUB_r .
Initially we set GUB_r = 0; as rong as it remains zero it means
r above is stilt the winner. If GUB_r> 0 then by definition
KV(GUB_r) = r."

DEFINE GUB_r = 0;
"TEST RATIO FOR KEY VARIABLES KV'
M4t thts point we need to know the values of KV(i) which we denote
XKV and the corresponding representation of columm s denoted YKY.
Since GUB 'swith a unique basic variabledon't drop their basic
variable under a basis change (except 1 = k possibly) we need to
congider only those GUB'a that have non-key basic variables. We
now Zook for such GUB 's. "

DEFINE a = 0;

f-LOOP: DEFINE ~ f=MIN B BV(i) for i in I:GUB BV(i)>al;
If f>17,g0 to LOOP EXITelse a = f;

“The above if iterated will pick up successively the next higher

index f of the GUB's of BV(i)."
LETF=(jfor jinl: GUB_BV(3) = f} ;
DEFINE XKV = 1-SuM[XBV(i) for i_in F];
DEFINE YKV = -SUM[YBV() for i in FJ;
YKV = 1+vkv if f = k;
“where the latter corrects YKV if the incoming column s is i n
GUB ser fi.e.if f = k. Note that the above states that we can

obtain the values of the key variab Zes by pl ugging in the val ues

of XBY(i)int\b the set equations (ii). W now do the ratio

test on (XKV/YKV)."
If YKV < O or (XKV/YKV) > 8, go _to f.LOOP;
"otherwise" r = KV(f); 6 = XKV/YKV; GUB r =f;

"We temporarily store the winning XKV and YKV
DEFINE XTEMP = XKV; DEFINE YTEMP = YKV; Go_to f_LOOP;

‘This completes all the ratio tests except for the possibility

that s reaches its upper bound and becomes the key variable in

place of KV(k) for k41.

LOOP-EXIT: If k =7 and e = +~, go to UNBOUNDED;

If k <2 and 6>1,| KV(k)=s;XBV=XBV-YBV; Go to_RECYCLE];

"'In the latter case the incoming variable s reaches its upper

bound and replaces the key variable in the same GUB. /Aecordingly

we reset KV(K) =s and adjust XBV, Then by recyeling we go on

to price out next GUB. Othenmsise we are ready for the pivot. "
m_Control = 1; Neg_Delta_Control = I;

"SWAP KEY AND NON-KEYBASIC VARIABLES"

-5 -

"Swapping is not needed in the following case. "
If GUB_r =0, go to UPDATE;'
"If GUB_r> 0, rhen it is necessary to interchange k ey variable
with another basic variable t in the same GUB set as r. "
DEFINE t = MIN[i for i in I: GUB BV(i) = GUB r];
"We now swap r and t."
r =t:; K(GUB r) = BV(t) : XBV(r) = XTEMP; YBV(r) = YTEMP;
"We must now fix up the inverse. "
R(r,x) = -SUM[R(i,*) for i in I :GUB BV(i) = GUB BW(r)]
"UPDATE BASIS, PIVOT'
XBV = XBV-YBVx6; XBV(r) = 6;
UPDATE: BV(r) = s; CBV(r) = 0; GUB_BV(r) = k;
R'= PIVOT (R YBV,r); XBY = PIVOT (XBV,YBY,r);
"The function PIVOT pivots in the last columm of the matriz

(R,YBV) on row r and returns the modified R columa. , Having

pivoted we now go back and reprice the GUB and continue doing this

until the GUB prices out optimally before going on to next GUB."
(o to MNOR-CYCLE ;
"When the GUB prices out optimally or s goes toits upper bound we

price out next GUB by going to the recycle label at end of the for loop

whichnow follows. "
RECYCLE: 1 "End for_k_in. L do loop"
"After pricing out all GUB's the for statement reaches its end
desigrated aboue by 1| and eontrol moves to the next statement below?"
If Neg_De1 ta_Control > 0 , go to MAJOR CYCLE ;
"i.e. atarting the pricing over again beginning with the first GUB."
"If Neg_Del ta_Control = 0, <t means we are optimal and we

either initiate Phase = 2 or terminate with the optimal solutions"

-6 -

"TERMINATE"
If Phase = 1,]2 if SUM[XBV(i)_for i in I:BV(i)>n-m and i#m]>0 then
|3 Answer -Infeasible=; Go to FIN1 3]
else "set" Phase = 2; n_Control= 1; Go_to MAJOR CYCLE 2];
If Phase = 2,)
|4 Answer <<Bounded>>, GUB BV, BV, XBV, KY; Go to FINI 4] ;
UNBOUNDED:; “Phase = 2 and 8 = +="
DEFINE
Answer <<Unbounded>>, BV, XBV, YBV, s, KV, GUB_BV;

FIN1: END "Program"

