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l. Introduction. This survey of selected computational aspects of linear

algebra is addressed to members of SIAM who are nit specialists in numerical

analysis. The reader is assumed to have a general familiarity with the algebra

and analysis of finite vectors and matrices, including norms, and to know the

Gaussian elimination process. A completely adequate background is given in the

first 72 pages of Faddeeva [9]. A much more complete background for practical

matrix work is found in Bellman [3], Marcus and Minc [38], and Wilkinson [61].

Far more extensive expositions of the computational methods of linear

algebra are to be found in Fox [14], Noble [42], Householder [28], and Wilkinson [61].

The author gratefully acknowledges conversations with Gene H. Golub, |

Richard Hamming, and William Kahan, and especially the opportunity to see a

draft of Kahan [32]. He also acknowledges substantial debts to Cleve Moler for .

the use of material from Forsythe and Moler [12].

2. Computational problems of linear algebra. The ordinary computational

problems of linear algebra are concerned with matrices of real numbers. ¢

a. Let 2A be an n-rowed, n-columned matrix of real numbers. Let b be

an n-rowed column vector of real numbers. The traditional linear-equations

problem is to find an n-rowed column vector x such that

Ax=D»b.

Tt is normally assumed that A is a nonsingular matrix, since then and only then

does a unique solution exist for all Db.

b. With the same A as in part a, another traditional problem is to find

the inverse matrix A™T .

c. Let A be an n-rowed, n-columned matrix of real numbers which is

symmetric. The third traditional problem is to find some or all of the (necessarily |

real) eigenvalues of A. Recall that an eigenvalue of A is a number AN for which |
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there exists a column vector u such that

Au=ANy.

Such a vector u is called a (column) eigenvector of A belonging to N,
and often the computational problem includes finding a u belonging to each

eigenvalue computed. There exist n orthonormal eigenvectors of A, one

belonging to each eigenvalue of A.

d., Let A be an unsymmetric n-rowed, n-columned matrix of real numbers.

Another traditional problem of linear algebra is to find some or all of its

eigenvalues, and sometimes also its corresponding column eigenvectors and row

eigenvectors. Recall that a row eigenvector belonging to AN is an n-columned

row vector v such that

| VA=ANv,

When A 1s not symmetric, the problem is complicated in many ways: First,

some of the eigenvalues MN are ordinarily complex numbers. Second, there may

not exist n linearly independent column eigenvectors, and those which,exist are

not ysually orthogbnal... Indeed, they are likely to be nearly linearly. dependent and

the same holds for the row eigenvectors. Third,if an eigenvalue A is a root. of

multiplicity k > 1 of the characteristic ecuation det(A - AN I) = 0, then

there may exist anywhere from 1 to k linearly independent column eigenvectcrs

belonging to A. (If A were symmetric, there would always be k.) If the

number is less than k, it corresponds to one or more nondiagonal blocks in

the Jordan canonical form of A, or equivalently to so-called nonlinear elementary

divisors of A. Fourth, multiple or nearly multiple eigenvalues of A are |

| likely to be very rapidly changing functions of the elements ay 3 of A, so
that computations are at best tricky.
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| e. For any column vector y, define the p-th power norm of y to be
- 1

| : Dy\D
(1) vl = C & 1.0%)"

P . 1
i=1

Here p is a real number with 1 <p<o, and Yio cov ¥p are the components

of y in a given coordinate system. We define the maximum norm as the limiting

case p oo of (1);

(2) lvl = max Jy] .
LL 1<i<n t

The norms most used in numerical analysis are p =1, 2, ®@, but statisticians

are now giving attention to values of p between 1 and 2.

| Let A be an n-rowed, k-columned matrix of real numbers, and let b be
an n-rowed column vector. Given some p, a more recent computational problem

| is to find a k-rowed column vector x such that

| AX - oll is minimized . i

When p = 2, the usual case, this is the linear least-squares problem. For

p = 2 the unit sphere in the norm is very smooth, and methods of analysis work

well. However, for p=1 or @ the unit sphere has many corners, and methods

of minimizing |lAx - oll become combinatorial or discrete.
f. For two n-rowed column vectors x and y, we define x > y to mean

that Xy > Ys for all components of x and y.

Let A and b be as in part e above. Then an important computational problem

is to describe the set S of k-rowed column vectors x such that

!

AXx> b .

;



Sometimes, as in linear programming problems, one looks for vectors x in S

such that Tx is a minimum, where c¢ is a given k-rowed column vector.

So far. we have spoken only of matrices of real numbers. Similar

problems are posed occasionally for matrices of complex numbers. Many of the

problems can also be phrased for matrices whose elements are expressions in

indeterminates or letters. As methods of symbol manipulation on digital computers

become more accessible to computer users, problems of linear algebra with

matrices of letters will be studied more. Practical symbol manipulation will

probably do more to interest mathematicians in computing than anything that

has happened in the computer era to date.

The present discussion is limited to matrices of numbers, and moreover

to problems a, b, ¢, d. For discussions of problem e with p = 2, the

reader is referred to Golub and Kahan [18]. For problem f see presentations

on linear programming like Dantzig [5].

Why do the linear problems a, b, c, and d arise so often? Why are

they important? The answer is that linear operators are the simplest ones in

mathematics, and the only operators that are fully understood in principle.

rience they are a natural model for an applied mathematician to use in attacking

1 problem. Even though linear operators in infinite-dimensional spaces will

occur in analysis of differential equations (for example), the realities of

computing mean that only finite-dimensional spaces can be handled with digital

computers.

More realistic models of applied mathematics are usually nonlinear. But,

whenever nonlinear operators are used, the actual solution of functional

equations almost always involves the approximation of nonlinear operators by

linear ones. A typical example of this is the use of Newton's method for solving
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2 System of nonlinear equations, in which at every step a loenlly best-fitting

i linear equation system must be solved. Nonlinear problems usually are very hard
“n attacking them by linear methods, it is essentisl tht our line~r tools be

very sharp, so th't they can be relied upon to work without failure. Only in

this way can the analyst concentrate on the real difficulties of the nonlinear

world. This point of view not only emphasizes the importance of being able to

solve linear problems, but also the necessity of solving linear systems with

extremely relisble methods.

Linear equation systems a arise directly mainly from two sources. One

is from an approximation to linear functionel eguations, usually ordinary or

partial differential equations. The other source is a problem of data fitting,

interpol~tion, or npproximation by linear families of functions.

Eigenv~lue problems usually arise from studies of vibration or stability

| or rRtonInLe of linear physical systems (e.g., .flutter of aircraft »nd criti-

cnlity of reactors), or from factor snalysis problems.

An excellent textbook by Noble [42] gives a number of physical examples

of computational matrix problems.

5. A closer look at the problems. Since actual computers have finite

storage capecity and a finite precision, we need to have a closer look at the

nature of the matrices A =nd the comput~tional problems.

| Is the matrix A dense (most elements By 4 # 0), or is it sparse
(most elements 8; 4° 0)? If A is sparse, do the nonzero elements form a
significant pattern? For example, is A triangular (a; =0 for 12> J or

for i < j)? Is it of Hessenberg form (a; 4 =0 for i> 3 +1 or for

j> i+ 1)? Is it a band matrix (a; 5 = 0 for |i -j|l>m, where m<< n?
Is it a tridiagonal matrix (i.e., a band matrix with m = 1)? All these special

ferms occur frequently, and can be given special consideration.

p)



Is the matrix A symmetric? Pos.tive definite? 1f +t is sparse, is tio

pattern associated with the adjacency matrix of same graph? Frequently matrice:

asscciated with structures or with partial difference equations are best under-

stood in terms of the associated graph.

