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underline "simple phrase structure language"
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"¢ instead of "' .

change "ennumerate" into "enumerate"
underline the letter V
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the horizontal line should be between IDENT and DIGIT instead
of between DIGIT and NUMBER.

"a[1]" instead of "a[i]" .
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"will" instead of "would"
add a semicolon (;) to the right.
dito, also underline label

add a semicolon to the right.

"PlV[jll2] «k + 1" should be "P[V[jl[2]] «k + 1"

"isn var" should be "isb var"

change the two occurrences of "isn" into "_isu"
change "blockhead" into "blokhead"

change the colon at the right into a semicolon.
add the symbol "t" underneath mod .

"At i =« i - 1" should be "A: i &« i -1" .
change "string" into "symbol".

add a semicolon at the right.

dito

insert a semicolon in front of "x & s[1]" .
change "is a number" into "is not a number".
"RESUTS" should read "RESULTS".

change "13" at the left into "28".

add to the right: "S[SP].ADR « FP; COMMENT A NULL
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EULER : A Generalization of ALGOL, and its Farmal Definition®

by
Niklaus Wirth and Helmut Weber

Abstract:

A method for defining programming languages is developed which intro-
duces a rigorous relationship between structure and meaning. The structure
of a language is defined by a phrase structure syntax, the meaning in terms
of the effects which the execution of a sequence of interpretation rules
exerts upon a fixed set of variables, called the Environment. There exists
a one-to-one correspondence between syntactic rules and interpretation rules,
and the sequence of executed interpretation rules is determined by the se-
quence of corresponding syntactic reductions which constitute a parse.

The individual interpretation rules are explained in terms of an elementary
and obvious algorithmic notation. A constructive method for evaluating

a text is provided, and for certain decidable classes of languages their
unambiguity is proven. As an example, a generalization of ALGOL is described
in full detail to demonstrate that concepts like block-structure, procedures,

parameters etc. can be defined adequately and precisely by this method.

*
—/ This work was partially supported by the National Science Foundation
(6P 4053) and the Computation Center of Stanford University.







It is the character of mathematics of modern times that through our
language of signs and nomenclature we possess a tool whereby the most com-
plicated arguments are reduced to a certain mechanism. Science has thereby
gained infinitely, but in beauty and solidity, as the business is usually
carried on, has lost so much. How often that tool is applied only mechani-
cally, although the authorization for it in most cases implied certain
silent hypotheses! I demand that in all use of calculation, in all uses

of concepts, one is to remain always conscious of the original conditions.

Gauss

(in a letter to Schumacher, Sept. 1, 1850)
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I. Introduction and Summarv

When devising a new programming language, one inevitably becomes
confronted with the question of how to define it. The necessity of a formal
definitiun is twofold: the users of this language need to know its precise
meaning, and also need to be assured that the automatic processing systems,
i.e. the implementations of the language on computers, reflect this same
meaning equally precisely. ALGOL 60 represented the first serious effort
to give a formal definition of a programming language [l]. The structure
of the language was defined in a formal and concise way (which, however,
was not in all cases unambiguous), such that for every string of symbols
it can be determined whether it belongs to the language ALGOL 60 or not.
The meaning of the sentences, i.e. their effect on the computational pro-
cess, was defined in terms of ordinary English with its unavoidable lack
of precision. But probably the greater deficiency than certain known im-
precise definitions was the incompleteness of the specifications. By
this no reference is made to certain intentional omissions (like specifi-
cation of real arithmetic), but to situations and constructs which simply
were not anticipated and therefore not explained (e.g. dynamic own arrays
or conflicts of names upon procedure calls). A method for defining a
language should therefore-be found which guarantees that no unintentional
omissions may occur.

How should meaning be defined? It can only be explained in terms of
another language which is already well understood. The method of formally
deriving the meaning of one language from another makes sense, if and only
if the latter is simpler in structure than the former. By a sequence of

such derivations a language will ultimately be reached where it would not




be sensible to define it in terms of anything else. Recent efforts have
been conducted with this principle in mind.

BYhm [3] and Landin [4][5] have chosen the h-calculus as the fundamen-
tal notation [6],[7], whose basic element is the function, i.e. a well-
established concept. The motivation for representing a program in functional
form is to avoid a commitment to a detailed sequence of basic steps repre-
senting the algorithm, and instead to define the meaning or effect of a
program by the equivalence class of algorithms represented by the indicated
function. Whether it is worth while to achieve such an abstract defini-
tion of meaning in the case of programming languages shall not be discussed
here. The fact that a program consists basically of single steps remains,
and it cannot even be hidden by a transliteration into a functional nota-
tion: the sequence is represented by the evaluations of nests of functions
and their parameters. An unpleasant side-effect of this translation of
ordinary programming languages into h-calculus is that simple computer
concepts such as assignment and jumps transform into quite complicated
constructs, this being in obvious conflict with the stated requirement
that the fundamental notation should be simple.

Van Wijingaarden describes in [8] and [9] a more dynamic approach
to the problem: the fundamental notation is governed by only half a dozen
rules which are obvious. It is in fact so simple that it is far from being
a useful programming notation whatsoever, but just capable enough to pro-
vide for the mechanism of accepting additional rules and thus expanding

into any desirable programming system. This method of defining the meaning




(or, since the meaning is imperative: effect) of a language is clearly dis-
tinct from the method using functional notations, in that it explicitly
makes use of algorithmic action, and thus guarantees that an evaluating
algorithm exists for any sentence of the language. The essence of this
algorithm consists of first scanning the ordered set of rules defining the
structure of the language, and determining the applicable structural desig-
nations, i.e. performing an ‘applicability scan’, and then scanning the
set of rules for evaluating the determined structural units, i.e. perform-
ing an ‘evaluation scan’. The rules are such that they may invoke appli-
cation of other rules or even themselves. The entire mechanism is highly
recursive and the question remains, whether a basically subtle and intri-
cate concept such as recursion should be used to explain other programming
languages, including possibly very simple ones.

The methods described so far have in common that their basic set of
fundamental semantic entities does not resemble the elementary operations
performed by any computational device presently known. Since the chief aim
of programming languages is their use as communication media with computers,
it would seem only natural to use a basic set of semantic definitions close-
ly reflecting the computer's elementary operators. The invaluable advan-
tage of such an approach is that the language definition is itself a pro-
cessing system and that implementations of the language on actual machines
are merely adaptations to particular environmental conditions of the lan-
guage definition itself. The question of correctness of an implementation
will no longer be undecidable or controversial, but can be directly based
on the correctness of the individual substitutions of the elementary se-

mantic units by the elementary machine operations.




It has elsewhere been proposed (e.g. [10]) to let the processing
systems themselves be the definition of the language. Considering the
complexity of known compiler-systems this seems to be an unreasonable sug-
gestion, but if it is understood as a call for systemizing such processing
systems and representing them in a notation independent from any particular
computer, then the suggestion appears in a different light.

The present paper reports on efforts undertaken in this direction.

It seems obvious that the definition of the structure, i.e. the syntax,

and .the definition of the meaning should be interconnected, since struc-
tural orderings are merely an aid for understanding a sentence. In the
presented proposal the analysis of a sentence proceeds in parallel with
its evaluation: whenever a structural unit is discovered, a corresponding

interpretation rule is found and obeyed. The syntactic aspects are defined

" by a Phrase Structure System (cf. [11], [12], [2]) which is augmented by
the set of interpretation rules defining the semantic aspects. Such an
augmented Phrase Structure Language 1is subsequently called a Phrase

Structure Programming Language, implying that its meaning is strictly

imperative and can thus be expressed in terms of a basic algorithmic

notation whose constituents are, e.g., the fundamental operations of a
computer.

Although in [8] the processes of syntactic analysis and semantic
evaluation are more clearly separated, the analogies to the van Wijngaarden
proposal are apparent. The parsing corresponds to the applicability scan,
the execution of an interpretation rule to the evaluation scan. However,
this proposal advocates the strict separation between the rules which

define the language, i.e. its analysis and evaluation mechanisms, and the



rules produced by the particular program under evaluation, while the

van Wijngaarden proposal does not distinguish between language definition
and program. Whether the elimination of this distinction which enables—-
and forces--the programmer to supply his own language defining rules, 1is
desirable or not must be left unanswered here. The original aim of this
contribution being the development of a proposal for a standard language,
it would have been meaningless to eliminate it.

Chapter II contains the descriptions of an algorithmic notation
donsidered intuitively obvious enough not to necessitate further expla-
nation in terms of more primitive concepts. This notation will subse-
quently be used for the definition of algorithms and interpretation rules,
thus playing a similar role for the semantic aspects as did BNF for the
syntactic aspects of ALGOL 60. The function of this notation is twofold:
1. It serves to precisely describe the analysis and evaluation mechanisms,
and 2. It serves to define the basic constituents of the higher level
language. E.g., this basic notation contains the elementary operators
for arithmetic, and therefore the specifications of the higher level lan-
guage defer their definition to the basic algorithmic notation. It is
in fact assumed that the definition of integer arithmetic is below the
level of what a programming language designer 1is concerned with, while
real arithmetic shall very intentionally not be defined at all in a
language standard. The concepts which are missing in the basic notation
and thus will have to be defined by the evaluation mechanisms are mani-
fold: the sequencing of operations and operands in expressions, the stor-
age allocation, the block structure, procedure structure, recursivity,

value- and name-parameters, etc.




