GRAMMATICAL COMPLEXITY AND INFERENCE

BY

JEROME A. FELDMAN
JAMES G | PS
JAMES J. HORNING
STEPHEN REDER

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

TECHNICAL REPORT NO. CS 125
JUNE 1969

STANFORD ARTIFICIAL INTELLIGENCE PROJECT

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

T

CS 125

STANFORD ARTIFICIAL INTELLIGENCE PROJECT JUNE 1969
MEMO AI-89

GRAMMATICAL COMPLEXITY AND INFERENCE

by

Jerome A. Feldman
James Gips
James J. Horning

Stephen Reder

Computer Science Department

Stanford University

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Department of Defense (SD-183).

r—— r—-

e

Abstract

The problem of inferring a grammar for a set of symbol strings
is considered and a number of new decidability results obtained.
Several notions of grammatical complexity and their properties are
studied. The question of learning the least complex grammar for a
set of strings is investigated leading to a variety of positive and
negative results. This work is part of a continuing effort to study
the problems of representation and generalization through the gram-
matical inference question. Appendices A and B and Section 2a.0
are primarily the work of Reder, Sections 2b and 3d of Horning,
Section U4 and Appendix C of Gips, and the remainder the responsibility

of Feldman.

ii

GRAMMATICAL COMPLEXITY AND INFERENCE

1. Preliminaries

la. Introduction

]

1b. Definitions, Notation

2. Grammatical Complexity

2a.0 Introductory Measures

2a. Introductory Definitions and Examples

2b. Grammar-grammar, Complexity of Grammars

2c. Normalized Complexity Measures

5. Grammatical Inference

3a. Introduction, Basic Model and Terminology

3b . New Results on Grammatical Inference

5c. Learning Good Grammars

3d. Using Frequency Information to Assist Inference
Programs for Grammatical Inference

ba. Introduction and Definition of Pivot Grammars
4b. Program Descriptions

Appendix A. Representations of Finite-State Grammars
Appendix B. Size Measures of Regular Languages
Appendix C. Sample Computer Runs

References

r = =/ /7 /= B =/ +— — [B
=

=Y

L
L
L
L

e e T

r'-—-—q

|]

l. Preliminaries

la. Introduction

The problem of generalization (induction, concept formation) has
interested workers from a wide range of fields. Ip this paper, a particular
form of generalization, grammatical inference, 1is discussed. The notion
of grammatical complexity is introduced to help measure which grammar is
the best one for a given set of strings.

The grammatical inference problem is easy to state; one is interested
in algorithms for choosing the best grammar from a given class for a
sequence of symbol strings. For example,- we would like to discover that

the sequence of strings

car, cdr, caar, cdadr, cddadadr, etc.

can be described by the rule: each string is a 'c' followed by any

sequence of 'a's and 'd's followed by 'r' . Or in Backus-Naur Form
<string> ::=c <segq> r
<seg> ::= a | d | <segq> a | <seg> d

The question of how to infer a grammar and to measure how well you've
done it will be the main topics of this paper.

The grammatical inference problem has received relatively little
attention. The main theoretical formulation to date has been that of
Gold [67] which will be discussed in Section 3. Solomonoff [64] considers
the problem as a special case of sequence extrapolation; we have argued
against this notion [Feldman 67] but are indebted to Solomonoff for some
of the basic ideas on grammatical complexity in Section 2. There has

also been some related work in Computer Science [Amarel 62,London 64]and

Psychology [Miller 6, Suppes 56]. There is, of course, a vast literature
on pattern recognition [Uhr 66], but it has been exclusively concerned
with pattern descriptions which are structurally simpler than grammars.
Early studies of grammatical inference referred to it as a form of
induction. The term "induction" has been used as a description of
generalization processes. Unfortunately, it has also been used in dozens
of other ways and is threatening to become meaningless. We favor
restricting the term "induction" to statistical modes of inference such
as those of Solomonoff [64] as is done currently in Philosophy. The
particular model which we found most appropriate is the hypothetico-deductive-
empirical (HDE) mode of inference. An HDE inference consists of forming
hypotheses, deducing conclusions about the data and testing these conclusions
for validity. This characterizes the scientific method and is quite close
to the "scientific induction" of Lederberg and Feigenbaum [68]. In our
case a hypothesis is a grammar rule, a deduction is a derivation, and the
data are the sample strings.
The results of this paper are one part of a many-pronged attack on
the grammatical inference problem [Feldman 67]. The results here are largely
theoretical, but include a heuristic program to infer grammars. Other
efforts involve psychological study of human grammatical inference. We
also hope to be able to relate theoretical results with the heuristics
of the program and to consider how these relate to human learning of
language and other theories. To the extent that e.g. pictures [Miller
and Shaw68] are well represented by grammars, the grammatical inference

work may be of some practical use in pattern recognition.

{
|
o

r—

=

r— r— r—

-

The universal variable alphabet W is the set of symbols (X =2$Zl,Z

1b. Definitions, Notation

This paper makes use of ideas from several research areas, and it is
impossible to agree with all their notational conventions. We deviate from -
the usual formulation of context free grammars in requiring all
vocabularies to be subsets of a fixed collection of symbols. There is
no loss of generality in doing this, but many results in the literature
would require careful consideration of substitution rules [cf. Church 56].

The universal terminal alphabet T is the set of symbols [a,al,aga. R

o - oo}
We will also usde the following notational conventions. The string of

zero symbols is denoted by e , the empty set by ¢ . If S is any set

of symbols, S* is the set of finite strings of symbols from S and

+

S =S8* -e .

A context free grammar (cfg) is a quadruple G = (V,T,X,P) where

V,T are finite sets , VCcWUT , T=TNV, XeV-T , and P is a

finite set of productions (rules) of the form Z = w , with ZeV-T ,

weV¥ . In such a production, Z is called the left side and w the
gightd e . We will abbreviate a set of productions Z - wl,Z AL YRRRY
z Wy with the same left side as z - Wll W2| Coee

If G is a cfg, and w,yeV¥* we write w 3V if there exists

teV¥ , ZeV-T- and w.,w " in V¥ -such that w = w 2w W, tw

1’72 12y Y = 1%
and the rule Z = t is in P . The string y 1is called an intermediate
*
string. The transitive closure of E is written a . In either case

the subscript "G' may be omitted if there is only one grammar under

consideration.

* + . . .
If w 2V yeT , we also say there is a derivation of v from w
in G. In this case, there is also a derivation of y from w in which
each rule has as its left side, the leftmost ZeV-T of the preceding

intermediate string [Ginsburg 66, p. 30}. This leftmost derivation is

denoted d(y,w,G) , and when w = X will be abbreviated to d(y,G)
We will be exclusively concerned with leftmost derivations. If

ad(y,w,G) = <P1sPpsee s> with pjeP we define the derivation length

ld =k . The length P(y) 1is the number of symbols in y .
The language L(G) generated by a cfg G = (V,T,X,P) is defined
by

L(G) = {y IyeT+ and X % v} .

We will sometimes omit mention of the grammar. The definition implies that
we will be dealing with only e-free languages. With this restriction
and some well-known results on cfg we can significantly constrain the

form of cfg to be studied here.

Def 1bl A cfg, G = (V,T,X,P) is said to be totally reduced and we

write GeR iff.

a) P contains no rule of the form Z — e
b) P contains no rule of the form Zi-a %.

* . + *
c)- If X » w , weV¥ , there is a yeT such that w = y
d) Each ZeV-T , aeT , and peP 1is used in at least one

d(y, G) , where y is in L(G)

It is well-known that any e-free language derivable from
some cfg can be derived from a cfg in R . We will restrict

ourselves to GeR unless otherwise mentioned.

4

Lemma 1b2 For any GeR and any yeL(G) the derivation length

24(v) <2 . £(y) .

Proof Consider any derivation of y , d{(y,G) = <pl . > . Each

- Py
1 must either (a) add to the length of the intermediate

string or (b) replace a variable by one or more terminal symbols.
Since no peP can reduce the length of an intermediate string,
there are at most £(y) instances of (a). In addition, there

can be at most [(y) variables in an intermediate string and

thus £(y) instances of (b).

There is an extension of the notion of ordered sequence which will

be useful. A sequence <yl,y2,...> is saild to be approximately ordered

by a function f(y) iff for each k > 1 there is an integer T >k

such that t > 1t implies

£(y,) > £(y,) -

Lemma 1b3 If <yi> is a sequence which is approximately ordered
by f and if <f(yi)> is positive and bounded then there is a
C such that
1lim f(yi) = C
i+ e
Proof We know <f(y;)> has a finite lim sup , call it C . If
there is a j such that f(yj) = C , then by approximate ordering
there is a T such that t > 7 implies f@f) = C and the

lemma is proved.

Suppose the 1lim sup C is not attained. Let € > O
be given, then there is a ¥, such that C-r> f(xk) because
C is a cluster point. But then there must be a Tl such that
t > Ty implies
C-e < f(yt) .
Further, there are at most a finite number of i such that
f(yi) > C because C is the lim sup of a bounded sequence.

Let 1, be the maximum index of these and let 1 = max(rl,fg)

2

then for all t > 7t we have
C-e < f(yt) <c,
and the lemma is proved. We will be especially interested 'in

cases where 1(k) is effectively computable.

Finally, we must introduce a number of definitions relating to enumerations

of languages. An information sequence of a language L , I(L) 1is a

sequence of symbols from the set

4y | yeLlU {-y| yer®-1}

A positive information sequence I+(L) is an information sequence

of L containing only strings of the form +y . ©Notice that if we bound
the number of occarences of any string- y in I(L) then 71(1,) is
approximately ordered by 1(y) . The set of all {positive) information
sequences for L C T+ 1is denoted (J+)J . In Gold [67], d, was called

the set of text presentations and 4 the set of informant presentations.

Let I(L) be a (positive) information sequence, we define a (positive)

% sample St(I) to be the unordered set: st(I) . {tyl" '-ENQ' 2 bounded

(-

sequence is one in which there is a bound on the maximum number of
{
. occurences Oof a string. The set of (positive) bounded information
, sequences 1is denoted.(g+)g . An information sequence is complete if
-" N
s each string in T occurs in the sequence.
E A positive information sequence is complete for a language if each
L.

sentence of the language occurs in the sequence. Unless explicitly
i
. stated, we restrict ourselves to complete sequences. 1pformation
, , sequences and samples will occur in Section 2c¢ and will play a central
— role in Section 3.
! Each positive sample can be associated with a frequency distribution
(-

over its elements as follows:
! For each +y.eS, (1), f(I,y.,0) =0
(- i t 4 2 i’

0 1
iy, Ay,
f(I:Yi’ T) = f (1, yi’ 1-1) +
1 if yT = yi
-
\ f(I,yiﬂﬁ/t is the relative frequency of Y; in the first t strings
. of T . An information sequence I is convergent iff
lim f(I,y.,t)/t =P

— t 9 o i 1

exists—-and is non-zero for each yiEI . The set of positive Convergent
—

information sequences is denoted K+ .
(-
—
-
(-

Additional Notation

n(X): if X is a finite set of objects (e.g. strings), then n(X)
is the number of objects in X ; n(X) is the cardinality measure

for finite sets.

r: r = n(T) = the number of terminal symbols in the alphabet T .

k
Lk(k = 0,1,2,...): L, ==L nTy L, -is the subset of the language L

which contains only strings of length k

ngx): ngoz) =L Nart*, Lk(a) is that subset of 1L, which is

prefixed by Q@ € T* ; Lk(e)= L,

™) : @) = ar*n *

I
|

-

-

2. Grammatical Complexity

2a.0 Introductory Measures

There are a number of ways in which one could measure the complexity

or information content of an abstract language. One traditional way is to

consider the relative sizes of various subsets of the language and develop

size measures for languages. Examples of size measures will be considered

shortly. Other types of complexity measures can be developed in terms of

time and space bounds on the automata associated with a language; studies

of this type are currently quite popular (e.g. Hartmanis [68]). Other
possible complexity measures could be based on the complexity of algebraic
decomposition of the automata associated with a language.

At this point a distinction should be made between complexity measures
of a language and complexity measures of a grammar. To be independent of
the various grammar(s) for L, a language measure of L should be sensitive

only to the content of the subsets of L, not to the structural form of

the elements of these subsets. Measures based on the grammars or automata

associated with a language often do not characterize the language, since

the value of the measure can vary among weakly equivalent grammars (automata)

of the language. The class of size measures of languages is one example

of language measures which préves useful in studies of complexity. We

consider briefly two particular size measures for arbitrary languages L C T¥.

10

First-order (density) size measure

(x),

(k)

Consider the sequence <d , where d is the proportion of strings

i
of length k which are in the language L being measured:

d(k) _ n(Lk) _ n(Lk) . Suppose the sequence <d(k)> converges
n(Tk) rk
1m M)
to a limit d , so that d = K — o i then we would like to define
r

d as the density of the language L , which can assume values in the unit
interval 0 < d <1 . The density is intuitively the limiting proportion of
strings in the language.

There are often, however, languages which seem to contain.a well-defined
limiting proportion of strings, yet for which the sequence(gg‘ > does not
converge. As a trivial example, consider the language which consists of
precisely those strings of even length; in some sense it seems that half

(), _

of the strings are in the language, but the sequence <d <...,1,0,1,0,1,...>

does not converge to any limit, let alone the desired limit af%. The

X .
sequence <s(k)> = < % E d(l%> does, however,
i=1 (k) 5 k even
converge to the desired limit of %, since s = |® 1’ ev
1, =
-§+k: k odd

The sequence <d(k%> is said to be Cesaro-summable to % (see, for example,

(k)

Kemeny, Snell and Knapp [66]). Since s is the arithmetic mean of the

first k proportions, it seems reasonable to interpret the (unique) value

4(k)

to which the sequence < > 1is summable as the density. This example

motivates the following definition of density:

11

(k)

If the sequence <d‘" /> is Cesgro—summable to d, then d

is defined as the first-order (density) size measure

of the language. 1If the sequence is not Ceséro-summable,

then the measure is undefined.
Clearly if <d(k)> converges to a limit d, then it must also be Cesaro-
summable to d. Ceséro-summability is well-known to be equivalent to
other types of sequence summability (e.g. Euler-summability) in the sense
that, if the sequence sums to a value by one method, then it must also
sum to the same value by the other methods. Although occasionally useful,
we will not discuss other types of summability.

(k)

Suppose that <d' > is an ultimately periodic sequence with period p,

. kp+
so that lim d(P q)= d , a=0,...,p-1. Then it can be shown
k > o 2
P-1
. that <d(k)> is Cesiro-summable to d = % &3 dg > which again

illustrates the usefulness of allowing Cesaro-summability as a more general
convergence criterion than the commonly used simple "limit" . We shall

adopt the notation b = clim b(k) to indicate that the sequence <b(k)>

k —
is Cesaro-summable to b.

