
GRAMMATICAL COMPLEXITY AND INFERENCE

BY

JEROME A. FELDMAN

JAMES GI PS

JAMES J. HORNING

STEPHEN REDER

SPONSORED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

TECHNICAL REPORT NO. CS 125

JUNE 1969

STANFORD ARTIFICIAL INTELLIGENCE PROJECT

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

| g CS 125
| STANFORD ARTIFICIAL INTELLIGENCE PROJECT JUNE 1969
BE MEMO AI-89

a GRAMMATICAL COMPLEXITY AND INFERENCE

by
-

| Jerome A. Feldman

Lo | James Gi1ps
|S-

James J. Horning

Stephen Reder

he .

Computer Science Department

CL Stanford University

-

—

—

—

L The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Department of Defense (SD-183).

: yd i

”

Ci - i

R i

- mma ’

mM

-

Co

{
|

{
}

Lo Abstract

-

| The problem of inferring a grammar for a set of symbol strings
-

1s considered and a number of new decidability results obtained.

[Several notions of grammatical complexity and their properties are

studied. The question of learning the least complex grammar for a

— set of strings 1s investigated leading to a variety of positive and

negative results. This work is part of a continuing effort to study
1

the problems of representation and generalization through the gram-

matical inference question. Appendices A and B and Section 21.0

are primarily the work of Reder, Sections 2b and 3d of Horning,

- Section 4 and Appendix C of Gips, and the remainder the responsibility |

| of Feldman.

-

— |

|

|
GRAMMATICAL COMPLEXITY AND INFERENCE

L
1. Preliminaries

i la. Introduction

I lb. Definitions, Notation
2. Grammatical Complexity

I 2a.0 Introductory Measures
| 2a. Introductory Definitions and Examples

| 2b. Grammar-grammar, Complexity of Grammars

I 2c. Normalized Complexity Measures
5. Grammatical Inference

| %a. Introduction, Basic Model and Terminology
5b. New Results on Grammatical Inference

I 5c. Learning Good Grammars
3d. Using Frequency Information to Assist Inference

L L. Programs for Grammatical Inference
I La. Introduction and Definition of Pivot Grammars

Lh. Program Descriptions

L Appendix A. Representations of Finite-State Grammars
Appendix B. Size Measures of Regular Languages

L Appendix C. Sample Computer Runs

I References

L
(1

L

g

]

-

oT °

.

EE:

| | Preliminaries
la. Introduction

| The problemof generalization (induction, concept formation) has
y interested workers from a wide range of fields. In this paper, a particular

L form of generalization, grammatical inference, 1s discussed. The notion
L of grammatical complexity 1s introduced to help measure which grammar is

the best one for a given set of strings.

L The grammatical inference problem 1s easy to state; one 1s interested

(in algorithms for choosing the best grammar from a given class for a

L sequence of symbol strings. For example,-we would like to discover that

| the sequence of strings
car, cdr, caar, cdadr, cddadadr, etc.

L
can be described by the rule: each string is a 'c' followed by any

I sequence of 'a's and 'd's followed by 'r' . Or in Backus-Naur Form

| <string> ::=c <seq> r
<seg> ::= a | 4 | <seq> a | <seg> d

| The question of how to infer a grammar and to measure how well you've
done it will be the main topics of this paper.

L The grammatical inference problem has received relatively little
attention. The main theoretical formulation to date has been that of

~ Gold [67] which will be discussed in Section 3. Solomonoff [64] considers

I the problem as a special case of sequence extrapolation; we have argued
against this notion [Feldman 67] but are indebted to Solomonoff for some

L of the basic ideas on grammatical complexity in Section 2. There has

l also been some related work in Computer Science [Amarel 62,London 64]and

L

\

Psychology [Miller 6, Suppes 56]. There is, of course, a vast literature

on pattern recognition [Uhr 66], but it has been exclusively concerned

with pattern descriptions which are structurally simpler than grammars.

Early studies of grammatical inference referred to it as a form of

induction. The term "induction" has been used as a description of

generalization processes. Unfortunately, it has also been used in dozens

of other ways and 1s threatening to become meaningless. We favor

restricting the term "induction" to statistical modes of inference such

as those of Solomonoff [64] as is done currently in Philosophy. The

particular model which we found most appropriate 1s the hypothetico-deductive-

empirical (HDE) mode of inference. An HDE inference consists of forming

hypotheses, deducing conclusions about the data and testing these conclusions

for validity. This characterizes the scientific method and is quite close

to the "scientific induction" of Lederberg and Feigenbaum [68]. In our

case a hypothesis is a grammar rule, a deduction is a derivation, and the

data are the sample strings.

The results of this paper are one part of a many-pronged attack on

the grammatical inference problem [Feldman 67]. The results here are largely

theoretical, but include a heuristic program to infer grammars. Other

efforts involve psychological study of human grammatical inference. We

also hope to be able to relate theoretical results with the heuristics

of the program and to consider how these relate to human learning of

language and other theories. To the extent that e.g. pictures [Miller

and Shaw68] are well represented by grammars, the grammatical inference

work may be of some practical use 1n pattern recognition.

l 1b. Definitions, Notation
This paper makes use of ideas from several research areas, and it 1s

— impossible to agree with all their notational conventions. We deviate from -

3 the usual formulation of context free grammars in requiring all
vocabularies to be subsets of a fixed collection of symbols. There 1s

L no loss of generality in doing this, but many results 1n the literature
would require careful consideration of substitution rules [cf. Church 56].

-- The universal terminal alphabet T is the set of symbols (2,88, . A

L The universal variable alphabet W is the set of symbols (X = Zy 2y 2p NE
We will also use the following notational conventions. The string of |

!

LC zero symbols 1s denoted by e , the empty set by 0 . If S 1s any set

| of symbols, S* is the set of finite strings of symbols from S and
5" = S* - e .

3 A context free grammar (cfg) 1s a quadruple G = (V,T,X,P) where
V,T are finite sets , vc bUT, T=TNV, XV-T , andP is a

3 finite set of productions (rules) of the form Z + w , with ZeV-T ,
weV¥ . In such a production, Z 1s called the left side and w the

. gightde . We will abbreviate a set of productions Z + Wis -» LOYERRP

| z Wy with the same left side as z Hwy |g | Loe Wo
If G is a cfg, and w,yeV¥ we write w 2 Y if there exists

1 teV¥ , ZeV-T and WaaWo in V* -such that w = W ZW vy = Ww, tw,
and the rule Z =+ t is in P . The string y 1s called an intermediate

= string. The transitive closure of 3 1s written 3 . In either case
the subscript "G" may be omitted if there is only one grammar under

consideration.

3

- 4

-

If w 2 vo, vel", we also say there 1s a derivation of vy from w
in G. In this case, there is also a derivation of y from w in which

each rule has as its left side, the leftmost ZeV-T of the preceding

intermediate string [Ginsburg 66, p. 30}. This leftmost derivation is

denoted d(y,w,G) , and when w = X will be abbreviated to d(y,G) .

We will be exclusively concerned with leftmost derivations. If

d(y,w,G) = <pysPps+-+,D> With Pep we define the derivation length
Ly =k . The length P(y) is the number of symbols in y .

The language L(G) generated by a cfg G = (V,T,X,P) 1s defined

by

L(G) = {y | ye" and X 2 vy}.

We will sometimes omit mention of the grammar. The definition implies that

| we will be dealing with only e-free languages. With this restriction

and some well-known results on cfg we can significantly constrain the

form of cfg to be studied here.

Def 1bl A cfg, G = (V,T,X,P) 1s sald to be totally reduced and we

write GeR 1ff.

a) P contains no rule of the form Z — e

b) P contains no rule of the form Z - 2,
c)- If X z w , weV¥ , there 1s a yer such that w hi \%

d) Each ZeV-T , aeT , and peP is used in at least one

d(y, G) , where y is in L(G) .

It 1s well-known that any e-free language derivable from

some cfg can be derived from a cfg in R . We will restrict

ourselves to GeR unless otherwise mentioned.

%

~ /
Lemma 1b2 For any GeR and any yeL(G) the derivation length

Proof Consider any derivation of y , d(y,G) = <p; - . . D> . Each

| P. must either (a) add to the length of the intermediate

-. string or (b) replace a variable by one or more terminal symbols.

: Since no peP can reduce the length of an intermediate string,

~ there are at most £(y) instances of (a). In addition, there

: can be at most f(y) variables in an intermediate string and
—

thus £(y) instances of (b). ~

There 1s an extension of the notion of ordered sequence which will

| be useful. A sequence NER CYR Ee 1s said to be approximately ordered

| by a function f(y) 1ff for each k > 1 there is aninteger 71 > k

N. such that t > tv implies

a f(y.) > f(y) -

Lemma 1b3 If V2 1s a sequence which 1s approximately ordered
-

by £f and if <f(y;)> 1s positive and bounded then there 1s a
C such that

|_

lim f(y.) = C .
1 = tL

Proof We know <f(y;)> has a finite lim sup , call it C . If
-

there is a J such that f(y;) = C then by approximate ordering

| there is a vt such that t > 7 implies £(y,) = C and theLN

lemma 1s proved.

6

Suppose the 1lim sup C 1s not attained. Let e€ > 0

be given, then there is a Y, such that c-& > f(y,) because

C is a cluster point. But then there must be a T such that

t > Ty implies

C-¢ < f(y.) .

Further, there are at most a finite number of 1 such that

£(y;) > C because C is the lim sup of a bounded sequence.

Let 1, be the maximum index of these and let r= max(r,7,)
then for all t > t we have

C-e < f(y) <C,

and the lemma 1s proved. We will be especially interested 'in

cases where 1t(k) is effectively computable.

Finally, we must introduce a number of definitions relating to enumerations

of languages. An information sequence of a language L , I(L) is a

sequence of symbols from the set

{+y | yeL} U {-v | yeT -1) i

A positive information sequence I+(L) is an information sequence

of L containing only strings of the form +y . Notice that if we bound

the number of occarences of any string- y in I(L) then I(L) is

approximately ordered by 1(y) . The set of all (positive) information

sequences for L C T+ is denoted CL In Gold [67], J, was called

the set of text presentations and J the set of informant presentations.

Let I(L) be a (positive) information sequence, we define a (positive)

7

. + :

1 sample 5.(I) to be the unordered set: 5, (I) } {-¥ys yea A bounded
sequence 1s one 1n which there 1s a bound on the maximum number of

{

_ occurences of a string. The set of (positive) bounded information

| sequences 1s denoted (g,)§ . An information sequence is complete if

~~ each string in T occurs 1n the sequence.

| A positive information sequence is complete for a language if each
— EE -

sentence of the language occurs in the sequence. Unless explicitly

C stated, we restrict ourselves to complete sequences. Tnformation

, Sequences and samples will occur in Section 2c and will play a central

— role in Section Ae

Cl Each positive sample can be associated with a frequency distribution
“_

over 1ts elements as follows:

| For each +y.eS, (I), £(I,y.,0) = 0Lo 177% ’ ?v i’

0 i

lL if Y. = Ys
-

f(Ly,,t)/t is the relative frequency of y. in the first t strings
C of IT . An information sequence I is convergent iff

lim £(I,y,,t)/t = P

exists—and 1s non-zero for each yi el . The set of positive convergent
—

information sequences 1s denoted k, .

_ |

L

-

-

Additional Notation

n(X): if X is a finite set of objects (e.g. strings), then n(X)

1s the number of objects in X ; n(X) is the cardinality measure

for finite sets.

r: r = n(T) = the number of terminal symbols in the alphabet T .

k []
L, (k = 0,1,2,...): L, = LNT; L, -is the subset of the language L
which contains only strings of length k .

Lo): L{a) = L nao Tx, L, (a) is that subset of L which is
prefixed by @ € T* ; L(e) = T

k k
r(@) : T(@) = or*n 1°

9

\ 2. Grammatical Complexity

2a.0 Introductory Measures
-

There are a number of ways in which one could measure the complexity

= or information content of an abstract language. One traditional way is to

_ consider the relative sizes of various subsets of the language and develop

| size measures for languages. Examples of size measures will be considered

- shortly. Other types of complexity measures can be developed 1n terms of

| { time and space bounds on the automata associated with a language; studies
| of this type are currently quite popular (e.g. Hartmanis [68]). Other

| possible complexity measures could be based on the complexity of algebraic
~—

decomposition of the automata associated with a language.

L At this point a distinction should be made between complexity measures

of a language and complexity measures of a grammar. To be independent of

= the various grammar(s) for L, a language measure of L should be sensitive

only to the content of the subsets of L, not to the structural form of
-

the elements of these subsets. Measures based on the grammars or automata

g associated with a language often do not characterize the language, since

\ the value of the measure can vary among weakly equivalent grammars (automata)

— of the language. The class of size measures of languages 1s one example

| of language measures which proves useful in studies of complexity. We

~ consider briefly two particular size measures for arbitrary languages L © T¥.

—

i

-

10

-

—

First-order (density) size measure

(k) (x) | |
Consider the sequence <d' > , where d 1s the proportion of strings

of length k which are 1n the language L being measured:

1 |

4k) _ (L,) _ n(Ly) Suppose the sequence alk), converges
ky =k

n(T") r

tim (Ty)
to a limit 4d , so that d = kK — o J then we would like to define

r

d as the density of the language L , which can assume values in the unit

interval 0 <d <1 . The density is intuitively the limiting proportion of

strings 1n the language.

There are often, however, languages which seem to contain.a well-defined

limiting proportion of strings, yet for which the sequence (5) > does not

converge. As a trivial example, consider the language which consists of

precisely those strings of even length; in some sense 1t seems that half

of the strings are in the language, but the sequence alk) > = <...,1,0,1,0,1,...>
does not converge to any limit, let alone the desired limit of 5. The

(x) 1g (0)sequence <s8' > =< * dar > does, however,
i=1 (k) 1 i

converge to the desired limit of %, since s = |" 1 » even
1, =

gs + Kk » k odd

(k), \ 1The sequence <d' > 1s said to be Cesaro-summable to § (see, for example,
k

Kemeny, Snell and Knapp [66]). Since 5) is the arithmetic mean of the

first k proportions, it seems reasonable to interpret the (unique) value

to which the sequence «a(k) 1s summable as the density. This example

motivates the following definition of density:

11

If the sequence FIN 1s Cesaro-summable to d, then d

1s defined as the first-order (density) size measure

of the language. If the sequence is not Cesaro-summable,

then the measure 1s undefined.

Clearly if alk) converges to a limit d, then it must also be Cesaro-

summable to d. Cesaro-summability 1s well-known to be equivalent to

other types of sequence summability (e.g. Euler-summability) in the sense

that, 1f the sequence sums to a value by one method, then it must also

sum to the same value by the other methods. Although occasionally useful,

we will not discuss other types of summability.

| Suppose that alk) 1s an ultimately periodic sequence with period p,
Lo so that lim alkpra)_ aq q=20,...,p-1. Then it can be shown

Kk » o>

P-1

— . that alk), is Cesdro-summable to d -2 22a, which again
illustrates the usefulness of allowing Cesaro-summability as a more general

convergence criterion than the commonly used simple "limit" . We shall

_ adopt the notation Db = clim p (8) to indicate that the sequence pk),
k— x

C is Cesiro-summable to Db.
It 1s difficult to develop useful existence conditions for the density

— measure of an arbitrary language ICT*, since TL clearly can be chosen in

such a way that the sequence «alk fails to exhibit any stationary behavior.
= Existence conditions become more tractable when L 1s assumed to be associated

. with-a certain class of grammars or automata. For example, it is shown in
| Appendix B that the density measure exists for all finite-state languages
i

“ (1f Cesaro-summability 1s allowed to be a condition for convergence).