Are the elements 8 3 stored in the computer memory, to be retrieved
when needed, or are they regenerated from some algorithm, as needed? One might

define the informational content of a matrix as the number of cells needad

(on a certain computer) to store the data and program to obtain all the 25,5"
The author knows of no work on this concept, which is clearly relevant to

matrix computation.

What is the size of the matrix A, relative to the memory size and speed

of a given computer?

If we are solving a linear equation system Ax = b, do we have many

different right-hand sizes b, or just one? Do we have many different matrice

that are close together, or do we have just one A? Are the elements of A ar

precise mathematical ' numbers (for example, integers), or are they physical

numbers subject to uncertainty? Any uncertainty in A and b leads to

uncertainty in the definition of x as the solution of Ax = b. What x dc--

the problem's proposer want to see? Even when A and b are mathematical

nurters, the solution x is normally not representable as a finite-precision

number in the computer's number base. Of the various approximate answers

x which might be obtained, what is the proposer's desire? For example, does

he want l| x = Aol to be small, where Ato is the true answer? Or would th:

proposer settle for an x such that || Ax = bl is small? For each case: whic:

norm, and how small?

Most proposer of linear equation systems haven't considered these

nuestions, and look to the numerical analyst to explain the possibilities and

select the options.
6



If a proposer requests the inverse matrix Am y it is usually worth finding

out why. Frequently he merely wishes a convenient way to solve AX = c¢ for

an arbitrary vector c¢. Having IN stored away, the proposer expects to

obtain the solution x in the form Ale, for any new c that comes along.

It shouldbe pointed out that there are other ways to obtain Ate for new

vectors c¢, ways that require no more storage and take no longer for the same

accuracy, than the multiplication of At by c. Because of these facts,

the computation of A~t may frequently be dispensed with. However, certain

| statistical applications really do require knowledge of at least the diagonal
elements of Al.

The eigenvalue problem c¢ for symmetric matrices A can require finding

all the eigenvalues, or only a few. It matters a good deal whether or not the

corresponding eigenvectors are needed. If a complete set of eigenvectors is

needed, is it important that they be orthogonal to each other? Getting orthog-

onal eigenvectors corresponding to multiple eigenvalues is far more difficult

than Just getting eigenvalues.

In the eigenvalue problemd for nonsymmetric matrices A, one has

similar choices: do we want all eigenvalues, or just some? Do we want column

| eigenvectors? Do we want row eigenvectors? Both? But then comes a new choice.

| If some eigenvalues are multiple and correspond to a nonlinear elementary divisor,

what vectors does the proposer want to see? In monographs on algebra one learns

: about chains of principal vectors that with the eigenvector form a basis for the

null space N of (A - A 1)k , where AN is an eigenvalue of multiplicity k

with an elementary divisor of degree k. These principal vectors are associated

with the Jordan canonical form of A. It is my impression that a proposer who

has a good background in algebra will want to see a set of principal vectors

(they are not unique). But these principal vectors are extremely hard to compute,

[



partly because they are discontinuous functions of the data. It is likely thnt

an orthogonal basis for the nullspace N would be a more useful set of vectors.

The matter seems to be poorly understood by problem proposers and numerical

3 analysts.

Matrices with actual multiple eigenvalues are very rare, and a small

computational perturbation of these will normally destroy the equality of

eigenvalues. One might therefore assume that we need not be concerned in prac-

tice with what tio do about them. But, in fact, the bad behavior of nonlinear

divisors carries over in practice to a surprisingly large set of neighboring

matrices. These neighboring matrices have distinct eigenvalues, but the k

column eigenvectors are so nearly linearly dependent that they cannot be

i separated in anormal computation. So also here one faces the problem of what

vectors to give the proposer.

In a least squares problem, say a search for x to minimize f(x) = [Ax -of,,

does the proposer really want a minimum of f(x), or does he merely wish an x

that gives a value of f(x) fairly close to the minimum? In a curve-fitting

problem, for example, one can often get a surprisingly good fit by a polynomial

with coefficients very different from those of the minimizing polynomial.

In all of the above computational problems, it is important to ascertain

which of the following types cf answers the probiem proposer is looking for:

a) a surmised answer, with no estimates of its correctness;

| b) some answer, together with some sort of probabilistic assertions

about its correctness;

¢c) some answer, together with mathematically provable bounds for its

error. |

| Normally it is more expensive to obtain b) than a), and still more
: expensive to obtain ec).

8
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i It is not obvious which of the above types of answer the problem proposer
~ will want. Frequently a) is quite satisfactory. The physical scientist and

engineer frequently have their own checks on the validity of an answer, and

| may neither need nor wish the mathematician's rigorous bounds. They may recog-

nize, for example, that the mathematical model is such a rough approximation to

reality that mathematical bounds would only be ludicrous. When mathematicians

enter the practical world of engineering, the rules by which mathematics is

played frequently have little relevance. Numericel analysts frequently have

trouble deciding when to play the game according to mathematician's rules

and when to play it like engineers. It is, of course, extremely pleasant to

encounter those occasional examples where mathematically provable bounds can be

found that are just as accurate and cheap as surmised answers. One should

never cease looking for such miracles, because they do occur! One has been

just reported at this SIAM Symposium; see Fox, Henrici, and Moler [26].

4. Nature of computer hardware and software. The character of achievable

solutions to the computational problems of linear algebra is greatly influenced

by the nature of the computing systems available to us, It is  — to

separate computer systems along the foliowing lines:

a) Computer hardwarc--the nature of the electronic circuitry of a

computer;

b) Computer languages--the languages in which are described algorithms

for the solution of a given problem on a given computer,

c) Computer software--the programs which make it possible for a computer

actually to perform the algorithms described in the computer language.

In looking at computer hardware for computations in linear algebra one

wants to know what precision is available for computation--howmany digits are

| 9



in the significand of the floating-point operands, and to whut base? One :.s

also interested in the cost and speed of double-precision operations. fn

matrix algebra work the critical operation is frequently the computation of

a rounded single-precision approximation to the double-precision inner product

of two vectors whose components are single-precision floating-point numbers.

"The speed and cost of this inner product are very important.

One wonders whether the hardware rounds the result of an arithmetic

operations, or whether it is chopped off. Best of all is a system that lets

the programmer decide when to round and when to chop.

What happens when the result of an arithmetic operation exceeds the

capacity of the flosting-point system? Are there "traps" which make it possible for

the systemto detect overflow or underflow? Can these traps be by-passed,

(turned off) by the programmer? When an overflow or underflow is detected, is

all essential information recoverable, so that the solution can continue? Or

are vital bits of information irretrievabiy lost?

What is the exact nature of the arithmetic operations in the machine? IT

one is to prove theorems about the behavior of a computation, one needs certain

properties of the arithmetic. Because of the rounding of the machine, it 1s

well known that addition and multiplication are not associative, nor are they

distributive. Nevertheless, one can do surprisingly good analysis, provided

only that the arithmetic is monotonic.