It is difficult to develop useful existence conditions for the density
measure of an arbitrary language ICT¥*, since 1, clearly can be chosen in
such a way that the sequence <d(k)> fails to exhibit any stationary behavior.
Existence conditions become more tractable when L is assumed to be associated
with-a certain class of grammars or automata. For example, it is shown in
Appendix B that the density measure exists for all finite-state languages

(1f Ceséro-&mmmbility is allowed to be a condition for convergence).

12

The density measure can be useful as & Means of comparing the relative

size of languages. But relative size discrimination by means of density

breaks down if the languages have either zero or unity density. Most

languages we have occasion to investigate have zero density; accordingly,
a more sensitive size measure is required for comparison of the relative sizes

of zero-density languages (which could be used to compare unity density

languages by comparing their zero density complements,)

Second-Order (logarithmic density) size measure

When the densities of two languages are zero, & more sensitive measure

is needed to compare their relative sizes. Consider transforming the

(kl> into a logxlog scaled sequence

sequence <d () 3 ()
lo n 1 og n
(x) () _ 18 n th) T ER A
<h' >, where h = k. - log r K
log n (T)

(log n (Lk)'is taken as zero if Lk= #). We define the second-order

(logarithmic density) size measure h of L as

(k)

h= ¢lim h
kK —» e

k . . .
(h is undefined if <h(l> is not Cesiro-summable). The quantity C = (log r) h

capacity of L

/is the familiar measure termed the chanpel (coding)

(we have extended the standard definition of C by permitting Cesaro-summability

log n Lk (k) .
of the sequence < ——— > < log r <h*" "> rather than Jjust strict
convergence). When it exists, logarithmic density satisfies 0 < h < 1.

Furthermore, it can be shown that

*
(i) VL& , if d exists and d> 0, then h exists and h =1

13

~

~—

(ii) if both d and h exist and h = 1, then d> 0

(iii) if both d and h exist and d = 0, then h < 1
We thus see that logarithmic density is a useful size measure among
minimal (zero) density languages, while density is a useful §ize measure

among maximal (unity) logarithmic density languages.

The logarithmic density (and thus the channel capacity) of a language

is strictly a size measure, and is not essentially an information-theoretic

language measure as the name channel capacity seems to suggest. The
channel capacity is the maximum possible (limiting) mean rate of infor-
mation transmitted/symbol across a discrete noiseless channel. Several
authors have termed the quantity C (or h) the entropy (or relative
entropy) of the language, a somewhat misleading terminology; in terms
of classical information theory, C is the maximum rate (per symbol)
of entropy for possible "stochastic grammars" of the language. There
are, at least for some classes of languages, stochastic representations
of grammars for the language which achieve this maximum entropy rate
(channel capacity). In terms of "selective information theory" (Luce60,
Chomsky and Miller 63b), C is indeed the entropy rate of the language.
We emphasize that several stochastic grammars (automata) for a given
language may have different entropy rates, but C is an upper bound

for them.

14

Other size measures

The first and second-order size measures of a language L can be

generalized as functions of a given string & € T*

a(z, (@) a(1, (@)
d = ¢clim ———— = clim ﬁ—j—
@ k - n(Tk(a)) k i » i fO
1
ey oo m@) o Len (@)

k-»>=o log n(Tk(Ot)) log r k » o

(NOte: where Cesaro-summability is used, it is understood that summation
begins with k = £(@)+1 rather than with k=1).

Note that substituting Q=e into d(*) and h(:) yields the size measures
d and h, respectively. Discussion of d(@) and h(®) with respect to stochastic
grammars and selective information theory is an interesting topic, but un-
fortunately exceeds the scope of this presentation.
Remarks:

Chomsky and Miller [58] claimed that the probability of a randomly
chosen string of length k being in any given regular language converges
to either zero or one as k increases without bound. This claim is equivalent
to stating that the density of any regular language is either zero or unity.
To our surprise we have encountered restatement of this claim by later
authors (e.g. Kuich and Walk 65) The claim is false, as is shown in
Appendix B. There appears to be two sources of error in Chomsky and Miller's
development. First, there seems to be some confusion between first and
second order size measure with respect to probability; Chomsky and

Miller's argument was based on channel capacity (second-order measure)

15

rather than on first-order density; density is equivalent to the limiting
proportion of strings in the language. Second, a matrix or "equational"
representation of finite-state grammars was used by Chomsky and Miller -
indeed, has been used extensively in the literature — which is inadequate
for the class of all finite-state grammars; there are regular languages
which cannot be generated by any grammar associated with the matrix repre-
sentation. The interested reader is referred to Appendix A for examples
of reqular languages for which the representation is not adequate, and
for a suggested matrix representation which is adequate for all finite-

state languages.
2a. Introductory Definitions and Examples

The concern here is with a representational measure of complexity.
We will be interested in the following questions. How well does a given
grammar fit a sample? How complicated is a grammar? What is the most
satisfactory grammar from a given class for somesample set of strings?
The results of this section are of some intrinsic interest and will be
very valuable in the grammatical inference problem considered in Section 3.
The techniques described here, although discussed in terms of grammars,
seem applicable to a broad class of problems involving the fitting of a
model to data, [cf. Feldman 67]. The particular measures studied here

are related to Bayes Theorem and to the measures of Solomonoff [64].

16

Def 2al Let G = (V,T,X,P) a cfg; the alternative set A(p) of a

production peP of the form Z + w is the set of productions

in P with the same left side, Z , i.e., A(Z 4 w) ={(z - x)€ P}.

We will be interested in measures which depend on the alternative
set, and for most of the discussion will be concerned with a very restricted

class of such functions.

Def 2a2 A function p(p) is a density iff

1) p is defined for all peP for any GeR

2) 0<p<w

3) For each peP , Z e-p(p') =1

p'eA(p)

A density is intended to describe how precisely a grammar "fits" a
set of strings. The description of a set of strings in terms of a grammar
will be more complex if the grammar generates many strings besides those
in the set. ©Each step in a derivation will be considered more complex
in a grammar which allows many derivations. from that non-terminal (has a
large alternative set). It is also possible to consider p from an
information-theoretic point of view; p(p) 1is a measure of the information
required to select p from the set of productions with the same left side,

,=p(p)

i.e., is the probability of a particular alternative.

It is this information theoretic approach which gives rise to the

specific density used here. 1If we assume that all productionswith the

same left part are equally likely, we get a local measure

3(p) = logy(b(p))
where Db (p) is the cardinality of A(p)

17

Another possibility is to assign some a priori likelihoods to each

— production p . This could be based on some complexity measure on p
itself (such as its length). We will concentrate on proving properties of
the general density p , but will use ¢ in the samples. Before presenting
examples, we must extend the notion of density to a complexity measure for
derivations.

- Let d(y,G) = <Pl,-o-,ph> be a derivation Of y and let p(p) be

a density, we define

h
M(d,y,G) = Z;p(p.)' :
=1 Y
-
We can now define the complexity of a string relative to a grammar.
— +
Def 2a3 Let yeT . If y£L(G) we define the complexity u(y,g)
to be » . If yeL(G) and the derivations of y gare
dl(y;G))“')dk(y)G) we define
- 1 k
H(y’G) =X Z M(diJY}G)
i=1
+
Def 2ak Let S = {yl""’yn} cT the complexity of the set S
— relative to G , p(S,G) 1is defined by
n -
. i(5,6) = 20wy, @)
i=1
~ Thus the complexity of a string is the average of the complexity of
- its derivations; the complexity of a set is the sum of the complexities

of its members.

18

If S is a finite subset of T' , u(8,G) = » iff S-L(G) £ P .
The value of u(y,G) is a measure of the complexity of a derivation of y
from G and might be usable as a measure of grammatical complexity. We
defer the discussion of the relative merits of various complexity measures

until Section 3a.

Example 2a5 ILet G = ({X},{a,b},X,{X @+ a | b | aX | vX}) .
This is the universal grammar over {a,b} . For this grammar,
any string of length n requires a sequence of n productions in
its unique derivation. If we use the density o as p , each

production p has p(p) = logz(h) = 2 . Thus each ye{a,b}* has
"‘L(Y,G) = 2 . Z(3’) an

Let H = ({X,2,},{a,b},%, {X+ b | aZ, | vx, Z, + a | ax | vz, })
This is the "even number of a's" grammar. Similar reasoning to the

above will show that for any string y with an even number of a's:

u(y,H) . log,(3) . £(y)

The example indicates that p corresponds to our intuition in
declaring the universal grammar to have more complex derivations of strings
having only an even number of ‘a's. There is, however, a potential problem
in the fact that H itself seems more complex than G . e have, so far,
considered only the complexity of derivations. If, as in the grammatical
inference problem, only a finite set of strings is available for testing,

a very complex grammar may yield the lowest value of u . por example,

the grammar which simply lists the sample set (ad hoc grammar) will have

19

i
11
3
i

-

—

-

—

—

a very low measure. In the next section we will expand the notion of
grammatical complexity to include a measure of the complexity of the

grammar itself.

2b. Grammar-grammar, Complexity of Grammars

We will define the complexity of a grammar as the complexity of its
derivation in some grammar-grammar, G . The choice of G will determine
which subclass of the context-free grammars is under consideration.

Typical subclasses include the linear grammars, grammars in some standard

form, and grammars restricted to a fixed number of variables.

Def 2bl A grammar-grammar G = (V,T,%X,P) on the terminal alphabet T

is defined to be a cfg such that

1) JT-THnw=p

2) TcwuTu{ufi}

where Iy is the universe of variable symbols and '"," is used

to separate the rules of P

It would be possible to sharpen this definition, e.g. to allow only
Zely to appear to the left of "#" in a string. It is not possible,
however, to force G to produce only GeR , with a context-free G .
There is the additional problem that ¥ must be finite so a given G
will only generate a class of languages with a fixed number of variables.
The following definitions modify the grammar-grammar concept and make it
more suitable for our purposes. It is also convenient to have the

n,,_n

production arrow for grammar-grammars be "::=

ao

Def 2b2 A sequence of grammar—grammars C = {Gl,GE,...] is a

collection iff. There is a Z such that for each Gi

) Zi=2Zy|zZ | . . .2, in G

=4

[NN]]

2) appears in no other left sides.

3) No Zely appears in any other rule.

4) The éi are identical except for the rule described in 1).

The intent here is that Z is the variable in all @i which

produces the 1 variables of the Gi .

Def 2b3 A representation class C is defined as

c= (U L@E)NR
GeC

where C is a collection. Thus, C is a set of grammars
defined by a collection C such that for any GeC , there is

a Ge€C such that GeL(G) N R

This definition allows subfamilies of cfg with an unbounded number of
variables to constitute a representation class. For any GeR and any
class C it is decidable whether GeC . More frequently we will be
interested in studying all the grammars in some class C . We will
sometimes write G (k) for GeC such that GEL(GK) N R

The-intrinsic complexity of a grammar G can now be defined as the

complexity of its derivation from an appropriate grammar-grammar, u(G,G)
using p = ¢ as density. The choice of the grammar-grammar G will
depend-on the set of grammars being compared. We now derive expressions
for u(G,8) for a number of interesting subclasses C of R on a fixed

terminal alphabet T ={ao,...,am l}'

21

L

r—

—

— o o M e

—r o rre

For all the examples we will have éh = (V,T,%,P) with

V= (X,Q,R,N,T} UT

=1

a (ZOJ o o o ,Zn_l)ao) . . "am_l}—a} U {’}

The general cfg with n variables can be derived from the collection

¢ =(CFn}. The productions P of CF_ are

)-(::=Ql)-()Q

Q ::=N SR

N ::= ZO ,. .. Zn-l
R ::= T |N| TR | ¥R
Tie=a, I n-1

For a grammar G in L(CFn) which has k productions, whose right

sides have a total of kl variables and k2 terminals we have
u(G,CF) =k . (logy(n) . log,(2)) . k; . (log,(4) . log,(n))
+ky . (log,(k) . log,(m)) .

For cfg in Greibach Standard 2-form (S2) and in modified Operator

2-form (02) the measures have very similar expressions. The productions

are:
52 02
%::=q %9 " x = Ql %9
Q v:=N=R Q@ ::=N9R
vy lz |z N =z Z, 5
R .:2T | TN | TNN R ® *=T | TN | NIN | NT
T wva a0 | Ve am_l T 1= a0 , e am_l
22

and if a grammar G has k productions and kl’kE’k5 rules whose right

sides are of length 1, 2, 3 respectively, then
n(G,s2) = k(1og2(n)+log2(5)+log2(m)+log2(2)) + (ky + 21«:5) log,(n)
u(G,02) = k(1og2(n)+1og2(h)+log2(m)+log2(2)) + (ky + 2k5) log, (n)

Similarly, the linear grammars (LN) and finite state grammars (Fs)

have nearly identical G . The productions are:

w £
% ::=al %Q X ::=0] %,Q
Q=N+ R Q ::=N=+R

M= Zo Zn-l pi= Zo I - n-1
T 1= a, | ... a1 T #2%a, | ... a1
R ;=T | TN | NT R ;=T | 1IN

and if a grammar G has k productions and k,,k; rules whose right

sides are of length 1, 2 respectively, then
H(G;LNH) = k(10g2(n)+10g2(5)+10g2(m)+log2(2)) + keloge(n)
1(G,FS_) = k(log, (n)+log,(2)+1og,(m)+10g,(2)) + kylogy(n) .

Finally, the productions and measures for Chomsky normal form (C2) are:

c2
if=Q|i,¢Q
Q ::= N+ R
*J
N - Zo I‘ Zn-l
R ::=T | NN
T .= a, cooan

p(G,CEn) = k(logE(n))+log2(2)+2k2(log2(n)+log2(2))+k1(log2(m)) .

23

L Example 2bk Returning to our example of the universal grammer on strings

(Example 2a5) with an even number of a's, we can now measure the

— complexity of the grammars G , H . We must first determine the
appropriate class of grammars and parameters (n,m) to use in the

- comparison. We have assumed that the terminal alphabet (and thus m)

L is known. Since both grammars are finite-state, the C called FS

above is most appropriate. Now H (the "even a's" grammar) has two
non-terminals. We use n = 2 for it and get the result:
m=2,n=2,k=6, k2=4
u(H,FSQ) = 6(log2(2)+log2(2)+1og2(2)+1og2(2)) + 4 .log2(2)==28.

For the universal grammar G which requires only one non-terminal

we could use n =1 or n = 2 . The results are:

— = M

u(G,FSl) = 12

u(G,Fs,) = 18
L
Although G is simpler than H by either measure, there is a question
| of which measure to choose. We can see from the formulas derived
above for u(G,G) that choosing the smallest possible n produces
L

a bias in favor of grammars with few non-terminals. This seems desirable

and has been adopted for use in this paper.

We will need the following lemma in Section 3 which deals with

grammatical inference.

Lemma 2b5 Let C € R be defined by a grammar—grammar G in Standard
2-form (S2) , then there is an enumeration & of C which is

approximately ordered by u(G,G) in an effective manner.