- 12

_

The density measure can be useful as & Means of comparing the relative

size of languages. But relative size discrimination by means of density

breaks down 1f the languages have either zero or unity density. Most

languages we have occasion to investigate have zero density; accordingly,

a more sensitive size measure 1s required for comparison of the relative sizes

of zero-density languages (which could be used to compare unity density

: languages by comparing their zero density complements,)

Second-Order (logarithmic density) size measure

lhen the densities of two languages are zero, @& more sensitive measure ot

| is needed to compare their relative sizes. Consider transforming the

K |

sequence <a S into a logxlog ORE sequence (lo n 1 log n(i) (x) _ foe Lh 1 Teen ih
<h' >, where h = kK. ~ log r mn

log n (T°)

(log n (T,) is taken as zero if Ly= 3). We define the second-order{ -

(Logarithmic density) size measure h of L as

h— clim h()

: (h is undefined if <h® > 1s not Ces ro-summable) . The quantity C = (log r) h

/is the familiar measure termed the channel (coding) capacity of L

! (we have extended the standard definition of C by permitting Cesaro-summability
log n (T,.) (k)

of the sequence < — x = log r <h' “> rather than just strict

convergence). When it exists, logarithmic density satisfies 0 < h < 1.

Furthermore, 1t can be shown that

; (1) VL&T' , if d exists and d> 0, then h exists and h = 1

13

3

5
(11) 1f both d and h exist and h = 1, then d> 0

~ (iii) if both d and h exist and d = 0, then h < 1

| We thus see that logarithmic density 1s a useful size measure among
_

minimal (zero) density languages, while density 1s a useful size measure

_ among maximal (unity) logarithmic density languages.

i The logarithmic density (and thus the channel capacity) of a language

1s strictly a size measure, and 1s not essentially an information-theoretic

L language measure as the name channel capacity seems to suggest. The

channel capacity 1s the maximum possible (limiting) mean rate of infor-

~ mation transmitted/symbol across a discrete noiseless channel. Several

authors have termed the quantity C (or h) the entropy (or relative

entropy) of the language, a somewhat misleading terminology; in terms

- of classical information theory, C is the maximum rate (per symbol)

of entropy for possible "stochastic grammars" of the language. There

— are, at least for some classes of languages, stochastic representations

_ of grammars for the language which achieve this maximum entropy rate
(channel capacity). In terms of "selective information theory" (Luce60,

- Chomsky and Miller 63b),C is indeed the entropy rate of the language.

We emphasize that several stochastic grammars (automata) for a given

. language may have different entropy rates, but C 1s an upper bound

for them.

-

|
L.

-

1h

Other size measures

The first and second-order size measures of a language L can be

generalized as functions of a given string @ € T* :

d(a) = clim nh (@) = clim Cok — n(T™(a)) gow phi

log n(L, (@)) 1 log n (LT, (@)
h(a) = c¢lim EE Er clim x1)k »o log aT (a)) Sry5

(NOte: where Cesaro-summability 1s used, it is understood that summation

begins with k = £{(Q)+1 rather than with k=1).

Note that substituting o=e into d(*) and h(-) yields the size measures

d and h, respectively. Discussion of d(a@) and h(®) with respect to stochastic

grammars and selective information theory 1s an interesting topic, but un-

fortunately exceeds the scope of this presentation.

Remarks:

Chomsky and Miller [58] claimed that the probability of a randomly

chosen string of length k being in any given regular language converges

to either zero or one as k increases without bound. This claim 1s equivalent

to stating that the density of any regular language 1s either zero or unity.

To our surprise we have encountered restatement of this claim by later

authors (e.g. Kuich and Walk 65) The claim 1s false, as 1s shown 1n

Appendix B. There appears to be two sources of error in Chomsky and Miller's

development. First, there seems to be some confusion between first and

second order size measure with respect to probability; Chomsky and

Miller's argument was based on channel capacity (second-order measure)

15

rather than on first-order density; density is equivalent to the limiting

~ proportion of strings in the language. Second, a matrix or "equational"
a representation of finite-state grammars was used by Chomsky and Miller -

— indeed, has been used extensively in the literature = which 1s 1nadequate

: for the class of all finite-state grammars; there are regular languages

. which cannot be generated by any grammar associated with the matrix repre-

_ sentation. The interested reader 1s referred to Appendix A for examples
| of regular languages for which the representation 1s not adequate, and

L for a suggested matrix representation which 1s adequate for all finite-

state languages.

-

2a. Introductory Definitions and Examples

| The concern here 1s with a representational measure of complexity.

- We will be interested in the following questions. How well does a given

grammar fit a sample? How complicated 1s a grammar? What 1s the most

— satisfactory grammar from a given class for somesample set of strings?

g The results of this section are of some intrinsic interest and will be
very valuable in the grammatical inference problem considered 1n Section 3.

_ The techniques described here, although discussed in terms of grammars,

: seem applicable to a broad class of problems involving the fitting of a

a. model to data, [cf. Feldman 67]. The particular measures studied here

g are related to Bayes Theorem and to the measures of Solomonoff [64].

| 16

-

Def 2al Let G = (V,T,X,P) a cfg; the alternative set A(p) of a

production peP of the formZ + w is the set of productions

in P with the same left side, 2 , i.e., A(Z + w) ={(2 = x)€ P}.

We will be interested in measures which depend on the alternative

set, and for most of the discussion will be concerned with a very restricted

class of such functions.

Def 2a2 A function p(p) 1s a density iff

1) p is defined for all peP for any GeR

2) O p<
- !

3) For each peP , > 2 o(p) = 1 -
p'eA(p)

A density 1s intended to describe how precisely a grammar "fits" a

set of strings. The description of a set of strings in terms of a grammar

will be more complex 1f the grammar generates many strings besides those

in the set. Each step in a derivation will be considered more complex

in a grammar which allows many derivations. from that non-terminal (has a

large alternative set). It is also possible to consider p from an

information-theoretic point of view; pp) 1s a measure of the information

requiredto select p from the set of productions with the same left side,

i.e., 2p(p) 1s the probability of a particular alternative.

It 1s this information theoretic approach which gives rise to the

specific density used here. If we assume that all productionswith the

same left part are equally likely, we get a local measure CL

o(p) = log, (b(p)) |

where Db(p) is the cardinality of A(p) .

17

EF | Another possibility 1s to assign some a priori likelihoods to each

: — production p . This could be based on some complexity measure on p

: itself (such as its length). We will concentrate on proving properties of

| the general density p , but will use ¢ in the samples. Before presenting

examples, we must extend the notion of density to a complexity measure for

! derivations.

— Let d(y,G) = <pyye.. p> be a derivation Of y and let p(p) be
- a density, we define

i m(d,y,G) =) pp.) .
: j=1 J
SN.

| We can now define the complexity of a string relative to a grammar.

- +
Def 2a3 Let yeT . If y£L(G) we define the complexity u(y,g)

: to be © . If yeL(G) and the derivations of y gare

d,(¥,G),...,d (y,G) we define

| — 1 K
| 1(y,6) = £ 23 m(a,,y,6) .
E i=1

+

= Def 2ak Let S = {ype} ce T the complexity of the set S

| relative to G , wu(S,G) is defined by

| — 1(8,G) = 2. u(y. ,G) :
i=1

| ~ Thus the complexity of a string 1s the average of the complexity of

— its derivations; the complexity of a set is the sum of the complexities

| of 1ts members.

. 18

If S is a finite subset of T , u(S,G)= » iff S-L(G) £ § .

The value of ul(y,G) 1s a measure of the complexity of a derivation of y

from G and might be usable as a measure of grammatical complexity. We

defer the discussion of the relative merits of various complexity measures

until Section 3a.

Example 2a Let G = ({X},{a,b},X,{X» a | b | aX | vX}) .

This is the universal grammar over {a,b} . For this grammar,

any string of length n requires a sequence of n productions 1n

its unique derivation. If we use the densityo¢ as p , each

production p has p(p) = log, (4) = 2 . Thus each ye{a,b}¥* has

Let H = ({X,2,},{a,0},X, {X + b | aZ, | ©X, Z, * a | ax | bz.1)

This 1s the "even number of a's" grammar. Similar reasoning to the

above will show that for any string y with an even number of a's:

u(y,8) . log, (3) . L(y) .

The example indicates that WU corresponds to our intuition in

declaring the universal grammar to have more complex derivations of strings

having only an even number of ‘a's. There 1s, however, a potential problem

in the fact that H itself seems more complex than G . ye have, so far,

considered only the complexity of derivations. If, as in the grammatical

inference problem, only a finite set of strings is available for testing,

a very complex grammar may yield the lowest value of u . por example,

the grammar which simply lists the sample set (ad hoc grammar) will have

19

:

3 a very low measure. In the next section we will expand the notion of

. grammatical complexity to include a measure of the complexity of the

grammar itself. |

8 2b. Grammar-grammar, Complexityof Grammars
We will define the complexity of a grammar as the complexity of its |

derivation 1n some grammar—-grammar, G . The choice of G will determine

which subclass of the context-free grammars 1s under consideration.

. , Typical subclasses include the linear grammars, grammars in some standard
form, and grammars restricted to a fixed number of variables.

-

Def 2bl A grammar-grammar G = (v,T,%,P) on the terminal alphabet T

2 1s defined to be a cfg such that

- 1) V-T)nw=p0

2) TcwuTu{#}luf{,]}
2

where Wb is the universe of variable symbols and '," is used

g to separate the rules of P .

\

L It would be possible to sharpen this definition, e.g. to allow only

Ze to appear to the left of "4" in a string. It is not possible,

L however, to force G to produce only GeR , with a context-free G .

| There is the additional problem that V must be finite soa given G

- will only generate a class of languages with a fixed number of variables.

1 The following definitions modify the grammar-grammar concept and make 1t
more sultable for our purposes. It is also convenient to have the

§ production arrow for grammar-—-grammars be "::=" .

Def 202 A sequence of grammar—grammars C = {G,Goyeen] is a

collection iff. There is a Z such that for each G,

1) Z:=2Zy|2z |... 23, in G..
2) 7 appears in no other left sides.

3) No Zely appears in any other rule.

4h) The G, are 1dentical except for the rule described in 1).

The intent here is that Z is the variable in all G, which

produces the 1 variables of the Gs .

Def 2b3 A representation class C 1s defined as

c= (U LG) NR
GeC

where C is a collection. Thus, C is a set of grammars

defined by a collection C such that for any GeC , there is

a GeC such that GeL(G) NR .

This definition allows subfamilies of cfg with an unbounded number of

variables to constitute a representation class. For any GeR and any

class C 1t 1s decidable whether GeC . More frequently we will be

interested in studying all the grammars in some class C . We will

sometimes write G(k) for GeC such that GeL(G,) NR.
The-intrinsic complexity of a grammar G can now be defined as the

complexity of its derivation from an appropriate grammar—-grammar, u(aG,G)

using p = 0 as density. The choice of the grammar—-grammar G will

depend-on the set of grammars being compared. We now derive expressions

for u(G,G) for a number of interesting subclasses C of R on a fixed

terminal alphabet T = CUPPRRPL 1] :

21

|

1 For all the examples we will have G, = (V,T,X,P} with

i V = (%,Q,R,N,T} UT
- .

T a (2; o oo 2, 108) . 8 157) U {,]}

. The general cfg with n variables can be derived from the collection

C = (CF } . The productions P of CF are
-

L Q ::= NR

i Ne=2 |...2
| R ::= T | N| TR | NR

T 1:= Ca| 0 | “m-1

| For a grammar G in L(CF_) which has k productions, whose right
sides have a total of ky variables and Ko terminals we have

L A(G,CE) =k. (logy(n) . logy(2)) . Xk, . (logy(k) . Logy(n))

] +k, . (logy () . log (m)) |
For cfg in Greibach Standard 2-form (S2) and in modified Operator

| 2-form (02) the measures have very similar expressions. The productions

| are:
s2 02

L “XX ::=qQ | X,Q X ::= Q | %,q
Q .:=N=R Q ::=N= R

L Nc=2Zg lz loz Nl=2Zgl. Laz
i ~ R +: T | TN | TNN R ® *=T | TN | NIN | NT

T wea a, LL a1 T 11= a, |. a1

i 22

1

and if a grammar G has k productions and ki Eps Ks rules whose right

sides are of length 1, 2, 3 respectively, then

1(G,52_) = k(log,(n)+log,(3)+log,(m)+10g,(2)) + (ky + 2k) log,(n)

1(G,02) = k(Log,(n)+logy(k)+log,(m)+log,(2) + (k, + 2k) log,(n) .

Similarly, the linear grammars (LN) and finite state grammars (Fs)

have nearly identical G . The productions are:

In Fs
X::=ql %,q X ::= 0] X,Q

‘0 ::= NR Q +i= N=+R

N re =a 2 T= 2 | D De “n-1
. @ odI i= a, |... a _1 I @2% a, |... a 1

R :0=T | TN | NT R :=T | IN

and if a grammar G has k productions and kk, rules whose right

sides are of length 1, 2 respectively, then

u(G, LN) = k(log, (n)+1og, (3)+1log, (m)+1og, (2)) + k, log, (n)

u(G, FS) = k(1og, (n)+1og,(2)+1og,(m)+log,(2)) + k, log, (n) .

Finally, the productions and measures for Chomsky normal form (CZ) are:

c2

x i= 0 | X,Q : |

Q ::= NR

%* J

N »o= 2g | : 20-1
R ::=T | NN

T = a, Cu a _1

1 (G,c2) _ k(log,(n))+1log,(2)+2k, (Log, (n)+1log, (2))+k, (logy (m))

23

-—

I Example 2blk Returning to our example of the universal grammar on strings
(Example 2a5) with an even number of a's, we can now measure the

L complexity of the grammars G , H . We must first determine the
- appropriate class of grammars and parameters (n,m) to use in the

comparison. We have assumed that the terminal alphabet (and thus m)

i is known. Since both grammars are finite-state, the C called FS
above 1s most appropriate. Now H (the "even a's" grammar) has two

L non-terminals. We use n = 2 for it and get the result:

| m=2, n=2, k=6, k,=4
(HFS) = 6(10g,(2)+1og, (2)+1og, (2) +10, (2)) t 4 .log,(2)=28.

I For the universal grammar G which requires only one non-terminal
we could use n =1 or n = 2 . The results are:

L u(G, Fs,) = 12
[u(G,Fs,) = 18 .

Although G 1s simpler than H by either measure, there 1s a question

[of which measure to choose. We can see from the formulas derived
above for u(G,G) that choosing the smallest possible n produces

L a bias in favor of grammars with few non-terminals. This seems desirable

I and has been adopted for use in this paper.

I We will need the following lemma in Section 3 which deals with
grammatical inference.

L Lemma 2b5 Let C ©€ R be defined by a grammar—-grammar G in Standard

I 2-form (S2) , then there is an enumeration #% of C which is
approximately ordered by u(G,G) in an effective manner.