By multiplication being monotonic, we mean, for example, that if

O0<a<b and 0<c. thena xc < bxc, such properties seem elementa..,

out they are extremely helpful. And they are surprisingly often absent’

It must be noted that apparently minor changes in the hardware of the

arithmetic circuitry can make surprisingly large differences in the behavior

of the algorithms,

10



A great many computer languages have been devised for the description of

s scientific algorithms. These range from the very elementary codes for Turing

| machines, through the machine codes of computers, to various algebraic lancuages

like the forms of Fortran, Algol, and PL/I. All these languages are equiva-

lent, in the sense that the class of representable algorithms is the same for

all of them. The languages differ only in regardto human convenience and in

the compilation problems they create. Can one conveniently represent such a .

data structure as a triangule: matrix in a certain language? In typical

languages like Algol or Fortran, one must choose between representing it as

part of a much larger square matrix, on the one hand, or as an artificially

created one-démensional array, on the other. The former choice is humanly

convenient and wastes space; the latter choice saves the computer time and

space, at the cost of confusing the human.

Most matrix algorithms have "inner loops™ where most of the computing

| time is spent. If only this inner loop is programmed very efficientlyin

| machine code, the program will run very rapidly. It scarcely matters how the

| rest of the algorithm is programmed. Hence a very important question for any

algebraic language is whether it 1s :easy to incorporate pieces of machine code

| into them. Perhaps the question is more appropriately addressed to the software
system that translates the algebraic language into machine code.

| Another important property of a computer language is its readability by
human beings. If the algorithm is correctly written, a computer will (practically

| always read it correctly. But the practical use of the algorithm depends on
| the ability of human beings to comprehend it, adapt it to other uses, improve it

in the light of recent discoveries, and so on. The human readabilityof existin-

languages differs a great deal.

11



The most important software programs for the scientific computer user

are the monitors and the compilers. The compilers are vast symbol-manipuiatior

programs that translate an algorithm from, say, Fortran to the machine code of

a given computer. Compilers should be distinguishedfrom the languages they

translate, and yet of course compilers and languages influence each other.

Compilers differ greatly in speed, in the optimality of the machine code

produced in the translation, and in the diagnostic facilities offered.

As we noted above, it is important that compilers be able to accep:

pieces of algorithms written in machine code, and incorporate them into a program

otherwise written in an algebraic language. For matrix work, the ability to

compile fast codes for iterative loops (the for statment of Algol) is very

important.

Most compilers are now imbedded in control programs variously called

master control programs, monitor systems, or operating systems. These monitor

systems generally retain ultimate control of a computer, preventing a possibly

erroneous user program from consuming vast amount of unwanted time, or from

domaging the monitor systemor other persons$' programs by illegal assignments

Also, the monitor systems generally recover control of the machine in case of

overflow or underflow. This is a point of much interest to writers of linear

algebra programs. In case of overflow or underflow, what happens next? Can

tne linear algebra program recover control of the computer and repair the damnacoc

done by the overflow or underflow? (This assumes that the hardware retains the

necessary information.) Or does the monitor system take over the machine and

ruthlessly flush the offending program from the machine? If the latter occurs,

then extra time must be takenin each program to make sure that overflow or

underflow cannot occur.

12
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5. The state of the art, 195% and now. It is safe to say that matrix

computation has passed well beyond the stage where an amateur is likely to

think of computing methods which can compete with the better known methods.

Certainly one cannot learn theoretical linear algebr2 =nd an algebraic

programming language, and nothing else, and start writing programs which will

perform acceptably by today's standards. Thereis simply too much hard-earned

experience behind the better algorithms, and yet this experience is hardly :

mentioned in mathematical textbooks of linear algebra.

The amount of literature on matrix computations is staggering. In 627

pages, Faddeev and Faddeeva [8] record a pretty complete account ofcomputational

methods up to around 1958. In 662 pages, Wilkinson [61] gives most of what

is known about computing eigenvalues of dense, stored matrices (both symmetric

nnd unsymmetric), with error bounds for many algorithms. There is very little

overlap between the two books, because Wilkinson and a few contemporaries

created most of the material in his book in the years after 1958. No one could

possibly start research in the numerical mathematics of linear algebra without a '

thorough knowledge of the relevant material in these books.

It is perhaps instructive to examine the state of matrix computation

in 19535, when the author wrote a survey [10] of methods for solving linear

systems at the Institute for Numerical Analysis of the National Bureau of

Standards, Los Angeles. We were amateurs. For dense, stored matrices we

knew Gaussian elimination, of course. We knew that it sometimes produced

nuite poor results. We weren't always sure why. We debated endlessly about

how to pick pivots for the elimination, without settling it. The debate still

continues,but now mainly among persons who don't understand that the main lines

of the answer have been settled. Because of misunderstood difficulties with

Gaussian elimination, we searched for other methods which might do better.

13 |



The conjugate-gradient me thod had been devised for sparse matrices by Lanczos

[36], and Hestenes and Stiefel [27]. In [10] I guessed that it might also prevail

for dense, stored matrices, despite the extra time it would require, because we

understood how to use higher precision to make the conjugate-gradient method work

well. We did not realize that the same higher precision and a proper pivotal

strategy would make Gaussian elimination work. We were not quite aware of the

extent of problems of 111 conditioning of matrices.

The only analysis available to us was the monumental work of von Neumann

and Goldstine [41, 20). They avoided the pivoting problem by reducing any

regular linear equation system Ax = b to the positive definite system

ATA X = Ath. We knew that this normalization of the problem was costly in time

and worsened the condition of the problem. Von Neumann and Goldstine presented

guaranteed error bounds for the solution; actually observed errors were found

to be perhaps 100 times smaller in reasonable cases. The form of the error

analysis was a direct comparison of machine arithmetic with exact operations,

The nonassociativity and nondistributivity of machine arithmetic made the

analysis extremely difficult. In any case, it could only handle scaled fixed-

point arithmetic. Because of the size of their error bounds, von Neumann and

Goldstine were unnecessarily pessimistic about the possibility of inverting

general matrices of orders over 15 on machines with the 27-bit precision of the

IBM 7090 series. |

For the eigenvalue problems, things were .n much worse state. We had the

power method with matrix deflation. While reasonabli satisfactory for a few

dominant roots, its general npplication requires intuition and luck, and defies

a complete algorithmization. For dense, stored symmetric matrices we had the

1846 method of Jacobi [31], rediscovered and analyzed by Goldstine, Murray

and von Neumann [19], and it was quite satisfactory. Givens was writing up

1h |



his newly discovered method, maybe 7 to 9 times faster than Jacobi's and

a basic step toward currently used methods.

For nonsymmetric matrices, things were ghastly. If the power method

wouldn't work, we had practically no alternatives. We could search for zeros

of det(A - zI) in some manner or another. We bravely tried methods for deter-

mining the characteristic polynomial, as described in Faddeevs [9], and found

them to be hopeless. It was almost unbelievable, how badly the standard

methods for n = 4 would perform for n = 10. Lanczos was advocating his

new method of finite iterations, which became the source of modern methods

in a later line of development through the Stiefel and Rutishauser QD-algorithm,

(see Rutishauser [50] and Henrici [25)), the LR-algorithm of Rutishauser [51],

and the QR algorithm of Francis [15, 16] and Kublanovskaja [35]. However, the ,

original Lanczos method needed careful management, because the raw results

were often poor.

6. The linear eocuations problem. For large, sparse matrices, like those

arising in finite-difference approximations to partial differential equations,

there is a whole special literature. See Varga [57], Forsythe and Wasow [13],

the work of David Young, Jim Douglas Jr., Stiefel, and many others. The methods

seem to depend for their success on the nature of the continuous problem being

approximated. Because the matrices are sparse, the prevailing methods are

jterative. I shall omit further discussion of them, and confine attention to

dense, stored matrices.