2k

Proof If C is finite the problem is trivial. If C is infinite
u(G,&) is unbounded on C . Given the grammar-grammar G , one
can define a generating algorithm which will approximately order
L(G) by the length of its strings (grammars). Let & be the
restriction of this approximate order to GeR , & is an enumeration

of C. Now if Gi in & is given we must show there is an

effective way to find k such that j > k implies
Let r= the minimum density of peP and let h be such that
h.r> u(Gi,C-})

We can effectively find k such that j > k implies Z(GJ.) > h ,

because 4 is approximately ordered by £(G) . Also for S2 we

have £ ,(G. £(G.) and thus
4(6;) = 2(a))

H(Gj,f‘)

v

h.r > u(Gi,C-}) .

The two complexity measures developed here (the intrinsic complexity
of a grammar and the complexity of a set of strings relative to a grammar)
can be combined to form an overall measure of how well some grammar fits
a set of strings. The problem of what combination of u(G,G) and u(S,G)
to use in an overall measure will be discussed in Section 3c¢. For the

present we will be content with an example.

Def 2b6 Let G be a grammar in a class C defined by € . Let S

be a subset of T' , then we define the measure %(S,G) by

%(S)G) = P‘-(S:G) + H(G;C—})

25

L

rr r—r— r— r— rm— r— [— r -

r— r

—

—

—

We can now reconsider Example 2bk using Wk . The universal grammar
G is simpler than H , but leads to more complex derivations. e can
then investigate which sets S will cause one to prefer H to G as a

grammar for S , i.e., make

Mg (S,H) < Mg (8,G) -
Using Def. 2b6 and the intrinsic complexities computed for H,G this is
equivalent to finding § such that

n(S,H) + 28 < u(sS,q) + 12
or

w(S,G) - u(S,H) > 16

Now from the results of 2a5 this is satisfied by any set of strings S

Z L(y) > ..

yes

satisfying

Although it involves getting ahead of ourselves somewhat, we should
consider this example more closely. 1In general, Wk(S,G) will depend
on the nature of S rather than some simple property as in this case.
Here we have shown that any sample including 39 or more symbols iﬂg
having only strings with an even number of a's makes H preferable
to G s Notice-that a single string-with an odd number of a's will make
u(S,H) = » . The result above says nothing about other grammars which
might be better than both G and H on some set S ; this is the
grammatical inference problem and is the subject of Section 3. We first

introduce a variation on complexity measures which plays a major role in

the discussion of grammatical inference.

26

2c. Normalized Complexity Measures

The complexity measures introduced in the last section increase without

bound with the length of strings. To overcome this difficulty we introduce

a normalized complexity measure; this measure is bounded so we may also

study its limiting behavior as the sample set of strings approaches the
language.

Def 2¢1 The normalized complexity n(y,G) of a string yeT+ relative

to a grammar G is defined by

n(y, 6) = u(y,G)/t (¥)

where u(y,G) is defined in 2a3 and £(y) is the length of y

The definition of n§ is extended to sets, S , of strings'by

n S,6) . u(S,6)/L2(y)
yes

Lemma 2¢2 For any GeR , yeS C L(G) there are constants r,q > 0 such

that

IN
Q

(a) r < n(y,6)

(b) r<n(8,G) < q

Proof (a) By 1b2 the derivation length Ed(y) is not greater than 2 .f(y)

If B is the maximum p(p) in G then
qg=2 B
satisfies the right half of (a) because if there are k derivations

of a string y , we have:

ke £q(vy)
1
Ul (Y)G) Tk i(y E J=Zl p<pij)
1 X, 2:4(y)

- Let k(p) be the number of terminal symbols appearing in production p
Let r be the minimum over G of p(p)/k(p) , then r satisfies the
left side of (a). The proof of (b) follows by straightforward analysis

from (a) and the definitions.

The introduction of the normalized complexity measure n(St,G)
enables us to study the behavior of n a5 the sets St approach L (G)

When the limit exists we will write

1(L,6) =1lim 7(8,,G)
t9

The following example will show that the limit may not exist.

Example 2¢3 Let G = (fa,C}X,Zl},fX,Zl},X,P) where P contains

X = alaXIchlc

Z, *cZ|e

and let the density o = ¢ . The language L(G) is the set of all
strings containing a finite number of a's followed by a finite
number of c¢'s . We will show that there are information sequences

for which n(St,G) does not converge.

28

Let an be a string of a's of length n and <" be a string

of c¢'s of length m . Then
n
u(a’,G) =n . log,(L)
m
u(e”,G) = log (k) + (m-1)log,(2)

On a sequence 0f strings of the form a'l , we have n(8,G) con-
verging to 2 and on a sequence of o , 1(8,G) converges to 1 . We
will now show how to choose an information sequence which includes every
string in L(G) exactly once and for which n(St,G) fails to converge.
The first string is "a" and the subsequent strings are chosen as follows.

After choosing a string ail we choose all strings of L(G) of
length up to 1 and compute n(St,G) on this set St of strings. There
is a string Cj which, if chosen as the (t+l)ﬂ element of I , will
cause n(St+l,G) to be less than 1.4 . For example, if 5, = {a} ,

then 32 = {a,c} and j must be such that

log21+ + logeh + log2}+ + (3-1)

T < 1.4

which is satisfied by j = 7 and S3 = {a,c,cccccec} . We then select
all new strings of length up to j and compute 1‘1(8t ,G) . There is an

2

integer such that

Jo

U2
n(s, +{a 7},6) > 1.6
2

By continuing this process one can produce an information sequence
on which n(8,G) fails to converge.
In the example above, the failure of 7(S,G) to converge depended

on three factors: the density p , the derivation length Zd and the

29

information sequence I(L) . By restricting these factors in various
ways, one can show that there are cases where 17 (S,G) 1is known to
converge. We first examine the case where p(p) is constant; this
amounts to using the length of a derivation as a complexity measure.

We will use the notation fd(y) to denote the average derivation length

of a string y .

Theorem 2ck Let GeR be such that p(p) = r , a constant for all peP ,

then for any I(G) for which

lim -gz—?EEZiZ
t=o Zﬂ (y.l)
the limit of n(St,G) exists, and

lim n(St,G) = rC

1t 1

Proof By definition

but with p(p.,.) = r this collapses to
P ihj

Tl (St}G) =

1
K

30

which proves the theorem.

Corollary 2c¢b. Let GeR be such that

1) p(P) =r a constant for all peP
2) ld(y) = a-L(y)+b ; a,b positive constants.

Then for any I(G) we have

lim T](St,G) = ra
tp oo

fhis shows that for a constant density p and grammars whose !d
is simple, the normalized complexity measure always converges. This is
interesting because many classes of grammars satisfy Condition 2 of
Corollary 2c5.

For the Chomsky standard form C2 , we have ld(y)= 21(y)-1 . For
each of the representation classes FS, LN, 02, S2 we have ld(y) = L(y) .
These relations are immediate consequences of the form of productions
for each class. We now consider the results of allowing p to be
non-constant.

We present two versions of the conditions for the convergence of
n(8,G) with non-constant p. The first, Theorem 2¢7, is simple to
prove and illustrates the nature of the problem. The second, Theorem 2c8,

is more useful when it applies.

Def 2¢6 Let uﬁlﬁpj) be the number of uses of production j in derivation
. A
h of the string vy - Also let ui(pj) be the average of u.iﬁfab)
over the derivations of i -

31

B T ——

e o e [

= f r— = ~ = &= == N &= — &

Theorem 2c7 Let GeR be such that P = {pl,...,psg , i.e., there are s

productions in the grammar. A sufficient condition for the limit as
t + o of n(St,G) to exist is that for j = 1,2,...,s the
following limit exists

"
Z Gi(pj)

(1) limiti=t — °

One can rewrite the definition of n(St,G) as:

Reversing the sums over h,j and using the definition of Gi(pj)

gives

t S
22 22 u,(p) c olpy)

i=1 j=1

M (St) G) =

-Mc-}-
=
<

|
~—

Now reversing the order to summation again and separating out the
contributions of each production p, as nj(St,G) we have
L A
p(p.) LI 4. (p,)
s

YN £(y;)

i=1

from which the theorem is apparent. The condition of Theorem 2¢7 is

that some average number of uses of a production in deriving a set

32

. A
of strings should converge. The difficulty is that u,(p) it is
1]

hard to establish for a given grammar and information sequence.

A more reasonable condition to establish is the ratio of the uses
of Pjto the total number of steps in deriving the set St That 1is

k..
1

£.(s,) = = ;Z:luh(pj)
J- = .

i £4(ryy)

i=1 h=1

r1c+

=

23
e

Thus the frequency of a production p. in deriving the set of
J
string St is the total number of uses of p. divided by the number of
J
production steps used for the set St . We will use this definition to

establish a condition under which T](St,G) converges and then discuss

fj(st) further.

Theorem 2¢8 Let GeR be unambiguous and be such that P = {pll. 4tDs 3
and ld(y) = a .2(y)+b for all yeL(G) . Further, let I(G) be
a bounded information sequence such that

lim f. (S) = C., for each production p.eP ,
t9eo J J

then

lim T](St)) =C
tdoo

Proof- Since G is unambiguous, all ki = 1 and

=1 17J
£.(s,) ==
J(t) t
2. L (y.)
rc d‘\i

33

= — o

L

= — == r— rm— B = &= /= bt

s

Separating the contributions of each p. as in the proof of 2ck we
J

have:

t

p(p.) 2.4 uy ()

i=1 *

2. ()

[}
&+

©
~~
Le]
C.
<
=3
P
Le]
T,
N—

Also:

£.(s,) =

J

ZEui(p.)
1z1
2:

L(y;) + b .t

The advantage of Theorem 2¢8 is that the convergence of fﬁ(st) may

be provable under fairly general conditions. e are now attempting to use

stochastic matrix results to establish such conditions. tpeorem 2¢8 does

not hold for ambiguous languages; this situation is symptomatic of a number

of problems arising from ambiguity and will be discussed in some detail.
Even very simple grammars may have ambiguity U%) which grows

exponentially with the length of v - An example 1is

34

H = ({Z)a]; (a},2,{z alaZIZa})

Since we defined ﬂj(st,G) in terms of the average number of uses of p. ,
J

the value of ki has essentially no effect on 1 . For f_(St) , however,
J

the total number of uses of a production is used. (opsider the grammar

of Example 2¢3 with one additional production rule:

X =+ Xa
In this grammar, each string k "a"'s has o derivations. By methods
like those of 2¢3 it is easy to show there is an information sequence
for which fj(st) converges and nj(St,G) does not, which fact refutes
Theorem 2¢8 for ambiguous grammars.

The choice of n(StﬂH as a function of the average complexity of
the derivations of a string is open to question. other possible choices
would be the sum, maximum, minimum and a weighted sum. The choice of
definition of n has important implications for the entire grammatical

complexity problem. This issue is touched on in Section 3d and will be

further discussed in Horning's dissertation.

35

L

= — — e r— 7 2 = "~ > o e

3. Grammatical Inference

%a. Introduction, Basic Model and Terminology

The problem of inferring a grammar for a set of strings is Jjust
beginning to receive serious attention. Our purpose here is to establish
a number of decidability results as a foundation for the heuristic methods
of grammatical inference now being programmed. These results are extensions

of the work of [Gold 67] who describes his study as follows:

Many definitions of learnability are possible, but
only the following is considered here: Time is quantized
and has a finite starting time. At each time the learner
receives a unit of information and is to make a guess as to the
identity of the unknown language on the basis of the information
received so far. This process continues forever. The class of
languages will be considered learnable with respect to the
specified method of information presentation if there is an
algorithm that the learner can use to make his guesses, the
algorithm having the following property: Given any language
of the class, there is some finite time after which the guesses
will all be the same and they will be correct.

Gold's definition of learnability derives from his earlier work on
limiting recursion [Gold 65]. We will present some new results using this
definition and show that by relaxing some of its conditions, one can greatly
enlarge the class of solvable cases of the grammatical inference problem.

In addition to the concepts previously defined, we will need a number
of new ones. We assume time is quantized and is expressed by

t=1,2,3%3...
" A grammatical inference device D is a function from samples St

into the set of grammars (G} in some class C . The grammatical inference

36

problem is modelled as follows: An information sequence is presented to
the device D at the rate of one element per time step. At each time, t ,
we compute

Ay . D(8,(1),C)

We say that a class of languages, ©L(C) , is identifiable in the limit, if

there is a function D such that for any GeC and any information
sequence I(L(G))ed there exists a T such that t > t implies both

a) A=A

b) L(A_) = L(G)
This differs from the function D being recursive in the following way.
A recursive function D would, at some 1 , be able to ignore all further
information, i.e., would be able to stop and demonstrate the right answer.
Since we have allowed an information sequence to contain repetitions of a
string, not even the class of finite languages is recursively identifiable.

Before considering the properties of inference devices, let us look

at the notion of information sequence. Gold [Gold 67] has shown that there
is no effect in the limit on learnability caused by the difference between
an ordered (e.g. by length) I and a random one for 7JIcd . He also shows
that in this case allowing the device D to select the next string y to
appear as ! y in I does not change things. While these different methods
of informing (teaching) the device do not affect the learnability of languages
in the limit, they do have powerful effects on the heuristics of efficient
learning. Solomonoff [64] considers the grammatical inference problem a

special case of sequence extrapolation and his methods rely heavily on the

order of presentation of examples. Another crucial consideration is

37

whether the information sequence contains complete information. The

effects of complete samples is the subject of the next section.

3b. New Results on Grammatical Inference

The main results of [Gold 67] deal with the great difference in
learnability effected by allowing information sequences with negative
instances, Ied , (informant presentation) rather than just positive
instances, Ied , (text presentation). We will informally outline certain
key proofs and then extend them in various ways.

All of the methods are based on the denumerability of various classes
of grammars; the primitive recursive, context-sensitive, context-free, and
any other class we might be concerned with here can be enumerated. f[et

& = {Gl, . ..> be an enumeration of such a class. Also let & = (I} be

. the set of all complete information sequences over some alphabet T

+ + .
(each yeT' occurs as - y in every I). A class C of grammars 1is
admissible iff C is denumerable and for all GeC , yeT+ the relation
yeL(G) is effectively computable. A grammar G is compatible with a

set of strings S = S+ U S iff S+ € L(G) and S € TW - L(G)

Theorem 3bl (Gold) For any admissible C there is a device D §,C)
such that for any GeC and any I(L(G))ed , L(G) is identifiable

in the limit through I

Pro-of The device D simply sequences through the enumeration &% of C
At each time, T , there is a first Ge4 which is compatible with

St(I) » it is the guess A of D at time t . At some time 7,

38

AT will be such that L(AT) = L(G) . Then AT will be compatible

with the remainder of the information and will be the constant result

of D

Thus with informant presentation, a very wide class of grammars can
be learned in the limit. By restricting the information to only Ieéu
we give up learnability in the limit almost entirely. Tet everything
be as before except that the set of information sequences J+ = (I}

contains only sequences of the form <+yl,+y2,...> .