L
2

L

L

Proof If C 1s finite the problem 1s trivial. If C is infinite

u(a,G) is unbounded on C . Given the grammar—-grammar G , one

can define a generating algorithm which will approximately order : |

L(G) by the length of its strings (grammars). Let # be the

restriction of this approximate order to GeR , & is an enumeration

of C. Now if G, in & is given we must show there is an

effective way to find k such that J > k implies

y i

Let r= the minimum density of peP and let h be such that

We can effectively find k such that Jj > k implies £(6,) > h ,
because #4 is approximately ordered by £(G) . Also for S2 we

have L(G.) = £(G.) and thus4(@;) = 2a)

(G5, F) >h .r > (6, ,G) :

The two complexity measures developed here (the intrinsic complexity

of a grammar and the complexity of a set of strings relative to a grammar)

can be combined to form an overall measure of how well some grammar fits

a set of strings. The problem of what combination of u(G,G) and u(S,G)

to use 1n an overall measure will be discussed in Section 3¢. For the

present we will be content with an example.

Def 2b6 Let G be a grammar in a class C defined by ¢ . Let S

+

be a subset of T , then we define the measure Me (S,G) by

Ta (8,G) = u(s,q) + u(ag,G) .

25

g
! We can now reconsider Example 2b4 using Te . The universal grammar
L G 1s simpler than H , but leads to more complex derivations. fe can

i then investigate which sets S will cause one to prefer H to G as a
grammar for S , 1.e., make

. Mpg (8,H) < Meo (8,6)

| Using Def. 2b6 and the intrinsic complexities computed for H,G this is
equivalent to finding S such that

8 u(S,H) + 28 < u(S,G) + 12
: or

L u{S,G) - u(S,H) > 16 .

i Now from the results of 2a5 this 1s satisfied by any set of strings S
satisfying

_ >. L(y) >...
VES

i Although it involves getting ahead of ourselves somewhat, we should
consider this example more closely. In general, Ma (8,6) will depend

_ on the nature of S rather than some simple property as in this case.

i Here we have shown that any sample including 39 or more symbols and
having only strings with an even number of a's makes H preferable

_ to G : Notice-that a single string-with an odd number of a's will make
L(S,H) = » . The result above says nothing about other grammars which

L might be better than both G and H on some set S ; this 1s the

grammatical inference problem and 1s the subject of Section 3. We first

L introduce a variation on complexity measures which plays a major role in

i the discussion of grammatical inference.

2 26

_

I SSSELLIE

2c, Normalized Complexity Measures

The complexity measures introduced in the last section increase without

bound with the length of strings. To overcome this difficulty we introduce

a normalized complexity measure; this measure is bounded so we may also

study its limiting behavior as the sample set of strings approaches the

language.

Def 2cl The normalized complexity n(y,G) of a string vel relative

to a grammar G 1s defined by

1 (y, @) = u(y,G)/2 (¥)

where u(y,G) is defined in 2a3 and £(y) is the length ofy .

The definition of nm 1s extended to sets, S , of strings'by

18,6) . u(s,0)/La 2(y) .
yes

Lemma 2¢2 For any GeR , yeS© L(G) there are constants r,q > 0 such

that

(a) r < n(y,G) < q

(8) r<n(s,6) <q .

Proof (a) By 1lb2 the derivation length tv) is not greater than 2 .f(y) .

If B is the maximum p(p) in G then

q = 2 *°B

satisfies the right half of (a) because if there are k derivations

of a string y , we have:

27

I , re 4q(vy)
. 100) tr ZZ ele)
: 1=1 J=1

1

B Seip) 2 4 F

= 2 * B .

| - - Let k(p) be the number of terminal symbols appearing in production p .

| Let r be the minimum over G of p(p)/k(p) , then r satisfies the

|= left side of (a). The proof of (b) follows by straightforward analysis

| from (a) and the definitions.

_ The introduction of the normalized complexity measure 1(8,,G)

n enables us to study the behavior of § a5 the sets S, approach L(G) .
| — When the limit exists we will write

| n(L,G) = lim n(8,,G)
f to

The following example will show that the limit may not exist.

| Example 2c¢3 Let G = ({a,c,X%,2, 3, (X,2,},X%,P) where P contains

| X = alaX|eZ, |e
| — Z, eZ. |e

and let the density o = 0 . The language L(G) is the set of all
-

strings containing a finite number of a's followed by a finite

- number of c¢'s . We will show that there are information sequences

| for which n(8,,q) does not converge.

28

Let a’ be a string of a's of length n and c" be a string

of c's of length m . Then

i(a’,G) =n . log,(4)

n(c™,6) = log,(k) + (m-1)log,(2) .

On a sequence Of strings of the form at , we have n(S,G) con-—

verging to 2 and on a sequence of c , n(s,G) converges to 1 . We

will now show how to choose an information sequence which includes every

string in L(G) exactly once and for which n(8,,6) fails to converge.

The first string is "a" and the subsequent strings are chosen as follows.

After choosing a string at we choose all strings of L(G) of

length up to i and compute n(8;,G) on this set S, of strings. There N

1s a string CJ which, 1f chosen as the (t+1)st element of I , will

cause (81,4) to be less than 1.4 . For example, if HN = {a} ,

then So = {a,c} and Jj must be such that

log, h + log, k + log, + (3-1) Ci
2+] :

which 1s satisfied by j = 7 and 5 = {a,c,ccccecec} © We then select

all new strings of length up to J and compute 108; »C) . There 1s an
integer do such that

v2

n(s, +{a “},G) > 1.6 .
2

By continuing this process one can produce an information sequence

on which 71(S,G) fails to converge.

In the example above, the failure of 7(8,G) to converge depended

on three factors: the density p , the derivation length oF and the

29

Lo information sequence I(L) ., By restricting these factors in various

- ways, one can show that there are cases where 17 (S,G) is known to

converge. We first examine the case where p(p) 1s constant; this

amounts to using the length of a derivation as a complexity measure.

- We will use the notation 1 (v) to denote the average derivation length
of a string y .

Theorem 2ck Let GeR be such that p(p) =r , a constant for all peP ,

- then for any I(G) for which

- | 2 2(v,)
lim ——— = C

>| to LE (3)

the limit of n(8,,G) exists, and

too Ek 1

— Proof By definition

— to ky £3(vip)
2a 2X 2a pps)| : k, . ih]
i=1 "i h=1l J=1

- n(8,,G) ==
2 Ly.)
i=1

but with p (Py 5) = r this collapses to
k,

L 57pa k, Lq(ysh)
n(s,,G) = r EL tr A= ——

\ +t’ / t,

2 £(y,)
i=1 *

_ ly A

r 23 L(y)
oi=

== Hy)
i=1 *

30

which proves the theorem. i

Corollary 2c5. Let GeR be such that !

1) p(p) =r a constant for all peP |
2) £,(y) = a-2(y)+b : a,b positive constants. |

Then for any I(G) we have | |
|

lim n(8,,G) = ra .
td |

This shows that for a constant density p and grammars whose Ly n

1s simple, the normalized complexity measure always converges. This 1is | |
interesting because many classes of grammars satisfy Condition 2 of

Corollary 2c5. |

For the Chomsky standard form C2 , we have ty) = 21(y)-1 . For

each of the representation classes FS, LN, 02, S2 we have L(y) = L(y) .

These relations are immediate consequences of the form of productions

for each class. We now consider the results of allowing p to be

non-constant.

We present two versions of the conditions for the convergence of

n(S,G) with non-constant p. The first, Theorem 2c¢7, is simple to

prove and illustrates the nature of the problem. The second, Theorem 2c8,

1s more useful when it applies.

Def 2c6 Let Uppy) be the number of uses of production j 1n derivation

h of the stringy, . Also let , (p,) be the average of Upp) 3
over the derivations of Vs

51

Co Theorem 2c7 Let GeR be such that P = {Drees , 1.e., there are s

L productions in the grammar. A sufficient condition for the limit as
t +o of n(8,,6) to exist is that for Jj = 1,2,...,s the

| following limit exists

L 42. u;(p.)
i=1 J

(1) limit———
tT 2+ =

L 22 ¢(y;)
i=1

, Proof One can rewrite the definition of n(8,,G) as:

L t 1 Ky S
2 ZT 3 ue) c plp))i=l" i h=1 j=1 J

| n(s,,6) ==EF Bel 3=1 ©°C
20 1(y.)

I i=1
Reversing the sums over h,J and using the definition of 2, (p,)

L gives
t So A
22 20 up)" plpy)

I i=l j=1 + Jd= =

2. L(y)
I i=1 +

I Now reversing the order to summation again and separating out the
contributions of each production p. as n(8,,0) we have

L A
L oo) Lo 4, (p,)

(8,,G) = _ = i=l =M5322 t
2. 1(y.)L i=1 ©

| from which the theorem 1s apparent. The condition of Theorem 2¢7 is
that some average number of uses of a production in deriving a set

32

A

of strings should converge. The difficulty is that u,(p) it is
1 J

hard to establish for a given grammar and information sequence.

A more reasonable condition to establish 1s the ratio of the uses

of py to the total number of steps in deriving the set 3. That is

n k..

)IGIDN Usp (03)
£.(S) — 1=1 h=1

L(y...)
i=] n-1 41k

Thus the frequency of a production p. in deriving the set of
J

string 8, 1s the total number of uses of p. divided by the number of
J

production steps used for the set S, . We will use this definition to

establish a condition under which 1(8,,G) converges and then discuss

£:(S) further.

Theorem 2¢8 Let GeR be unambiguous and be such that P = lv, 0 FKDg 3
and £,(y) = a .L(y)+b for all yeL(G) . Further, let I(G) be
a bounded information sequence such that

lim f_(8,) = C. for each production p.eP ,
tbe I J J

then

lim n(8,,q) = C .
to

Proof- Since G 1s unambiguous, all ky = 1 and

u.(p.)
= 1°]

f(s) = 228s(8,) =
2. L(y.)
im] 471

35

Separating the contributions of each p. as in the proof of 2ck we
J

L have:

| t
(5..0) i=1 J

I Nl; t? St2. 1(y.)
i=1 *

o(5,) 22 u(o,)
i=1

BE 3¢ L(y.)
i=1 *

L Also:

I tZou; (vy)
f. - —

I $7 (a. £(y,)+b)
i=1

I 3 uo) |
i=1 td

a 2. £(y,) +b .t
1=1

The advantage of Theorem 2c¢c8 is that the convergence of £,(8,) may
L be provable under fairly general conditions. ye are now attempting to use

1 stochastic matrix results to establish such conditions. 1yoorem 208 does
not hold for ambiguous languages; this situation is symptomatic of a number

| of problems arising from ambiguity and will be discussed 1n some detail.
Even very simple grammars may have ambiguity (k,) which grows

I exponentially with the length of yi An example 1s

34

| H = ({Z,a}, (a},2,(2 + aaz|za})

Since we defined n,(S,,6) in terms of the average number of uses of p. ,: - J

4 the value of k. has essentially no effect on nn. For £.(s,) , however,J

I the total number of uses of a production is used. (consider the grammar

of Example 2c3 with one additional production rule:

X + Xa

: : [ARP R | k
In this grammar, each string k "a" 's has 2° derivations. By methods

| like those of 2¢3 it 1s easy to show there 1s an information sequence

| for which £5(8¢) converges and 15(S¢, 0) does not, which fact refutes
: Theorem 2¢8 for ambiguous grammars.

| The choice of n(8,,G) as a function of the average complexity of

the derivations of a string 1s open to question. Other possible choices

would be the sum, maximum, minimum and a weighted sum. The choice of

definition of n has important implications for the entire grammatical ;

complexity problem. This issue is touched on in Section 3d and will be s
)

further discussed in Horning's dissertation. !

j

52

Td

lL 3. Grammatical Inference

| %a. Introduction, Basic Model and Terminology
The problem of inferring a grammar for a set of strings 1s just

| beginning to receive serious attention. Our purpose here is to establish

| a number of decidability results as a foundation for the heuristic methods
of grammatical inference now being programmed. These results are extensions

| of the work of [Gold 67] who describes his study as follows:
Many definitions of learnability are possible, but

| only the following 1s considered here: Time 1s quantized
and has a finite starting time. At each time the learner

| receives a unit of information and 1s to make a guess as to the

| identity of the unknown language on the basis of the informationreceived so far. This process continues forever. The class of |

languages will be considered learnable with respect to the

specified method of information presentation 1f there 1s an

algorithm that the learner can use to make his guesses, the

algorithm having the following property: Given any language

of the class, there 1s some finite time after which the guesses

I will all be the same and they will be correct.

I Gold's definition of learnability derives from his earlier work on
limiting recursion [Gold 65]. We will present some new results using this

i definition and show that by relaxing some of its conditions, one can greatly
enlarge the class of solvable cases of the grammatical inference problem.

i In addition to the concepts previously defined, we will need a number

| of new ones. We assume time 1s quantized and 1s expressed by
t=1, 2,3...

I A grammatical inference device D is a function from samples St
into the set of grammars {G} in some class C . The grammatical inference

L »

problem is modelled as follows: An information sequence is presented to

the device D at the rate of one element per time step. At each time, t ,

we compute

Ay. D(8.(1),C) .

We say that a class of languages, L(C) , is identifiable in the limit, 1f

there 1s a function D such that for any GeC and any information

| | sequence I(L(G))ed there exists a tT such that t > 7 implies both

| a) A, = A

. I | b) L(A) = L(G) .
This differs from the function D being recursive in the following way.

a recursive function D would, at some +t , be able to ignore all further
information, 1i.e., would be able to stop and demonstrate the right answer.

Since we have allowed an information sequence to contain repetitions of a

string, not even the class of finite languages 1s recursively identifiable.

Before considering the properties of inference devices, let us look

at the notion of information sequence. Gold [Gold 67] has shown that there

1s no effect in the limit on learnability caused by the difference between

| an ordered (e.g. by length) I and a random one for Jed . He also shows

| that in this case allowing the device D to select the next string y to

appear as y 1n I does not change things. While these different methods

of informing (teaching) the device do not affect the learnability of languages

in the limit, they do have powerful effects on the heuristics of efficient

learning. Solomonoff[64] considers the grammatical inference problem a

special case of sequence extrapolation and his methods rely heavily on the

order of presentation of examples. Another crucial consideration is

37

whether the information sequence contains complete information. The

_ effects of complete samples is the subject of the next section.

— 5b. New Results on Grammatical Inference

| The main results of [Gold 67] deal with the great difference in
—e

learnability effected by allowing information sequences with negative

- instances, Ied , (informant presentation) rather than just positive

instances, Ied , (text presentation). We will informally outline certain

| key proofs and then extend them in various ways.

All of the methods are based on the denumerability of various classes
—

of grammars; the primitive recursive, context-sensitive, context-free, and

any other class we might be concerned with here can be enumerated. Let

| & = (Gy . ..> be an enumeration of such a class. Also let & = (I} be

Ba . the set of all complete information sequences over some alphabet T

+ +
| (each yeT occurs as - y in every I). A class C of grammars is
—

admissibleiff C is denumerable and for all GeC , vel the relation

_ yeL(G) is effectively computable. A grammar G is compatible with a

set of strings S = S+ U S iff S+ C L(G) and S cr - L(G)

_

| Theorem 3bl (Gold) For any admissible C there 1s a device D S,C)

— such that for any GeC and any I(L(G))ed , L(G) is identifiable

in the limit through I .

| Pro-of The device D simply sequences through the enumeration 4% of C .