For a general matrix A, the solution of the linear system Ax =b by

Gaussian elimination requires n°! + 0(n°) multiplications, and the same

number of additions. Recently Klyuyev and Kokovkin-Shcherbak [34] proved that

15



no method using ration~l operations for general A, b can take [cwer operaticns.

This result had long been believed but not proved. The result has two

consequences:

(i) Gaussian elimination is likely to remain the method of choice for

solving dense linear systems, when it works, because it is as fast as any.

(ii) The solution of a linear systemof large order n is going to

require a very substantial amount of computing time, at least for serial

computers. For n = 1000, we have 1/3 X 10” multiplications and additions.

If we can multiply and add in 10 microseconds, we need 3335 seconds, or about

an nour of computation. In fact, there is some overhead also, and on an IBM

7094 (Model II) the solution would tske over 2 hours. However, the storage cf

the million elements of data requires extensive use of some bulk storage like

tapes or disks, as only some 20,000 elements or so can be kept in the current

52,000-word core storrze. The very numerous transfers of matrix elements from

core to magnetic tapes appear likely to wear out the tapes before the solution

can be obtained, according to certain tests made at Stanford! I know of no

compnrable experience with magnetic disks or other form of bulk storage.

AS a result, we cannot consider order n = 1000 to represent a practical

linear equations precblem, but we will undoubtedly soon be able to do it regulary

for perhaps $500.

The case n = 10C is now easy ond costs around $1 on an IBM 709%. The

case n = 10,000 is likely not to be accessible for n long time, nnd it would

take over 2000 hours now on an IBM 7094,

There is beginning to be serious consideration of computers with a

substantial amount of parallel operation, so that perhaps much of the solution

of nu linenr system could be done simultaneously. Preliminary studies make it

clenr that the solution of a linear system could very easily make use of parall:.

16
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computation, if it should prove worth while. Apparently only O(n) operation

times would be needed for solving »n linear system, if one had a sufficiently

large amount of p-rallel arithmetic circuitry.

T. Inherent inaccuracy in solutions of linear systems. Given a non-

singular matrix A and a nonzero b, let x be the solution of Ax = b.

Suppose A and b are subject to uncertainty. What is the resultant uncer- ]

tainty in the solution x?

For any column vector y of order n, define lll to be the

euclidean length of y:

2 2 2
= = + + sc. +Ivll = lvl, =y/ v7 + vs y,

For any n-by-n square matrix A, define the spectral norm |All by

all = max flax] .
Ix[l=2.

These functions ||...|| give useful measures of the size of vectors and matrices,

respectively.

For a nonsingular matrix A, define the condition of A, cond(A)

by the relation

-1
cond(A) = fla] - lal]

"he concept of condition of a matrix seems to have been introduced by Turing [55],

nnd studied extensively by Todd ([53] and some later papers) and many others.

One of the main uses of the concept of condition lies in answering the

question posed at the start of this section. Suppose that A 1s known exactly,

but that b is subject to uncertainty. Let x + Ox solve the system with matrix

A and right-hand side b + db. Then
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A(x+ dx) = b + db ;

x + 6x = A"Tb + A lap :
(2)

5x = A “db ;

-1

loxll < fla” « flavl]

Since A x =D, we have

(4) loll = flax] < flat « lx]

Dividing (3) vy (4),we have

® x -1y  idbLIE TV The J = I
Il bl]

or

H |(5) lox! < cond(A) cb}
Ix] ib

Inequality (5) shows thet the relative uncertainty in x is bounded by

cond(A) times the relative uncertainty in b. The bound in (5) is attainable,

for any nonsingular A and nonzero b. This is easy to see, if we perforr a

change of coordinates in which A tmskes » diagonal form.

As a linear transformation, A takes vectors x into vectors b.

A fandomentally important, but too little known theorem ststes that by a certain

orthoconnl chrnze of coordirates in the space of x, and by another orthogonal

chanse of roordinates in the space of bb, the matrix A can be put in the diagonal

form

18
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A = y o

2)

Here the positive numbers Hy > My 2 sen 2 Ho are called the singular values

of A. Moreover,

- -1

EEE Ct EN

Finally, the orthogonal transformations do not change the norms of x and b.

We have

-1

hy O
no

nt “ 2

O a!
Pn

1 / 9

0 ; .

If b = , and a= | .
0

0 €

\

then

-1

0 -

zie A5 = , and Ox = Al ap = . .

‘ 0

0 _=1
Ho

19



For these vectors,

Ix n loll "nn [ll

The last line shows that (5) is an equality in this case, as we promised

to prove.

Although (5) is only an exact equality under exceptional conditions,

it is usually rather close to equality, and in the following we assume approxi-

mate equality.

If cond(A) = 10° , and if b is known to be correct only to 10 decimals,

then x can be known only to 10 - p decimals. Now p can range anywhere from

4%
O to co. The only hope of having any significance to x in a 10-decimal computing

system is that, roughly,

cond(A) 10°10 <3 :

In a base~-5 computer with t significant digits, we ro-.ghly need

cond (A) gt <

in crder to have any significance to a solution.

Remember that 11) statements in this section are independent of any

method cof soiving a system Ax = bb. They are statements about errors in Xx

which ire inherent in the uncertainty in the data.

I" A 1s subject to a change dA, and b is known exactly, then

an inejunlity analogous to (5) is the following:

: 0!

{53 lexi < cond(A) ° Jaa] :

! Ix + ox lal
It #exl is small, compared with |lxll, then we may safely consider the left-hand
51'e of (1) as a relative error in x.
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8. Accuracy achievable with Gaussian elimination. I assume that the

reader knows what Gaussian elimination is, as a method of solving linear eaua-

tion systems. The main strategic decision facing the designer of the algorithm

is the choice of a unique pivot element for each of the n-1 stages in which

a variable is eliminated from the remaining equations. There are two main

strategies discussed:

(i) complete pivoting, in which at each stage one selects as a pivot

some element ahs of maximum absolute value among all the remaining elements
of the matrix.

(i1) partial pivoting, in which at each stage one selects as a pivot some

element 208 of maximum absolute value among the first column of the remainin-

) elements of the matrix.

Thus, in the first stage complete pivoting would search the whole matrix

A for an element maximal in absolute value, whereas partial pivoting would

search only the first column.

Some special classes of matrices permit elimination to proceed

successfully without any search for pivoting--for example, positive definite

symmetric matrices. But generally, pivotal searching is essential to guarantee

success. The following simple example illustrates the disaster possible in not

searching for a pivot. Consider a 5-digit floating-decimal machine.

The system is

0001 x + 1.00 y = 1.00

be x + 1.00 y = 2.00 .
The true solution, rounded to five decimals, is x = 1.00010, y = .99990.

If one accepts the element .0001 as a pivot, the elimination of x

from the second equation yields the equation

- 10000 y = =10000.

| Backsolving, we find that y = 1.00, whence x = 0.00, a clear disaster.
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On the other hand, partial pivoting would select the element

ay 1 = 1.00 as the pivot. Elimination of x from the first equation yields
the equation

1.00 y = 1.00 .

Backsolving, we get y = 1.00 and then x = 1.00, with obvious success.

We shall now assume that we are dealing with a t-digit base-2 floating.

point computer. Rather than discuss the solution of a linear system, we shall

consider the computation of the inverse at of a given matrix. We wish to

state the rounding error bounds that have been proved for Gaussian elimination.