Chapter III starts out with a list of basic formal definitions leading
to the terms ‘Phrase Structure System' , ‘Phrase Structure Programming
Language' and ‘Meaning' . The notation and terminology of [12] is adopted
here as far as possible. The fact that the nature of meaning of a program-
ming language is imperative, allows the meaning of a sentence to be ex-
plained in terms of the changes which are affected on a certain set of
variables by obeying the sentence. This set of variables is called the
Environment. of the Programming Language. The definition of the meaning
with the aid of the structure, and the definition of the evaluation algo-
rithm in terms of structural analysis of a sentence demand that emphasis
be put on the development of a constructive algorithm for a syntactic
analysis. Chapter III is mainly devoted to this topic. It could have
been entirely avoided, had a reductive instead of a productive definition
of the syntax been chosen. By a productive syntactic definition is meant
a set of rules illustrating the various constructs which can be generated
by a given syntactic entity. By a reductive syntactic definition is meant
a set of rules directly illustrating the reductions which apply to a given
sentence. A reductive syntax therefore directly describes the analyser,
and recently some compilers have been constructed directly relying on a
reductive syntactic description of the language. [13]. A language defini-
tion, however, 1is not primarily directed toward the reader (human or arti-
ficial), but toward the writer or creative user. His aim is to construct
sentences to express certain concepts or ideas. The productive definition
allows him to derive directly structural entities which conform to his
concepts. In short, his use of the language is primarily synthetic and not

analytic in nature. The reader then must apply an analytic process, which




in turn one should be able to specify given the productive syntactic defi-
nitions. One might call this a transformation of a productive into a
reductive form, a synthetic into an analytic form.

The transformation method derived subsequently is largely based on
earlier work by R. W. Floyd described in [14]. The grammars to which this

transformation applies are called_Precedence Grammars. The term 'Prece-

dence Syntax' is, however, redefined, because the class of precedence gram-
mars described in [1%#] was considered to be too restrictive, and even unnec-
essarily so. In particular, there is no need to define the class of prece-
dence grammars as a subclass of the ‘Operator grammars' . Several classes
of precedence grammars are defined here, the order of a precedence grammar
being determined by the amount of context the analysis has to recognize
and memorize in order to make decisions. This classification relates to
the definition of 'Structural Connectedness' described in [ 15], and
provides a means to effectively determine the amount of connectedness for
a given grammar.

Also in Chapter III, an algorithm is described which decides whether
a gilven grammar is a precedence grammar, and if so, performs the desired
transformation into data representing the reductive form of the grammar.

A proof is then provided of the unambiguity of precedence grammars,
in the sense that the sequence of syntactic reductions applied to a sen-
tence is unique for every sentence in the language. Because the sequence
of interpretation rules to be obeyed is determined by the sequence of
syntactic reductions, this uniqueness also guarantees the unambiguity of
meaning, a crucial property for a programming language. Furthermore, the

fact that all possible reductions are described exhaustively by the syntax,




and that to every syntactic rule there exists a corresponding interpretation
(semantic) rule, guarantees that the definition of meaning is exhaustive.
In other words, every sentence has one and only one meaning, which is well
defined, if the sentence belongs to the language. Chapter III ends with
a short example: The formal definition of a simple programming language
containing expressions, assignment statements, declarations and block-
structure.

A formal definition of an extension and generalization of ALGOL 60
is presented in Chapter IV. It will demonstrate that the described methods
are powerful enough to define adequately and concisely all features of a
programming language of the scope of ALGOL 60. This generalization is

a further development of earlier work presented in [16].




II. An Elementary Notation for Algorithms.

This notation will in subsequent chapters be used as basis for the
definitions of the meaning of more complicated programming languages.

A program is a sequence of imperative statements. In the following
paragraphs the forms of a statement written in this elementary notation
are defined and rules are given which explain its meaning. There exist
two different kinds of statements:

A. the Assignment Statement, and

B. the Branching Statement.

The Assignment Statement serves to assign a new value to a variable
whose old value is thereby lost. The successor of an Assignment Statement
is the next statement in the sequence. The.Branching Statement serves to
designate a successor explicitly. Statements may for this purpose be

labelled.

A. The Assignment Statement

The (direct) Assignment Statement is of the form
Vv « E
v stands for a variable and E for an expression. The meaning of this
statement is that the current value of v is to be replaced by the cur-
rent value of E.
An expression is a construct of either one of the following forms:
X,0X,x0y,r

where X, ¥y, stand for either variables, literals or lists, o stands

for a unary operator, © stands for a binary operator and r stands for

a reference. The value of an expression involving an operator is ob-

tained by applying the operator to the current value(s) of the operand(s).




A reference is written as @v, where v is the referenced variable.
The indirect Assignment Statement is written as
V.« E
and is meant to assign the current value of the expression E to the

variable, whose reference is currently assigned to the variable v .

1. Literals
A literal is an entity characterized by the property that its wvalue
is always the literal itself. There may exist several kinds of literals,
e.qg.’
Numbers

Logical constants (Boolean)
Symbols
Furthermore there exists the literal & with the meaning "undefined".

Numeric constants shall be denoted in standard decimal form. The logical

constants are true and false*.

A symbol or character is denoted by the symbol itself enclosed in
quote marks (¢’). A list of symbols is usually called a string.

Other types of literals may arbitrarily be introduced.

2. Lists
A list is'an entity denoted by'
(&, %, . ..,0
whose value is the ordered set of the current values of the expressions
E, F, . .., G  called the elements of the list. A list can have any
number of elements (including 0), and the elements are numbered with the

natural numbers starting with 1

the underlined (boldface) letters have to be understood as one single symbol.
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3. Variables

A variable is an entity uniquely identified within a program by a
name to which a value can be assigned (and reassigned) during the execution
of a program. Before the first assignment to a variable, its value shall
be Q

If the value of a variable consists of a sequence of elements, any
one element may be designated by the variable name and a subscript, and
thus is called a subscripted variable. The subscript is an expression,
whose current value is the ordinal number of the element to be designated.
Thus, after a «{1,2,{3,4,5,},6}, a[l] designates the element "1", a[3]
designates the element {3,4,5}, and therefore a[3][2] designates the
second element of a[3], i.e. "4". The notation a2, shall be understood

equivalent to al[i], a, 3 equivalent to a[il[j] etc.
b

4. Unary Operators

Examples of unary operators are:
- X , yields the negative of x
Cc X , yields the value of the variable whose reference is
currently assigned to x
abs x » yields the absolute value of x
integer x , yvields x rounded to the nearest integer
tailx , yields the list x with its first element deleted;
isli x s yields true, if x is a list, false otherwise
A further set of unary operators is the set of typetest operators
which determine whether the current value of a variable is a member of
a certain set of literals. The resulting value is true, if the test is

affirmative, false otherwise.
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FExamples:

isn %, current value of x 1is a number

isb x, ... . .. is a logical (Boolean) constant
isu %, ... .. .0 is Q (undefined)
isyx,. . . . . ..is a symbol

A further set of unary operators is the set of conversion operators
which produce values of a certain type from a value of another type:

Examples:

real x yields the number corresponding to the logical value x;
logical x 1inverse of real (true e1, false &0 shall be assumed);
Conversion operators between numbers and symbols shall not
be defined here, although their existence is assumed, because
the notation does not define the set of symbols which may

possibly be used.

5. Binary Operators

Examples of binary operators are:

+ - X designating addition, subtraction and multiplication in the
usual sense. The accuracy of the result in the case of the
operands being non-integral numbers is not defined.

/ denoting division in the usual sense. The accuracy of the
result is not defined here. In case of the denominator being
0, the result is @ .

+ denoting division between the rounded operands with the

result being truncated to its integral value.
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mod yields the remainder of the division denoted by + .

& yields the concatenation of two lists, i.e.
{x} & vy} = {x,y]

= yields true, if the two scalar operands are equal, false
otherwise.

Y

) denoting exponentiation, i.e. x4 y stands for x

The classes of unary and binary operators listed here may be ex-

tended and new types of literals may be introduced along with corresponding

typetest and conversion operators.

B. The Branching Statement

There are Simple and Conditional Branching Statements.

1. The Simple Branching Statement

It is of the form
bot0
where I stands for a label. The meaning is that the successor
of this statement is the statement with the label f . Labelling
of a statement is achieved by preceding it with the label and a
colon (:). The label is a unique name (within a program) and desig-

nates exactly one statement of the program.

2. The Conditional Branching Statement

It is of the form
if E then goto !
where [ is a label uniquely defined in the program and E is

an expression. The meaning is to select as the successor to the

15




Branching Statement the statement with the label £, if the current
value of E is true, or the next statement in the sequence, if it
is false. For notational convenience a statement of the form

if 9 E then goto £ (7 = not)

shall be admitted and understood in the obvious sense.

H KKK KRR KKK KN KN NN

Notational standards shall not be fixed here. Thus the sequence
of statements can be established by separating statements by delimiters,
or by beginning a new line for every statement. The Branching Statement
and the labelling of statements may be replaced by explicit arrows, thus

yielding block diagrams or flow-charts.
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ITI.

Phrase Structure Programming‘' Languages'!,'

A. Notation, Terminology, Basic Definitions

Let U be a given set: the vocabulary. Elements of ¥ are called
symbols and will be denoted by capital Latin letters, S, T, U etc. Finite
sequences of symbols -- including the empty sequence (A) —-- are called
set of all strings over U is denoted by U'*. Clearly U C ¥*.

A simple phrase structure system is an ordered pair (U ¢), where
U is a vocabulary and ¢ is a finite set of syntactic rules ¢ of the

form

U-sX . £ .. UEV,x€Ux) .