— At each time, T , there 1s a first Ge& which is compatible with

| s, (I) , it is the guess A of D at time t . At some time 7,
LS—

38

A_ will be such that L(A) = L(G) . Then B will be compatible oo
with the remainder of the information and will be the constant result

of D .

Thus with informant presentation, a very wide class of grammars can

be learned in the limit. By restricting the information to only Led,

we give up learnability in the limit almost entirely. Let everything

be as before except that the set of information sequences d= (I}

contains only sequences of the form HY tps eee > .

Theorem 3b2 (Gold) Under these conditions any class C generating all

finite languages and any one infinite language L is not learnable

in the limit.

Proof We show that for any D , there is a sequence I , which will

make D change 1ts value Ay an infinite number of times for L .

Since D must infer all finite languages there 1s a sample which

causes 1t to yield some G(L,) such that L, < L . Now consider

an information sequence which then presents some string xel_- Li,

repeatedly. At some time t , D(8,,C) must yield a grammar of

Ly U {x} = L, because all finite languages are inferred. This

construction can be repeated indefinitely, yielding an information

sequence I which will change the value of D an infinite number

of times.

This unlearnability result 1s so strong that we were led to try to

consider it further. The remainder of this section is devoted to the study

of conditions under which learnability from positive sequences only 1s

59

| ~ attainable. Let us first consider the repeated occurrence of a string vy ,

_ in an 1nformation sequence I . The proof above is based on the possibility
of having some string occur indefinitely often; it does not seem unreasonable

~~ to bound the number of occurrences of any string in an information sequence

- and thus restrict our attention to @ .
” By restricting consideration to bounded information sequences, we

Co . have made the problem of identifying finite languages trivial. The

classes of grammars which are now identifiable in the limit can be

ha characterized by the following two lemmas.

— Lemma 3b3 Any class of cfg Cc R which contains only a finite number

of grammars which generate infinite languages 1s identifiable in the

= limit from any I(L(G) Jed

— Proof The device D(8,,C) which will identify C in the limit will
| be defined. Let .&be an enumeration of the grammars of C which

” generate infinite languages. At each time t , the device D will

3 form a guess A as follows. A. is the first grammar in & which
1s compatible with 5S, and which generates the minimum number of

— strings of length less than or equal to k , where k is the

| length of the longest -string Sy . If the language L(G) is

finite then I(L(G)) terminates at some t and a grammar

i for L(G) can be picked out of C - % ; we will now consider

| the case where L(G) 1s infinite. If HeC is any language such

- that L(G) - L(H) = {y} #0, then after the first appearance of

a y in I(L(G)) , H will never be guessed by D . Tf HeC

1s such that L(G) <L(H) there 1s a length ky such that for all

40

k > ky , H generates more strings of length less than or equal

to k than G and thus H will not be guessed by D . Thus D

will eventually guess only the first grammar Aec& such that

L(G) = L(A) and the lemma is proved.

Thus requiring an information sequence to be bounded has produced a

somewhat larger class of inferrable languages. Although some infinite

sets of infinite languages can be identified in the limit, the following

lemma shows that there are some very simple classes which cannot be

identified in the limit from Leg, .]

Lemma 3bl The finite state languages are not identifiable in the limit,

from Ted, .

Proof The proof 1s an adaptation of Gold's proof of Lemma 3b2. We

form a subclass of the finite state languages for which D will

change 1ts value an infinite number of times. Tet this class

C = (H.} be defined as follows.

L(H,) = a¥b¥ (any sequence of a's followed by any sequence of b's)
and

1 .

for i > 0, L(H,) = u adp*
J=1

| The languages i , 1 > 0 all have finite state grammars. We will

show that for any D(S,FS) which will identify in the limit all the Hy ,

i > 0 there is an I(H,) which will cause D to change its guess an

infinite number of times. The sequence I(H,) starts with enough

yeL(H,) to cause D to guess H, ; the assumption that D infers H

41

| guarantees the existence of such a sample. Then I(Hy) continues with

enough yeL(H,) to cause D to guess H, , etc. Any I (Hy) of this
nature would cause D to change its guess an infinite number of times. |

The class of languages learnable from positive information sequences

will now be extended by introducing a weaker notion of learnability. The

comparison of the two definitions of learnability will be deferred until

| after the theorems. For the remainder of Section 3we will restrict

ourselves to bounded information sequences and to the class Rg of completely

, reduced context-free grammars. Several of the results could be made more

general, but these are sufficient for our purposes and allow of simpler

treatment.

Def 3b5A language L(G) in a class C is approachable from above

| by a device D iff for each HeC such that L(G) e¢ L(H) and

| each information sequence TI(L(G)) , there is a1 such that

t > 1 implies

D(8,(I),C) £H .

Thus a language 1s approachable from above 1f every grammar

producing a larger language 1s eventually rejected. We can define

approachable from below 1n a somewhat similar manner;

Def 3b6 A language L(G) in a class C 1s approachable from below iff

for each HeC such that L(G) - L(H) # @ and each I (L(G)) there

is a 1 such that t > 17 implies

—

D(S,(1),C) £ H

42

That 1s, any grammar H , whose language does not contain L(G)

is eventually rejected. This condition is trivially incorporated in any

reasonable device for positive information sequences. This is because

any yeL(G) - L(H) will eventually appear in every I(L(G)) ,

Def 3b7 A language L(G) is approachable if it is approachable from above

and below. A class L(C) of languages is approachable iff there is

a device D(S,C) under which each L(G)eL(C) is approachable

through any I(L(G))ed, :

Theorem 3b8 For any admissable class of grammars CC R there is a

device D(S,C) such that for any GeC and I(L(G))ed, , L(G)
1s approachable through I .

Proof For L(G) finite the problem is trivial. Assume L(G) ig infinite.

Let I(L(G)) = <Yys¥p55e+.2€d . Let & be an enumeration of C and

for each G in .& define n, (G) to be the number of strings of length
k generated by the grammar G and

k

N(G) = T no
k 20

The device D(8,,C) proceeds as follows. At each time, t ,

D will choose the next grammar G, from 4 and the next string
y,€I(G) forming the sample

Sp =8,_ Uy}.

It will also compute £, = max(2(y)) over yes, The device will

also form the set of possible guesses a,

a, = (G]aelc,,. . + G}and 8, © L(G)} .

43

| If at 1s empty, the device will choose more grammars from &

or until a, 1s non-empty. Finally the device will compute its guess

A, at time t bychoosing one of the grammars G in a, for
-

which Ty © 1s minimal. The procedure for breaking ties is
- immaterial.

The fact that D 1s effective follows easily from textbook

= results. We now show that A, approaches G from above. That 1s,

| if HeC 1s such that L(G) JL there 1s a time T gsych that
: (1) t > 17 implies A, #H .
g If L(G) Z L(H) there is an integer h such that k > h

implies

br N(G) > N(0) .

Let 7, be the first value of t for which L, = h and 7,
be the first value of t for which G appears in % . Then

g T = max(7,,T,) is a finite value of time for which (1) holds.
Since L(G) 1s always approachable from below through any complete

— positive information sequence, the theorem is proved.

~ The procedure used by the device D in the proof above can be made

more-efficient in a number of ways. Since a finite language necessarily

- has a finite information sequence over g , D could restrict its guesses

lL to grammars which produced infinite languages. In practice, one would break

ties for Ay by choosing the best grammar relative to some complexity measure

— such as those of Section 2. The question of inferring "good" grammars will

be discussed 1n Section 3c.

LL

|

There 1s a progressive weakening of the formal counterpart of the

intuitive concept of "learning a grammar" as one goes from recursive to

limiting identifiable to approachable. An inference device which can

identify a class of languages in the limit will find a correct grammar,

but will not know that it has done so. If the device can approach a class

of languages, 1t may not ever settle on a correct grammar, but will get

progressively closer as the sample size grows. Unfortunately, this 1s the

best kind of result possible in the absence of negative information.

The device D used in the proof of Theorem 3b5 could make use of

negative strings to reduce the set a considered acceptable to time t .

One might conjecture that there 1s a device that would use negative strings

in an information sequence without knowing whether or not it was complete

(that 1s, whether all or only some of the negative strings occur) and

achieve the behavior of Theorem 3bl for complete sequences and of 3b8 for

incomplete ones. This conjecture is false; an argument similar to the proof

of Lemma 3bhk will show that:

Corollary 3b9 If D 1s a device which will approach any finite state

language L(G) for any I(L(G))ed, then there is a finite state

grammar H and an information sequence I(H)ed, which will cause

D to change-its guess an-infinite number of times.

Intuitively, the device of Theorem5bl adopts a very conservative

strategy; 1t chooses the first grammar which 1s compatible with the sample.

It succeeds because the negative strings 1n a complete sample guarantee CL

that any incorrect grammar will ultimately be incompatible. The device of

Theorem 3%b8 does not have this guarantee, so it must constantly look for

45

3 "better" grammars and thus cannot be guaranteed to eventually remain at the
: same value. The question of learning good grammars and making good guesses

is the subject of the next section.

5c. Learning Good Grammars

: The preceding discussion has established the solvability of the
| grammatical inference problem under a varlety of conditions. We now

| extend these results by considering when a good grammar (in the sense of
, Section 2) can be learned.

There are several properties which would be desirable in an overall

| measure which was an increasing function of both intrinsic complexity,

| n(S,G) and derivational complexity, u(G,G) . For a fixed grammar, the

| complexity of a sample should be bounded so that the convergence results
| of Section 2c are applicable. Finally, the relative weight given to the
| components of the measure should be able to be specified in advance.

Another important property of a measure, effectiveness, 1s actually a

| consequence of the other requirements and the general conditions of the

problem as the following lemma and theorem will show.

Lemma 3cl Let % = (G. } be any enumeration of a class CCR

which 1s approximately ordered by length and let S, be a

sample of some I(L{(G)) , Ge& . Then there is a computable

| index k such that j > k implies there is an h < k such
that

(S56) < n(8,,6)

| L6

|

Proof The proof is based on the fact that if a grammar is too

large, there must be some redundant rules. pat

t

u(s+) = Y. 2 « 2(y.) .
y pc] i

From Lemma lbZ2 we know that the total number of uses of productions

in deriving S, 1s less than u(s,) Therefore, if one chooses an index

k such that Jj > k implies the number of productions in G, is greater
than u(s,) r the condition of the lemma 1s satisfied. gquch a k is

computable since 4 is effectively approximately ordered by the length of

grammars.

Theorem 3c2 Let Cc Rf and & = (G,} be an effective approximate

ordering of C by u(G,G) . Also let £(n(S,G),u(d,G)) be any

monotonic function of both its arguments. Then for any GeC ,

5, © I(G) there 1s a computable index k such that any grammar a,
such that

£(n(8,,G,),u(G,,G)) is minimal
has an index i < k in .& .

Proof By lemma 3cl above, there 1s a ky such that the G,

minimizing n(8,, 6) occur before k, ~~ Let M be the largest |

value of u(G,,G) occurring before k, i.e.,

Me MAX (u(6,8)
1 <1< k,

Now, by lemma 2b5 there is an index k such that j > k implies -

1(G,, 6) > M .

7

iw

The minimum value of £(n(8,,G,),u(G,,G)) must occur with
. index less than k , since for each j > k there 1s an h < k

such that both n(8,,G) < 18,05) and u(G ,G) < 1 (Gy, G) :

| The requirement that a goodness measure be an increasing function

— of both intrinsic complexity uw(G,G) and derivational complexity 5(8,G)

: seem to be a natural one. The particular choice ofa goodness function 1is

” less clear. Consider a device D which enumerates the class C of

~ candidate grammars by generating them in order of length from G . Although
n(S,G) is a normalized complexity measure and is bounded for a fixed

L grammar, the bound increases approximately as the length of grammars.

: Although u(G,G) also increases with length it does so in a different

- manner. A comparison between the growth rates of u(G,G) and n(s,G)

3 would be very helpful in choosing a goodness function. In the absence
of any knowledge of growth rates, we will be content to use a particular

_ class of goodness functions which seems reasonable.

3 Def 3c3A goodness measure y(S,G) is defined as

| 7(S,G) = a .n(S,6) + b .u(G,G)

— where 0 < a,b <1 .

- It follows from previous results that goodness measure y 1S an

| increasing function of n, 4 and is bounded for fixed G . By Theorem

~ 3c2, the minimum y(S,G) for fixed S and G © C , a complexity class,

- 1s effectively computable. Thus y is an adequate goodness measure by the
| criteria laid down above. We now study the conditions under which best

. grammars, as measured by y , can be learned by an effective device D(S,C) .

~- 43

Theorem 3ck Under the conditions of Theorem 3b2 (GeC , I(L(G)) c &) .

If vy (8, G,) converges as t * « for every G, such that
L(G,) = L(G) then there is a device D(s,,C) which will identify

in the limit the grammar Gt such that L(G) = L(G) and

7 (1,65) 1s minimal over C .

Proof The device D will use G for the enumeration & of C as

before and will at each time t form S, . There 1s a first °

which is compatible with 5. and by lemma 3c2 there is a k, (a)

such that i > k, implies 7(8,,G;) > 7 (84,6) . The device D

then chooses the first grammar in {Gyn G, } which has the

minimal value of y as its guess A, . -
Now there is a first Gy such that L(G) = L(G) and

7 (L(G), G,) = % exists. But there is also an index k(g) such |

that i > k(q) implies b . u(G,,G) ~% , l.e., intrinsic
complexity alone exceeds ®q at some point.

Thus the device D will never consider more than the grammars

Gps . . Gas possible guesses. Any G, such that L(G,) # L(G)

will eventually be eliminated by the complete information sequence |
I(G) . There are then a finite number of G, , all of which generate |
L(G) ; for each of these, 7(8,,G.) converges to a limit Cc, |
Let the first occurrence of the minimum (c,) = c be a c . For | |
any Gu such that c, = c, fe there is an index r (i) after which |
7(Sp(1y2G5) > 7 (8,5), C;) Let w be the largest of the Teiy then
for all t > w the guess Ay will be precisely ° and the theorem
1s proved.

49

-

Corollary 3c5 If the measure y(8,,6) = u(G,G) , (only intrinsic
— complexity is considered) the device of Theorem 3ch will always

identify the best grammar in the limit, the grammar of lowest

= intrinsic complexity producing the correct language.

Corollary 3c6 The device of Theorem 3ch will approach the best

grammar, even if the limit of 7(8,, 6) does not exist.
-

The requirement that the limit of 7(8,,G) exist seems to be necessary

= . 1n general. If y does not converge, the device can be caused to oscillate

| 1ts guesses between a finite number of different grammars for the target
-

language. There 1s a possibility that for complete information sequences,

L_ y (8,,6) can always be made to converge. It 'is based on the following

conjecture: the measure 7(8,,G) will always converge on an information

= sequence which presents strings in strict order of length. If the conjecture

is true then the device of Theorem 3ck would be able to wait until all
—

positive and negative strings of length up to ‘k were seen, then compute

_ 7 (8, ,G) and be assured of convergence.
"he final set of questions relate to the learning of best grammars

~ from positive information sequences. In the discussion of Theorem 3b5

we remarked that a goodness'measurelike y could be used to break
-

ties among compatible grammars producing the minimum number of strings

— of a fixed length, g . The device described there will approach the

correct grammar, but will not make the best guess at each time, t .