Wilkinson [58] assumes a complete pivotal strategy, and that the mstrix A

is reasonably scaled at the start and at all intermediate stages (see Sec. 10

for more about scaling). Then, if all 2, || <1, = certain Gaussi~n algorithm
yields a matrix X such that

(7) = 00 oop) 2t AVR gm) WH
Jla=L]

Here g(n) is the maximum of all elements of the successive matrices found

during the elimination.

To express the result (7) in a form to be comps red with those of Sec. 7,

we note that 1< |All <n, so that we expect that All = RYE . Then we have
roughly

(8) K-20 3. a conan) ala)
la- 7

What kind of bound can we give for g(n)? This turns out to be an open

question. The best known result is approximately

(9) g(n) < 1.8 a(1/4)10g 0
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On the other hand, for : i! real mutri<.s cover amined it has always been

observed that

g(n) <n.

Tne last bound is attained for unboundedly large n by matrices related to the

Hadamard matrices. For most matrices one even observes that

(10) g(n) <8 .

Tornheim [54] has found complex matrices A of unboundedly large n for

meich

g(n) = 3.1n .

It would be most desirable to have a good bound for g(n), so that (7)

could be turned into a good apriori error bound for the computation of At .

Naturally, for any particular matrix A, g(n) is easily observed in

~re course of the elimination, so that in any event (7) becomes an a posteriori

»rror bound. However, still better error bounds can be given a posteriori, as

7.11 be shown in Sec. 9,

Wilkinson's proof of (7) in [58] is reasonably short. It makes use of

"iverse rounding error analysis, which we shall mention ag#~in in Sec. 11. It is

structive to compare (8) with (6), even though one deals with inverses and one

._%n linear systems. The factor gt 1s essentially the inherent uncert-inty

"evel of the data, and should be equated to ||dAll/||All. Then the bound in (8)

is larzer than that in (6) by the fuctor n’ g(n). Taking into account the empir-

‘col result (10) that g(n) < 8 for most real matrices, we then interpret (8)

~ 3 saying that the computed matrix X generally di ffers from the true inverse

A in relative terms by no more than 8n° times the error inherent in the

| vroblem. Thus simple Gaussian elimination is reasonably good at keeping the
rounding error bound under control, for modest values of n. Much better results

|



can be achieved with some devices to be mentioned in Sec. 9,

The bound corresponding to (7) given by von Neumann and Goldstine [41]

was

(11) EI TN I Wal Th
la-L] ~

~ 15 n° >= cond(4)]° :

The factor [cond(A))° arose from solving AA x = 2h, rather than Ax = Db.

The proof of (11) was an order of megnitude more difficult and tedious han

the proof of (7).

9. More accurate solutions. Suppose that A is given as single-

precision data, and that we wish to get solutions guaranteed to be more accurate

than the above bounds would indicate. How shall we proceed? The most obvious

choice is to perform all calculations in double-precision. Roughly speaking,

then t is replaced by 2t in the above error bounds, and, since gt is

so very much smaller than o~t we gain many orders of magnitude in accuracy.

The cost in computing time varies among different machines, but is only a factor

of four on the IBM 7094. The cost in storage is greater, since we mus® double

thie storage reserved for the developing matrix.

Where the time and storuge costs are too high to justify compl~te dcuple

precision, it 135 possible to make a very substantial gain by a mich more limited

nse of double precision. Most of the operations in Gaussian elimination can

he phrased as inner products of vectors of single-precision numbers. On many

machines it is possible to accumulate such an inner product in double precision,

«nd then round it off to single precision before storing away the result.

The result of this accumulation is to reduce the maximum rounding error of an
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inner product by a factor of n. The total effect turns out to be to reduce the

round-off error bound by a factor of n!? Thus, instead of the result (7),

an elimination with pivoting and accumulation produces an approximate inverse X

such that |

(12) Beto 55m ot al ata)
la=2 B

under certain additional hypotheses. See Wilkinson (61, p. 253]. The gain

of the factor no!2 1s very substantial, although experience shows that. the’

actual errors in single-precision computation ‘are usually rather less than the bounds.

One theoretical disadvantage of the complete pivoting strategy is that

it does not mix well with the accumulation of inner products. When products

are accumulated, one almost always uses a partial pivotal strategy, and accepts

the theoretical possibility that pivots can grow very large.

A third and the most successful approach to increasing the accuracy of

solutions of dense, stored linear systems is the so-called method of iterative

improvement. By this method, 1f the matrix A is not too ill-conditioned, one :
in practice gets solutions which are the correctly rounded approximations to the

tr.. answers. We will now describe this development.

Suppose that by Gaussian elimination one has achieved a first approximate

solution X5 of the linear system Ax = b. The next step is to form the residual

vector ry = b -Ax,. If X, were the exact solution of the system, we would

have Ty = ® , the null vector. If not, we solve the new linear system Ay = Ty >

to obtain a vector Yq Let X, =X, + Ye | |
The process is repeated iteratively. I.e., for k =0, 1, 2, ...

we form the residual r, = b - Ax, solve the system Ay = Ty to obtain a

vector Yi+1’ and then form X41 =X, + Yl ’

25



Under suitable hypotheses to be specified below, the sequence x,

converges to the true solution Ab of the system Ax = b.

Several matters need to be clarified in this algorithm. First, it appears

to involve a great deal of work to solve systems of the form Ay - I for many

values of k. In fact, this is not so. Gaussian elimination to solve a

system AX = b involves three distinguishable stages:

(i) Triangularization of the matrix A by elementary row transformations

(ii) Application of the same row transformations to “he right-hand s:de ©

(iii) Solution of the triangular system by back-substituton.

It turns out that stage (i) requires approximately a) multiplications
and additions, but that stages (ii) and (iii) together req.ire .nly spprox:ina‘ely

Z multiplicnrtions and additions. Stage (i) need be done oniy once for a.l

the systems Ay = Ty If the multipliers defining the row transformetions are

saved, stages (11) and (1i.) cen be done rapidly for each new system Ay r

in turn. As 2 result, it is found that e sufficiently long sequence of vec‘.crs

X, con usually be computed in something like cnly 20 per cent more time 'nan

the computation of the first solution Xy

1 18 absolutely essential that each res:dusl vector r, DoF cong.-€q4 * °

niga prec:sion. This 1s normally done by a do.ble-precisior ~ccumaiation of

inner prod.cts, followed by rounding of the answer tc single-precision !l2a‘ing.

point. form, if r, is computed with merely a sing.e-precisicn inner pr d.ct.

11 will have rounding errors of several units .n the least s.griaficant ¢.g.'s

ct x, hen tne inequality (5), wnich :s an appruximate eq.ality in practic,

tells us that x, will oe wrong by several times cond(A) 1n 1ts leas:

significant dieit. Since cond(A) may well be 10° or 10°, the resultan-

weeuracy no Xo 1s very low and, in fact, Xy 1S itseif aimost as acc.rte

ns “ny s.:cceeding X,
26



"nf foliwwing tneurci. gies no oasis ff tne above me nod of

iterative improvement:

“neorem. Le. tne ratrix A ave ‘he prcperty that

(13) (0.8) 2™ WE gn) lat) < :

-et the abcve algorithm be carried ou’, with each system Ay= Ty being solved

:n_single-precision base-2 {loating-pcint aritametic, but with computat.ons of )

ro b - AX, and Xie] © Xie SY ay carried c¢.l without rounding error.

en 1
Ix, - A bl - 0, as k 2c .