Theorem 3b2 (Gold) Under these conditions any class C generating all
finite languages and any one infinite language L is not learnable

in the limit.

Proof We show that for any D , there is a sequence I , which will
make D change its value At an infinite number of times for E).
Since D must infer all finite languages there is a sample which
causes it to yield some G(Ll) such that L, © L . Now consider
an information sequence which then presents some string xggn_ le

repeatedly. At some time t , D(St,C) must yield a grammar of

Lu {x} = L, because all finite languages are inferred. This

construction can be repeated indefinitely, yielding an information

sequence I which will change the value of D an infinite number

of times.

This unlearnability result is so strong that we were led to try to
consider it further. The remainder of this section is devoted to the study

of conditions under which learnability from positive sequences only is

39

attainable. Let us first consider the repeated occurrence of a string y ,
in an information sequence I . The proof above is based on the possibility
of having some string occur indefinitely often; it does not seem unreasonable
to bound the number of occurrences of any string in an information sequence
and thus restrict our attention to g .

By restricting consideration to bounded information sequences, we
have made the problem of identifying finite languages trivial. The
classes of grammars which are now identifiable in the limit can be

characterized by the following two lemmas.

Lemma 3b3 Any class of cfg Cc R which contains only a finite number

of grammars which generate infinite lanquages is identifiable in the

limit from any I(L(G))eg

Proof The device D(St’c) which will identify C in the limit will
be defined. Let & be an enumeration of the grammars of C which
generate infinite languages. At each time t , the device D will
form a guess At as follows. At is the first grammar in % which

is compatible with S, and which generates the minimum number of

t
strings of length less than or equal to k , where k is the
length of the longest -string St . If the language L(G) 1is
finite then I(L(G)) terminates at some t and a grammar
for L(G) can be picked out of C - & ; we will now consider

_ the case where L(G) is infinite. 1If HeC is any language such
that L(G) - L(H) = {y} %ﬁ s then after the first appearance of

a y in I(L(G)) , H will never be guessed by D . TIf HeC

is such that L(G) < L(H) there is a length kl such that for all

L0

k >k H generates more strings of length less than or equal

1)
to k than G and thus H will not be guessed by D . Thus D
will eventually guess only the first grammar Ae¢g such that

L(G) = L(A) and the lemma is proved.

Thus requiring an information sequence to be bounded has produced a
somewhat larger class of inferrable languages. Although some infinite
sets of infinite languages can be identified in the limit, the following
lemma shows that there are some very simple classes which cannot be

identified in the limit from Ieg+ .

Lemma 3blk The finite state languages are not identifiable in the limit,

from Ied .

Proof The proof is an adaptation of Gold's proof of Lemma 3b2. We
form a subclass of the finite state languages for which D will
change its value an infinite number of times. Tet this class

C = UL% be defined as follows.

L(Ho) = a¥b¥ (any sequence of a's followed by any sequence of b's)
and
1 .
for i >0, L(H,) = U a'b*
i 521

The languages Hi ; 1 >0 all have finite state grammars. e will
show that for any D(S,FS) which will identify in the limit all the Hi’
i > 0. there is an I(HO) which will cause D to change its guess an

infinite number of times. The sequence I(H,) starts with enough

o)

yeLOH) to cause D to guess H, ; the assumption that D infers H

41

guarantees the existence of such a sample. Then I(HO) continues with
enough yeL(HE) to cause D to guess H, , etc. Any I(Ho) of this
nature would cause D to change its guess an infinite number of times.

The class of languages learnable from positive information sequences
will now be extended by introducing a weaker notion of learnability. The
comparison of the two definitions of learnability will be deferred until
after the theorems. For the remainder of Section 3we will restrict
ourselves to bounded information sequences and to the class R of completely
reduced context-free grammars. Several of the results could be made more
general, but these are sufficient for our purposes and allow of simpler

treatment.

Def 3b5 A language L(G) 1in a class C is approachable from above
by a device D iff for each HeC such that L(G) e L(H) and
each information sequence I(L(G)) , there is a 7 such that
t > 1 implies

D(8,(I),C) £ K .
Thus a language is approachable from above if every grammar
producing a larger language is eventually rejected. We can define

approachable from below in a somewhat similar manner;

Def 3b6 A language L(G) 1in a class C is approachable from below iff

for each HeC such that L(G) - L(H) # ¢ and each I (L(G)) there

is a 1 such that t > 7 implies

D(8y(1),C) £ H .

42

That is, any grammar H , whose language does not contain L(G)
is eventually rejected. This condition is trivially incorporated in any

reasonable device for positive information gsequences. This is because

any yeL(G) - L(H) will eventually appear in every I(L(G)) .

Def 3b7 A language L(G) is approachable if it is approachable from above

and below. A class L(C) of languages is approachable iff there is

a device D(S,C) under which each L(G)eL(C) is approachable

through any I(L(G))e=9+ .

Theorem 3b8 For any admissable class of grammars C < R there is a
device D(S,C) such that for any GeC and I(L(G))e<9+ , L(@)

is approachable through I

Proof For L(G) finite the problem is trivial. Assume L(G) is infinite.
Let I(L(G)) = <¥qys¥p5+¢->€d, . Let & be an enumeration of C and
for each G in & define I‘LK(G) to be the number of strings of length
k generated by the grammar G and

k

Nk(G) = jil . (6)
The device D(St,c) proceeds as follows. At each time, t ,
D will choose the next grammar Gt from % and the next string
yteI(G) forming the sample

Sy =8, U (v}
It will also compute f = max(£(y)) over yeS, ~ The device will
also form the set of possible guesses Qt

a, = {G|Ge{Gl,. -+ G) and 8, € L(G))

43

If at 1is empty, the device will choose more grammars from %
until at is non-empty. Finally the device will compute its guess
A.t at time t bychoosing one of the grammars G in at for

which NZ (G) is minimal. The procedure for breaking ties is
t

immaterial.

The fact that D is effective follows easily from textbook
results. We now show that At approaches G from above. That is,
if HeC is such that L(G)(; L(H) there is a time T guch that

(1) t > 7 implies A, # H

If L(G) ; L(H) there is an integer h such that k > h
implies

N (G) > W (H) .
Let T be the first value of t for which zt = h and T,

be the first value of t for which G appears in & . Then

T = max(Tl,T is a finite value of time for which (1) holds.

5)
Since L(G) 1is always approachable from below through any complete

positive information sequence, the theorem is proved.

The procedure used by the device D in the proof above can be made
more-efficient in a number of ways. Since a finite language necessarily
has a finite information sequence over ¢ , D could restrict its guesses
to grammars which produced infinite languages. 1In practice, one would break
ties for At by choosing the best grammar relative to some complexity measure

such as those of Section 2. The question of inferring "good" grammars will

be discussed in Section 3c.

L

There 1is a progressive weakening of the formal counterpart of the
intuitive concept of "learning a grammar" as one goes from recursive to
limiting identifiable to approachable. An inference device which can
identify a class of languages in the limit will find a correct grammar,
but will not know that it has done so. If the device can approach a class
of languages, it may not ever settle on a correct grammar, but will get
progressively closer as the sample size grows. Unfortunately, this is the
best kind of result possible in the absence of negative information.

The device D used in the proof of Theorem 3b5 could make use of
negative strings to reduce the set at considered acceptable to time t
One might conjecture that there is a device that would use negative strings
in an information sequence without knowing whether or not it was complete
(that is, whether all or only some of the negative strings occur) and
achieve the behavior of Theorem 3bl for complete sequences and of 3b8 for
incomplete ones. This conjecture is false; an argument similar to the proof

of Lemma 3b4% will show that:

Corollary 3b9 If D is a device which will approach any finite state

language L(G) for any I(LUD)GJ+ then there is a finite state
grammar H and an information sequence IGUeJ+ which will cause

D to change-its guess an-infinite number of times.

Intuitively, the device of Theorem 3bl adopts a very conservative
strategy; 1t chooses the first grammar which is compatible with the sample.
It succeeds because the negative strings in a complete sample guarantee
that any incorrect grammar will ultimately be incompatible. The device of

Theorem 3b8 does not have this guarantee, so it must constantly look for

45

"better" grammars and thus cannot be guaranteed to eventually remain at the

same value. The question of learning good grammars and making good guesses

is the subject of the next section.

3c. Learning Good Grammars

The preceding discussion has established the solvability of the
grammatical inference problem under a variety of conditions. We now
extend these results by considering when a good grammar (in the sense of

, Section 2) can be learned.

There are several properties which would be desirable in an overall
measure which was an increasing function of both intrinsic complexity,
n(S,G) and derivational complexity, p(G,G) . For a fixed grammar, the

complexity of a sample should be bounded so that the convergence results
of Section 2c¢c are applicable. Finally, the relative weight given to the
components of the measure should be able to be specified in advance.
Another important property of a measure, effectiveness, is actually a
consequence of the other requirements and the general conditions of the

problem as the following lemma and theorem will show.

Lemma 3cl Let % = {Gi}ke any enumeration of a class Cc R
which is approximately ordered by length and let St be a

sample of some I(L(G)) , Ge& . Then there is a computable
index k such that j > k implies there is an h < k such

that

L6

Proof The proof is based on the fact that if a grammar is too

large, there must be some redundant rules. 1.t

t
ulst) = 2 - 4(y,)
=1

From Lemma 1b2 we know that the total number of uses of productions
in deriving S is less than U(St) _ Therefore, if one chooses an index
k such that j > k implies the number of productions in G, is greater
than 'U(St) , the condition of the lemma is satisfied. gquch a k is

computable since & is effectively approximately ordered by the length of

grammars.

Theorem 3ce Let Cc R and & = (G;} be an effective approximate
ordering of C by w(G,G) . Aalso let f£(1(S,a),u(G,&)) be any
monotonic function of both its arguments. Then for any GeC ,

StC I(G) there is a computable index k such that any grammar Gi

such that

f(n(St,Gi),u(Gi,G)) is minimal

has an index 1 < k in & .

Proof By lemma 3cl above, there is a }_<_l such that the @G,
R 1
minimizing n(St,G) occur before k, Let M be the largest
value of u(Gi,f}) occurring before ki i.e.,

. Me MR (u(Gy,8)
1<ic<k

Now, by lemma 2b5 there is an index k such that j > k implies

u(Gj,G) > M .

iy

The minimum value of f(n(St,Gi),p(Gi,G)) must occur with
index less than k , since for each j > k there is an h < k

such that both n(St,Gh) < n(St,GJ.) and p(Gh,G) < u(GJ.,G)

The requirement that a goodness measure be an increasing function
of both intrinsic complexity u(G,G) and derivational complexity 1(S,G)
seem to be a natural one. The particular choice of a goodness function is
less clear. Consider a device D which enumerates the class C of
candidate grammars by generating them in order of length from G . Although
n(S,G) 1is a normalized complexity measure and is bounded for a fixed
grammar, the bound increases approximately as the length of grammars.
Although p(G,G) also increases with length it does so in a different
manner. A comparison between the growth rates of p(G,G) and n(S,G)
would be very helpful in choosing a goodness function. In the absence
of any knowledge of growth rates, we will be content to use a particular

class of goodness functions which seems reasonable.

Def 3c3 A goodness measure 7(S,G) is defined as

7(5,G) = a .n(8,G) + b -!J(GJG)

where 0 < a,b <1

It follows from previous results that goodness measure y is an
increasing function of n , p and is bounded for fixed G . By Theorem
3c2, the minimum y(S,G) for fixed S and G € C , a complexity class,
is effectively computable. Thus y 1is an adequate goodness measure by the
criteria laid down above. We now study the conditions under which best

grammars, as measured by y , can be learned by an effective device D(S,C) .

L8

Theorem 3ck Under the conditions of Theorem 312 (GeC , I(L(G)) c &) .
If Y(St’Gi) converges as t ¥« for every G, such that

L(Gi) = L(G) then there is a device D(St,c) which will identify

in the limit the grammar Gj such that L(Gj) = L(G) and

7(L,Gj) is minimal over C

Proof The device D will use G for the enumeration & of C as

before and will at each time t form St . There is a first G
a

which is compatible with St and by lemma 3c2 there is a kl(q)
such that i > k. implies 7(St,Gi) > 7(St’Gq) . The device D

then chooses the first grammar in {QP... G, } which has the
L

minimal value of y as its quess At .

Now there is a first Gq such that L(Gq) = L(G) and
V(L(G);Gq) = Cq exists. But there is also an index k(g) such
that i > k(q) implies b . u(G,G) >, » t-e., intrinsic
complexity alone exceeds cq at some point.

Thus the device D will never consider more than the grammars

G . G as possible guesses. Any G; such that I&Gi) # L(G)

l’l .
will eventually be eliminated by the complete information sequence

I(G) . There are then a finite number of G, , all of which generate

L(G) ; for each of these, 7(St’Gi) converges to a limit ¢,
i.

Let the first occurrence of the minimum “ﬁ) = c. be a G. . For
J J

any G.1 such that ci = cj+e there is an index r (i) after which

7(Sr(i)’Gi) > 7(Sr<i),Gj) _ Let w be the largest of the O then

for all t > w the guess At will be precisely G. and the theorem
J

is proved.

k9

I

Corollary 3¢5 If the measure 7(St,G) = u(G,G) , (only intrinsic
complexity is considered) the device of Theorem 3ck will always
identify the best grammar in the limit, the grammar of lowest

intrinsic complexity producing the correct language.

Corollary 3c¢6 The device of Theorem 3ck will approach the best

grammar, even if the limit of 7(St|G) does not exist.

-

The requirement that the limit of 7(Stﬁﬂ exist seems to be necessary
, in general. If y does not converge, the device can be caused to oscillate
its guesses between a finite number of different grammars for the target
language. There is a possibility that for complete information sequences,
Y(St:G) can always be made to converge. It 'is based on the following
conjecture: the measure 7(St’G) will always converge on an information
sequence which presents strings in strict order of length. If the conjecture
is true then the device of Theorem 3ck would be able to wait until all
positive and negative strings of length up to 'k were seen, then compute
7(St ,G) and be assured of convergence.
kThe final set of questions relate to the learning of best grammars
from positive information sequences. 1In the discussion of Theorem 3b5
we remarked that a goodness'measurelike y could be used to break
ties among compatible grammars producing the minimum number of strings
of a fixed length, g . The device described there will approach the
correct grammar, but will not make the best guess at each time, t
By making g a slowly increasing function of t one can produce a
device which will tend to produce better guesses at each time, t , at

the cost of rejecting overbroad grammars later in the sequence. (pe

50

might conjecture that the complexity measure alone would eventually eliminate
overbroad grammars. We now present an example to show that a device using
only the complexity measure vy and a positive information sequence may

fail to approach the correct grammar.

Example 3c7.

Let C be L(FS) NR, the finite state grammars in standard form.
Let

¢ = ({x},{a,0},X,{X » a|b|ax|px}) .