For ¢ = U —-x, U is called the left part and x the right part
of o.

y directly produces z(y 5 z) and conversely z directly reduces
into y, if and only if there exist strings u, v such that y = ulv
and z = uxv, and the rule U —x is an element of ¢ .

y produces z(y i z) and conversely z reduces into y, 1if and

only i1f there exist a sequence of strings Xgr o 3% such that

Y = Xy X, =32, and xi_l'—'>xi (i-=1,...,n3n > 1)

A simple phrase structure syntax is an ordered quadruple Q::@t@,gi A),
where UV and ¢ form a phrase structure system; B is the subset of ¥ such
that none of the elements of-B(called basic symbols) occurs as the left
part of any rule of ¢, while all elements of V-8 occur as left part of

at least one rule; A is the symbol which occurs in no right part of any

rule of 0@
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The letter U shall always denote some symbol U € V-%.
X is a sentence of §, if x € U*¥ (i.e. x 1is a string of basic

*
symbols) and A - x

A simple phrase structure language £ is the set of all strings x which

can be produced by (V, ¢) from A:
£(6) = {x|aBxA x €7} .

Let U 3 z . A parse of the string z into the symbol U is a sequence

of syntactic rules @l,me,, .. @n’ such that mj directly reduces

z into zj (j =1 . . .n), and z = 2y a}= U

-1
Assume 2, = U1U2 co Um (for some 1<%k <n) . Then z, (1 < k)

must be of the form 3z, = u,u u , where for eachf =1 . . . m either
1 1 2. m

UI kst u,, or Uz =u, . Then the canonical form of the section of the

parse reducing z, into Zye shall be {¢l}{®2} e {¢m}’ where the

sequence {ml} is the canonical form of the section of the parse reducing
u, into U, Clearly'{wz} is empty, if U = u,, and is canonical,
if it consists of 1 element only..

The canonical parse 1is the parse which proceeds strictly from Jleft
to_right in a sentence, and reduces a leftmost part of a sentence as far
as possible before -proceeding further to the right. 1In general, there
may exist several canonical parses for a sentence, but every parse has
only one canonical form.

An unambiguous syntax is a phrase structure syntax  with the prop-
erty that for every string x € ‘() there exists exactly one canonical
parse.

It has been show-n that there exists no algorithm which decides the
ambiguity problem for any arbitrary syntax. However, a sufficient con-
dition for a syntax to be unambiguous will subsequently be derived.

A method will be explained to determine whether a given syntax satisfies

16




this condition.
An environment € is a set of variables whose values define the
meaning of a sentence.

An interpretation rule y defines an action (or a sequence of actions)

involving the variables of an environment § .

A phrase structure programming language S%(Q,LY,E ) is a phrase
structure language £ (g), where 9(17, 9,53, A) is a phrase structure
syntax, Y is a set of (possibly empty) interpretation rules such that
a'unique one to one mapping exists between elements of Y and ¢, and
€ is an environment for the elements of Y. Instead of éep(g,‘f,?,) we
also write % (¥, 9,8, A,%,€).

The meaning m of a sentence x € éQPis the effect of the execution
of the sequence of interpretation rules \l/l, \|f2 \]In on the environment
€ , Where PP - cpn is a parse of the sentence x 1into the symbol A
and wi corresponds to cpi for all i.

It follows immediately that a programming language will have an unam-
biguous meaning, if and only if its underlying syntax is unambiguous. As a
consequence, every sentence of the language has a well-defined meaning.

A sentence xl € éfp( gl,‘i’l,ﬁ) is called equivalent to a sentence
X5 € xp( 92: ‘1’2,8) (possibly 91 = 92, ‘l’l = k1’2), if and only if

m(xl) is equal to m(xg),

A programming language ;ep( 91, ‘i’l, £) is called equivalent to
‘;ep( 92, ‘fe, €), 4if and only if ‘\’%l _ £p2 and for every sentence X,

ml(x) according to (gl’ Ll’l) is equal to m, (x) according to (92, YE) .

17




B. Precedence Phrase Structure Systems

The definition of the meaning of a sentence requires that a
sentence must be parsed in order to be evaluated or obeyed. our prime
attention will therefore be directed toward a constructive method for
parsing. In the present chapter, a parsing algorithm will be described.
It relies on certain relations between symbols. These relations can be
determined for any given syntax. A syntax for which the relation between

any two symbols is unique, 1is called a simple precedence syntax. Obviously,

the, parsing algorithm only applies to precedence phrase structure systems.
It will then be shown that any parse in-such a system is unique. The

class of precedence phrase structure systems is only a restricted subset
among all phrase structure systems. The definition of precedence relations

will subsequently be generalized with the effect that the class of prece-

dence phrase structure systems will be considerably enlarged.

1. The Parsing Algorithm for Simple Precedence Phrase Structure

Languages.

In accord?nce with the definition of the canonical form of a
generation tree or of a parse, a parsing algorithm must first detect
the leftmost substring of the sentence to which a reduction is ap-
plicable. Then the reduction is to be performed and the same princi-
ple is applied to the new sentence. 1In order to detect the leftmost
reducible substring, the algorithm to be presented here makes use of
previously established noncommutative relations between symbols of
U which are chosen according to the following criteria:

a. The relation = holds between all adjacent symbols within &

string which is directly reducible;
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b. The relation < holds between the symbol immediately pre-
ceding a reducible string and the leftmost symbol of that string;
c. The relation® holds between the rightmost symbol of a
reducible string and the symbol immediately following that string.
The process of detecting the leftmost reducible substring now consists
of scanning the sentence from left to right until the first symbol
pair is found so that Sie,si+l’ then to retreat back to the last

symbol pair for which Sj—{LQ sj holds. Sj o Si is then the
sought substring; it is replaced by the symbol resulting from the
reduction. The process then repeats itself. At this point it must
be noted that it is not necessary to start scanning at the beginning
of the sentence, since all symbols Sk for k < j have not been
altered, but that the search for the next © can start at the place
of the previous reduction.

In the following formal description of the algorithm the original
sentence is denoted by Pl"'Pn .k is the index of the last symbol
scanned. For practical reasons, all scanned symbols are copied and
renamed SJ....Si . The reducible substring therefore will always be
Sl'“’si for some j . Internal to the algorithm,there exists a
symbol L initializing and terminating the process. To any symbol

S of Uit has the relations- .l < S and S > .

We assume that PO = Pn+l =1 .
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i1+ 1
Jei
Si e-Pk (:)
k ek + 1
ie1
k «1
Sl «— L

Jej-1

Reduce

Sj""si

icH
Si «U

|

Algorithm for Syntactic Analysis
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Comments to the Algorithm:
@ Copy the string P into S and advance until a relation » is
encountered;
@ Retreat backward across the reducible substring;

GD A reduction has been made. Resume the search for & .

The step denoted by "Reduce SJ""Si” requires that the reducible
substring is identified in order to obtain the symbol resulting from
the reduction. If the parsed sentence is to be evaluated, then the
interpretation rule llfl corresponding to the syntactic rule cP/l:

u - S""Si is identified and obeyed.

J

2. An Algorithm to Determine the Precedence Relations.

The definition of the precedence relations can be formalized in
the following way:
a. For any ordered pair of symbols (Si, Sj)’ S; = Sj’ if and only
if there exists a syntactic rule of the form u - xSiSjy',
for some symbol U and some (possibly empty) strings x, y.
b. For any ordered pair of symbols S5 S__J), S. l< Sj’ if and only
if there exists a syntactic rule of the form u - XSiUly’
for some U, x, vy, Uz, and there exists a generation
Uz i sz, for some string z.
c. For any ordered pair of symbols (si, S_.}, S. ? sJ., if and
only if
1. there exists a syntactic rule of the form U —>xUkSJ.y,
for some U, x, vy, Uk’ and there exists a generation
U i zsi for some string z, or

k
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2. there exists a syntactic rule of the form U —>xUkU!y,
for some U, x, vy, Uk’ U!’ and there exist generations

* *
Uk - z8, and Ul - Sjw for some strings z, w

We now introduce the sets of leftmost and rightmost symbols of a non-basic
symbol U by the following definitions:

L (U) = {s|32(v 5 s2)}

R(v) = {s]3 2(v 5 25)}
Now the definitions a. b. c. can be reformulated as:

a. 8, = Sj — (p: U - xSiSjy)

b. 8; €55 c-3 B(: U - x8,U;y) A S € (U,

k
W(p: U - xUU,y) A S, € Ry, ) A sje:t,(Ul)

. \Y
c. 8;> 8 e Ip(p: U - xU Sjy) AS, € fﬁ(Uk)

~ These definitions are equivalent to the definitions of the precedence
relations, if ¢ does not contain any rules of the form u -A, where
A denotes the empty string.

The definition of the sets & and ® is such that an algorithm for
effectively creating the sets is evident. A symbol S is a member of
£(v), if

a. There exists a syntactic rule 9: U 3 Sx, for some x, or

b. There exists a syntactic rule ¢: u - le, and S Ei(Ul);
L) . {sl3p: . > . VI . o> UxASEXU)]

Analogously:
R(U) . {s] p: U>xSV Fp: U-xU A S e?{(ul)}
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The algorithm for finding & and R for all symbols U € U-f involves

searching ¢ for appropriate syntactic rules. 1In practice, this turns

out to be a rather intricate affair, because precautions must be taken

when recursive definitions are used. An algorithm is presented in Appen-

dix I as part of an Extended ALGOL program for the Burroughs B5500 computer.
The precedence relations can be represented by a matrix M with ele-

ments M.. representing the relation between the ordered symbol pair

(Si’ Sj)° The matrix clearly has as many rows and columns as there are

symbols in the vocabulary V.