— By making g a slowly increasing function of t one can produce a

device which will tend to produce better guesses at each time, t , at

} the cost of rejecting overbroad grammars later in the sequence. (pe

-

50

i

might conjecture that the complexity measure alone would eventually eliminate

overbroad grammars. We now present an example to show that a device using

only the complexity measure vy and a positive information sequence may

| fail to approach the correct grammar.

Example 3c7.

Let C be L(FS) NR, the finite state grammars in standard form.

Let

G = ({x},{a,b},X,{X + a|blax|vX}) .

The universal grammar of Examples 2a5, 2b4 has u(G,FS,) =8 and the

upper bound on 71(S,G) is log, (4) = 2 . In fact, for this simple grammar

n(S,G) is exactly 2 . Thus for any set8, C L(G)

7(8,,G) = 10 .

We now show that by removing one string from L(G) we get a language L'

such that for any H such that L'= L(H) and any sample 5, © L

7 (SH) > 7(8,,G) .

That is, any device using y as a selection criterion will select the

universal grammar G over the correct grammar H . To prove this

rigorously we would have to account for all possible grammars of L'

(which the results of this section show to be possible) but we will be

content with the following argument.

Consider L'= L(G)-aaaaaaaa . Any grammar of L' that 1s in C

can have only one terminal symbol per production. It must also have

enough states (non-terminals) to count to eight. This apparently requires

a grammar with y > 10 .

51

In any event, there is a string of a's long enough so that its unique

_ non-membership requires a grammar of intrinsic complexity greater than 10.

This example also indicates that the difference of two grammars might have

— a lower measure than any single grammar of the class, even when such a

grammar exists. This question of combinations of grammars deserves

= considerably more attention.

|

3d. Using Frequency Information to Assist Inference

— Previous sections have presented successively weaker definitions of

learnability: recursive, identifiable in the limit, approachable. All

~ of these definitions are "strong", however, in that they require that the

_ device (eventually) satisfy the criterion for every information sequence

in some class, In fact, the non-learnability results of Theorem 3b2,

— Lemma 3bk, and Corollary 3b9 depend upon the construction of particular

pathological information sequences.

= In practice, however, a device whose performance 1s superior on "most"

_ information sequences need not be rejected because it fails on a few

sequences, provided that they are "sufficiently improbable". We are

— generally more interested in the "expected behavior" of a device than in

its worst case behavior. To study these properties of devices we must

= define more carefully our notions of "most", "sufficiently improbable", and

C "expected behavior". In this section we start with a probabilistic notion
of information sequence, which leads naturally to a Bayesian inference

— device using the frequency of occurrence of strings to assist 1n inference.

We also sketch a number of basic results which will be explored further in

= [Horning 69].

52

There are many other motivations for using the frequencies of the

strings 1n a positive information sequence (text presentation) to assist

in grammatical inference:

(a) Since more information from the sequence 1s used, grammars

may be discriminated earlier.

(b) The significance of "missing strings" can be evaluated.

(c) Inference can be conducted even in the presence of noise.

(d) Grammars for the same language may be discriminated on

the basis of their agreement with observed frequencies.

(e) Complexity can be related to efficient encoding, znd

various results from information theory applied.

We shall assume that the elements of an information sequence are

independent and identically distributed random variables (1idrv

condition).

Lemma 3dl The iidrv condition implies convergence with probability

> 1 ~€ for any€ > 0 .

Proof See sequel.

Let nt = EIFEIVRERS be a denumerable set of probability distributions
+ CL a.

for strings 1nT such that the conditional probability of a string,

Py; [n;) , and the a priori probability of a distribution, P(x.) , areJ

both computable. Under the iidrv condition, the partial information

sequence

05

oo

— has the conditional probability

: t
P(L (t J) =

| (I. ,vy.,t)— . k’ 1’

= TTe(; In)J
pl

-

As 1s well-known, the probability distribution for information

— sequences under the distribution x" for strings corresponds to the

: : ! t t :
multinomial (P(y, [*) + Py, |) +...) or, distinguishing P(y, |x") ,
to the binomial

t PN t (fi t-fi— ' - LL!I) (p+ I} y (pp)By [i]
fi

| where
—

— 1 | ry

P, = Py, |r") , =I - LLE(yy In) - PB, .
- Taking of OF; of both sides:

t-1 PN by fi-1 t-fi— ! =

II) t (Py + z}) fie; JP; : [=]
fi

- Multiplying by FP. :

t-1 >. PE VIR i t-fi1 -— !_ III) P, .t (BP, + z}) £1(p;)P; : [2]
fi

Again-taking S/ dP, and multiplying by P.
—

IV) P, ...(P. + TDSU ¢-JRNINS Tl B= (t-1)]1 1 1) 1 1 1°
-

2,t fi t-1f1= LPC [zr]£1 1 1 1 1

.

54

-

Since P, + 2; = 1 we can simplify III) and IV):

III)" 2 ei(t) . pit, (2118-12 Jp - t
Ti i i i 1i

>’ 2, t fi t-fi. P.7 — . . -IV) A £;(p3) i [2:1 P, t (1 + P, (t-1)) .

The left sides of these equations define expectation values under

n' for £, and £ so we have

V) Ex'(£(Ly,,t)/t) = Py. |x")

2

VI) Ex’ ([£(Ly,,t)/t - By, [x')]%)

2

= Bn’ ([£(T,y,,t)/¢]7) - 2B, (£(L,y,,t)/t)

* 1 2

Py; [x) + P(y, |x")

_ Ply. |x!

Pale) exe POLI x (ay)? py poy?

= [P(y. |n')° P(y, |x')]

Equation VI) defines the expected variance Sf £./t . Since
i

P(y [x") < 1 we can bound it by _.

f f 2 t
vt EL (Ey, 3/6 Py Ia)]7) <2 pyle)/t

pp)

3 We can use this to bound (8) , tye probability of an information

_ sequence with | £(T,y,,t)/¢ - P(y,|n')] > &

- VII) e.(8) 8° <E 2149). % BL (IE(Ly,t)/t - p(y,[2)]7)

-

<2 Py, |n')/t

-

and €(®) , the probability that any f./t is off by 8 . nore.

| (8 2VIII) €(8) < c;(8) <2/(t 8) .
— 1

eh e>0, 8>0 if 1 =2/ 5°— ven any ’ =< € then t > tv assures that

| the total probability of information sequences of length t in which the

- relative frequency of any string deviates by © or more from its

probability in =n' is less than €. This completes the proof of Lemma 3dl;
—

"The 1idrv condition implies convergence with probability > 1 - ¢ ;or
|

Lo any e€ > 0 ." It is in fact a slightly stronger result, because we have

also showed the relative frequency distribution to which "practically all"

— sequences converge 1s n', the distribution of the random variable.

i feturning to the case of a fixed information sequence, we note that
Bayes Theorem can be used to compute the conditional probability of a

8 distribution

| CP(T (t),n.)= PT (t) |x.) . P =i x (8) (On) = PG) = Ble[1 (0) | R(T, (2)

i or

: :

P(x)

where

P(I, (t)) = 2 P(nt,) « P(T(t)]x,)
Tn, EN
J

and

| (I. ,y.,t)
» k? 1’ /

t =

P(I, (xs) [AECAES

To use this formulation for grammatical inference we must relate

the probability distributions 7s and the a priori probabilities P(x,)- J

to grammatical complexity.

At each step of a derivation a production -- one of the finite set

with the correct left part -- is selected. Tf production p., is selected
i

from this set with probability P(p,) , the specification requires

p (py) = - Log, (P(p;)) bits of information. The probability of a derivation
1s the product of the probabilities of its individual steps, so if

k

d(y,G) = Pqys--- p> then P(d(y,G)) = 2G) and -1og, (P(d(y,G)) = m(d,y,G)1=

where (as before) n(4,y,G) = oo.)
i=l”

+

Def 3d2 . Let yeT , if y£L(G) we de-fine the conditional probability

p(y|G) to be zero; if yeL(G) and has the derivations

d, (y,G) Co. 4 (v,6) we define
k

P(y|6) = 22(4,(7:6))l=

oT

. | | |
! Let B(y,G) = -1og, (P(y]G)) . If y 1s unambiguous with respect
. A

to G then k = 1 and u(y,G) = u(y,G) [Def 2a3]; in the ambiguous case,
A

UW provides at least as plausible a definition of complexity as does u .

As we did in Section 2b,we define the intrinsic complexity of a

= grammar 1n terms of its derivation from a grammar—-grammar. Note, however,

that for our purposes, grammars which differ only in the order of their

productions, or in the systematic renaming of their non-terminals (except

L the distinguished non-terminal!) are completely equivalent. The equivalence

class of a grammar with k productions and n non-terminals contains

-

k!(n-1)! equi-probable grammars. fe are always interested in

| P(x. |G) = k! (n-1)! P(G.|G). P(G(|G) (n-1)! P(G41G)). P(E)

| since all of these grammars yield the same distribution, _ For aJ.

fixed collection we must specify the probability of G_ with n

| non-terminals. A reasonable choice is P(G) S-
P(r.) = k!(n-1)!* P(G,|G) * P(G(xy) = k!(n-1)! * B(6,a) * P(&)

ki(n-1)! » 2 4° 5
g

" Define]

= - 1 - t

i(c,,6,) 1(G5, 8) + n log, (t!(n 1)!)
then

P(n,) = 2 Jon
J

A

“u(y,,G,)
— 1° J

58

By our formula for conditional probability

i(c.,8) Alr,,0) £01 ,y,,t)
| P(r. |I, (t)) = 1(ry 1)) =— P(L (t))

k

Taking logarithms

| ~Log,(P(xy I, (+))) = (6,6) + log, (R(T, (t)))

pe . A

| Except for a term independent of the grammar (log, (p(T, (t)))) ! this
corresponds rather closely to our previous measure of fit [Def 2b5],

weighted by the frequency of occurrence of strings. Let
| \ A

(I, (t),C,) = 205 (Tv) . 1(y;,6,) and M = log, (P(x. 1, (£))))
then

- - A

To compute P(I, (t)) we must enumerate the distributions _
1’ nye

P(L, (t)) = 23P(x,) . P(T (t)]x,) :

This is not generally practical. However, this term drops out when we

compare the relative probabilities of grammars

A A

P(r. |1, (£)) ~ [Mx , I, (8)) M(x), I, (£))]
P(x, |L, (t)) = 227k

-[M -M |
IIRC CR NOME CREO

where

09

Co - - A
Co - 3 N

| | As in Section Z2¢, the grammar with the smallest total complexity M is

FT preferred.

We can compute a lower bound for A(z, (4), 6) , independent of the
particular class of grammars involved, by the method of Ia Grange

i 1 I

= N° 2. ®(y, |e) - 2 10g, [2(y;|0)] £(I,,¥;5t)

| OP(y, [G) P(y,[G)

P(y, |) = £(L,v,t)/2 .

| - 2 2(v, |e) = 1

L(Gth 2g

] N= 2(1 yt) = 1
: i

| P(y;16) = £ (I,¥,,t)/t .

| Substituting, we have

| 60

A en

nos(I (8) = - 2108, [£(T, 7,0) CEI ,y,,t)

= t . log (t) - ICED "log, (£(I,v,,t))

A ,

1(L, (8),C)> t HI (¢))
where

)

£(I y Vest) f(T V. t)
H(L, (8) = - &4 |—22 | + 1, EY: t 2 +i |

1s a local "entropy" measure. Tt would seem that Ho is a "natural"
normalization for complexities.

We may, 1n the course of inference, require an estimate of M (as

well as the value of M) without enumerating the T. .
J

A —~

M(x,1, (8) = Mn,I, (%)) + logy [P(T, (¢))]

(1, (6)) = Ply) BCE(t) Ixy)

In general, we will know some {x} which have been rejected -— pecause

P(T, (t) fx.) = 0 —--- and some {x} which are under consideration
| Let

P, = 2 P(r) , P= 2. P(r)
nel, nae{n,}

Pp=1-PB. -P, , P(I(t)) = PN P(x) © P(T,(t) |)n.e{n _} |
J Cc

61

Ec ~t+H(I (t))
f P (I (t))<P t . kK(1) PL (8) < PT, (2) + P+ 2
_ Thus, although our inference measure can never be "sure", 1t can compute

| a confidence measure for its best grammar.

Noise .

—

If the distribution of noise (error) strings 1s known, 1.e., «
n

L and. P are given such that elements of the information sequence are

drawn with probability P from the distribution x and probability
L (1 - P) from the "true" distribution n, then we have
|

| We can substitute this for B(y; I) in all of our formulas and still
conduct inference.

| If P 1s small, we will introduce very little error by the

I approximation
P(y. |x.) if P(y. |r.) > ©

. 1d 17]
Ply. In. ReN (vy; | Pm)

| LA P(y, |r) otherwise
f -

l1.e., strings not generated by the grammar are given their "noise"

| probabilities, otherwise noise is ignored.

62

a ——

:

4, Programs for Grammatical Inference

4a. Introduction and Definition of Pivot Grammars

The development of programs for grammatical inference provided the

-.. original motivation for the theoretical work presented above and 1s of

continuing interest. The programs completed so far are quite primitive

= and were written to test some basic ideas. There are a number of obvious

_ extensions. Given a proper formulation, the grammatical inference problem
can be characterized as a heuristic search problem and the various known

— techniques [Newell 68] applied.

| An early paper [Feldman 67) described a number of strategies for
— inferring finite state and linear grammars. They can be characterized as

u constructive as opposed to the enumerative strategies stressed in this
paper. Thus they solve the problem "Build a reasonable grammar for ..."

- rather than "Find the best grammar for . ..". The first program, GRIN,

embodies these strategies 1n an inference program for finite state grammars.

- Rather than extend these simple techniques to linear grammars we considered

the problem for a somewhat more general class: the pivot grammars. A pivot

grammar 1s an operator grammar 1n which a terminal symbol which separates

i non-terminals in a production appears 1n no other way. More formally:

i Def Jal Apivot grammar G = (V,T,X,P) is a grammar in operator 2-form
(cf. Section 2b) such that the set of terminal symbols, T is

L partitioned into two sets Lots such that

i 1) ael, implies a appears only in rules of the form
| 2) 2% a Lg
_

63

L

2) aeT~~ implies a appears only

Zy a Zp,

or 2) 2 a

or Zq 3 a

The linear grammars are exactly the pivot grammars for which T = 0 .

The pivot languages are much broader than the linear languages. ror
example, the following pivot grammar defines a language which 1s not

generated by any linear grammar.

Example Ya2 Let G = (V,T,X,P) where

V = (X,24,2,, (,),-»a)

T = {(,),-,al

and P contains the production rules

X= 2Z, - 24

z, »(Z, |a

Zi > X).

Sample strings from L(G) include

a-a, (a-a)-a, (a= (a-a)) - (a-a)

The context-free grammars used to define programming languages are,

for the most part, expressible in pivot form. The principal problems are

situations like the use of '-' 3s both a unary and infix binary operator.