The universal grammar of Examples 2a5, 2bk has uULFSl)=8 and the
upper bound on n(S,G) is loge(h) = 2 . In fact, for this simple grammar
n(8,G6) is exactly 2 . Thus for any set 8, C L(G)

7(St,G) = 10

We now show that by removing one string from L(G) we get a language L'
such that for any H such that L' = L(H) and any sample StC:L'
7(8,,H) > 7(8,,G) .

That is, any device using y as a selection criterion will select the
universal grammar G over the correct grammar H . To prove this
rigorously we would have to account for all possible grammars of L'
(which the results of this section show to be possible) but we will be
content with the following argument.

Consider L' = L(G)-aaaaaaaa . Any grammar of L' that is in C
can have only one terminal symbol per production. It must also have
enough states (non-terminals) to count to eight. This apparently requires

a grammar with y > 10

51

In any event, there is a string of a's long enough so that its unique
non-membership requires a grammar of intrinsic complexity greater than 10.
This example also indicates that the difference of two grammars might have
a lower measure than any single grammar of the class, even when such a
grammar exists. This question of combinations of grammars deserves

considerably more attention.

3d. Using Frequency Information to Assist Inference

Previous sections have presented successively weaker definitions of
learnability: recursive, identifiable in the limit, approachable. Aal1l
of these definitions are "strong", however, in that they require that the
device (eventually) satisfy the criterion for every information sequence
in some class, In fact, the non-learnability results of Theorem 3b2,
Lemma 3mh and Corollary 3b9 depend upon the construction of particular
pathological information sequences.

In practice, however, a device whose performance is superior on "most"
information sequences need not be rejected because it fails on a few
sequences, provided that they are "sufficiently improbable". e are
generally more interested in the "expected behavior" of a device than in
its worst case behavior. To study these properties of devices we must
define more carefully our notions of "most", "sufficiently improbable", and
"expected behavior". In this section we start with a probabilistic notion
of information sequence, which leads naturally to a Bayesian inference
device using the frequency of occurrence of strings to assist in inference.
We also sketch a number of basic results which will be explored further in

[Horning 69].

52

There are many other motivations for using the frequencies of the
strings in a positive information sequence (text presentation) to assist

in grammatical inference:

(a) Since more information from the sequence is used, grammars
may be discriminated earlier.

(b) The significance of "missing strings" can be evaluated.

(c) Inference can be conducted even in the presence of noise.

(d) Grammars for the same language may be discriminated on
the basis of their agreement with observed frequencies.

(e) Complexity can be related to efficient encoding, gand

various results from information theory applied.

We shall assume that the elements of an information sequence are

independent and identically distributed random variables (iidrv

condition).

Lemma 3dl The iidrv condition implies convergence with probability

>1- ¢ for any € > 0

Proof See sequel.

Let =n = {nl,nz,...} be a denumerable set of probability distributions
for strings in 7t such that the conditional probability of a string,
P(yilnj) , and the a priori probability of a distribution, P(nj) , are
both computable. Under the iidrv condition, the partial information
sequence

L (6] = Vyps¥ips e o o¥yey>

23

(=7

-

has the conditional probability

t
B (1) ry) = TTR0 | x,)

= UP(yilnj)

As 1is well-known, the probability distribution for information
sequences under the distribution n' for strings corresponds to the
; ; ' ' t : : : :
multinomial (P(X1hf) + P(y2|ﬂ)+ .ae) or, distinguishing P(yihﬂ) '
to the binomial

D (p o+t =0 (SRt

: £y
1 171

where

1

P, = P(yiln') s Zp = ZP(yJ.lvr') - P
J

- Taking a/dPi of both sides:

t-1 E ., b\ fi-1 t-fi
1 j— 1
II) t .(P. + Z!) = — fl(f.)P. . [=]

Multiplying by Pi :
£-1 Z b, fi t-fi
] — 3 1
1) P, .t .(Pi + zi) = & fl(fi)Pi . [zi]
fi
Again-taking a/aPi and multiplying by P;
t-2
)

) P (B + X

; [(®y + 2} + 2, . (¢-1)]

o 5 s
M ORISR ol
£i 1 1 1 1

5k

Since Pi + Z;,"_ = 1 we can simplify III) and IV):

l

ot i -£4
I17)" :;: £1(5) - Pil. [zi]t _p .t
1

2, t fi t-fi
V) ' :E::f.) P L[- . .
) 2 (ei) - By (21 Pt (L v (t-1)) .

The left sides of these equations define expectation values under

' for fi and f? so we have
V) B (£(Lyg,t)/t) = By, |x')

VD) Ex' ([£(T,y;,t)/t - By, [x)1%)

En'([f(I,yi,t)/t]g) - 2B, (£(L,y;,t)/t)

* ROy ln) 4 Gy,)®

_ P(y. |x'
Poaledwex e POl w)y a0y
= [P(y, |x")® '
i + P(yi|n)1/t
Equation VI) defines the expected variance ,f ¢ /t . Since
1

P(yilyr') < 1 we can bound it by

B (5L, 0/t By n01%) < 2 ey, n)/t

25

—

o

We can use this to bound €,(8) , tpe probability of an information

sequence with If(I’yi’t)/t - P(yilﬂ'), > 5
VII) e.(8) & <E , ([f)12
i . < n’([(I,yi,t)/t - P(in“)17)
<2 Py |n')/t

and €(8) , the probability that any £/t is off by & . o0

VIII) e(8) < Zei(a) < 2/(t - 62)

. . 2
Given any € >0, 8 >0 if 1 =2/e? then t > T assures that

the total probability of information sequences of length t in which the
relative frequency of any string deviates by 8 or more from its
probability in n' is less than €. This completes the proof of Lemma 3dl:

"The iidrv condition implies convergence with probability > 1 - ¢ ¢
or

any € > 0 ." It is in fact a slightly stronger result, because we have

also showed the relative frequency distribution to which "practically all"

sequences converge is n', the distribution of the random variable.
feturning to the case of a fixed information sequence, we note that

Bayes Theorem can be used to compute the conditional probability of a

distribution

BRI (8),my) = PO (8 |xy) - B(x,) = Pl |, (2)) . P(T,(¢))

or

56

P(nj)

P, |1, (£)) = P(L, (%)]x,) - BT (1))

where

R(I(6)) = 2 P(x,) - B(I,(5)]x,)
ﬂzeﬂ
and

P(L (8 |x,) = T}P(yi)

To use this formulation for grammatical inference we must relate

the probability distributions s and the a priori probabilities P(x,)
- J

to grammatical complexity.

At each step of a derivation a production -- one of the finite set

with the correct left part -- is selected. 1If production p. is selected
i

from this set with probability P(pi) , the specification requires

p(p,) = - log,(P(p,)) bits of information. The probability of a derivation

is the product of the probabilities of its individual steps, so if
k

d(y,6) = <pj,... ;> then P(d(y,6)) = T[P(p;) and -log,(P(a(y,6)) = m(d,y,6)

i=1
where (as before) m(d,y,G) = ﬁo(pﬂ .
i=1 -

+ .
Def 3d2 . Let yeT , if yfL(G) we de-fine the conditional probability

p(y|G) to be zero; if yeL(G) and has the derivations

dl(y,G) .. dk(y,G) we define

k

P(yle) = E%P(di“’ﬁ))

o7

——

A
Let u(y,G) = 'lOgg(P(YIG)) . If y is unambiguous with respect

to G then k = 1 and ﬁ(y,G) = u(y,G) [Def 2a3]; in the ambiguous case,
ﬁ provides at least as plausible a definition of complexity as does u .

As we did in Section 2b, we define the intrinsic complexity of a
grammay in terms of its derivation from a grammar-grammar. Note, however,
that for our purposes, grammars which differ only in the order of their
productions, or in the systematic renaming of their non-terminals (except
the distinguished non-terminal!) are completely equivalent. The equivalence

class of a grammar with k productions and n non-terminals contains

k!(n-1)! equi-probable grammars. We are always interested in
P(x,|G) = k! (n-1)! P(G,|G). P(G
(x5 |6) (n=1) 1 P(G4]G)). »(G)

since all of these grammars yield the same distribution, [For a

J

fixed collection we must specify the probability of Gh with n

non-terminals. A reasonable choice is P(Gn) -

= | _ | . A . A
P(nj) k!(n-1)! P(Glen) P(G)
-1(G,,G)
ki(n-1)1 - 2 9 R o
Define
- A -
u(GJ.,Gn) = p.(GJ.,Gn) +n - 1og2(t:(n-1)z)
then

P(nj) _ Q-M(Gj’Gn)

A
-u(y,,G,)
= i d
P(yilnj) =2

58

By our formula for conditional probability

- - A
2'H(Gj)G‘) ' '”-[E-u(yi’Gj)]f(Ik’yi’t)

P(n, |I, (t)) = i
(g 11 () P(L (%))
Taking logarithms

~logy (P(ny [T, (£))) = (6,,8) + log, (P(1,(t)))

. . A
i
Except for a term independent of the grammar (loge(P(;k(t)))), this
corresponds rather closely to our previous measure of fit [Def 2b5],
weighted by the frequency of occurrence of strings. Let
A A
then
- - A
Ay T (8) = R(6,,8) + AT (2),6,) + 1og, (R(1,(¥))) .

To compute P(Ik(t)) we must enumerate the distributions _

l, 2,‘..

P(T, (t)) = 24P(x,) . P(T (t)]x.) .
k 3 J k J

This is not generally practical. powever, this term drops out when we

compare the relative probabilities of grammars

AL O ACHE CIENOD)
an£|1k2t55

Q-IM(nj,Ik(t))-M(nz,xk(t))]
where

°9

fiey, T (8)) = A(0,,8) + w1, (6),6,) .
As in Section 2¢, the grammar with the smallest total complexity M is
preferred.
We can compute a lower bound for ﬁ(Ik(t),GJ.) , independent of the

particular class of grammars involved, by the method of la Grange

£
i}

A ZP(inG) + .Zﬁ(yi’G) : f(Ik)yi)t)

n o LRy 6) - &ty (P(y;|0)] . £(T,¥;,t)

BL f(Ik,yi)t) _

=N - =0
5P3yi|G5 PfyilGi

P(inG) = f(Ikai’t)/x

But

Zi:P(yilG) =1
Zif(:rk,yi,t)/x -

A= Zf(Ik,yi,t) =t
P(y;[6) = £ (T,¥,%)/t .

Substituting, we have

60

b (L ()

min

]

- zi:logg[f(lk,yi,t)/t] ' f(Ik,yi,t)

Log, (t) - lZf(lk,;v.j,t) * Lo, (£(I,,,,t))

A .
(I (0),G) > t E(L (v))

where

, £(1 3Vsst) o
H(T, (t)) = - Z [_}5%__1___] o, £(I,,¥;,t)

i t

, A
is a local "entropy" measure. Tt would seem that Moin is a "natural”™
normalization for complexities.
)) i) A
We may, in the course of inference, require an estimate of M (as

well as the value of M) without enumerating the . .
J

M, T, (6)) = fi(x, T (8) + log, [P(T, (+))]

P(T, () =Z-J-:P(“a') . B(L(8) |x,)

In general, we will know some {nr} which have been rejected —- pecause
P(Ik(t)fnr)= 0 -—— and some ‘{nc] which are under consideration
Let
Pr = Z P(Tt F] PC = Z P
KJE b8 . e{n }
P,=1-P. -P_, P (I (t)) Z P(r.) * P(Ik(t) Inj)
T, €{ﬂ

61

then

EHE(E (1)

P, (L (t)) < P, () < B (T, (8)) + B -
Thus, although our inference measure can never be "sure", it can compute

a confidence measure for its best grammar.

Noise
If the distribution of noise (error) strings is known, i.e., =
n
and. Pn are given such that elements of the information sequence are
drawn with probability Pn from the distribution % and probability

(1 - Pn) from the "true" gistribution 1, then we have

P(yilﬂj’Pn:“n) = (1 - PB)P(yilnj) + I%fzp(yllﬂn)

We can substitute this for P(Yih%) in all of our formulas and still
conduct inference.
If Pn is small, we will introduce very little error by the
approximation
P(y; [x;) 1if P(y. I{rr.)J> 0
P(y, lnj,Pn,nn) ~
P . P(yilnn) otherwise

i.e., strings not generated by the grammar are given their "noise"

probabilities, otherwise noise is ignored.

62

—

e

—

r— r—

4. Programs for Grammatical Inference

4a. Introduction and Definition of Pivot Grammars

The development of programs for grammatical inference provided the
original motivation for the theoretical work presented above and is of
continuing interest. The programs completed so far are quite primitive
and were written to test some basic ideas. There are a number of obvious
extensions. Given a proper formulation, the grammatical inference problem
can be characterized as a heuristic search problem and the various known
techniques [Newell 68] applied.

An early paper [Feldman 67] described a number of strategies for
inferring finite state and linear grammars. They can be characterized as
constructive as opposed to the enumerative strategies stressed in this
paper. Thus they solve the problem "Build a reasonable grammar for ..."
rather than "Find the best grammar for . ..". The first program, GRINI,
embodies these strategies in an inference program for finite state grammars.
Rather than extend these simple techniques to linear grammars we considered
the problem for a somewhat more general class: the pivot grammars. A pivot

grammar is an operator grammar in which a terminal symbol which separates

non-terminals in a production appears in no other way. More formally:

Def hal A pivot grammar G = (V,T,X,P) is a grammar in operator 2-form

(cf. Section 2b) such that the set of terminal symbols, T ig
partitioned into two sets ﬁp’To such that
1) aeTP implies a appears only in rules of the form

Zl—>Z2aZ3

63

2) aeT ~ implies a appears only

Zl - a 22

or Zl —)25 a

or Zl 3 a

The linear grammars are exactly the pivot grammars for which T = p .
P
The pivot languages are much broader than the linear languages. For

example, the following pivot grammar defines a language which is not

generated by any linear grammar.

Example %2 1et G = (V,T,X,P) where
Vo (%,20,%, (5),-,a)
T = {(:):‘:a}
and P contains the production rules
X > Zl - Zl
Z, - (2, |a

Z, =-X) .

2
Sample strings from L(G) include

a-a, (a-a)-a, (a- (a-a)) ~ (a-a)

The context-free grammars used to define programming languages are,
for the most part, expressible in pivot form. The principal problems are

situations like the use of '-' as both a unary and infix binary operator.

Our interest in pivot grammars arises from the relative ease with which
they are inferred. The second program described below, GRINZ, is an

inference device for pivot grammars.

The programs described below are implementations of only our most

basic ideas on grammatical inference. No use is made of ill-formed

6L

f — o r— r-

—-

strings or frequency information. The entire program is situation-static

in three important ways.

1) Only one set of strings is presented, no new strings are added.
2) The program does not propose new strings for outside appraisal.

3) The algorithms themselves are deterministic, with no backtracking.