Assuming that an arbitrary ordering of the symbols of V has been made
(’J’= {Sl,Se,...,Sn}), an algorithm for the determination of the precedence

matrix M can be indicated as follows:
For every element ¢ of ¢ which is of the form

U—-)SlSE e sm

and for every pair S, S, . (1i=1...m=-1) assign

a. = to Mi 141 0
b. <to all Mi,k with row index k such that 8§, € £(Si+l);

c. > toall M . . with column index k such that 8, € ﬁ(Si);
)

g .
d. ® >toall¥,  with indices f, k such that §, € R(si) and 8, € .:C(si+l)

k
Assignments under b. occur only if Si+l € V-8, under c. only if

s, € V-%, and under d. only if both 8.5 8,41 € U-B, because

L(s) and R(S) are empty sets for all sSE R.

This algorithm appears as part of the ALGOL program listed in Appendix I.

A syntax is a simple precedence syntax, if and only if at most one

relation holds between any ordered pair of symbols.
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3. Examples

f& =ca,"}

o S >H"

1 H—"
H—->HNAN
H—-HS

Assume that S stands for‘string’and H forhead’,then this phrase
structure system would define a string as consisting of a sequence of

string elements enclosed in quote-marks, where an element is either A

or another (nested) string.

u | L) Rw)

S IIIH 1"

H "H ll}\.S
M|ls ® A~ "
s> > > »
i« 2@
A > > > >
"> > > >

Since both H =" and H < ", Eﬁ_ is not a precedence syntax. It is
intuitively clear that either nested strings should be delineated by

distinct opening and closing marks ({,), or that no nested strings should
2

be allowed (5%)
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b G, =(0, 0,8, 8
{s, H, A, ¢,
{x ¢,%

S->H?® AGHV
Ho ¢ (9,)
H - H\ Aeuv
H —» HS Aer.v

D <
oo

o

R(V)

=
145!
fas

L]

A

L)

S

?

«~ 2> m »
il
v VvV AV

A\

-
V
\

is a precedence syntax

Omw = A,Gu..u ® uM@Hu S

-

v Vv Vv

NV

vV V V

l=

\4

VvV vV

R(v)
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> om v R
1
Y o

93 is a precedence syntax.
As an illustration for the parsing algorithm, we choose the parsing

of a sentence of 56(92):

Eafn 2N
| -
?, HACAN?? H
—_
(o) HEN 2D H
5 j S
?,° HHA ? ? H
L1
Pyt HH ? ? H
3 1
HS? S
? |
H? H
i | .
Py s s

4. The Uniqueness of a Parse.

The three previous examples suggest that the property of unique
precedence relationship between all symbol pairs be connected with unique-
ness of a parse for any sentence of a language. This relationship is
established by the following theorem:

Theorem: The given parsing algorithm yields the canonical form of the
parse for any sentence of a precedence phrase structure language, if there
exist no two syntactic rules with the same right part. Furthermore, this

canonical parse is unique.
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This theorem is proven, if it can be shown that in any sentence its
directly reducible parts are disjoint. Then the algorithm, proceeding
strictly from left to right, produces the canonical parse, which is unique,
because no reducible substring can apply to more than one syntactic rule.

The proof that all directly reducible substrings are disjoint is achieved
indirectly:  Suppose that the string Sl'f'Sn contain two directly reducible

substrings S,...S8k (a.) and Sij"s (b.), where 1<i< <k<£<n .

1 1
Then because of a. it follows from the definition of the precedence rela-
tions that Sj-l = Sj and Sk€> Sk+l , and because of b. Sj_l< Sj
and Sk = Sk+l Therefore this sentence cannot belong to a precedence
grammar.

Since in particular the leftmost reducible substring is unique, the
syntactic rule to be applied is unique. Because the new sentence again
belongs to the precedence language, the next reduction is unique again.
It can be shown by induction, that therefore the entire parse must be
unique.

From the definition of the meaning of a phrase structure programming
language it follows that its meaning is unambiguous for all sentences,

if the underlying syntax is a precedence syntax.

5. Precedence Functions.

The given parsing algorithm refers to a matrix of precedence
relations with n2 elements, where n 1is the number of symbols in the
language. For practicalcompilers this would in most cases require an
extensive amount of storage space. Often the precedence relations are such

that two numeric functions (f, g) ranging over the set of symbols can
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be found, such that for all ordered pairs (Si’ Sj)
a. f£(s,) = g(Sj) ——8; =5,
b. f(Si) < g(Sj) —— 8, < Sj

c. f(Si) >g(Sj) — 8, > S+

If these functions exist and the parsing algorithm is adjusted appro-
priately, then the amount of elements needed to represent the precedence
information reduces from n2 to én. An algorithm for deciding whether
the functions exist and for finding the functions if they exist is given
as part of the ALGOL program in Appendix-1

In example 92 e.g. the precedence matrix can be represented by the

two functions f and g, where

s =|s h A €
f() = | 3 1 3 3 3
g(s) = 1 2 1 2 1

A precedence phrase structure syntax for which these precedence functions
do not exist is given presently:
U = {A: B, C; ) [; ]}

53 = {)\.,[,]}

¢: A->CB]
A ]
B-oA
B->ANA
B-oA
c-

It can be verified that this is a precedence syntax and in particular

the following precedence relations can be derived:
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A, >0, [=]1,xrx>]
Precedence functions f and g would thus have to satisfy
£f(z) < g(l) < £([) = &(]) <£(n)
which clearly is a contradiction. pPrecedence functions therefore do not

exist for this precedence syntax.

6. Higher Order Precedence Syntax.

It is the purpose of this chapter to redefine the precedence
ralationships more generally, thus enlarging the class of precedence phrase
structure systems. This is desirable, since for precedence languages a
constructive parsing algorithm has been presented which is instrumental
in the definition of the meaning of the language. The motivation for the
manner in which the precedence relationships will be generalized is first
illustrated in an informal way by means of examples. These examples are
phrase structure systems which for one or another reason might be likely
to cceur in the definition of a language, but which also violate the rules
for simple precedence syntax.

Example 1.
V=@« . B, ;, s, D}
B=1{,s,D}
¢: A->B
A->D ;A
B-S
B-B ;S
S € $(A), thus ; < S, and also ;=S

This syntax produces sequences of D's separated by ";", followed

",

by a sequence of symbols S, also separated by A parse is con-

structed as follows:
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D ...... 3 D3 D3 S ;8 foeo it S
uJ
B
[ |
B
B
[ |
A
L ]
A
)
............. A......**.a
[ 3
A

The sequence of S's is defined using a left-recursive definition. while
the sequence of D's is defined using a right-recursive definition. The
precedence violation occurs, because for both sequences the same separator
symbol is used.

The difficulty arises when the symbol sequence ";8" occurs. It
is then not clear whether both symbols should be included in the same sub-
string or not. The decision can be made, 1if the immediately preceding
symbol is investigated. !

In other words, not only two single symbols should be related, but a
symbol and the string consisting of the two previously obtained symbols.

Thus:

o
e
e

S and Dy < S
Example 2:
U=1Ia,B, i, 5S,D),
B=1{,s, D}
¢: A-B
A->A ;S

B->D
B-D ;B
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D € R(A), thus D ® ; and also D =
This syntax produces the same strings as the preceding one, but with

a different syntactic structure:

D «eveee 3D ;D;S;S; oo, 5 S
(]
B
e
B
B
L }
A
1 )
A
I 1
A
- ]
A

Here the same difficulty arises upon encountering the symbol
sequence "D3;" . The decision whether to include both symbols in the
same syntactic category or not can be reached upon investigating the
following symbol. Explicitly, a symbol should be related to the subsequent
string of 2 symbols, i.e.

D= ;D and D> ;8

Example 3:

V={a,B,r,; , [, 1)

B=I, 5, 0,1

)

]

W >
il

> ——w
> P

B
]
]

Since N € &(A) and A € $(A) : [ < XN and A> ] . But'also

[ =N and N =] .

In this case the following relations must be established to resolve the
ambiguity.

[=A), [<An;, x> 1 and [n =]
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This syntax therefore combines the situations arising in Examples 1 and 2.
Obviously, examples could be created where the strings to be related would
be of length greater than 2. We will therefore call a precedence phrase
structure system to be of order (m, n), if unique precedence relations
can be established between strings of length < m and strings of length

<n . Subsequently, a more precise definition will be stated. A set of
extended rules must be found which define the generalized precedence
relations. The parsing algorithm, however, remains the same, with the

exception that not only the symbols Si and Pk be related, but pos-

sibly the strings Si m...Si and Pk"'Pk+n

The definitions of the relations < =, ©» is as follows: Let

- 8. let u,v,u’,v’ € ¥ and U,U,,U, € '1?-,75,

a. x =Yy, if and only if there exists a syntactic rule

u - uS_lSlv, and

*, 1
v o y-v'

us k. u'x, S

-1 1

b. x <y, 1if and only if there exists a syntactic rule

u - us lUlv, and

* s * ,
uS , 2ux,Uv-o yv' ;

-1 1

c. x>y, 1if and only if there exists a syntactic rule
U - uUlSlv, and

* * . .
uU:L - u'x, Slv - y’v', or there exists a syntactic rule

U - ul,U,v and ul 5ux, uvEy’

2 1 2
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A syntax is said to be a precedence_syntax of order (m,n), if and

only if
a. it is not a precedence syntax of degree (m', n') for m' < m
or n' < n, and
. ' 1 /
b. for any ordered pair of strings S_m .. S-l’ Sl e Sn s

where m' < m and n' <_n either at most one of the 3 relations
< = 0 > holds or otherwise b. 1is satisfied for the pair