Our interest in pivot grammars arises from the relative ease with which

they are inferred. The second program described below, GRIN2, is an)

inference device for pivot grammars.

The programs described below are implementations of only our most

basic ideas on grammatical inference. No use is made of ill-formed

6h

L

—

strings or frequency information. The entire program is situation-static

- in three important ways.

1) Only one set of strings 1s presented, no new strings are added. |

” 2) The program does not propose new strings for outside appraisal.

. 3) The algorithms themselves are deterministic, with no backtracking.

The addition of these and various other features would be straightforward

” but time-consuming. In the absence of a pressing need for grammatical

_ inference programs, we will continue to concentrate on the theoretical

and programming questions which seem to be most basic. a formulation of

grammatical inference as a general heuristic search problem will be

presented after the current programs are described.

-

g 4b. Program descriptions
GRIN1 infers an unambiguous finite state grammar for the set of

- terminal symbol strings. The program is an implementation of the

algorithm proposed in [Feldman 67]. The algorithm is merely sketched

. here; the reader 1s directed to the original source for a more complete

. version and further examples.
The input to the program is a list of symbol strings. The output

L of the program 1s a finite state grammar, the language of which 1s a

"reasonable" generalization of these strings.

s All of the productions of the final grammar are of the form:

i 2q = a Zp,
or

L 24 - a where 21320 are non-terminals

I a 1s a terminal.
5

L

EE | | iE

The program temporarily utilizes other productions ("Residues") of the |

form: M. E

Zy = 8) 2, a3 coe 8y where 8,80, 0 toll are terminals,

At all times during the inference process a non-terminal has either all |

residue or all non-residue right sides (e.g. 1t will not construct |

productions 2, - a2, and bg 8nd -where 21189123 are non-terminal,

8y585,85 are terminals, Zy i bs)
In the explanation of the algorithm, the set of strings

{caaab, bbaab, caab, bbab, cab, bbb, cb) will be used as an example.

X will be the distinguished non-terminal in the grammar to be constructed.

The main strategy of the algorithm is to first construct a non-recursive

grammar that generates exactly the given strings, and then to merge

non-terminals to get a simpler, recursive grammar that generates an

infinite set of strings.

The algorithm has been divided into three parts. Part 1 forms the

non-recursive grammar, Part 2 converts this to a recursive grammar which

1s then simplified by Part 3.

In Part 1, a non-recursive grammar that generates exactly the given

sample 1s constructed. Sample strings—-are processed 1n order of decreasing

length. Rules are constructed and added to the grammar as they are needed

to generate each sample string. The final rule used to generate the longest

sample-strings 1s a residue rule with a right side of length 2.

In the example, the first (longest) string in the example is ‘'caaab' .)

The following rules would be constructed to generate this string: N

66

!
—

X> CZ,

— 4, — al,

: Zy > 824
- 7. — ab

5

_ 4 1s a residue rule. The second string is ‘'bbaab' . The following rules
would be added to the grammar to generate this string;

4), = bag
= Z Z

| Z, = ab
. 6

| Ze 1s a residue rule. To generate the third string, 'eggb! , the

following rule must be added to the grammar:

Z,—-b .
b

= Proceeding to consider each string in turn we see that the final grammar

that 1s constructed to generate exactly the sample 1s:

X = cZ, | bz)

- Z, » b | az,

| Zy > b | az,
= Z, — b | ab
| b

b

_ Zy, = 4s
Z| Zs > b | aZg

_ Zo »b | ab .

The-residue rules are 4 and Z¢
-

In Part 2 a recursive finite state grammar 1s obtained by merging each
—

residue rule with a non-residue rule of the grammar. Tne algorithm is

67

conservative 1n deciding which non-residue rule should be substituted for

a residue rule. The general principle is that =2fter such a substitution

the resulting grammar must generate all that the old grammar could plus as

few new (short) strings as possible. Wherever the residue non-terminal

occurs on the right side of a production, the non-residue non-terminal

1s substituted. The resulting grammar is recursive and generates an

infinite set of strings.

In the example, 2g would be merged with z and 2 would be
merged with Zo . The resulting grammar 1s:

X - cz, | bz)

Z, »b | az,

Z, -» b | az,

Z), —- RE

Zs > b | als |

In Part 3 the grammar from Part 2 1s simplified. Equivalent

productions are recursively merged. Productions P and P with left

sides Z_ and 2 are equivalent iff the substitution of 2 for all

occurrences of 2 in LS and Po results in P being identical to P .

By merging P, and P we mean eliminating production Pl from the

grammar and substituting So for all remaining occurrences of Z :

Merging equivalent productions results in no change in the language

generaltzd by the grammar.

In the example, the productions with left sides Zy and Zp are

clearly equivalent. After merging 24 and 2s the new grammar is:

68

|
| X > cz, | vz)

L Zz, > b | az

| 7), ~ VI.
Zs —- Db a .

| In this grammar, the productions for Zl and 2s are equivalent:
No change in the generated language results from merging Zl and Ls

L The new grammar 1s:
L X > cz, | vz

Zy >Db | az,

| Z), - bz,

L No further merges are possible; this 1s the final grammar. Note that
| the seven shortest strings of its language (cb, bbb, cab, bbab, caab,

| bbaab, caaab) are precisely the strings constituting the sample set.
The program 1s usually able to infer a grammar which 1s subjectively

L reasonable. Several sample runs are listed in Appendix C. The program

| for pivot grammars, GRIN2, makes use of.many of the same techniques.
GRINZ infers a pivot grammar for a set of terminal symbol strings.

L In the explanation of the algorithm, the set of strings [a-a, a-(a-a),
| (a-a)-a, (a-a)—-(a-a), a-(a-(a-a)), a-((a—a)-a), (a-(a-a))-a, ((a—a)-a)-a]

L will be used as an example. X will be taken as the distinguished non-
terminal in the grammar to be constructed. Tt will be assumed that the

~ minus sign is known to be the only pivot terminal symbol in the strings.

. There are rules for determining which terminal symbols can be a pivot
terminal, e.g. (1) A pivot terminal cannot be the first or last symbol

L of a string. (2) Occurrences of pivot terminals must be separated by

| at least one non-pivot terminal 1n each string. These rules are not used
-

here.

i 69

]

|

The algorithm has two inputs: the list of known strings and a list

of the pivots. The output of the algerittmis a pivot grammar.

The main strategy of the algorithm 1s te find th~ self-embeddings

in the strings. A non-terminal is set aside as the li¢op non-terminal

(LOOPNT). The self-embeddings 1n the strings will correspond to the

appearance of the loop non-terminal 1n recursive rules in the grammar.

Initiaily, the loop non-terminal 1s the distinguished non-terminal.

The, algorithm has been divided into three parts, Part 1 finds

self-embeddings and creates a working set of strings, Part 2 makes some

changes in the working set from which it builds a pivet grammar which is

then simplified in Part 3.

In Part 1 a working set of strings 1s built. Each string is examined

to see 1f it has a proper substring which is also a member of the sample

set (a valid substring). If it does not it 1s simply copied into the working

set. If a string does have any valid substrings then the longest valid

substring 1s replaced by an instance of LOOPNT and the new string 1s placed

in the working set. Table 1 gives the longest valid substring and the

resulting new string for each of the strings in the example set. X , the

distinguished non-terminal, 1s the initial loop non-terminal. If any

substitutions have been made, Part 2 of the algorithm is entered.

If no strings have valid substrings, it 1s determined whether all

the strings have an identical first or last symbol. If there is a common

first or last symbol, say 'a', then a rule of the form LOOPNT —aZ

or LOOPNT- Za (and possibly LOOPNT—s a) is entered in the grammar;

LOOPNT 1s set to Z ; the first or last symbol is removed for each of the

strings and the substitution for longest valid substrings 1s begun again.

70

—

_

oo TABLE 1

= | longest valid
given strings substring new strings

—

a-a none a-a

— a-(a-a) a-a a— (X)

(a-a)-a a-a (X)-a

— (a-a)- (a-a) a—a (X)- (a-a)

(a-(a-a))-a a-(a-a) (X)-a

- ((a—a)-a)-a (a-a)-a (X)-a

N a-(a-(a-a)) a-(a-a) a- (X)

| a-((a-a)-a) (a-a)-a a-(X)

Results of Part 1 of GRIN2

“.

9 In Part 2 further substitutions are made for valid substrings and

: a simple pivot grammar 1s constructed.

~ Each of the strings in the working set 1s examined independently.

If a string contains a pivot terminal, the test and substitution process

- 1s repeated for the symbols on the side of the pivot not containing the

_ loop non-terminal. In the example, this would result in a substitution

of 'X' for the valid substring 'a-a' in the string '(X)-(a-a)' .

~ The working set of strings would now be {a-a,a-(X),(X)-a, (X)-(X)} .

—

A simple pivot grammar 1s consbiucted for the woriing set of strings.

The working strings are processed 1n succession: productions are created

as they are needed to generate one of the now strings. Recall that pivot |

symbols can only appear in pivot rules, “OOP is used as the starting

point in the generation process.

In the example, the first new string,, 'a-a' , wou 1d result in

the productions:

X 3 24 - Zi,

Zq - a

Zs — a .

To generate 'a-(X)' the productions

Zp, = (Z5
and

7. —= X)
5

must be added. The productions are now:

X24 - Z
1 2

Z., > a
L

Zi - a | (2
Zi. =X .5 = X) a

To generate '(X)-a' the productions

and

4y, — X)

must be a dded, The productions are now:

72

-

“

X — 2) - 2,

> 2)» al (3,

Z, >a | (2,
—

| 25 =X)
1 2), — X) :

To generate '(X)-(X)' no further productions need be added.

C These productions are added to any productions constructed in

| Part 1. In the example there were no productions constructed in Part 1;

= the grammar outputted from Part 2 is:]

| Xx 3 Zq - 2, | -
24 —- a | (2),

L Zi - a | (24
i Liz —- X) }

2), — X)

§ In Part 3 the grammar from Part 2 1s simplified in the same way as
in Part 3 of GRINl; equivalent productions are recursively merged. The

L language generated by the grammar remains constant.

| In the example, the productions 23 - X) and 2), —» X) are equivalent.
Z), —»X) is eliminated and 2 1s substituted for all occurrences of Ly,

L in the-grammar. . The resulting grammar is
A-zp 7

L Z, =a] (24
| Z, - a | (2,

| 2 — X) .
i

L
75

L

In the new grammar Zy - al (2 and Zi - a (2 have identical right sides.

Z, al (2, is eliminated and 2, is substituted for Z, . The resulting
grammar is

a : LE : . oo Z, +a | (z, oo | |

None of these productions are equivalent; this 1s the final grammar.

Note that the language generated by this grammar is identical to the

language generated by the grammar of Example- bLa2.

he, Extensions to the programs

The programs described above could be extended in a number of different

ways « The most interesting of these depend on the use of the various

complexity measures discussed in Section 2. To the extent that we accept

these measures, they provide evaluation functions for the grammatical

, 1nference device, The existing programs choose simplification rules

simply and deterministically. By using a measure like 7(8,G) for a

sample set, 8, of strings and a grammar G , we could allow the program

to evaluate several simplifications.

A more difficult problem arises in attempting to study large samples

because the number of substitutions to be considered grows exponentially

with the number of variables. We suspect that the number of substitutions

whichare compatible with the sample, while much smaller, also grows

exponent 1ally,

Th

3 The difference 1n 7 caused by a substitution might be a good
~ heuristic for deciding whether or not it should be carried out. This

leads naturally to a tree search for the best value of 7 over sequences

- of substitutions, and the usual search heuristics can be applied.

| _ Thus complexity measures can be used in deciding between alternative
grammars for the same sample and alternative sequences of substitutions of

| ~— variables. There 1s another possibility which 1s much more important to

| investigate -- incremental change of grammar. The methods of this section,

| as well as those in [Feldman 67] deal only with a fixed sample set. If

g another string 1s added to the sample, the current programs must start
| again from scratch. Intuitively, one can think of heuristics for changing

. a grammar to accomodate the extra string. The problem is that the obvious .
heuristics all lead to ever more complex grammars. We might be able to

- use 7(8,G)as an objective function and do hill-climbing techniques to

_ search for grammars.

| Another important class of problems involve the interaction between

- the informant and learner. Horning will develop the theory of this further

in his dissertation. The interesting programming problems include the

” learner asking about the well-formedness of strings and the design of

_ optimal teaching sequences. In this, as in 1ts other aspects, the grammatical

inference problem 1s the prototype of a very general situation.

. 75

L

2

— Appendix A: Representations of Finite-State Grammars

_ In Appendix B we compute the value of the size measures for the

finite-state languages. We first need a matrix representation of the

languages which aids investigations of the measures. Although one matrix

| representation has been used extensively in the literature (e.g. Shannon,

and Weaver 49, Chomsky and Miller 58, Kuich and Walk 65), the representa-

lL tion will be shown to be 1nadequate for the finite-state languages. The

inadequacy of the representation has led several authors to false con-

hn clusions about the finite-state languages.

The previous matrix representation for a deterministic finite-state

N grammar, which we term the "old" representation, 1s a square matrix of

5 the form & = [6515 i,j=1,...,n. Each G, is a subset of the alphabet
T, and contains those terminal symbols associated with a single-stage

- transition from state 1 to state j. The grammar has n states, one of which

| 1s the initial (starting) state (say state 1). The condition that the

- grammar is deterministic implies that Go NG .. = 0 for j 4 i'(i=1,...,n).
_ Let X, Y, Z c T*, Define X + Y = X U Y and define Xy =

(aby: @ € X and # € Y}. Thus X+Y = YX, X+f§ = +X = X,
— (X+Y) + 2 = X+(Y+2), Xx § = § x = @, X{e} = {e} X = X,

(XY)Z = X (YZ), (X+Y)Z = XZ+YZ, and X(Y+Z) = XY+YZ

The-algebraic properties of such systems has been partially investigated

— using semigroups, and an interesting class of abstract algebras, termed

the semi-rings (which are built from two free semi-groups), has been in- ~

vestigated by Reder [68]. The formal properties of such algebras permit

76

a meaningful definition of matrices over T* in such a way that the class

of all nd order matrices over T* 1s itself a semi-ring. In particular,

if @ = [4] and 8 = [B, ;] are ob order matrices over T*, @ # can be

defined as @ B = [1 where Coy 4 = io Asx By 5 ("Z" denotes repeated
application of "+' described above). i If we define 5 = ES F = oy),
1t can be shown that oF) C T*; 6 8) 1s precisely the set of strings of
length k'associated with possible paths of k steps leading from state 1

to state j. In particular, a) 1s the Set of strings of length k leading
from the initial state to state Jj, and R2 c{®) = Ls where L 1s the

J=1

language generated by the finite-state grammar associated with 4 .

It 1s a well-known result that any language L generated by some such

is a finite-state (regular) language over T*. However, contrary to what

seems to be commonly believed, the converse 1s false. There are regular

languages which cannot be generated by some such matrix & . Many of the |

theorems which have been proved for the class of regular languages have

been demonstrated only for those languages capable of being generated by

such matrices. As we shall see, serious errors have resulted from a failure

to realize the limitations of this representation.