+f the solution cf the systens Ay - r, were done with accumulations of

rner-prcducts in double precision, tnen the ieft-harnd side of (13) could be

vorlaced by the right-hand side of (12)

in practice, of coi.rse, r, iS comp.1<d oy a double-precision

- cumulation of irner products, and X ., IS comp .ted as the floating-po.nt

im of X, and Yi 4i As a resuil', the seqg.ence X, do€s not Converge 1c

y in the mathematical sense. Instead, 2 1s opserved to beccone constant
+- a value which 1s normally the correctly rcunded single-precision appreximation

Atle

Tn the actual use of iterative approvement, on: dees not .s.ally know

+ ~dvance whether or not hypothesis (13) :s sa*i1sfied, and i cannot be con-

led afterwards either, Normal practice 1s there:re to rely cn the follcwing

~.r.stic result:

Almcst-theorem. Let the avove algorithmbe carried out, with each

aterm Ay re. being solved by *he same version of Ga.ssian elimination, with

Som Je being computed by a dc.bie-precision acc.u.la".onof inner prod.cts,

~rd with X +3 being computed as the flcating-pcint s.m of Xe and Yes”
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If for k > k,, all vectors x, are equal to some single-precision

vector x » then x" is the correctly rounded single-precision approximation

to Alb .

This almost -theorenm cannot be proved, and, indeed, Kahan (32] has an
extremely ingenious counter-example. However, most computers would bet their

life on the applicability of the above almost-theorem in any practical example,

unless Kahan were furnishing the problem!

* Normally, hen cond(A) gets near ot the vectors Xx, obviously
diverge. Then there is no cure except to increase the precision with which

the elimination is carried out, unless scaling A will help.

The usual value of k, is 3 or 4,

10. Scaling of matrices. One matter that was glossed over in Sec. 8

was the scaling of the matrix A before solving a system Ax = b. Alternate

terms for scaling are preconditioning and equilibration. Suppose that the

2-by-2 numerical example of Sec. 8 were altered by multiplying the first

equation by 10°. Then the system would be

(14) I» | x + 100000 y = 1000001.00 x + 1.00 y = 2.00 .

The effect of the scaling is to make 10.0 the larger pivot in the first column.

Then elimination of x from the second equation of (14) in 3-digit floating-

decimal arithmetic will result in a new second equation

-10000 y = - 10000 . |

| Back solution leads to y = 1.00 and the awful result x = 0.00.
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We see that peor scnl.ng with a good pive'al strategy torces ws nto the

snme enormous rounding error thot we cota:ned in Sec 8 from the origincl set of

equations and a bad pivotal strntegy.

The conclusion of this is tha" a good pivotal strategy is only gcod when

the matrix is properly scaled in adv nce. However, it must be admitted thet so

far we do not know guaranteed ~lgorithms for scaling m-trices well.

It is norm~l to scale matrices by simply multiplying rows 2nd columnby

factors. In effect, one chooses nonsingular diagonal matrices N and 2

‘nd then scaies A by the transformet.ion

A-D1 ap,
1 2

Becruse cond(A) is an ingredient of =11 our error bounds and convergence

theorems, it is natural to wish to seiect D2, and D, so as tu reduce |

cona(D]* A D,) tc as lowa value as 1s reasonably possible,
One usually uses powers of tne flonting-pcint base for sc~le factors,

to avoid the introduction of rounding errcrs in tne scaring. Or, alternatively, ;

one may use the scaling only Implicitly, without nct.ally altering the elements

of A.

Theorem (F. L. Bauer) If the crdered set ofpivotnl elements is selec'.ed

in advance, scaling of a matrix A by pcrers of the fioating-point base does nc:

change a single digit. of the significand of any intermediate or final number

in the solution of Ax - b by Gaussian elimina'icn.

The theorem was presented in Ba.er [1] Thus the only puss:ble effec:

of the scaling of A on the rounding errors mus' occiLr through changing the

order of pivots. Our example showed that the change in pivots can indeed make

~n great deal of difference.

One is sometimes advised tc pick Dy and RA so that the resulting
|
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matrix D A D, has its mrximum element in each row ani column (:n avso. .ie

volue) in the interv:l [.1, 1), in whatever number bine one 15 usine. iHowever,

Richard Hamming has showed (unpublished) “hat this advice does not always lead

to good scaling. If

1 1 2 x 107

A = 2-1 107

1 2 0

Then both of the following matrices are decimally scaled equiva_snts of A:

1 ol 2

-10 -10
10 10 2

-10 . ~=10

Ap = 2 X 10 -10 1 .

oa ee 0

However, A is a well-ccond:tioned matr:x that offers no diffic.i_.ties n ne

solut:en of an equation sys'en, whereas Ag is most :_l-conditi:red and

prov.des vast troubles for elimination.

Rauer [2] has studied the problem of finding — and DL, to minimite
2] |

cond(D;” A D,). It turns out thot the solution depends on cer nin properties

: t= -1 :
of’ the nonnegative matrices lA « JA and | A | | A : (Here | B

denotes the matrix of absclute values |b, ie) Clear.y. ve can nardly hope ‘cee

- : ; -1
compute A 1 jn order tc find « reasonable scaling, so that we can compute A = |
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S0, it is »n open question, how to find a demonstrably good and convenient scaling

algorithm. Existing algorithms are either very cuperficisl or potentially very

slow.

The only cheerful side of the scaling question is that 1t seems to be a

rare matrix which good scaling changes from untractable to tractable!

11. Analysis of rounding errors. We pointed out in Sec. 5 that the

direct rounding error analysis of von Neumann and Goldstine was extremely

-edious to apply. Givens [17] introduced the idea of inverse rounding errors.

Wilkinson has developed this into a very powerful tool for bounding the rounding

errors in matrix computations. The error bounds of Secs. 8 and 9 were obtained

from inverse analysis. The basic idea is tc change the nonassociative, non-

distributive floating-point ar:thmetic system into an associative, distribut.ve

number system, by throwing the errors back onto the data of the computation.

For example, let fl(u X v) stand for the floating-point product

number base B ) of the floating-point numbers wu and v. The direct error

analysis uses statements of the form

w= flu x v) =: uv +e, where || < 5 Juv|s*" |

F.rther operations on Ww introduce new errors, and one has to keep account of

the cumulation of all the oid and new rounding errors. Eventually, one bounds 'ne

difference between the ccmp.ted final answer and the mathematically correct

: nswer corresponding to the given data.

in 'nverse analysis. one makes statements of the form

w= fl(a Xv) = uv(l +9), where 8] < 5 a= t 3
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Thus the computed product 1s considered the true mathematical prcduct of (for

example) the real numbers u and v(l + 8), which differ slightly from .

and Vv. Further floating-point operations on w produce numbers which are

always treated as the results of exact operations on other slightly more

perturbed approximations to the original data. The final answer is considered

as the exact solution of an original problem with data which are perturbed by

amounts for which bounds are given.

If desired, these inverse error bouiids can be converted to crd:nary error

bounds, by normal mathematical methods.

| Inverse error analysis turns out to be extremely well adapted to the

analysis of algorithms of : marching type which continally introduce new data.

| Both the solution of linear equations and the evaluation of polynomials are of

this type. Inverse error anrlysis is not at all well suited for problems of an

iterative nature--for example, the Newton process for evaluating the snuare root of

a number,

The reader is referred to Wilkinson [60, 62] for further study of inverse

round-off analysis.

A second approach to round-off analysis is the interval analysis, ex-

tenzively developed by Moore [40], but based on the idea of "range numbers"

vresented earlier by Dwyer [6!. In its original form, interval analysis is

poorly adapted to matrix comp.tations, but Hansen [23] has modified it ingericusly

: For matvrix work.