The addition of these and various other features would be straightforward

but time-consuming. In the absence of a pressing need for grammatical
inference programs, we will continue to concentrate on the theoretical
and programming questions which seem to be most basic. p formulation of

grammatical inference as a general heuristic search problem will be

presented after the current programs are described.

Yb. Program descriptions

GRIN1 infers an unambiguous finite state grammar for the set of
terminal symbol strings. The program is an implementation of the
algorithm proposed in [Feldman 67]. The algorithm is merely sketched
here; the reader is directed to the original source for a more complete
version and further examples.

The input to the program is a list of symbol strings. The output

of the program is a finite state grammar, the language of which is a

"reasonable" generalization of these strings.

All of the productions of the final grammar are of the form:

Zl—)aZ2

or
Zl-» a where Zl,Z2 are non-terminals

a 1s a terminal.

65

The program temporarily utilizes other productions ("Residues") of the

form:

Zl - al 8y a5 .. an where apay'-’ $§5l are terminals,

At all times during the inference process a non-terminal has either all
residue or all non-residue right sides (e.g. it will not construct
productions Zl-a alZ2 and Z5—> a2a3 -where Zl,ZZ,Z3 are non-terminal,
81s8py8 are terminals, Zl = Z3).

In the explanation of the algorithm, the set of strings
{caaab, bbaab, caab, bbab, cab, bbb, cb) will be used as an example.
X will be the distinguished non-terminal in the grammar to be constructed.

The main strategy of the algorithm is to first construct a non-recursive
grammar that generates exactly the given strings, and then to merge
non-terminals to get a simpler, recursive grammar that generates an
infinite set of strings.

The algorithm has been divided into three parts. Part 1 forms the
non-recursive grammar, Part 2 converts this to a recursive grammar which

is then simplified by Part 3.

In Part 1, a non-recursive grammar that generates exactly the given
sample is constructed. Sample strings-are processed in order of decreasing
length. Rules are constructed and added to the grammar as they are needed
to generate each sample string. The final rule used to generate the longest
sample-strings is a residue rule with a right side of length 2.

In the example, the first (longest) string in the example is 'caaab!®

The following rules would be constructed to generate this string:

66

s e A it vt R e perrtl

X - CZ
1

Zl - ::).Z2

Zg—>aZ

2.5—>ab

Z is a residue rule. The second string is ‘'bbaab' . The following rules

3

would be added to the grammar to generate this string;

3

X —aqu
Z)+ - bZ5

Z5 - aZ6
Z6 - ab
Z6 is a residue rule. To generate the third string, ‘'eagagb! , the

following rule must be added to the grammar:‘

23_)b .

Proceeding to consider each string in turn we see that the final grammar
that is constructed to generate exactly the sample is:

X - cZ, | vz

Z, - b | ez,
Zy » b | aZ,
25—>b|ab
Z), > Z

zs—>b|az6.
Ze »b | ab

The-residue rules are 7 and Z6

3

In Part 2 a recursive finite state grammar is obtained by merging each

residue rule with a non-residue rule of the grammar. qyo algorithm is

67

conservative in deciding which non-residue rule should be substituted for
a residue rule. The general principle is that 2fter such a substitution
the resulting grammar must generate all that the old grammar could plus as
few new (short) strings as possible. Wherever the residue non-terminal
occurs on the right side of a production, the non-residue non-terminal

is substituted. The resulting grammar is recursive and generates an
infinite set of strings.

In the example, Z6 would be merged with 25 and Z would Dbe

3
merged with ZE . The resulting grammar is:
X - cz1 l bZh
Z, - b | a2,
Z, » b | az,
Zl;. - bZ5
Zg — b | aZg

In Part 3 the grammar from Part 2 is simplified. Equivalent
productions are recursively merged. Productions Pm and Pn with left
sides Zm and Zn are equivalent iff the substitution of Zm for all
occurrences of 1qZ in Pn and Pm results in Pn being identical to Pm .
By merging Pm and Pn we mean eliminating production Pn from the
grammar and substituting Zm for all remaining occurrences of Zn .
Merging equivalent productions results in no change in the language
generat:d by the grammar.

In the example, the productions with left sides Zl and Z, are

clearly equivalent. After merging Zl and 22 the new grammar is:

68

T o o oo

o r“‘“‘ |

—

In this grammar, the productions for Z1 and Z5 are equivalent:
No change in the generated language results from merging Zl1 and 7
The new grammar is:

X - czy | vz
Zl—>b I aZl
Zh-4 bZl

No further merges are possible; this is the final grammar. (Note that
the seven shortest strings of its language (cb, bbb, cab, bbab, caab,
bbaab, caaab) are precisely the strings constituting the sample set.

The program is usually able to infer a grammar which is subjectively
reasonable. Several sample runs are listed in Appendix C. The program
for pivot grammars, GRIN2, makes use of.many of the same techniques.

GRIN2 infers a pivot grammar for a set of terminal symbol strings.

In the explanation of the algorithm, the set of strings [a-a, a-(a-a),
(a-a)-a, (a-a)-(a-a), a-(a—-(a-a)), a-((a-a)-a), (a-(a-a))-a, ((a-a)-a)-a]
will be used as an example. X will be taken as the distinguished non-
terminal in the grammar to be constructed. It will be assumed that the
minus sign is known to be the only pivot terminal symbol in the strings.
There are rules for determining which terminal symbols can be a pivot
terminal, e.q. (1) A pivot terminal cannot be the first or last symbol
of a string. (2) Occurrences of pivot terminals must be separated by

at least one non-pivot terminal in each string. These rules are not used

here.

69

The algorithm has two inputs: the list of known strings and a list
of the pivots. The output of the algerithm is a pivet grammar.

The main strategy of the algorithm is to¢ find th~ sclf-emteddings
in the strings. A non-terminal is set aside as the Luop non-terminal
(LOOPNT). The self-embeddings in the strings will correspond to the
appearance of the loop non-terminal in recursive rules in the grammar.
Initiaily, the loop non-terminal is the distinguished non-terminal.

The, algorithm has been divided into three parts, ©Part 1 finds
self-embeddings and creates a working set of strings, Part 2 makes some
changes in the working set from which it builds a pivet gremmar which is
then simplified in Part 3.

In Part 1 a working set of strings is built. Fach string is examined
to see if it has a proper substring which is also a member of the sample
set (a valid substring). If it does not it is simply copied into the working
set. If a string does have any valid substrings then the longest wvalid
substring is replaced by an instance of LOOPNT and the new string is placed
in the working set. Table 1 gives the longest valid substring and the
resulting new string for each of the strings in the example set. X , the
distinguished non-terminal, is the initial loop non-terminal. If any
substitutions have been made, Part 2 of the algorithm is entered.

If no strings have valid substrings, it is determined whether all
the strings have an identical first or last symbol. If there is a common
first or last symbol, say 'a', then a rule of the form LOOPNT - aZ
or LOOPNT — Za (and possibly LOOPNT - a) is entered in the grammar;
LOOPNT 1is set to Z ; the first or last symbol is removed for each of the

strings and the substitution for longest valid substrings is begun again.

70

-

given strings

a-(a-a)
(a-a)-a
(a-a)-(a-a)
(a-(a-a))-a
((a-a)-a)-a

a-(a-(a-a))

a-((a-a)-a)

TABLE 1

longest wvalid

substring new strings
none a-a

a-a a- (%)

a-a (X) -a

a-a (X)- (a-a)
a-(a-a) (X)-a
(a-a)-a (X)-a
a-(a-a) a- (%)
(a-a)-a a-(X)

Results of Part I of GRIN2

In Part 2 further substitutions are made for valid substrings and

a simple pivot grammar is constructed.

Each of the strings in the working set is examined independently.

If a string contains a pivot terminal,

the test and substitution process

is repeated for the symbols on the side of the pivot not containing the

loop non-terminal. In the example,

of 'X' for the valid substring 'a-a'

this would result in a substitution

in the string '(X)-(a-a)’

The working set of strings would now be {a-a,a-(X), (X)-a, (X)-(X)}

T1

A simple pivot grammar 1is constiucted for the working set of strings.
The working strings are processed in sucregeion: productions are created
as they are needed to generate one of the nuv strings. Recall that pivot
symbols can only appear in pivot rules, “O0PIYY i used as the starting
point in the generation process.

In the example, the first new string,, 'a-a' , wou 1d result in
the productions:

X = Z, -1

1 2
Zl - a
22 - a
To generate 'a-(X)' the productions
ZE - (z5
and
Z, - X
5 = X)

must be added. The productions are now:

X = Zl— 22

Z, = a

1

22 ! | (25
Z5 —->X) . o

To generate '(X)-a' the productions
2, (zh

and
Zh. - X)

must be a dded. The productions are now:

72

‘z
-

r— - r—

-

— r—

X2, -7,
Z, > a |(Zu
Z, - a | (z3
Zs - X)
Zh_’x)

To generate '(X)-(X)' no further productions need be added.
These productions are added to any productions constructed in
Part 1. In the example there were no productions constructed in Part 1;

the grammar outputted from Part 2 is: -

x 3 Zy -2,
Z, - 2 |(Zh
Zy, - a | (z5
ZB—)X)
Zu-a X)

In Part 3 the grammar from Part 2 is simplified in the same way as
in Part 3 of GRIN1l; equivalent productions are recursively merged. The
language generated by the grammar remains constant.

In the example, the productions Z3 - X) and Zh - X) are equivalent.
Z, »X) is eliminated and 2 is substituted for all occurrences of Zh

b 3

in the-grammar. The resulting grammar is

X-%»ZI- z,
Zl->a 1 (Z3
Ze-e a | (Z3
z5 - X) .

73

In the new grammar 2, - al (Z3 and 2, - al (Z3 have identical right sides.

Ze, - a,_f(Z.3 is eliminated and Zl is substituted for 22 . The resulting

grammar is

X—’Zl-Zl

Zl - a | (Z3
Z3>—’ X) .
None of these productions are equivalent; this is the final grammar.

Note that the language generated by this grammar is identical to the

language generated by the grammar of Example- ULa2,

be, Extensions to the programs

The programs described above could be extended in a number of different
ways « The most interesting of these depend on the use of the various
complexity measures discussed in Section 2. To the extent that we accept
these meagsures, they provide evaluation functions for the grammatical
inference device, The existing programs choose simplification rules
simply and deterministically. By using a measure like y(8,G) for a
sample set, 8§, of strings and a grammar G , we could allow the program
to evaluate several simplifications.

A more difficult problem arises in attempting to study large samples
because the number of substitutions to be considered grows exponentially
with the number of variables. We suspect that the number of substitutions
whichare compatible with the sample, while much smaller, also grows

exponent 1ally.

Th

The difference in 7 caused by a substitution might be a good
heuristic for deciding whether or not it should be carried out. This
leads naturally to a tree search for the best value of 7 over sequences
of substitutions, and the usual search heuristics can be applied.

Thus complexity measures can be used in deciding between alternative
grammars for the same sample and alternative sequences of substitutions of
variables. There is another possibility which is much more important to
investigate -- incremental change of grammar. The methods of this section,
as well as those in [Feldman 67] deal only with a fixed sample set. If
another string is added to the sample, the current programs must start
again from scratch. Intuitively, one can think of heuristics for changing
a grammar to accomodate the extra string. The problem is that the obvious
heuristics all lead to ever more complex grammars. We might be able to
use 7(8,G) as an objective function and do hill-climbing techniques to
search for grammars.

Another important class of problems involve the interaction between
the informant and learner. Horning will develop the theory of this further
in his dissertation. The interesting programming problems include the
learner asking about the well-formedness of strings and the design of
optimal teaching sequences. In this, as in its other aspects, the grammatical

inference problem is the prototype of a very general situation.

5

[

Appendix A: Representations of Finite-State Grammars

In Appendix B we compute the value of the size measures for the
finite-state languages. We first need a matrix representation of the
languages which aids investigations of the measures. Although one matrix
representation has been used extensively in the literature (e.g. Shannon,
and Weaver 49, Chomsky and Miller 58, Kuich and Walk 65), the representa-
tion will be shown to be inadequate for the finite-state languages. The
inadequacy of the representation has led several authors to false con-
clusions about the finite-state languages.

The previous matrix representation for a deterministic finite-state
grammar, which we term the "old" representation, is a square matrix of
the form & = [Gij]’ i,j=1,...,n. Each Gij is a subset of the alphabet
T, and contains those terminal symbols associated with a single-stage
transition from state i to state j. The grammar has n states, one of which
is the initial (starting) state (say state 1). The condition that the
grammar is deterministic implies that f%. f\£§./ =@ for j # j'(i=1,...,n).

Let X, Y, Z ¢ T*%, Define X + Y = X U Y and define Xy =
{aﬁpi @ € X and B € Y}. Thus X+Y = Y+X, X+ = @+X = X,

(X+Y) + 2 = X+(¥+2), X § =9 x = @, X{e} = {e} X = ¥,

(XY)Z = X(YZ), (X+Y)Z = XZ+YZ, and X(Y+2Z) = XY+YZ

The-algebraic properties of such systems has been partially investigated
using semigroups, and an interesting class of abstract algebras, termed
the semi-rings (which are built from two free semi-groups), has been in- ~

vestigated by Reder [68]. The formal properties of such algebras permit

76

a meaningful definition of matrices over T* in such a way that the class
of all nth order matrices over T* is itself a semi-ring. In particular,
if @ = [Aij] and 8 = [Bij] are nth order matrices over T*, @ B can be

defined as @ B = [Cij]’ where C.

. et
j kil Aik Bkj ("£" denotes repeated
. . " . a . Jk k 05)

application of "+' described above). If we define = mgl'* = [Gij 1,
. (k) k (k) . . .
it can be shown that Giﬁ cT; (313 is precisely the set of strings of
length k'associated with possible paths of k steps leading from state i
to state j. In particular, G§$) is the set of strings of length k leading

n
fram the initial state to state j, and I G§§) = Lk’ where L is the

i=1

language generated by the finite-state grammar associated with & .

It is a well-known result that any language L generated by some such
4 is a finite-state (regular) language over T*. However, contrary to what
seems to be commonly believed, the converse is false. There are regular
languages which cannot be generated by some such matrix & . Many of the
theorems which have been proved for the class of reqular languages have
been demonstrated only for those languages capable of being generated by
such matrices. As we shall see, serious errors have resulted from a failure

to realize the limitations of this representation.

Example of a Reqular Lanquage for which the 0ld Representation is Inadquate

Consider the following finite-state language L over T = {a,b} :
L ={@ € T* : & contains an even (including zero) number of a's}. A finite-
state grammar for L is:
S - b|sb|xa

X - aIXbISa

77

[

If we try to construct a matrix & which generates L, we might try:

L b} (e}
¥ =

2 | {a} {o)]
Experimentation with the first few powers J% quickly convinces one that
4 does not generate L, but rather the entire set T*- It also becomes
clear that no such matrix can, in fact, generate precisely L. 1 is but
one of an infinite number of reqular languages for which the represen-
tation is inadequate.