S-(m'+l)". R R LS R

A precedence syntax of order (1,1) is called a simple precedence syntax.
With the help of the sets of leftmost and rightmost strings, the defini-
tions of the precedence relations can be reformulated analogously to their
counterparts in section 2b, subject to the condition that there exists
no rule U +A
a. x =y o 3p@:U > uS_lSlv)
AMu's_...5,=uvs_..s e KD

-2
S8 v =vVs,...s € &0

b. x <y e 3(@:u - us _lUlv)

Au's .S, = uVS_...5_ € Rm-1) )y

A, . .8 € ﬁ(n)(ulv))

1

c. xovy e PeE:u- uUlSlV)

s 0 40 € R(m)(uul) )

Ay ...8 v = wvs,..s € D))

or F(p: u - uUlUEV)

As., 5, € R™ ) A s, .5 € EM )
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i(n)(s) and ER.U(‘ )(s) are then defined as follows:

1. 2 =2,...2 € g %Uu) o 31 <k <n) >

((zl. A € sf/(k)(u))A(zk...znu’= u VvV Z. . z€ i(n'k)(u))
la. 2=z .2 € Bc(n)(U)eak(Og_ k< n) >

U -z, .ZkuAZk...ZnEI/(n-k)(u))
2. z=zﬁ..zl€ E&(n)(uU)eak(l <k <n) 3

( hﬂzn"'zk+l _uVz R € g((n-k)(u)) A (Zk...Zl € 5{(k)(U))
2a. z = Zn...Zl € ﬂ.(n)(U) o 3k(0 < k< n) >

(n-k)
(u - uzk...ZlvA %"'Zk+l e g\n (u))

These formulae indicate the method for effectively finding the sets
£ and ﬂf‘or all symbols in V—Tj. In particular, we obtain for Be(l)
and 5R(1) the definitions for & and & without superscript as defined in
section 2b.

Although for practical purposes such as the construction of a
useful programming language no precedence syntax of order greater than
(2,2) == or even (2,1) -- will be necessary, a general approach for the
determination of the precedence relations of any order shall be outlined
subsequently:

First it is to be determined whether a given syntax is a precedence

syntax of order (1,1). If it is not, then for all pairs of symbols

(Si’ Sk) between which the relationship is not unique, it has to be
determined whether all relations will be unique between either (SjSi: Sk)
or (Si’ Sksj)’ where Sj ranges over the entire vocabulary. According to
the outcome, one obtains a precedence syntax of order (2,1), (1,2) or

(2,2), or if some relations are still not unique, one has to try for even

higher orders. If at some stage it is not possible to determine relations
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between the strings with the appended symbol Sj ranging over the entire
vocabulary, then the given syntax is no precedence syntax at all.

Example:
P={a, B, N, 0, )

gra:{%-)[)]}

® : A—> B
A->[ B]
B oA
Bo[ A ]

P

The conflicting relationsare [ <N ,[ = A, A 2] and A > ]. But a
relation between (S[ , N) or (A, ]8) can be established for no symbol
S whatsoever, and between ([ , kSl) and.(Sek , 1) only for 5, = ]
and S, =[ . Thus this is no precedence syntax.

2

Clearly there exist two different parses for the string [A],

namely
[ x] and [ A ]
L I |
B B
| B I
A A

The underlying phrase structure systems in section III.3 and chapter

IV will be simple precedence phrase structure systems.

C. An Example

A simple phrase structure programming language shall serve as an
illustration of the presented concepts. This language contains the fol-

lowing constructs which are well-known from ALGOL60: Variables, arithmetic

expressions, assignment statements, declarations and the block structure.

The meaning of the language is explained in terms of anarray of variables,
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called the 'value stack', which has to be understood as being associated
with the array § which is instrumental in the parsing algorithm. The
variable V. represents the 'value' associated with the symbol 5; -
E.g., the interpretation rule Wll corresponding to the syntactic rule
P11 determines the value of the resulting symbol expr— as the sum of
the values of the symbols expr- and term belonging to the string to be

reduced.

exXpr— = expr— + term

P11 ¢
Vi vy <Yyt ¥y, [V(expro) < V(expr-) + V(tern))
Note that the string to be reduced has been denoted by{gj'”§i in the
parsing algorithm of section III.2a. 1Instead of thus making explicit
reference to a particular parsing algorithm, zi“.yi, the wvalues of
the symbols §i"'§j’ can be denoted explicitly, i.e. instead of Xi
and_g. in ¥y, one might write V(term) and V(expr-) respectively.
For the sake of brevity, the subscripts i and j have been preferred
here.
A second set of variables is called the ‘name stack' . It serves to
represent a second value of certain symbols, which can be considered as
a name' . The symbol decl is actually the only symbol with two values;
it represents a variable of the program in execution which has a name
(namely its associated identifier) and a value (namely the value last
assigned to it by the program). The syntax of the language is such that
the symbol decl remains in the parse-stack S as long as the declaration
is valid, i.e. until the block to which the declaration belongs is closed.

This is achieved by defining the sequence of declarations in the head

of a block by the right - recursive syntactic rule P - The
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parse of a sequence of declarations illustrates that the declarations can
only be involved in a reduction together with a_EggX: symbol after a
symbol body- has originated through some other syntactic reduction.
This, in turn, is only possibly when the symbol end is encountered. The
end symbol then initiates a whole sequence of reductions which result in
the collapsing of the part of the stack which represented the closing
block. On the other hand, the sequence of statements which constitutes
the imperative part of a block, is defined by the left-recursive syntactic
formula Pg - Thus a statement reduces with a preceding statement-list
into a statement-list immediately, because there is no need to retain
information about the executed statement in the value-stack.

This is a typical example where the syntax is engaged in the defini-
tion of not only the structure but also the meaning of a language. The
consequence is that in constructing a syntax one has to be fully aware of
the meaning of a constituent of the language and its interaction with
other constituents. Many other such examples will be found in chapter IV
of this article. It is, however, not possible to ennumerate and discuss
every particular consideration which had to be made during the construction
of the language. 'Only a detailed study and analysis of the language can
usually reveal the reasons for the many decisions which were taken in
its design.

Subsequently the formal definition of the simple phrase structure
language is given:

£ = (%,,8, program, @, &)

b

vV -R = {program] block |body| body- decl| statmentg
statlist | expr | exp:r- | term term—]
factor | var | number| digit |
R= {xlbem end H<—|+l IXI/I )]
0l1 516171819 newfL)

€= {_S_) K: H: i}
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nrogra.m

- 4 block L

- begin body end

- body-
- decl ; body-
- statlist

- statlist , statment

— statment

- Var « €xXpr

- block

Py block
(p3 ¢ body
P, : body-
cps body-
q)6 statlist

: tatlist
cp7 s i
cp8 : statment
cp9 statment
P of EXPr
;¢ expr-
Pppf EXpr-
(p13: expr-
®qy¢ eXpr-
q>15: term
qJ16: term-
cpl.?: term-
P8 term-
q>19: factor
cpeoz factor
q>21: factor
Ppt VBT
q>23: npmber
q)Qh: number
cp25: decl

:  digit
Pop’ —E
cp27: digit

digit

Pyt B

- expr-
- expr- +term

- expr- ~term

- - tem

- term

- term~

X factor

- term- / factor

- factor

- var

- ( expr )
— number

- A

- digit

- number digit
- new A

-0

-1

eeces s e
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A (empty)

A
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ERROR
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Notes:
1. The branch in rule 4;22 labelled with ERROR is an example for the
indication of a 'semantic error' in ﬁp . By 'semantic error' is in
general meant a reaction of an interpretation rule which is not ex-
plicitly defined. 1In the example of "’22 the labelled branch is
followed when no identifier equal to gi is found in the W stack,
i.e. when an 'undeclared' identifier is encountered.

2. The basic symbol A in ¥ is here meant to act as a representative

of the class of all identifiers. Nothing will be said about the

representation of identifiers.

On the subsequent pages follow the sets of leftmost and right-

most symbols 4 and 9{, the matrix M of precedence relations, and the

precedence functions f and g, a1l of which were determined by the

syntax-processor program listed in Appendix I.
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#kk  LEFTMOST SYMBOLS s

BLOCK BEGIN
BODY BUDY= DECL NEA STATLIST STATMENT VAR IDENT BLOCK BEGIN
BODY~ DECL NEW STATLIST STATYENT VA9 1DENT BLOCK BEGIN
DECL NEw
STATLIST STATLIST STATMENT VAR INENT BLOCK BEGIN
STATYENT VAR IDENT BLDCK BEGIN
VAR 10ENT
EXPR EXPR= - TERM TERM- FACTOR VAR IDENT 4 DIGIT 0
1 2 3 [ 5 6 7 8 9 NUMBER
EXPRe= EXPRe= - TERM TERM= FACTOR VAR IDENT 4 DIGIT 0
1 2 3 [ 5 6 7 9 9 YUMBER
TERM TERM= FACTUR VAR IDENT ( DIGIT 0 | 2 3
4 5 6 8 9 NUMBER
TERM= TERM= FACTUR JAR IDENT ( DIGIT 0 | 2 3
4 5 6 6 9 YUYBER
FACTOR VAR IDENT ( DIGIT 0 | 2 3 4 5
6 7 8 9 NUMBER
NUMBER DIGIT 0 | 2 3 L S 6 7 9
9 NUMBER
DIGIT 0 1 2 3 4 5 6 7 8 9
om0 RIGHTMIST SYMIOLS w#ww
BLOCK END
BODY BODY~ STATLIST STATMENT EXPR EXPR= TERM TERM- FACTOR VAR T0ENT
) NUMBER DIGIT 0 1 2 3 4 5 6
7 8 9 RLOCK END ’
BODY~ BODY= STATLIST STal MENT EXPR EXPR= TERM TERM= FACTOR VAR IOENT
) NUMBER DIGIT 0 | 2 3 ) 5 6
7 8 9 BLOCK END
DCCL IOENT
STATLIST STATYENT  EXPR EXPR= TERM TERM= FACTOR VAR IDENT ) NUMBER
DIGIT 0 1 ? 3 4 5 6 7 8
9 BLOCK END
STATYENT EXPR EXPR= TERY TERM= FACTOR VAR IDENT ) NUMBER DIGIT
0 1 2 3 4 5 6 7 B 9
BLOCK END
VAR IDENT
EXPR EXPR= TERM TERM- FACTOR VAR I1DENT ) NUMBER DIGIT 0
1 2 3 4 5 6 7 8 9
EXPR= TERM TERM’ FACTOR VAR IDENT ) NUMBER DIGIT 0 1
2 3 4 5 6 7 8 9
TERM TERM= FACTIR JAR IDENT ) NUMBER DIGIT 0 I 2
3 4 5 6 7 8 9
TERM= FACTOR VAR TDENT ) NUMBER DIGIT 0 1 2 3
4 S 6 7 8 9
FACTOR VAR IDENT ) NUMBER DIGIT 0 | 2 3 4
5 6 . 7 ) 9
NUMBER DIGIT 0 | 7 3 4 5 [} 7 8
9
DIGIT 0 1 2 3 4 5 6 7 8 9