Example of a Regular Language for which the Old Representation is Inadquate

Consider the following finite-state language L over T = {a,b} :

L = {a € T* : & contains an even (including zero) number of a's}. A finite-

state grammar for L 1s:

S = b|Sb|Xa

X = a|Xb|Sa

TT

_ If we try to construct a matrix & which generates L, we might try:

1] 0} (a)

~ Pe

~ 2 | {a} {v)

Experimentation with the first few powers & quickly convinces one that

— 4 does not generate L, but rather the entire set r. It also becomes

| clear that no such matrix can, in fact, generate precisely L. I, is but

one of an infinite number of regular languages for which the represen-

- tation 1s inadequate.

To see why the old representation fails we should investigate what

— features of a matrix permits 1t to selectively generate certain strings

but not others. A string @ € TX 1s generated if and only if there is

some path of length k leading out of the initial state (into some other

_ state) with which @ can be associated. Starting in the initial state,

x € L, sequentially determines k transitions through the states of the

~~ matrix; these transitions are determined by the sequence of terminal

symbols which constitute &. If at any time there is no feasible transi-

tion possible, @ 1s not in the language generated by that matrix.

Co Suppose some matrix % generates a language L © T*, Consider the

strings that are not in the language: L = T*-L. The preceding paragraph

~— illustrates that L consists of those strings for which there is no feasible

path of transitions within &. Thus the only factor which can cause a

= string not to be in a language 1s that it violates some sequential rule

(i.e., at some point in the string, there is no feasible transition to be

made in J); there is no capability for strings to be "rejected" on the

basis of other types of "violations". Specifically, suppose the

78

|

"grammaticalness" of a string does not depend on wheather there is a path

for the string, but rather on where (1.e., in which state) the given path]

terminates. Such is the case in the "even a's" grammar; no string & € Tk

can violate a sequential rule since, for every string & , there 1s another

string 8: @ B € L. Indeed, the "grammaticalness" of a string @ depends

on whether its path terminates in state "S" (i.e., even number of "a"'s)

or in state "X" (odd number).

We thus see that in addition to sequential violations, a string can

be ungrammatical (in terms of a finite-state grammar) if its path through

the grammar matrix terminates in a "not 1n the language" state. Referring

back to matrix &, if we designate state "8" (i.e., State 1) as "in the language"

and state "X" (i.e. State 2) as "not in the language",matrix &then generates

the desired IL; all strings ¢ € T* have paths through & but only those

@ € L will have paths terminating in "S".

A New Representation

The lack of generality of the existing matrix representation for

finite-state grammars prompts us to develop a broader, fully adequate

representation. Specifically, we wish to develop a matrix representation

which allows regular languages (and their complements) to be defined with

respect to both sequential-type rules and rules pertaining to the par-

ticular state in which a string's path terminates. At first glance, 1it

might seem that the capacities needed to implement both sequential and

terminal rules are incompatible within a single matrix representation;

a sequential rule 1s presently implemented by selective paths in the matrix

79

(such that strings not in the language do not have paths in the matrix),

_ while a terminal rule requires that all strings have paths 1n the matrix.

-. Fortunately, however, these seemingly inconsistent demands can be satisfied

— simultaneously.

| th

Let & = [G5] be an n ~~ order matrix, where each Gp. CT.
It 1s assumed we are dealing with a deterministic grammar, so that

o Gy Gs 5 = a, for j { j', i=l, a. . . n. By a complete finite-state
: grammar matrix, we mean that UG,.=T, i=l, n. Thus if a matrix

= 4 is complete, each of its rows is a partition of the alphabet T into the

n cells of the row. Functionally, completeness of a grammar matrix implies

that all strings & € T* have paths (derivations) in the matrix; from each

_ state (row) of & each terminal symbol of T is associated with a feasible

transition to another state.

— With the n states of & we wish to associate a state classification.

: A state classification is a single-valued mapping of' the n states into the

integers {1,...,k}. If Cg is a state classification of 4, then
Co: {1,...,n} -» {1,...,k} n,k> 1,

IT w— & —

is called a k-class state classification of 4.

— The interpretation of Ch(1) = J is that all strings @ € T* whose paths

in &# terminate in state i are classified into the ; th terminal class.

= For complete .& we have the following:
*

(i) & : T > {1,...,n}
—

(ii) Cy f1,...,n} -» {1,...,k} .

80

(1) means that & classifies all strings over T into onz of n states

(according to the state of #in which the strings path terminates).

(11) says that the state classification 1s k-way, that each of the states

of # is associated with a unique terminal class. Taken together,& and

Cy define a composite function (£,Cy), which maps each string of r
into a unique terminal class:

(Cy): T* — {1,...,k]}

defined by (&Cy) (a) = C (Ha). The pair (Cy) is defined as a

k-class finite-state grammar over T (k— depends on Cyl
A k-class finite-state grammar partitions the set of all strings T

into k disjoint, exhaustive subsets. Each of these k subsets is called

a terminal class of strings generated by the grammar. It can be shown

that each such terminal class of strings 1s a regular set (finite-state

language). These classes will be denoted as (18 (121...) or simply
by (1) when the subscript & is understood; 1, boil denote those strings
of length k in the ith terminal class.

When k=2, we have a grammar generating strings into two terminal

classes, which are usually thought of as the language (L) and its com-

plement (L = TL). When k-1, all strings are generated into a single

terminal class. The languages generated by a single class complete grammar

are thus either empty or are the entire set of strings ro

In the "old" representation, a sequence of symbols from T failed to

be grammatical when it called for a transition to be made which was not

feasible; 1f some number of symbols brought the string's path into state 1,

and there was no transition out of state 1 associated with the next symbol

81

EE of the string, the string was ungrammatical. In our representation, all

1 sequences of symbols must have paths through the matrix; the completeness i

~ of the matrix requires that there be transitions associated with each symbol

of T, regardless of the state out of which the transition leads. yo peed

to implement "taboo" transitions into our new matrix representations which

correspond to the infeasible transitions of an "old" matrix.

th

Let 4 =[G;,] be an order grammar matrix of the "old" representation.
n

- Define subsets I, of T (i=1,...,n) as T,= T - U Gyss Ts is thus the set
J=1

of symbols for which there 1s no transition out of state 1. (4

LC *
A, CT (i=1,...,n); A, is the set of all strings whose paths through #&

L end 1n state 1. Then we may describe the complement L of the language
I. generated by # as: L = Uy A.T.T .

[i=] BSth

Let¥ = [H,;] be an n order complete matrix which has the following

[properties (the existence of an¥% with these properties is self-evident):1/

Voge,, ¥(at) = £ if and only if t€T, (i=1,...,n); Hy = $ for j # 2 and
r

Hy p= T. Let Gy be a two-class state classification of ¥ such that-

1 if 3 1 (

) GC, (3) w= * if : / pg - Then the terminal classes ned and A are pre-|

: cisely the sets L andIL, respectively; our representation has the capacity

for sequential rules. State ! of ¥ corresponds to an "absorbing" gtate,

such that paths entering state ! can never leave it, regardless of the

ensuing symbol sequence. All strings whose paths enter state f are thus

lumped together into the same terminal class. Thus 1f the terminal class

G, (1) corresponds to I, and transitions into state ! occur only when the

sequential rules implicit in the grammar are violated, we indeed implement

the sequential rules into our representation of the grammar.

1/ by ¥(s)we mean that state of¥ in which the path of the string s
terminates.

82

Example of the Implementation of a Sequential Rul:

Suppose we have a finite-state language L over the alphabet

T = (a,b,c) which consists precisely of those strings in which there

are no adjacent occurrences of the same symbol. Thug "abe" , "abab"” ,

and "bacabacbc" are in L while "abb", "aaba", and "bacabbebe" are not.

This language can be generated by a matrix of the "old" representation.

One "old" grammar matrix for L 1s:

1 2 3 4

1 ¢ fa} BB} fe)
,. 2|¢ Fm le

351 ¢ {a} 8 {ec}

n p {a} {pv} ¢

This could be transformed into a complete matrix¥ as follows:

| 12 p hbo 5

1 [¢g {a} {vp} fe} ¢

2 {¢ ¢ {pv} {ec} {a}

¥ = 3 1g {a} ¢g {ec} {v]

Lol g la} {pb} 4 fc}

The two-class grammar (%,C), where

.\ 1 if 1 <5

c(i) ={; if. 5
(2) _ (2) _ 7

has Ly, = Lg and Ly, = Ly.

&3

- B Functional Partitions and Standard Forms of Complete Matrices

a let & = [Gy] be a complete matrix overT . State j 1s said to
_ be accessible from state 1 , denoted i= 7 , 1f and only 1f there 1is

= some sequence of symbols in T*-(e) whose path, when starting in state i ,
oo leads to state J . States 1 and J are said to communicate, denoted

| | i1es>j,if and only if both i- j and j »1i .

: The relation "es" can be seen at once to be both transitive and

— - symmetric on the states of 4 : 1»J and j «= k == i ek , and

les => jesi. Since, however, 1 =i need not hold for all states i

— of & , we cannot claim "~ to be reflexive. Thus "—" is not an

i equivalence relation on all of the states of arbitrary 4 .
Define E and F as the (unique) complementary subsets of the

L states of & :

| (a) VieF and VjeE , J Ai.
| (b) VieF, TjeE : 1 =» J .

[(c) VieE, i ei .
We have the following well-known results from the theory of finite Markov

t chains:

- (i) « is an equivalence relation on the states in E .

~ (11) E may be partitioned by «» into some number f of equivalence

: classes (of states) E.,...E, such that (a) J = E (b) NE =! 1 f oa Bye 4 Be 1 f

for k #2, and (c) for all states i , jeE, i ee J <=> Tk : 1,JeE,
| Thus the E are equivalence classes of communicating states, Jie see

that 1f the path of some string enters an E it can never leave that class

of states. These classes are called ergodic sets of states.

An ergodic set of states E may consist of only one state, in which

case that state once entered, can never be left; such a state 1s called an

absorbing state (state 50f the matrix ¥ of the preceding section 1s an

example of an absorbing state).
84

An ergodic set E 1s termed cyclical or periodic if there 1s some integer

p>1 which 1s the greatest common divisor (g.c.d.) of the lengths of all

closed paths in Ey (a closedpath 1s a sequence of transitions from a given

state back into itself). The set E, 1s then said to have periodp.

(If p = 1, then E, 1s said to be aperiodic.) It can be shown that if p is

the g.c.d. of the lengths of the closed paths of any one state 1n E

then p 1s the g.c.d. for all closed paths in E, -

Now consider the set F of states which are not 1n E. This set has

the property that once a path leaves the set, 1t can never return to

the set. The states in F are called transient states and F 1s called a

transient set of states. Once a path leaves the transient set, it enters

same ergodic set and remains there. (State 1 of the ¥ matrix of the

preceding section 1s transient.)

It 1s assumed that the initial state 1s always State 1 of the matrix.

We can make the'following accessibility assumptions in complete generality:

(1) all states of & are accessible from the initial state.

(11) 1f &has a transient set of states, the 1nitial state

must be in the transient set; otherwise,the initial state would

be 1n some ergodic set and the transient states would be redundant.

(111) 1f the initial state 1s in an ergodic set, then there 1s

only one ergodic set of states in 4otherwise, the additional ergodic

sets (and any transient states) would be inaccessible and hence re-

dundant. (It should be clear that any complete & can have at most

one transient set of states and must have at least one ergodic set.)

85

-

The states of any complete matrix & can be rearranged (i.e., re- | |

- labelled) in sucha way that # is partitioned into one of the following .

standard forms:
—

(1)

— & [4] Single ergodic set of states
| with transition matrix & = &,

or |

| rp | rx |
- JE TE

LYE A
. 5-18 1B8

1? -

. REL 4 we
f | oo fm

i where the @'s denote regions of null transitions (empty sets), Yor 1S
the quadratic submatrix of transitions within the set F of transient

§ states, on isthe transition matrix from F into the ergodic states,
and each &; 1S a quadratic submatrix corresponding to the jth ergodic

y set of states E,. Furthermore, 1t can be shown that each ergodic sub-
| matrix é, can have 1ts states arranged in such a way that each sub-

matrix A (with period p,) has the following form:

I
86

i
|

ge, #8
8; = Cee ee ee ee ee

tsp, ? .

where the ¢'s are null submatrices (quadratic on the main diagonal)

and the é are submatrices for transitions between the Ps cyclic

subclasses of é, If &, 1s aperiodic (1.e., P, = 1), then, of course,

the form 1s degenerate. We also can make the following assumptions

about a grammar (4,C) with no loss of generality:
(1) 1f an ergodic set Ei contains more than one state, then

not all of the states in E, are of the same terminal class; otherwise,

an 1dentical language would be obtained by lumping all the states of E

into a single absorbing state.)

(11) there need not be more than one absorbing state for each of

the terminal classes of the grammar; otherwise an identical language

would be obtained by lumping together all absorbing states corresponding

to a given terminal class.

The partitions of the states of & into various sets (ergodic and

transient) 1s a standard form borrowed from the literatiire of finite

Markov chains and their associated transition matrices. We will later

find such partitioning useful for several reasons. We will assume that oo

all complete grammar matrices are placed in one of these standard forms.

8 |

:

Appendix B: Size Measures of Regular Languages

_ Note: Developments in this appendix make extensive use of the matrix

representation introduced in Appendix A.

B th th

. Let & = [Gy] be a complete n order matrix over T. Define the n
order matrix N by N = ny: = In {G01 ns is the number of one-step

i transitions from state i to state j of & ; n;, is also the number of strings
of length 1 associated with this transition. (Consider positive integral

L powers nw of N: wr = (nf) has the following well-known properties.
n

[(1) Zale i=1...,nand k =123
k (14) n{*) = a6) ; thus n) 1s the number of paths of length k
. from state 1 to state J, also the number-of strings of length k associated

i with a transition from state 1 to state J. 1p particular, if state 1 is

| the initial state, al) is the number of strings of length k whose paths
terminate in state Jj.

| N is called the connection matrix of & and nk is called the k-step

connection matrix of 4

Let (4,C,) be an m-class complete finite-state grammar over T.

Then AR =u 5 6%) for all k > 1. (cH (1) = {j : CJ) = 1)) .
3€Ch1)

Let d, be the density of the jth terminal class (1), 1 =1,...,n.
Provided these densities exist,

88

m

it 1s clear that 21. = 1.
= (i)

Consider (i) 2s 1 5
n(L,™’) jecy (1)

d, = clim x = clim — x
Koo r k >» o r

(6)
= & elim Re

jeC, (1) kx » ow ro

Thus the existence of the d's for arbitrary finite-state grammars can be
(k)

established by the existence of c¢lim (CL) } for all j (in our genera-
K > k

r

lized sense of limit).

Define the matrix P , associated with & , by P = - N ; the elements D; 5
of P are then related to the elements n,. of N by p,. = L n.. .

iy iJ r 13]

k k |

Letting P = (pl); we have pt = L we , so that p(k) + n(k) for all
ij = ing KX 1]

1,d, = 1,...,n o° for all k> 1. Hence questions about the limitingk

behavior of a ij k = © can be answered in terms of the stationarity

oK

of pi) as k »», The stationarity of increasing powers of P 1s easily
investigated, since P 1s a stochastic transition matrix and may be associated

with a finite Markov chain.