To see why the old representation fails we should investigate what
features of a matrix permits it to selectively generate certain strings
but not others. A string a € Tk is generated if and only if there is
some path of length k leading out of the initial state (into some other
state) with which @ can be associated. Starting in the initial state,

o €L sequentially determines k transitions through the states of the

k
matrix; these transitions are determined by the sequence of terminal
symbols which constitute &. 1If at any time there is no feasible transi-
tion possible, @ is not in the language generated by that matrix.

Suppose some matrix Jfgenerates a language L © T*. (onsider the
strings that are not in the language: T = T*-L. The preceding paragraph
illustrates that L consists of those strings for which there is no feasible

path of transitions within &. Thus the only factor which can cause a

string not to be in a language is that it violates some sequential rule

(i.e., at some point in the string, there is no feasible transition to be
made in #); there is no capability for strings to be "rejected" on the

basis of other types of "violations". Specifically, suppose the

78

"grammaticalness" of a string does not depend on whzther there is a path
for the string, but rather on where (i.e., in which state) the given path
terminates. Such is the case in the "even a's" grammar; no string @ € Tk
can violate a sequential rule since, for every string @ , there is another
string B: @ B € L. Indeed, the "grammaticalness" of a string @ depends
on whether its path terminates in state "8" (i.e., even number of "a"'s)
or in state "X" (odd number) .

We thus see that in addition to sequential violations, a string can
be ungrammatical (in terms of a finite-state grammar) if its path through
the grammar matrix terminates in a "not in the language" state. Referring
back to matrix &, if we designate state "S" (i.e., State 1) as "in the language"
and state "X" (i.e. State 2) as "not in the language",matrix &then generates
the desired L; all strings & € T* have paths through & but only those

@ € L will have paths terminating in "S".

A New Representation

The lack of generality of the existing matrix representation for
finite-state grammars prompts us to develop a broader, fully adequate
representation. Specifically, we wish to develop a matrix representation
which allows regular languages (and their complements) to be defined with
respect to both sequential-type rules and rules pertaining to the par-
ticular state in which a string's path terminates. At first glance, it
might seem that the capacities needed to implement both sequential and
terminal rules are incompatible within a single matrix representation;

a sequential rule 1is presently implemented by selective paths in the matrix

79

S

(such that strings not in the language do not have paths in the matrix),
while a terminal rule requires that all strings have paths in the matrix.
Fortunately, however, these seemingly inconsistent demands can be satisfied
simultaneously.

Let & = [Gij] be an nth order matrix, where each Gij cCT.

It is assumed we are dealing with a deterministic grammar, so that

Gijn Gij' = ¢, for j # j', i=l, n. By a complete finite-state
n _

grammar matrix, we mean that UG,,=1T, i=l, n. Thus if a matrix
j=L

4 is complete, each of its rows is a partition of the alphabet T into the

n cells of the row. Functionally, completeness of a grammar matrix implies
that all strings @ € T* have paths (derivations) in the matrix; from each
state (row) of & each terminal symbol of T is associated with a feasible
transition to another state.

With the n states of & we wish to associate a state classification.

A state classification is a single-valued mapping of' the n states into the

integers {1,...,k}. 1If 93 is a state classification of 4, then
Cyr {1,...,n} > {1,...,k} n,k> 1,

is called a k-class state classification of &.

The interpretation of iji) = j is that all strings @ € T* whose paths

in 4 terminate in state i are classified into the jth terminal class.

For complete & we have the following:

(i) & : T o {1,...,n}
(ii) Cyu {1,...,n} » {1,...,k}

80

(1) means that & classifies all strings over T in*to onz of n states
(according to the state of & in which the string’s path terminates).
(ii) says that the state classification is k-way, that each of the states
of & is associated with a unique terminal class. Taken together, & and
Cy define a composite fUnctiml(J%CJ), which maps each string of T
into a unique terminal class:

(3,03): T* - {1,...,k}
defined by '(.E,Cj) (@) = 03(3(06)). The pair (J,C}) is defined as a

*
k-class finite-state grammar over T (k- depends on Q&L

A k-class finite-state grammar partitions the set of all strings T
into k disjoint, exhaustive subsets. Each of these k subsets is called

a terminal class of strings generated by the grammar. It can be shown

that each such terminal class of strings is a reqular set (finite-state
language). These classes will be denoted as(?il(i=l,.”,k) or simply
by L(i) when the subscript & is understood;léi)will denote those strings
of length k in the i th terminal class.

When k=2, we have a grammar generating strings into two terminal
classes, which are usually thought of as the language (L) and its com-
plement (f = T*-L): When k-1, all strings are generated into a single
terminal class. The languages generated by a single class complete grammar
are thus either empty or are the entire set of strings T*

In the "old" representation, a sequence of symbols from T failed to
be grammatical when it called for a transition to be made which was not

feasible; if some number of symbols brought the string's path into state i,

and there was no transition out of state i associated with the next symbol

81

-

coc M

AR

-

of the string, the string was ungrammatical. In our representation, all

sequences of symbols must have paths through the matrix; the completeness

of the matrix requires that there be transitions associated with each symbol

of T, regardless of the state out of which the transition leads. We need

to implement "taboo" transitions into our new matrix representations which
correspond to the infeasible transitions of an "old" matrix.

th
Let & =[Gij] be an n order grammar matrix of the "old" representation.

n
Define subsets T; of T (i=1,...,n)as T =T - U G, ; T, is thus the set
i iy i

J=1
of symbols for which there is no transition out of state i. .4

*
Ai c T (i=1,...,n); Ai is the set of all strings whose paths through &
end in state 1. Then we may describe the complement L of the language

n
L generated by & as: L = A,T,T* .
i=] 11

th
Let ¥ = [Hi,j] be an n"" order complete matrix which has the following
properties (the existence of an¥ with these properties is self-evident):
1/
V€A, , ¥(at) = £ if and only if t€T, (i=1,...,n); Hy,= $ for § # £ and
H!z= T. Let qv be a two-class state classification of ¥ such that
. lif j#14
qv(a) = (2 if g i ? Then the terminal classes %él) and (2) are pre-
cisely the sets L and f, respectively; our representation has the capacity

for sequential rules. State ! of ¥ corresponds to an "absorbing" gtate,

such that paths entering state { can never leave it, regardless of the
ensuing symbol sequence. All strings whose paths enter state I are thus

lumped together into the same terminal class. Thus if the terminal class

q((!) corresponds to f, and transitions into state ! occur only when the

sequential rules implicit in the grammar are violated, we indeed implement

the sequential rules into our representation of the grammar.

1/ by ¥(s) we mean that state of ¥ in which the path of the string s
terminates.

82

Example of the Implementation of a Sequential Rual:

Suppose we have a finite-state language L over the alphabet
T = (a,b,c) which consists precisely of those strings in which there
are no adjacent occurrences of the same symbol. Taus “abe" , "abab" ,
and "bacabacbc" are in L while "abb", "aaba", and "bacabbecbe" are not.

This language can be generated by a matrix of the "old" representation.

One "old" grammar matrix for L is:

1 2 3 L
1 e) fe]
L. 2l ¢ ¢ o0
514 fa g e}
, L# (e} o} 9 B

This could be transformed into a complete matrix ¥ as follows:
1 2 3 4 5
(¢ {a} (b} fc} ¢
g ¢ v} {c} {a}
g {a} g {c} {v}
g la}) g {c}
;¢ ¢ ¢ ¢ {a,p,c] -

The two-class grammar (¥,C), where
.\ 1 if- i< 5
(1) ={; ¢ -5

has Lél) = L'& and (2) = f‘g .

»
i
ViE oW oo

83

=4

Functional Partitions and Standard Forms of Complete Matrices

Let & = [Gij] be a complete matrix over T . State j is said to

be accessible from state i , denoted i-+ j , if and only if there is
some sequence of symbols in T*-(e) whose path, when starting in state i,

leads to state j . States i1 and j are said to communicate, denoted

iesJj, if and only if both i+ j and j »1i .

The relation "«" can be seen at once to be both transitive and

- symmetric on the states of & : iesj and j = k == i ek , and

1es»J=> jesi. Since, however, 1 i need not hold for all states i
of & , we cannot claim "~ to be reflexive. Thus “" is not an
equivalence relation on all of the states of arbitrary & .
Define E and F as the (unique) complementary subsets of the
states of ¥ :
(a) VieF and VjeE , JAi.
(b) VieF , FjeE : i - 7]
(c) VieE , i e i
We have the following well-known results from the theory of finite Markov
chains:
(i) « is an equivalence relation on the states in E
(1ii) E may be partitioned by «» into some number f of equivalence
classes (of states) Ej,. B, such that (a) ijéEk =E, (b) E n Eﬁf”
for k #2, and (c) for all states i , jeE, 1 e j <> ¥k : LjeEk
Thus the Ek are equivalence classes of communicating states, We see
that if the path of some string enters an Ek it can never leave that class
of states. These classes are called ergodic sets of states,
An ergodic set of states E may consist of only one state, in which
case that state once entered, can never be left; such a state is called an
absorbing state (state 5of the matrix ¥ of the preceding section is an

example of an absorbing séate).
84

An ergodic set E is termed cyclical or periodic if there is some integer

p> 1l which is the greatest common divisor (g.c.d.) of the lengths of all
closed paths in Ek (a closed path is a sequence of transitions from a given
state back into itself). The set E, is then said to have period p.

(If p =1, then E 1is said to be aperiodic.) It can be shown that if p is

k
the g.c.d. of the lengths of the closed paths of any one state in E,,
then p is the g.c.d. for all closed paths in Ek‘
Now consider the set F of states which are not in E. This set has
the property that once a path leaves the set, it can never return to
the set. The states in F are called transient states and F is called a

transient set of states. Once a path leaves the transient set, it enters

sme ergodic set and remains there. (State 1 of the ¥ matrix of the
preceding section is transient.)
It is assumed that the initial state is always State 1 of the matrix.

We can make the'following accessibility assumptions in complete generality:

(1) all states of & are accessible from the initial state.

(ii) if &has a transient set of states, the initial state
must be in the transient set; otherwise, the initial state would
be in some ergodic set and the transient states would be redundant.

(1ii) if the initial state is in an ergodic set, then there is
only one ergodic set of states in 4 otherwise, the additional ergodic
sets (and any transient states) would be inaccessible and hence re-
dundant. (It should be clear that any complete & can have at most

one transient set of states and must have at least one ergodic set.)

85

r.«;—-‘ rﬂ r-_. r__ s

—

The states of any complete matrix & can be rearranged (i.e., re-
labelled) in such a way that & is partitioned into one of the following -

standard forms:

(1)
4 =[61J Single ergodic set of states
with transition matrix & = &,
or
(31)
4 7
ep | g ¥
T -r--—-----
L f
b=\ 9
I
[

T
I
B
=

where the §'s denote regions of null transitions (empty sets), JFF is
the quadratic submatrix of transitions within the set F of transient
states, '&FE is4the transition matrix from F into the ergodic states,
and each 8i is a quadratic submatrix corresponding to the ith ergodic
set of states Ei‘ Furthermore, it can be shown that each ergodic sub-

matrix &ican have its states arranged in such a way that each sub-

matrix € (with period pi) has the following form:

86

where the ¢w are null submatrices (quadratic on the main diagonal)
and the & are submatrices for transitions between the p; cyclic
subclasses of Bi. If 8i is aperiodic (i.e., P, = 1), then, of course,
the form is degenerate. We also can make the following assumptions
about a grammar (J,CJ) with no loss of generality:

(1) if an ergodic set Ei contains more than one state, then
not all of the states in Ei are of the same terminal class; otherwise,
an identical language would be obtained by lumping all the states of Ei
into a single absorbing state. \

(1i) there need not be more than one absorbing state for each of
the terminal classes of the grammar; otherwise an identical language
would be obtained by lumping together all absorbing states corresponding
to a given terminal class.

The partitions of the states of & into various sets (ergodic and
transient) 1is a standard form borrowed from the lﬁmraﬁﬁ% of finite
Markov chains and their associated transition matrices. We will later

find such partitioning useful for several reasons. We will assume that

all complete grammar matrices are placed in one of these standard forms.

—

b |

Appendix B: Size Measures of Reqular Languages

Note: Developments in this appendix make extensive use of the matrix

representation introduced in Appendix A.

Connection Matrices

th
Let & = [Gij] be a complete n = order matrix over T. Define the n‘ah

order matrix N by N = [nij] = [n(Gij)]‘ nij is the number of one-step

transitions from state i to state j of 4 ; n,. is also the number of strings
1)

of length 1 associated with this transition. consider positive integral

powers Nk of N: Nk = [n(k)] has the following well-known properties .

n
z n(k) = rk

‘11'j ;» 1 =1,...,nand k = 123
J:

Iy ..

(1)

(id) ng?) = n(Gg{)) ; thus nigjl.() is the number of paths of length k
from state i to state J, also the number-of strings of length k associated
with a transition from state i to state J. 1In particular, if state 1 is
the initial state, nJ(_;{) is the number of strings of length k whose paths

terminate in state 7j.

N is called the connection matrix of & and Nk is called the k-step

connection matrix of &

Let (Q,CJ) be an m-class complete finite-state grammar over T.

(i k | -1, . .
Then L, N -lG:Ej) for all k > 1. (C (1) = {j : Cxy) = 1))

3Cy1)
. .th . (1) .
Let di be the density of the i™ terminal class L'/, 1 = 1,...,m.

Provided these densities exist,

88

m
it is clear that §di = 1.

Consider (1) - 13
n(L, ") jecy (1)
c1i = clim m = clim "
k 5o r k—>e r
()
= ; clim All%—
jecy (1) ke r

Thus the existence of the di‘s for arbitrary finite-state grammars can be
(k)

established by the existence of c¢lim {nlj.) for all j (in our genera-
k
r

k>

lized sense of limit).

Define the matrix P , associated with &, by P = % N ; the elements pij
of P are then related to the elements n,., of Nby p,.= L Nn.. .
ij ij r Ty
. k k
Letting P° = [p(.)] we have oL N , so that pS§)= + nf%) for all
ij s I kT

i,j, =1,...,n (a?d for all k> 1. Hence questions about the limiting
k
n

behavior of a’ij k = ® can be answered in terms of the stationarity
" .

of pgg) as kK »®». The stationarity of increasing powers of P is easily
investigated, since P is a stochastic transition matrix and may be associated
with a finite Markov chain.