12 Eigenvalues of symmetric matrices. Space does ne! permit as

extensive a treatment of the eigenvalue problem as that given for the linear

equations problem. We can only mention a few highlights of today's methods.

The reader is referred to Wilkinson's treatise [61] for an =lmost complete

presentation of the state of the art.

As with the linear equations problem, the computation of eigenvalues

of matrices divides into two methods, according to the nature of the matrices.

For large, sparse matrices the methods are mostly infinite iterations, and will

not be considered here. For dense, stored matrices, most methods are finite

algorithms.

If a matrix A is symmetric, its eigenvalues are very well determined

by the data. In fret, let the symmetric matrix B = A + E have eigenvalues

B,» and let A (also symmetric) have eigenvalies a . Then the eigenvalues can
be so numbered that

(15) lor, ~ p. | < |E} , ror aii i.

Now inverse error analysis refers the computed eigenvalues of a m~trix A back

to 2a matrix B= A+ E. If E can be proved to ve small (as it can), then (15:

shows how small the eigenvalue errors are. In fact, today's metnods can yield

eigenvalues that are in error by only a few digits in the least s:gnificant digits

of the large eigenvalues.

‘ The method of Jacobi [31) is an infinite steration for dense, stored

matrices. It produces a sequence of matrices orthogonally congruent. to A:

| A Kk = 6’ A Uy .
Moreover, A converges to a diagonal matrix D whose diagonal entries are, of
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course, the eigenvalues of A. In fact, each Aesq is computed from tne

previous By by a rotation in the coordinate 2-space of some two indices

i and Jj, a rotation chosen so that (42) = Q,
For any k such that A is almost diagonal, the columns of the

corresponding orthogonal matrix Up are approximately column eigenvectors of

Moreover, the columns are themselves orthogonal. Thus the Jacobi method yie!ds

approximate eigenvectors of fine quality as a by-product of the basic iter -.ion.

The whole program is easy to write, and it is difficult for it to be done bad!y.

There are some theoretical problems about how good the eigenvectors are, and

whether the Up actually converge.

Goldstine, Murray, »nd von Neumann [19] analyzed the rounding errors in

n fixed-point version of the Jacobi method.

The original J~cobi algorithm chose i and j to maximize the absolute

value of the element ok) of Ay. Modern algorithms modify this criterion
in one of two ways:

(i) In the cyclic Jacobi methods, the off-diagonal elements a; , are
zeroed in some cyclic order. Forsythe and Henrici [11] proved the convergence cf

a common cyclic method. See also Hansen [22].

(11) In threshold Jscobi methods, an element if is selected for
‘nmnihilation only when its absolute value is above a certain threshoid size,

which gets smaller us the iteration progresses. Sez Fope ~nd Tompkins [49) ni

Torneil Ih].

1+ has been proved only recently thant the cyclic Jacobi method converses

:;adratically for any matrix A. See Schonhage [52] and Wilkinson [59]. “he

work was based on that of Henrici [2h].

Givens [17] observed that, although it takes nan infinite senuence of
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rotations to bring A to diagonal form, a mere 5(n-1)(n-2) rotations can
bring Ay to tridiagonal form. This reduced the problem to that of finding

eigenvalues of tridiagonal matrices, and the latter problem has been asubject

of research ever since. Jee Ortega [43], Ortega ~nd Kaiser [45], and recent work

of Kahan and Varah [33]. In any case, the Givens idea cut the practical time

of finding eigenvalues by a factor of about 9 in practice (Wilkinson (61, p. 335..

A few years later Householder (see Householder and Bauer [29]) introduced a

new method of tridiagonnlizing a symmetric matrix, using n-2 reflections instead

of 5(n-1)(n-2) rotations. This cut the time down by another factor of two,
nnd effectively put the Givens method out of business. An error analysis is

given by Ortega [44]. Most contemporary programs use the Householder method,

but differ widely in how eigenvalues of tridiagonal matrices are found. Getting

the eigenvectors is surprisingly tricky, and lack ofknowledge of how to do it

is one reason for the occasional continued use of the Jacobi methods.

135. Eigenvalues of unsymmetric matrices. The area of greatest activity

in the past decade of research on computational linear algebra hs been the

eigenvalue problem for unsymmetric matrices. Only one method from before the

computer era is still in use--the power method--andit has only limited appl:-

cations today. Most methods in use today were unheard of 15 years ago.

It is essential to realize the instability inherent in the eigenvalue

problem for unsymmetric metrices. In contrast to the close bound (15), for

unsymmetric matrices the corresponding result, due to Ostrowski [46], is

(16) [2 - B. | < (polynomial in n) X 1g] L/™ (all i) .

The above result is very weak, and yet 1s the best possible general result

of 1ts kind. For the matrix

| 52
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of order n has all eigenvalues 0 for « = 0, but all eigenvalies ::2 distinct nid

ve modulus le |3/n for ¢ 4 O. Thus, if n= 40 and ~« = 1070, ry. @lgenvn en

nave modulus 0.1 (1!).

Fortunately, eigenvalues are not us.ally so sensitive In fact, nifferen:

eigenvalues of a matrix A «c¢~n differ enormously in their sensitivity t-

perturbations in A. Chapter 2 of Wilkinson [61] is full of useful resw.lts.

“hey are generrlly a posteriori results, giving bound for the changes .n eigen-

values as functions of perturbations in a matrix and information about the

other eigenvalues and eigenvectors.

The great power of the Jacobi method for symmetric motrices, “nd tae

extremely pleasant rounding characteristics of unitary mrtrices led tn « desire

to use them for the unsymmetric eigenvalue prcolem. Tne bs.c thecrer 1s due

"0 ochur:

Theorem. For an arbitrary m#tr:x A, there exists : unit. ry nm iz) J

Sich thot

LE Ha U

1s traangalar. (Here ut denotes the ccnj.igate transpose of U.)

Since the eigenvalues of A are the diagonal elements of 7, the hoe

nas been to find unitary matrices which bring A nearly into a triangular fcrr,

and then let the diagonal elements serve ac approximate eigenvalues of A.
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Tnvestigations by Greenstadt [21], Lotkin [37], and Everlein [7] offer

some hope, but no real promise of success

For most methods of attacking the eigenvalue problem, the first step

is to condense the data, to cnve time and storage in further work. The now

universally accepted condensed form is the Hessenberg matrix, in which JI = 0
for i - j > 1 (or its transpose) It 1s possible to transform A by orthogon~i

congruences of the Householder type into : Hessenberg form with only very

small rounding errors. Any further condensation (say, into tridiagonal form)

is subject to serious losses of digits. A transformation to the companion-

matrix form 1s perticularly disastrous in practice, and it normrlly requires very

substantial increases in precision to successfully yield the eigenvalues of A

As nn alternative, one can transfcrm A ‘@'0 Hessenberg form by Gaussien

elimination with partial pivoting, a similarity transformation

The next stage in the unsymmetric eigenvasiue problem 1s to get the

eigenvalues of a Hessenberg matrix H. A v-riery of methods h~ve been used.