® " A
-
~ v v
NEW ™
© v A VVVVVV AAAAAAAAAA
9 -
8 n v A VVVVVV AAAAAAAAAA
”
7 -4 v A VVVVVY AAAAAAAAAA
6 ™ v A VVVVVY AAAAAAAAAA
L)
o~ v A VVVVVVY AAAAAAAAAA
5 P
u - vV A VvVVVVVYVY AAAAAAAAAA
™
=3 2N VVVVVV AAAAAAAAAA
3 P
5 o v A VVVVVYV AAAAAAAAAA
o~
© v A VVVVVYV AAAAAAAAAA
1 o~
~ v A vVVvVVvYVYyY AAAANAAANAAANA
(o] o
) g ABAAAAAAA AAAAAAAAAAAN
' wn VvVVVVYVY
( o~
/ =z A HAAAA AAAAAAAAAAA
o~
o A WAAAA AAAAAAAAAAA
X o~
g A WAAAAAA v VAAAAAAAAAAA
- A NAAAAAA AAAAAAAAAAA
+ o~
=} " A
-~ oN
oA HAAAAAAAAAA A AAAAAAAAAAA
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NO.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

SYMBUL

BLUCK
BODY
BODY=
DECL
STATLIST
STATMENT
VAR

EXPR
EXPR=
TERM
TERM=
FACTOR
NUMBER
DIGIT
IDENT
BEGIN
END

FZOVOEBNOUVNDWN— OVANX 1 4+ 4% v
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003
001
NQ2
001
002
003
206
003
004
009
005
006
006
008
007
001
004
002
003
001
002
002
003
003
001
006
008
008
008
003
008
0048
008
008
008
008
004
004

004
0C1
002
003
003
0C3
004
001
002
002
003
003
0C4
006
0Cq4
005
001
001
002
006
004
0C4
0C5
005
004
003
007
0Q7
0Q7
0Q7
0c7
007
007
0C7
007
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003
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IV. EULER: An Extension and Generalization of ALGOL 60

In this chapter the algorithmic language EULER is described first
informally and then formally by its syntax and semantics. ap attempt has
been made to generalize and extend some of the concepts of ALGOL thus crea-
ting a language which is simpler yet more flexible than ALGOL 60. A second
objective in developing this language was to show that a useful programming
language which can be processed with reasonable efficiency can be defined
in rigorous formality.

A . An Informal Description of EULER:

1. Variables and Constants

In ALGOL the following kinds of quantities are distinguished:
simple variables, arrays, labels, switches and procedures. gome of these
quantities ‘possess values' and these values can be of certain types, in-
teger, real and Boolean. These quantities are declared and named by iden-
tifiers in the head of blocks. Since these declarations fix some of the
properties of the quantities involved, ALGOL is rather restrictive with
respect to dynamic changes. The variables are the most flexible quantities,
because values can be assigned dynamically to them. But the type of these
values always remains the same. The other quantities are even less flexi-
ble. An array identifier will always designate a quantity with a fixed
dimension, fixed subscript bounds and a fixed type of all elements. A
procedure identifier will always designate a fixed procedure body, with a
fixed number of parameters with fixed type specification (when given) and
with fixed decision on whether the parameters are to be called by name or
by value. A switch identifier always designates a list with a fixed number

of fixed elements. We may call arrays, procedures, and switches€semistatic?,
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because some of their properties may be fixed by their declarations.

In order to lift these restrictions, EULER employs a general type concept.
Arrays, procedures, and switches are not quantities which are declared and
named by identifiers*, i.e. they are not as in ALGOL quantities which are
on the same level as variables. In EULER these quantities are on the level
of numeric and Boolean constants. EULER therefore introduces besides the

number and
logical constant

the following additional types of constants:

!
reference,

label,

symbol

list (array),

procedure,

undefined.
These constants can be assigned to variables, which assume the same form
as in ALGOL, but for which no fixed types are specified. This dynamic
principle of type handling requires of course that each operator has to
make a type test at execution time to insure that the operands involved
are appropriate.
The generality goes one step further: A procedure when executed can produce
a value of any type (and can of course also act by side effects), and this
type can vary from one call of this procedure to the next. The elements
of a list can have values of any type and the type can be different from
element to element within the same list. If the list elements are labels
then we have a switch, 1if the elements are procedures then we have a pro-
cedure list, a construct which is not available in ALGOL 60 at all. If

the elements of a list are lists themselves then we have a general tree

structure.

*
identifiers are defined in EULER exactly as in ALGOL 60.
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EULER provides general type-test operators and some type conversion

operators.

a) Numbers and Logical Constants

Numbers in EULER are essentially defined like unsigned numbers
in ALGOL 60.

The logical constants are true and false.

b) References
A reference to a variable in EULER is a value of type Reference.

It designates the identity of this particular variable rather than

the value assigned to it. We can form a reference by applying the

operator @ to a variable:

@<variable>
The inverse of the reference operator is the evaluation operator (.).
If a certain variable x has been assigned the reference to a

variable y, then

represents thevariable vy. Therefore the form
<variable>.

is also considered to be a variable.
c) Labels

A label is like in ALGOL a designation of an entry point into a
statement sequence. It is a 'Program Reference' . A label is
symbolically represented by an identifier. 1In contrast to ALGOL 60
each label has to be declared in the head of the block where it is
defined. In the paragraph on declarations it is explained why this

is so.
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d) Symbols
A symbol (or character) in EULER is an entity denoted in a dis-
tinguishable manner as a literal symbol. A list of symbols is

called a string.

e) Lists

Lists in EULER take the place of arrays in ALGOL. But they
are more general than arrays in ALGOL in several respects. L ist s
can be assigned to variables, and are not restricted to a rectangular
format; they can display a general tree structure. Furthermore,
the structure of lists can be changed dynamically by list operators.

Basically a list is a linear array of a number of elements
(possibly zero). A list element is a variable: to it can be assigned
a constant of any type (in particular, it can itself be a list), and
its identity can be specified by a reference.'

A list can be written explicitly as

(<expression> , <expression> , . ...)

The expressions are evaluated in sequence and the results are the
elements of the created list.

A second way to specify a list literally is by means of the list
operator list

{eskpression>

where the expression has to deliver a value of type Number, and the
result is a list with as many elements (initialized to Q) as spe-
cified by the expression.

The elements of a list are numbered with the natural numbers

beginning with 1. A list element can be referenced by subscripting
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a variable (or a list element) to which a list is assigned. If the
subscript is not an integer then its value rounded to the nearest
integer is used for subscripting. An attempt to subscript with i,
where 1<O or 1 > length of the list, results in an error indi-
cation. An example for specifying a list structure is
(1,2,(3,(4,5),6,()))

This is a list with three elements, the first two elements being

numbers, the third element being a list itself. This sublist has
four elements, a number, another sublist, again a number and last

another sublist with 0 elements. If this list would have been
assigned to the variable a, then a[2] would be the number 2,
a[3][2] would be the list (4,5)

In order to manipulate lists, list operators are introduced into
EULER. There are a type-test operator (isli), an operator to deter-

mine the current number of elements (length), a concatenation opera-
tor (&), and an operator to delete the first element of a list
(tail) . Here are some examples for the use of these operators:

(Assuming the list given above assigned to a)

isli a[2] gives a value false
Tengur a[3][4] gives a value 0

2,3) & a[3][2] gives the list (2,3,4,5)
(al2]) & tail tail al3] gives the list (2,6,()5

From the formal description of EULER it can be seen what rules
have to be observed in applying list operators, and in what sequence
these operators are executed when they appear together in an expres-
sion (like in the last example).

Only a minimal set of list operators is provided in EULER.

This set can, however, easily be expanded. The introduction of list
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manipulation facilities into EULER makes it possible to express with
this language certain problems of processing symbolic expressions
which can not be handled in ALGOL but required special list processing
languages like LISP or IPL.

f) Procedures

Similar to ALGOL, a procedure is an expression which is defined
once (possibly using formal parameters), and which can be evaluated
at various places in the program (after substituting actual para-
.meters). The notion of a procedure in EULER is, however, in several
respects more general than in ALGOL. A procedure, i.e. the text
representing it, 1is considered a constant, and can therefore be
assigned to a variable. An evaluation of this variable'effects an
evaluation of this procedure, which always results in a value. In
this respect every EULER procedure acts like a type-procedure in ALGOL.
The number and type of parameters specified may vary from one call of
a procedure to the next call of this same procedure.