We may assume that & is in a standard form (see Appendix A) so that its

ergodic sets are readily identifiable as submatrices of # The relation

between P and # is such that we can assume without loss of generality that

P has the form of either

89

3 (i) a single ergodic set of n states;

: or (ii) a transient set of th states, and f ergodic sets of states,
CL T

conslsting-of n . —~

g RRL states, respectively: n = yn The well-known
theory of finite Markov chains supplies the following f&sults:

Bh case (1): .

] 1 1 _ *

_ There 1s a unique matrix P¥ = [p¥] such that clim p(k) = p¥
.L Ho k—s = 1]

for 3,3 = L,...,n . If P ig cyclical (Appendix A) with period g , then

- h of th kq+t
each of the g subsequences XQ (as k +») converges to a unloue
limiting matrix = | pk :

] imiting P¥(1) P¥. (1) 1 the-sense that 1im p K+) o PY (4) > 0TE . ko 1J
(1, = Leeoyn 7 £= 0... 01) . Thus

1 Q

¥,. == *¥ 1,3 = IER| PT5 q A Pi5(0) (1,3 = lye.oyn) . Thus for aperiodic Pp , lim pf = Px .
It 1s well-knownthat p¥ = p¥ : ee Ks o

I bs Pir; = pj >» 0 for i,i',3 = 1,...,n -
Thus the Py represent the limiting proportion of strings whose paths

| begin in state 1 and terminate in state j , and is the same for
i1=1,...,n . These Pe are determined by the system of linear equations

n

P.P.. = D.] = ‘oo- LZ iij = Pj (3=1,...,n)
L

n

L p.o=1
i=] T

Since these stationar Cava (k1 Y p. ="clim Db. <) always exist, and are strictly
| J ks TY

positive, the densities d, of the terminal classes of the grammar (2c4
will therefore always be positive: ot

jeC, (1)

0

The independence of Pf;= Pe of 1 implies that the limiting
proportion of strings Of whose paths terminate in state j is always pj ,

independent of @ . The significance of this result will be seen shortly.

case (11):

We first need to compute the constants Uppeeerlo ju, 1s the limiting

proportion of strings whose paths enter the jth ergodic set E. . The
matrix & is assumed to be in the standard form (ii) (see Appendix A).

Define Ay as the limiting proportion of paths leading out of
state 1: which lead into the ergodic state J] after leaving the

transient set of states (i.e., state Jj is the first ergodic state of the

path) ; 8; 5 1s defined for 1 = Lyeeesn and J = n+ly.e.,n . Then the
system

n
0

@45 = Pij + L Pil (i = Lyeeesn 3 J = n+l,...,n)

) a.. = 1 (i =1,.0.,n)
Jj=n +1 +d ©

0

(refer to Appendix A for notation)

will always yield a unique solution for the 3 . From the a.. the u,1] 1

can be computed as u, = y a.. (i=121,...,f) ; NE =1.1 . ay : 1
jek, i=

i

| The accessibility assumptions of Appendix A imply that u, > 0

(i = 1,...,f) . Any string & whose path enters an ergodic set E must

remain there. Earlier we saw that the limiting proportion P- of strings

QB whose-paths enter E. and terminate in state j of E. 1s independent

of a ; the Ps can be computed from the ergodic submatrix & of E.
(see case (1)). Thus the overall proportion of strings whose paths terminate

91

o

in state J of E, is p! = u,p. for jek. .
] | 12; Jeb, Since the u, and P.

— are positive, it follows that Ps > 0 for jeE (and pj =0 for jeF).
.th

For the 1 terminal class of strings (1) the density d is
1

is computed as

f

| 51 J xeENC, (ikem i(i) kK1% 0

The density d, will thus be zero if and only if all states of &% in the
.th
i terminal class are transient. We thus have

Theorem B: For an arbitrary m-class complete finite-state grammar

(4, Cy) over a finite alphabet, the densities dy rennrd always exist;
— each d. 1s positive unless all states in C-' (i) are transient, in

ak

which case d, 1S. zero.
— _ (1) |

When m = 2 (i.e., L 1s the language generated by the grammar

2

and r,) 1s 1ts complement), we see that the density of the language

always exists and 1s zero 1f and only if c, (1) © Fo.

Randomly Generated Strings

Chomsky and Miller [58] considered randomly generated strings of length Ko
2

such a string is one drawn from the "urn" rk such that all strings of

length k have equal (1.e., rE) probability of being drawn. Chomsky

— and Miller claimed that as k = ©, the limiting probability of a randomly

generated string being 1n any'given regular language 1s always zero or

= unity. This claim 1s equivalent to claiming that the density of any regular

language 1s either zero or unity, which has been shown to be false. Two

simple counter examples (each with density 1/2) of non-zero, non-unity

92

density regular languages are

(i) S-b | sb | Xa
even "a's grammar

X = a | Xb Sa

(ii) S = a | Sa | Sb 3 grammar for all strings over {a,b}
| which begin with "a" .

For a discussion of second-order (logarithmic density) size measure

of a regular language, the reader is referred to Shannon and Weaver [49].

They compute the value of channel (coding) capacity C , which we showed

to be proportionalto our second-order size measure (Section 2a.0).

95

ha Appendix C: Sample Computer Runs

The following examples were run on the Stanford PDP-10 using LISP.

| The program deals with two sets of strings, the sample set and the set

of pivots (cf. Section ka). The functions GRINIA , GRIN2A (of zero

— arguments) apply the algorithms described in Section 4 to the current sets.

The functions GRIN1 , GRIN2 accept the sample set to be used as an

argument. The function GRINA simply calls both GRIN1A and GRIN2A

_ 1n succession; GRIN calls GRIN1 and GRIN2 in succession. The

auxiliary function PIVOTS specifies the current set of pivot symbols

~~ and ADDS causes new strings to be added to the sample set. The symbols

| cdddo ’ GPP 1d , etc. are internally created (by GENSYM) names within

WSP; these correspond to the non-terminal symbols 2520 used in the

- text.

(GRv (A)(A A)(A a n))

: (THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)
n

(GPPP9 IS THE DISTINGUISHED NONTERMINAL)

(GAPPS «A GPPP9 / A)

(tie PIVOT GRAMMAR GENERATED BY GRIN2 IS)

(GfY12 IS THE DISTINGUISHED NONTERMINAL)
-—

| (Gfp12 «A Gpp12 / A)
{

|
L

L

i g

(GRIN (A) (A B) (A A) (A A B)(A B B) (A A An))

(iE FINITE STATE GRAMMAR GENERATED By GRIN1 IS)

(GOP14 IS THE DISTINGUISHED NONTERMINAL)

(GPL «A / A GPO15)

(Gop15 «A / B/ AA/ BB/ AB)

(THE PIVOT GRAMMAR GENERATED BY GRIN2 IS)

(GpP17 IS THE DISTINGUISHED NONTERMINAL)

(GpP1l7T «A GPpl7 / GoPi7T B / A)

NIL

(GRIN (B B)(BAB)(BAAB)(BAARARB))

(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)

(G0f19 IS THE DISTINGUISHED NONTERMINAL)

(p19 « B app)

(pep — a cpgep/ B)

(THE PIVOT GRAMMAR GENERATED By GRIN2 IS)

(GfPk IS THE DISTINGUISHED NONTERMINAL)

(Gop2k « B GPRS)

(GOg25 « A Gpp25 / B)

NIL

(GRIN (C B)(BRBB)(CAB)(BBAB)(CAAB)(BBAAB)(CAAARB))

(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS) |

(Gog27 IS THE DISTINGUISHED NONTERMINAL)

(GpY27 « C GPP29 / B GOHR8)

(GHp28 « B GHBR9) |
(GHP29 «A GOY29 / B)

(Tee PIVOT GRAMMAR GENERATED BY GRIN2 IS)

(GpY35 1S THE DISTINGUISHED NONTERMINAL)

(GPB35 « Gop35 B)

(GPP36 « Gpp36 A / B GHpsT / C)

(GOP3T « B)

NIL

95

| - (GRIN (A A B B)(A B)(AanBsBB))
(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS)

— (GPY9 IS THE DISTINGUISHED NONTERMINAL)

(Ghp9 « A GppL)

_ (GAOL) « B / A GOOL1)
(Gpp11 « B GOO1L / A Gpp12)

(GHp12 « B GOP11)

(Gop1s « B)

Bh (THE PIVOT GRAMMAR GENERATED BY GRIN2 IS)
(GfP16 IS THE DISTINGUISHED NONTERMINAL)

” (GEP16 « A app17)

1 iki « GPP16 B / B)

L (aDDS (c){a C B)(A ac's B)(A aac BB B))
(WAACBBDB) (AAABBB) (AACBB)(AABB)(ACB)(AB)

i ©)

[(GRIN2A)
(GHY191S THE DISTINGUISHED NONTERMINAL)

| (GOP19 « A Gppep / C)
(Gppap « Gpp19 B / B)

2 NIL

i

(PIVOTS M P)

| we

(GRIN2 (A MA) (A) (A MA MA)(A MA MA MA))

(Gop22 IS THE DISTINGUISHED NONTERMINAL)

(Gop «A/ Gffe2 M GPp22)
NIL

96

(ApS (A pA) Apap A)(AR MA p A) (A PA MA))

(AMAMAMA) (APAPA) (Ava PA) (A PA MA) (A MA MOA) (A
PA) (AMA) (A))

(GRIN2A)

(Gpp2k IS THE DISTINGUISHED NONTERMINAL)

(Gpp2lk « A /Gppek P appl / Goel M GOP2L)
NIL

(GRIN2 (B) (AmB) (AMA vMB)(AMA MA MB))

(Gfg26 IS THE. DISTINGUISHED NONTERMINAL)

(oppes « B/ apper 1 appes)

(Gpge7 « A)

NIL

(PIVOTS M P)

(MP)

(GRIN2 (A MA) (L A MAR MA)(A MLA MAR)(LAMARMLAMAR)

(LAMLAMARRMA)(LLAMARMARMA) (AMLAMLAMARR

(AMLLAMARMAR))

(GOgP9 IS THE DISTINGUISHED NONTERMINAL)

(GPPP9 « GPP1H M GPPLP)

(GPP1P « L Gpp12 / A)

(Gpp12 « GHPD9 R)
NIL

(GRIN2 (CD)(ABD)(ACBD)(RABBD(AACBBD)(AAABBBD)

(AAACBBBD))

(GfP15 IS THE DISTINGUISHED NON-TERMINAL)

(GfP15 « CPP16 D)

(Gpp16 «A GHY1T / C)

(GBp17 — oppL6 B / B)

NIL

7

3 References

[1] Aizerman, M. et. al., "Theoretical Foundations of the potential
] function method 1n pattern recognition", Automation and

Remote Control 25, 821-837 and 1175-1190 (1964).

[2] Amarel, S., "on the Automatic Formation of a Computer Program that

Represents a Theory", in Self Organizing Systems, Yovits,

Jacobi, and Goldstein, eds., Washington, Spartan, 1962.

[3] Chomsky, N., and G. Miller wpormal Analysis of Natural Languages",

| p. 269-493 in Handbook of Math. Psych. II, Luce, Bush, Galantier,
— eds., New York, Wiley, 1963,

| [4] , "Some Finitary Models of Language Users", in Luce et.al.
(above), 1963b.

i [5] __, "Finite-State Languages" Information and Control 1,
91-112 (1958).

| [6] , Pattern Conception, Report No. AFCRC-TN-57-57, August
7/7, 1957.

| [7] Church, A., Introduction to Mathematical Logic, Princeton University
Press, Princeton, New Jersey,-1956.

[8] Feldman, J. A., 'First thoughts on grammatical inference", Stanford

A.I. Memo No. 55August, 1967.

| [9] Ginsburg, S., The Mathematical Theory of Context-free Languages,
McGraw Hill, New York, 1966.

[10] Gold, M., "Language Identification in the Limit', Information

and Control, 10, &k7-L7L4 (1967).

[11] , "Limiting Recursion" , J, Symb. Logic 30, 28-48 (1965).

[12] Gorn, sS., "Specification Languages for Mechanical Languages",

Commun. ACM 4, Dec. 1961,p. 532-542,

[13] Greibach, S., "A New Normal-form Theorem for Context-free Phrase-

Structure Grammars", J. ACM 12, 1 Jan. 65,p. 42-53,

[14] Harrison, M., Introduction to Switching and Automata Theory,
New York, McGraw Hill, 1965.

98

[15] Hartmanis, J., 'Computational Complexity of one-tape Turing

Machine Computations", J. ACM 15 (April 1968), pp. 325-339.

[16] Hunt, E., Marin, P. Stone, Experiments in Induction, New York,

Academic Press, 1966. .

[17] Kemeny, J., J. L. Snell, and A. Knapp, Denumerable Markov Chains,

D. Van Nostrand Co., Princeton, N, J., 19660.

[18] Knopp, K., Theory and Application of Infinite Series, Hafner,
New York 1948.

[19] Kuich, M. and K. Walk, Block Stochastic Matrices and Associated

Finite-State Languages, IBM TR 25.055 (July 1965).

[20] Lederberg, J. and E. Feigenbaum, "Mechanization of Inductive

Inference in Organic Chemistry", in Formal Representation of

Human Judgement, Kleinmutz, ed., John Wilely, New York, 1968.

[21] London, R., "A Computer Program for Discovering and Proving

Sequential Recognition Rules for BNF Grammars', Carnegie

Tech., May 1964.

[22] Luce, R. D., "Selective Information Theory', in Developments in

Mathematical Psychology, Luce (ed.), The Free Press, Glencoe,

Illinois (1960).

[23] Miller, G., and M. Stein, "Grammarama Memos", Unpublished Internal

Memos, Harvard Center for Cognitive Studies, Dec. 1963 and

August 1966.

[24] Miller, W., and A. Shaw, "Linguistic Methods in Picture Processing,

a Survey", Proc. AFIPS rocc,. 1968, p. 279-291.

[25] Moore, E., "Gedanken Experiments on Sequential Machines", in

Automata Studies, Shannon and McCarthy, Princeton, 1956.

[26] Newell, A., "Heuristic Search: I11-Structured Problems", Progress

in 0.R. (Vol. 3).

[27] Perrson, S., "Some Sequence Extrapolating Programs", Stanford

A.I. Memo No. 46, September 1966.

[28] Reder, S., "Introduction to Semi-rings", Unpublished research,

Dept. of Mathematics, Stanford University, 1968.

99

[29] Reynolds, J., "Grammatical Covering", TM-96, Argonne National
Lab., June 1968.

[30] Shamir, E., "A Remark on Discovery Algorithms for Grammars",

Information and Control 5, 246-251 (1962).

[31] Shannon, G. and W. Weaver, The Mathematical Theory of Communication,

University of Illinois Press, Urbana (1949).

_ [32] Solomonoff, R., "Some Recent Work in Artificial Intelligence",
Proc. IEEE V 54, No. 12, December 1966.

} [33] , "A Formal Theory of Inductive Inference",
Information and Control, 1964, pp. 1-22, 22L-25k,

| [34] , "A New Method for Discovering the Grammars of Phrase
Structure Languages", Information Processing, June 1959,

[pp. 285-290.
[35] Suppes, P., "Concept Formation and Bayesian Decisions", in Aspects

i of Inductive Logic, Hintikka and Suppes, eds. 1956,
Amsterdam, North Holland.

: [36] Uhr, L., ed., Pattern Recognition, Wiley, New York, 1966.

100