(i) One can search for zeros of det(H - z!) by root-finding methods, 2

for complex 2z. The most satisfactory method sppears to be that proposed by

Hyman [%0) and developed by Parlett {47. in a n.rnoer of programs. He makes

.Se of the method of Laguerre tc find the zeros of f(z), following by a form of

zero suppress:on Very satisfactory recurrences are usedto evaiuate f(z,

f(z), and f"'z}, as needed by the Lag.erre proccess. After the eigenvalues

M2 TZ. Roe have been fcund, they are suppressed by applying the Laguerre

process to i

t(z)/ 11 0-2
i=1

| (ii) The LR-algorithm of Rutishauser [58' was an important. development.
Since it has now been pretty weil supplanted by the QR-algorithm, we cma!

I mention of it.
57
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(1ii) Francis [15, 16! in England, and Kublanovskaja [35] in the Soviet

Union devised the very interesting QR-algorithm. This is now widely considered

the most satisfactory eigenvalue algorithm for dense, stored unsymmetric matraces.

The basic theoremis that an arbitrary real square matrix A can be

factored in the form A = QR, where Q is orthogonal, and wherc R 1s an

upper-triangular matrix with all diagonal elements Toi nonnegative. If A
is nonsingular, then both Q@ and R ~re unique.

In f~ct, the computation is done by building up an orthogonal matr:::

at such that QTA = R, where R has the above properties.

As an aside, for nonsingular A, the reader will be more fomiliar with Lhe

stepwise determination of an upper-triangular matrixR with positive SN such

that AR”? is an orthogonal matrix Q. This is the m~trix expression of the

familiar Gram-Schmidt process of analysis, It will perhaps surprise the reader

that the matrix @Q resulting from the Gram-Schmidt algorithm is normaliy far

from orthogonal, because of rounding errors. On the other hand, if the same OQ

1s determined so that QTA = R, the rounding errors are very small.

The basic QR-algorithm proceeds as follows. Let H = Hy be a Hessenberg

matrix. Fer k=0, 1, 2, ...y factor Ho in the form

He = CR :

and then form

H 4 = RO, -

It 1s ensily shown that H 4 is also a Hessenberg mn.rix.

Tne basic theorem is the following.

: Tneorem. Let H have eigenvalues Ayo Ass 5% 3 >
with

(17) I < A, | < ...< x |
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Then the matrices H converge to an upper-tri-nsular matrix whose diagonal

| elements cre the eigenvalues of H
In the more usual case where (17) is not s-tisfied, we find that Ho

converges inshape to a blockwise triangular matrix. (This means that outside

n blockwise triangular matrix all elements of - tend to zerc, 3s k 2 ® ,

but tht some elements of the blockwise triangular form may not converge.)

Moreover the 2-by-2 and l-by-1l diazonal blocks of the matrix H, have |

eigenvalues which in their totality converge to the eigenvalues of H.

For simplicity, consider a mntrix H with eigenvalues

0 < A < Ay < ovo 0 :

The QR methed for such a matrix converges with an error which as

ol /A) 1
The convergence would be more rapid if, instead of H, we dealt with the

matrix H - pI, where 0< p< No If p were practically equal to No
the convergence wouldbe extremely rapid. Modifications of the @k-algorithm

have been devised that simulate this so-called origin shift which intreduces -

p hear A After one eigenvalue MN has been isolated, the QK method can ine:

be applied tc an n-1 by n-1 matrix with eigenvalues Nos Sad Ny , New

| origin shifts are then introduced to bring out Ms as rapidly as possible. =-.

: With well devised origin shifts, the whole process has been observed to conver
with an average of less than two iterative steps per eigenvalue.

Most research gces into the invention of origin shifts when some of “ac

| eigenvalues ure comp.ex and of equal modulus. We shall not attempt to give to
ideas.

| A more recent convergence proof has been given by Wilkinson [62], but,
like the Francis proof, is given for an arbitrary matrix A. If one limits

| himself to matrices of Hessenberg form. easier proofs can be given; see

| Kahan (unpublished). 59



Normally, the eigenvalues are obtained in order of increasing modulus.

farlett [48] has given theorems stating precisely when this cccurs.

If H is a symmetric band matrix, then the QR-algorit:m preserves

the band width during the iteration, and 1s very satisfactory. In particular,

3R is a possible algorithm for computing eigenvalues of a symmetric tridiagonal

matrix,

If H is an unsymmetric band matrix, the QR-algorithm iloses the zero bandas

above the diagonal.

So far, we have not mentioned getting the eigenvectors cof i Hessenoerg

matrix H. This is the most difficult problem we shall mention. The prevailinn

method is that of inverse iteration . The eigenvai.es are assumed already known.

For any fixed eigenvalue A, one selects a vector Xq arbitrar:.y. Then one

carries out an iteration of the foliowing form:

For each k = 0, 1, 2, ees find X +1 by solving ‘he system

(18) (H - A OF NY =x

One continues until Xp is quite large. In easy cases, X is nearly an

eigenvector belonging to MN. Wilkinson [6l, Chap. 9, discusses variants of Tris

process. Varah [56! has written several algor:thms

If H 1s a real Hessenberg marrix, but AN is ao complex «.:ervalu?, one

has to choose between doing compiex arithmetic, or szme judicious.y selected

process with real arithmetic.

Finally, one transforms X, back to the original ccordinate system cf A

by undoing the orthogonal transformations from A to H.

If some of the eigenvalues of H are very close, the real problems begin.

A pair of close eigenvalues may in fortunate cases have distinct column eigenvector:

that are far from perallel; this represents an approximation to a doubie eigenvalue
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|
with a linear elementary divisor, 1t 1s far more likely that a pair of close

| eigenvnlues will have column eigenvectors that are almost parallel This re-
presents an ~nproximation to the infinitely more probable case of a double

| eigenvalue with nonlinear divisors.

| In the former case, it is not difficult to compute two eigenvectors that
are far from parallel. It is only necessary to carry out the iteration {18)

with different Xy» OF with two slightly different values of A, ,

In the latter case, it appears difficult to obtain much from the iteration

| but a single eigenvector belonging to A, What should be done next? In part
one doesn't know what the problem proposer would like. In part one doesn't

know what is possible. Varah is carrying out research on the problem. He is

attempting to find an orthogonal basis for the invariant subspace of dimension 2

(in this case) belonging to A.

| For a "nice" matrix, Varah is also getting guaranteed error bounds for
all eigenvalues and all eigenvectors, using Gerschgorin theorems, as Wilkinson

recommends.

|
14. Conclusion and moral. The computationnl methods of linear algebra

are mcving into = stage where we have reasonably satisfactory methods for dense,

| stored matrices A. The main exception is the problem of getting eigenvectcrs
with error bounds, for unsymmetric matrices. The algorithms have been refined

several times, and are being published, particularly ain Numerische Mathematik.

Casual users of matrix algebra will do no better thn to take such algorithms

"off the shelf" for their problems. The best algorithms are mainly written in

Algol 60. Even though the reader may use another language, it is unquestionably

| worthwhile for him to learn to read Algol 60, just in order to be able to read

| these algorithms and adapt them to his own problems.
L1
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No method of solving a computational problem is relly av-1'asb.= '. a

user untilit is completely described in »n algebr-ic computing lang.age and

made completely reliable. Before that, there are indeterminate uspects in every

+lgorithm. Freauently the entire advantage of a certain computing trocess .1es

:n the treatment of certsin fine points which can hardly be suspe:'ed unt:. ney

nre completely programmed. This is the re~son why the ~mateur shou.d eitiaer

ronsult an expert, or take great p~ins to pick up ~ foolprccf ~lgoritanm "na

5 the reason why professionals should concentrate very arrd on COmp .cice _y

foolproofing the algorithms they devise, before p.tting tner on the =:rell lo

widespread use,

42
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