Formally parameters are always called ‘by value’ . However,
since an actual parameter can again be a procedure, the equivalent
of a "call by name' in ALGOL can be accomplished. Furthermore an
actual parameter being a reference establishes a third kind of call:
"call by reference'. It must be-noted that the type of the call of
a parameter is determined on the calling side. For example, assuming

i =1 and al[i] = 2,

p(alil) is a call by value,
p(¢alil?) is a call by procedure (name),
p(@ alil) is a call by reference.
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In the first case the value of the parameter is 2, in the second
case it is a[i], in the third case it is the reference to a[1]
A procedure is written as
¢ <expression>’ or
‘8;6;.“;6; <expression>'
where & represents a formal declaration. The evaluation of a

procedure yields the expression enclosed in the quote marks.

A formal declaration is written as
formal <identifier>
The scope of a formal variable is the procedure and the value assigned
to it is the value of the actual parameter if there exists one, 0
otherwise. When a formal variable is used in the body of the proce-
dure, an evaluation of it is implied. For instance in
p «¢formal x; x «5” ;...;p(@a);
the reference to a 1is assigned to the formal variable %, and the
implied evaluation of x causes the number 5 to be assigned to
the variable a (and not to the formal variable x). As a conse-
quence, the call p(l) would imply that an assignment should be made
to the constant 1. This is not allowed and will result in an error
indication.

g) The Value‘Undefined’

The constant @ means 'undefined? Variables are automatically
initialized to this value by declarations. Also,a formal parameter
is assigned this value when a procedure is called and no corresponding

actual parameter is specified in the calling sequence.

49




2. Expressions

In ALGOL an expression is a rule for obtaining a value by applying
certain operators to certain operands, which have themselves values. A
statement in ALGOL is the basic unit to prescribe actions. In EULER
these two entities are combined and called‘expression', while the term
‘statement’ is reserved for an expression which is possibly labelled. An
expression in EULER, with the exception of a goto-expression, produces
a value by applying certain operators to certain operands,and at the same
time may cause side effects. The basic operands which enter into ex-
pressions are constants of the various types as presented in paragraph 1,
variables and list elements, values read in from input devices, values
delivered by the execution of procedures and values of expressions en-
closed in brackets. Operators are in general defined selectively to
operate on operands of a certain type and producing values of a certain
type. Since the type of a value assigned to a variable can vary, type-
tests have to be made by the operators at execution time. If a type
test is unsuccessful, an error indication is given. Expressions are
generally executed from left to right unless the hierarchy between op-
erators demands execution in a different sequence. The hierarchy is
implicitly given by the syntax.

Operators with the highest precedence are the following type test

operators:
isb <variable> (is logical?)
isn <variable> (is number?)
isr <variable> (is reference?)
isl . (is label?)
isy ) (is symbol?)
isli . (is 1list?)
isp (is procedure?)

isu <variable> (is undefined?)
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These operators, when applied to a variable, yield true or false,

depending upon the type of the value currently assigned to the variable.

At the same level are the numeric unary operators: abs (forming the
absolute value of an operand of type Number), integer (rounding an operand
of type Number to its nearest integer), the list reservation operator

list, the length operator length (yielding the number of elements in a
list), the tail operator, and type conversion operators like real, which
converts a logical value into a number, logical which converts a number
into a logical value, conversion operators from numbers to symbols and

from symbols to numbers, etc.

The next lower precedence levels contain in this sequence: Exponen-
tiation operator, multiplication operators (% /,+, mod), addition op-
erators (+, =), extremal operators (max, min). Operands and results
are of type Number.

The next lower precedence levels contain the relational and logical
operators in this sequence: relational operators (=, %, < <, >, Z),
negation operator 1, conjunction operator A, disjunction operator V.
The relational operators require that their operands are of type Number
and they form a logical value. The operators A and V are executed
differently from their ALGOL counterparts: If the result is already
determined by the value of the first operand, then the second operand
is not evaluated at all. Thus, false A x - false, true V x - true for
all x.

The next lower precedence level contains the concatenation operator

Operators of the lowest level are the sequential operators goto,
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If, then, and else, the assignment operator «, the output operator
out and the bracketing symbols begin and end. According to their
occurence we distinguish between the following types of expressions:
goto-expression, assignment expression, output expression, conditional
expression, and block. As it was already mentioned, all expressions
except the goto-expression produce a value, while in addition they may
or may not cause a side effect.

The go-to-expression is of the form

gegpression>

If the value of the expression following the goto-operator is of the type
Label,then control is transferred to the point in the program which this
label represents. If this expression produces a value of a different type,
then an error indication is given.

The assignment expression assigns a value to a variable. It is of
the form

<variable> « <expression>
In contrast to ALGOL an assignment expression produces a value, namely
the value of the expression following the assignment operator, This
general nature of the EULER assignment operator allows assignment of
intermediate results of an expression. For example:
a«b+ [ced+ e]

would compute d + e, assign this result to ¢, and then add b, and
assign the total to a.

The output expression is of the form

out <expression>

The value of the expression following the output operator is transmitted
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to an output medium . The value of the output expression is the value of
the expression following the output operator.

A conditional expression is of the form

if <expression> then <expression> else <expression>
The meaning is the same as in ALGOL.
The construct
if <expression>_then <expression>

is not allowed in EULER, because this expression would not produce a
value,if the value of the first expression is false.

An expression can also be a block.

3. Statements and Blocks

A statement in EULER is an expression which may be preceded by
one or more label definition'(s). If a statement is followed by another
statement, then the two statements are separated by a semicolon. A semi-
colon discards the value produced by the previous statement. Since a
goto-expression leads into the evaluation of a statement without encoun-
tering a semicolon, the goto operator also has to discard the value of
the statement in which it appears.

A Dblock in EULER is like in ALGOL a device to delineate the scope
of identifiers used for variables and labels, and to group statements
into statement sequences. A block is of the form

begin g30;...30 end or
begin %;8;...3830305...30 end
where 0 represents a statement and ® represents a declaration. The last
statement of a block is not followed by a semicolon, therefore its value

becomes the value of the block.
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Since procedures, labels, and references in EULER are quantities
which can be dynamically assigned to variables, there is a problem which
is unknown to ALGOL: These quantities can be assigned to variables which
in turn can be evaluated in places where these quantities or parts of them

are undefined.
Situations like this are defined as semantic errors, i.e. the language

definition is such that occurrences of these situations are detected.

4. Declarations

There are two types of declarations in EULER, variable-declara-
tions and label-declarations:

new <identifier> and
label <identifier>

A variable declaration defines a variable for this block and all inner
blocks, to be referenced by this identifier as long as this same identifier
is not used to redeclare a variable or a label in an inner block. A vari-
able declaration also assigns the initial value { to the variable.

As discussed in paragraph 1, no fixed type is associated with a variable.

A label declaration serves a different purpose. It is not a definition
like the variable declaration; it is only an announcement that there 1is
going to be a definition of a label in this block of the form

<identifier>
prefixing a statement.

Although the label declaration is dispensable it is introduced into
EULER to make it easier to handle forward references. A situation like

begin...L:...begin...goto L;...L:...end;..end
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makes it necessary to detect that the identifier 1, following the goto
operator is supposed to designate the label defined in the inner block.
Without label'declarations it is impossible to decide, whether an identifier
(not declared in the same block) refers to‘a variable declared in an outer
block, or to a label to be defined later in this block, unless the whole

block is scanned. With a label declaration every identifier is known

upon encounter.
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B. The Formal Definition of EULER

EULER was to be a language which can be concisely defined in such
a way that the language is guaranteed to be unambiguous, and that from the
language definition a proceésing system can be derived mechanically, with
the additional requirement that this processing system should run with
reasonable efficiency. A method to perform this transformation mechani-
cally, and to accomplish parsing efficiently, has been developed and is
given in Chapter III for languages which are simple precedence phrase
structure languages. Therefore, it appeared to be highly desirable to
define EULER as a simple precedence language with precedence functions.
It was possible to do this and still include in EULER the main features
of ALGOL and generalize and extend ALGOL as described.

The definition of EULER is given in two ‘steps' to insure that the

~ language definition itself forms a reasonably efficient processing sys-

tem for EULER texts. The definition of the compiling system consists of
the parsing algorithm, given in paragraph III.B.l., a set of syntactic
rules, and a set of corresponding interpretation rules by which an EULER
text is transformed into a polish string. The definition of the executing
system consists of a basic interpreting mechanism with a rule to interpret
each symbol in the polish string. Both descriptions use the basic notation
of chapter II. If the definition of EULER would have been given in one
step like the definition of the example in chapter III C, it would have
been necessary to transform it into a two phase system in order to obtain
an efficient processing system. Furthermore, a one phase definition re-
quires the introduction of certain concepts (e.g. a passive mode, where

a text is only parsed bit not evaluated) which are without consequence for
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practical systems, because they take on an entirely different appearance
when transformed into a two phase system.