We may assume that & is in a standard form (see Appendix A) so that its
ergodic sets are readily identifiable as submatrices of & The relation

between P and 4 is such that we can assume without loss of generality that

P has the form of either

89

| QAN

L e |

(i) a single ergodic set of n states;

or (ii) a transient set of no states, and f ergodic sets of states,

_ f
consisting-of nl cole states, respectively: n = 2:11
i

theory of finite Markov chains supplies the followingjf@sults:

case (i):

There is a unique matrix P¥ = [p¥] such that clim p(k) "
4 2.0 = p¥,

for i,j = 1 - - - koo 0 U

or 1,9 yeeey If P is cyclical (Appendix A) with period g , then

each of the g subsequences qu+1 (as K) converges to a unique

limiting matrix P¥(f) = [p% : _ . kg+!
(£) pij(l)] in the-sense that 1im p(.q) _ *

(l)j = l,“‘Jn ’ 2 = O,o-o,q_"]..) . Thus

lu\r‘rA
p¥. == p¥*. (i, = 1,...,n) hus £ oy .k
I - q A& T1ig(e) ’ se++sn) . Thus for gperiodic P, 1lim P* = p* .
. . k» o
It is well-knownthat p¥ = p¥% _
?ﬁ pi'J =pj >0 for 1,i',5 = 1,...,n

Thus the p. represent the limiting proportion of strings whose paths

b

begin in state i and terminate in state j , and is the same for

i=1,...,n . These pb are determined by the system of linear equations
n
igl P;P;; = D, (G =1,...,n)
)
P Sl
Since these stationary , -cyjpy Pég) always exist, and are strictly

ko «

positive, the densities d; of the terminal classes of the grammar

(4c ')

will therefore always be positive:

90

The well-known

= p¥, >0
ks » 1] P]-J (‘e)

The independence of p§j= p.J of i implies that the limiting'
proportion of strings Of whose paths terminate in state j is always pj ,

independent of Q@ . The significance of this result will be seen shortly.

case (ii):

We first need to compute the constantsul,...,uf ;U is the limiting

proportion of strings whose paths enter the ith ergodic set E.1 . The
matrix & is assumed to be in the standard form (ii) (see Appendix A).
Define a,. as the limiting proportion of paths leading out of

state 1- which lead into the ergodic state j after leaving the

transient set of states (i.e., state j is the first ergodic state of the

path); aij is defined for i = l,...,no and j = no+l,“.,n . Then the
system
n
o
a5 = Pij +k§£ P31 ; (i = Levong 3§ = n0+l,...,n)
2
a,. =1 (i =1,00.,n)
j=no+1 +J °

(refer to Appendix A for notation)

will always yield a unique solution for the a.l.;I . From the a.. the u,
1] i

can be computed as u. = 2: a_, (i =121,...,f) ; i u, = 1.
1 . | . i
JeEi i=

The accessibility assumptions of Appendix A imply that Uy >0
(i = l,...,f) . Any string O whose path enters an ergodic set E,l must
remain there. Earlier we saw that the limiting proportion Qf of strings
QB whose-paths enter E,l and terminate in state j of E.l is independent
of a ; the pj can be computed from the ergodic submatrix 61 of E.l

(see case (i)). Thus the overall proportion of strings whose paths terminate

o1

[

in state j of E, is p! = u,p. for jeE. . i
i pJ 1PJ Jeky Since the uy and pj
are positive, it follows that p3 > 0 for JeE (and pj =0 for jeF).
.th , , '
For the 1 terminal class of strings L(l), the density d. is
1

is computed as

d, =
i

¢ U.j Z.'l By = Z—.'L p}; ’
=9 ke (1 kemncjt(1)

The density di will thus be zero if and only if all states of % in the

.th . .
i terminal class are transient. We thus have

Theorem B: For an arbitrary m-class complete finite-state grammar

(& Q&) over a finite alphabet, the densities dl""’d always exist;
m 4

each di is positive unless all states in (-'(i) are transient, in
ak

which case d, 1is. zero.
i
When m = 2 (i.e., L(l) is the language generated by the grammar
2
and L() is its complementx'we see that the density of the language

always exists and is zero if and only if q;lﬁj CF

Randomly Generated Strings

Chomsky and Miller [58] considered randomly generated strings of length

such a string is one drawn from the "urn" Tk such that all strings of

length k have equal (i.e., r_k) probability of being drawn. Chomsky
and Miller claimed that as k = ® , the limiting probability of a randomly
generated string being in any'given regular language is always zero or
unity. This claim is equivalent to claiming that the density of any regular
language is either zero or unity, which has been shown to be false. Two

simple counter examples (each with density 1/2) of non-zero, non-unity

92

density reqular languages are

(i) S—b | sb|Xa

even "a"'s grammar

X = a | Xb |.Sa

(ii) S - a | Sa [Sb grammar for all strings over {a,b}

which begin with "a"

For a discussion of second-order (logarithmic density) size measure
of a regular language, the reader is referred to Shannon and Weaver [49].
They compute the value of channel (coding) capacity C , which we showed

to be proportionalto our second-order size measure (Section 2a.0).

93

e

-

—

Appendix C: sample Computer Runs

The following examples were run on the Stanford PDP-10 using LISP.
The program deals with two sets of strings, the sample set and the set
of pivots (cf. Section la). The functions GRINIA , GRIN2A (of zero
arguments) apply the algorithms described in Section 4 to the current sets.

The functions GRIN1 , GRIN2 accept the sample set to be used as an
argument. The function GRINA simply calls both GRIN1A and GRIN2A

in succession; GRIN calls GRIN1 and GRIN2 in succession. The
auxiliary function PIVOTS specifies the current set of pivot symbols
and ADDS causes new strings to be added to the sample set. The symbols
G¢¢¢9 s G¢¢1¢ s etc. are internally created (by GENSYM) names within

WSP; these correspond to the non-terminal symbols Zl’ZE used in the

text.

(GRn (A)(A A)(A 2 a))
(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)
(GPPP9 1S THE DISTINGUISHED NONTERMINAL)

(GPPP9 A Gpppo / A)

(tee PIVOT GRAMMAR GeENERATED BY GRIN2 IS)
(Gpp12 IS THE DISTINGUISHED NONTERMINAL)

(Gpp12 A Gfp12 / A)

NIL

oh

(GRIN (A) (A B)(A A) (A A B)(A B B)(A A A))

(rsE FINITE StATE GRAMMAR GENERATED By GRINL IS)
(Gfp1k IS THE DISTINGUISHED NONTERMINAL)

(GpP1h «~ A / A GPP15)

(Gpp15 <A/ B/ AA/ BB/ AB)

(THE PIVOT GRAMMAR GENERATED BY GRIN2 IS)
(GPP17 IS THE DISTINGUISHED NONTERMINAL)
(6PP17 <A GPPL7 / GPPLT B / A)

NIL

(GRIN (B B)(BA B)(BAAB)(BAAARB))

(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)
(GfP19 IS THE DISTINGUISHED NONTERMINAL)

(GPP19 « B Gppep)

(Gppep « A cppep / B)

(THE PIVOT GRAMMAR GENERATED By GRIN2 IS)
(Gppelk IS THE DISTINGUISHED NONTERMINAL)
(Gpgel « B Gpges)

(Gpp25 « A Gfges / B)

NIL

(GRIN (CB)(BBB)(CAB)(BBAB)(CAAB)BBAAB)(CAAARB))
(THE FINITE STATE GRAMMAR GENERATED BY GRINL IS)

(Gfpe7 1S THE DISTINGUISHED NONTERMINAL)

(Gpp27 « C GPP29 / B GPp28)

(Gpp28 « B GHP29)

(GOP29 « A Gfg29 / B)

(Tae PIVOT GRAMMAR GENERATED BY GRIN2 IS)
(GpP35 1S THE DISTINGUISHED NONTERMINAL)
(GPB35 « cpps6 B)

(Gpp36 « a6 A / B Gpga7 / C)

(GoP37 « B)

NIL

95

[aasma |

(cRIN (A A B B)(A B)(A AABB B))
(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)
(GfPP9 IS THE DISTINGUISHED NONTERMINATL)

(Gfop9 « A Gpp1p)

(Gpp1p « B / A GOP11)
(Gpp11 « B GPP1L / A Gpg12)
(GHp12 « B GPHP11)

(Gop1k « B)

(THE PIVOT GRAMMAR GENERATED BY GRIN2 IS)
(GPP16 1S THE DISTINGUISHED NONTERMINAL)
(GPp16 « A GbP17)

[Wérr « GPY16 B / B)

(aDDS (C)(A c B)(Aac's B)(A AAac BBB))
(ARAACBBB) (AAABBB) (AACBB)(AABB)(ACB)(AB)

(€))

(GRINZA)
(GPP19 IS THE DISTINGUISHED NONTERMINAL)

(GPP19 « A Gppep / C)
(cppep « Gpp19 B / B)
NIL

(PIVOTS M P)
(M P)

(GRIN2 (A MA) (A) (A MA MA)(A MA MA MA))
(Gop22 IS THE DISTINGUISHED NONTERMINAL)
(Gppe2 <A / Gfge2 M Gfpe2)

NIL

96

(oS (A »A)(Apap A)(AMA p A)(A PA MA))
(WMAMAMA) (APAPA) (Aua PA) (A PA MA) (A MA MGA) (A
PA) (A MA) (8))

(GRIN2A)
(GfHpelk Is THE DISTINGUISHED NONTERMINAL)

(Gppek « A /Gpp2k P appel / Gppal M GopL)

NIL

(GRIN2 (B) (rMB)(AmMA wmB)(AMAMA uB))
(Gpg26 IS THE. DISTINGUISHED NONTERMINAL)
(GhgRs « B/ opper M Gpps)

(cpper «4)

NIL

(PIVOTS M P)
(v P)

(GRIN2 (A MA) (L A MA R MA) (A M LA MA R)(LAMARMLA MA R)
(LAMLAMARRMA)(LLAMARMARMA) (AMLAMLAMARR
(AMLLAMARMAR))

(GPPP9 IS THE DISTINGUISHED NONTERMINAL)

(60009 « Ghp1p M GPP1P)

(GopLp « 1 app1e / A)

(GHp12 « GHPO9 R)

NIL

(GRIN2 (CD)(ABD)(ACBD (AABBD (AACBBD)(AAABBBD)

(AAACBBBD))
(GPp15 IS THE DISTINGUISHED NON-TERMINAL)

(GPP15 « GPP16 D)
(Gppr6 — A GppLT / C)
(GPP1T « Gpp16 B / B)

NIL

- Ty r—

References

(1] Aizerman, M. et. al., "Theoretical Foundations of the potential
function method in pattern recognition", Automation and

Remote Control 25, 821-837 and 1175-1190 (1964).

[2] Aamarel, S., "oOn the Automatic Formation of a Computer Program that

Represents a Theory", in Self Organizing Systems, Yovits,
Jacobi, and Goldstein, eds., Washington, Spartan, 1962.

[5] Chomsky, N., and G. Miller - wpormal Analysis of Natural Languages",
P. 269-493 in Handbook of Math. Psych. II, Luce, Bush, Galantier,

eds., New York, Wiley, 1965:

(4] , "Some Finitary Models of Language Users", in Luce et.al.

(above), 1963b.

[5] 5 "Finite-State Languages" Information and Control 1,

91-112 (1958).

[6] , Pattern Conception, Report No. AFCRC-TN-57-57, August

7, 1957.

(7] church, A., Introduction to Mathematical Logic, Princeton University

Press, Princeton, New Jersey,-1956.

[8] Feldman, J. A., 'First thoughts on grammatical inference", Stanford

A.I. Memo No. 55 August, 1967.

[9] Ginsburg, S., The Mathematical Theory of Context-free Languages,

McGraw Hill, New York, 1966.

[10] Gold, M., "Language Identification in the Limit', Information

and Control, 10, u47-k7k (1967).
[11] __ , "Limiting Recursion", J. Symb. Logic 30, 28-48 (1965).

[12] Gorn, s., "Specification Languages for Mechanical Languages",

Commun. ACM 4, Dec. 1961, p. 532-542,

[13] Greibach, S., "A New Normal-form Theorem for Context-free Phrase-

Structure Grammars", J. ACM 12, 1 Jan. 65,p. 42-53,

[14] Harrison, M., Introduction to Switching and Automata Theory,

New York, McGraw Hill, 1965.

98

-

[15] Hartmanis, J., 'Computational Complexity of one-tape Turing

Machine Computations", J. ACM 15 (April 1968), pp. 325-339.

[16]) Hunt, E., Marin, P. Stone, Experiments in Induction, New York,

Academic Press, 1966.

[17] Kemeny, J., J. L. Snell, and A. Knapp, Denumerable Markov Chains,
D. Van Nostrand Co., Princeton, N, J., 1966.

(18] Knopp, K., Theory and Application of Infinite Series, Hafner,
New York 1948.

(19] Kuich, M. and K. Walk, Block Stochastic Matrices and Associated
Finite-State Languages, IBM TR 25.055 (July 1965).

[20] Lederberg, J. and E. Feigenbaum, "Mechanization of Inductive

Inference in Organic Chemistry", in Formal Representation of

Human Judgement, Kleinmutz, ed., John Wilely, New York, 1968.

[21] London, R., "A Computer Program for Discovering and Proving
Sequential Recognition Rules for BNF Grammars', Carnegie
Tech., May 1964.

[22] Luce, R. D., "Selective Information Theory', in Developments in

Mathematical Psychology, Luce (ed.), The Free Press, Glencoe,
Illinois (1960).

(23] Miller, G., and M. Stein, "Grammarama Memos", Unpublished Internal
Memos, Harvard Center for Cognitive Studies, Dec. 1963 and
August 1966,

[24] Miller, W., and A. Shaw, "Linguistic Methods in Picture Processing,
a Survey", Proc. AFIPS rucc,. 1968, p. 279-291.

[25] Moore, E., "Gedanken Experiments on Sequential Machines", in

Automata Studies, Shannon and McCarthy, Princeton, 1956.

[26] Newell, A., "Heuristic Search: TIll-Structured Problems", Progress
in O.R. (Vol. 3).

[27] Perrson, S., "Some Sequence Extrapolating Programs", Stanford

A.I. Memo No. 46, September 1966.

[28] Reder, S., "Introduction to Semi-rings", Unpublished research,

Dept. of Mathematics, Stanford University, 1968.

99

o

[29] ReynOldSr J'I "Grammatical Covering", 'IM_96, Argonne National
Lab., June 1968.

[30] Shamir, E., "A Remark on Discovery Algorithms for Grammars",

Information and Control 5, 246-251 (1962).

[31] Shannon, G. and W. Weaver, The Mathematical Theory of Communication,

—

University of Illinois Press, Urbana (1949) .

[32] Solomonoff, R., "some Recent Work in Artifilial Intelligence",

Proc. IEEE V 54, No. 12, December 1966.

[33] , "A Formal Theory of Inductive Inference",

Information and Control, 1964, pp. 1-22, 22k-254,

[34] , "A New Method for Discovering the Grammars of Phrase
Structure Languages", Information Processing, June 1959,

pp. 285-290.

[35] Suppes, P., "Concept Formation and Bayesian Decisions", in Aspects
of Inductive Logic, Hintikka and Suppes, eds., 1956,
Amsterdam, North Holland.

[36] Uhr, L., ed., Pattern Recognition, Wiley, New York, 1966.

<

100