The form of the syntactic definition of EULER is influenced by the
requirement that EULER be an unambiguous simple precedence phrase structure
language. This involves that:

a) there must be exactly one interpretation rule (possible empty)

for each syntactic rule,

b) the parsing algorithm has to find reducible substrings in exactly
the same sequence in which the corresponding interpretation rules

have to be obeyed,

c) extra syntactic classes (with empty interpretation rules) have
to be introduced to insure that at most one precedence relation

holds between any two symbols,
d) no two syntactic rules can have the same right part.
For an illustration of the requirements a) and b) consider the syn-
tactic definition of an arithmetic expression in ALGOL 60:
<arithmetic expression> :: = <simple arithmetic expression>

<if clause> <simple arithmetic expression> else
<arithmetic expression>

If the text

if b then a + ¢ else d + e
is parsed, then d + e 1s reduced to <arithmetic expression> and ac-
cordingly evaluated, before it has been taken into account that the pre-
ceding <if clause> may prevent d + e to be evaluated at all. 1In this
example, the syntax of ALGOL 60 fails to reflect the sequence of evaluation
properly, as it does e.g. in the formulations of simple expressions.
To correct this default, the corresponding syntactic definitions in EULER

are as follows: (BNF is adopted here to obviate the analogies)
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<expresssion> = <if clause> <true part> <expression>
<if clause> ::= if <expression> then'

<true part> ::= <expression> else

In the example above, the operator else will be recognized as occuring in
<true part> before the expression d + e is parsed. Through the inter-
pretation rule for <true part> the necessary code can be generated.

A similar situation holds for the ALGOL definition

<basic statement> ::= <label> : <basic statement>

The colon, denoting the definition of a label, is included in a reduction
only after <basic statement> was parsed and cvaluated. In EULER the
corresponding definitions read:

<statement> $i1= <label definition> <statement>
<label definition> ::= <identifier>

Thus the parsing algorithm detects the label definition before parsing the

statement.

" As a third example, we give the EULER definition of <disjunction>

<disJunction> :!= <disjunction head> <disjunction>
<disjunction head> tt= <conjunction> V

Thus, VY is included in a syntactic reduction, before <disjunction> is
parsed and evaluated; code can be generated which allows conditional skip-
ping of the following part of program corresponding té&disjunction>.
The corresponding ALGOL syntax

<Boolean term> ::=.<Boolean term> V <Boolean factor>
reflects the fact that both <Boolean term> and <Boolean factor> are
to be evaluated before the logical operation is performed. This inter-
pretation of the logical operators A and V was deliberately discarded

as being undesirable.

According to requirement <c¢) the language definition of EULER

contains certain auxiliary nonbasic symbols like
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<variable-> , <integer-> etc. to insure that EULER is a simple
precedence language. Without these nonbasic symbols the reducible sub-
strings in a sentence are not disjoint, as the following example taken
from ALGOL shows:

x X v t z ’ X X y t z

L J | I I (I

<term> <factor> <factor> <prim>

[ ] x |
<term> <factor>

Therefore one obtains the contradicting precedence relations x = <factor>
and X < <factor>

The requirement d) together with the precedence property is a suf-
ficient condition for the language to be unambiguous. Requirement d)
has far reaching consequences on the form of the language definition,
because it forces the syntax to be written in a sort of linear arrangement
rather than a net. Two examples will be given.

A label unlike in ALGOL can in EULER not be defined as <identifier>,
because we already have

<variable-> ::= <identifier>
This suggests that the best thing to do would be to introduce two different
forms of identifiers for the two different entities variable and label.
It was felt, however, that tradition dictates that the same kind of iden-
tifiers be used for variables and labels. It was possible to do this in
EULER although the solution might not be considered clean. 1In the text
goto L

the identifier L is categorized by the parsing algorithm into the syn-
tactic class <variable>, but the corresponding interpretation rule ex-

amines the table of declared identifiers and discovers that this identifier
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designates a label (defined or undefined at this time). Therefore, a
label is inserted into the polish string instead of a variable.

A second example for the specific arrangement of the syntax chosen
to fullfill requirement d) is the following: The concatenation operator
(&) 1is introduced into the syntax in the syntactic class <catena>,
which is defined as

<catene> ::= <catena> & <primary>
<disjunction>

This looks as if & had a lower precedence than the logical and arithme-
tic operators. But this is of no consequence, since an operand of &
must be a quantity of type List and a <disjunction> can only be of type
List if it is a <primary>, i.e. not containing any logical or arithmetic
operators.

- But we cannot write

<catena> ::= <primary> ,

because this would violate requirement d). Therefore <catena> appears
in the syntax at a rather arbitrary place between <primary> and <expres-—
sion>.

Looking at the requirements made upon the language definition and
observing the careful choices that had to be made in drawing up the
language definition in line-with these requirements, the criticism will
probably be raised, that the difficulties usually encountered in deriving
syntax directed compilers for given languages are not avoided in EULER
but merely ‘sneaked' into the definition of the language itself. This
point is well taken, but we think that nobody is likely to create some-
thing as complicated as a processing system for an algorithmic language

like ALGOL without encountering some difficulties somewhere. We think
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it is the merit of this method of language definition to bring these dif-

ficulties into the open, so that the basic concepts involved can be recog-

nized and systematically dealt with. It is no longer possible to draft

an ‘ad hoc syntax' and call it a programming language, because the natural

relationship between structure and meaning must be established.
Subsequently follows the formal definition of EULER. Tt has been

programmed as an Extended ALGOL program for the Burroughs B5500 computer.

This program is listed in Appendix II.
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Phase I (Translator)
The vocabulary U:
The set of basic symbols B: *

ofrfa|s|x]s]6l7(8]9l,1.1;]:|@ |new| forma1|1aber|n|[|]|begin|end]

(D1¢1? |goto| out || 1f| then|else|&|v|A || =| £l<|<]2|>]

E£E|m§§|+|—|X|/|+|mod|f|absIlengthlintegerlrealllqgicall

list|tail|in|isb|isn|isr|isl|isli|isy|isp|isu|o]Q|

10 | = |true|false| L

The set of non-basic symbols U -%:

programlblocklblokheadlblokbodyl}gbdeflstatlstat—l

exprlexpr-l}fclause|truepart|catena|disj|disjhead|

conjlconj-lconjhead\negation]relation]choicelchoice—l

§Eglsum-|term|term:|factorlfactor-lprimarylprocdefl

prochead|list*‘referencelnumberlreal*l

integerilinteger—|@igit|logva;|gg§lvar:Iyg;@gg;l

;abdecl|£orgec;

The environment 81 :

S (stack used by the parsing algorithm)
\

i (index to S and V)

J (index to S and V)

P (program produced by Phase I)

k (index to P)

N (list of identifiers and associated data)
n (index to N)

m (index to N)

bn (block number)

on (ordinal number)

scale (scale factor for integers)

E; =(S,v,1i,3,P,k, N, n, m, bn, on, scale]

A and ¢ are representatives for identifiers and symbols respectively.
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(o)}

®

10:

19:

20:

21:

22

23

24

: vardecl - new A

: fordecl — formal A

labdecl -» label A

¢ var- N

t var- > [expr]

. var- - var- .

i var . = var-

: logval - true
logval - false
digit 40

2hgit 9
integer- - digit
integer- + integer- digit

integer* 3 integer-.

real*

real*

- integer¥* .

Lh1:

I43:
Lk :

L45:
L46:

" Plk] « (@’ , NtI[3], Nt

3 integer¥*

Va1

«k+l; P[k] « (“new?); on «on +1;
n « ntl; Nn] « « (V[i], bn, on, ‘ﬂ’)

o~

« k+l; P[k] « (‘formal?); on ton +1j
n «n+l; N[nl « (V[i], bn, on, ‘formal')

o~

n «n+l; N[n] « (V[il, bn, Q, Q)

t tn; k « ktl;

if t < 1 then goto Error:,

if N[t][1T = V[i] then goto ILk2;
t « t-1; goto -IL41;

if N[t1[4] £ “new? then goto
][21),

oto> L46
GAf N[t][4) £ ‘label' thegoto L&k;
Pik] (‘la.bel N[+t1[3], N [ T1(2]1); goto Lk6
Af-N[t][4] ;é formal' thengo'to L45;
Plk] « (@ °, N[tI[3], _TT[ DE

K « k+l; P[k] « ('value' gotoL46
Plk] « (%label?, N[t][ ], "Nt 2]);
N[t][3] t—k; poto L46;

k « k+l; P[k] « (¢1?)

k « k+1; P[k] « (‘value')

A

V[j] « true

V[j] « false

t «10 X V[j]; VIj] «V[i] + t;
scale « scale - 1

A

integer* t « 10 1 scale;

t «V[i] X t;
VIileVIi]l + t

A
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25: number - real* A

26: number - real* 0 integer* t «10 % v[il;
1 VI3l «VI3] x ¢

27: number - | ointeger* te<0.11 VI[i];
V(3] « VI3l x ¢t
28: number -, Loteger* V[j] «10 tV[i]
29: number - ,  ° integer* V[j] «0.1 1 V[i]
30: reference - @var A
31: listhead — listhead expr , V[jleViil + 1
32: listhead — ( Vij]l «0
33: list* - listhead expr) k «ktl; P[k] « (4)?, V[3] + 1)
3h: list* — listhead) k «ktl; Plk] « (¢)?, V[j])

35: prochead — prochead fordecl ; A

36: prochead - ¢ bn «bntl; on « 0; k « k+l;
P[k] « (€620); v[j] tk;
n «n+l; N[nl] « (@, m);
mtn

37: procdef - prochead expr ? k « k+l; P[k] « (€29);
P[V[jl[2] « k+1l; bn tbn - 1;
n tm-1; m « N[m][2]

38: primary - var kK «k+tl; P[k] « ('value')

39: primary - var list* k «k+l; P[k] « (‘%’)

40: primary - logval k « ktl; Pk] « ( ¢logval’, V[j])
41: primary - number k «k+l; P[k] « ('number', V[Jj])
42: primary - 0o k « k+1l; P[k] « (¢ symbo1?, V[j])
43: primary - reference A

44: primary - list¥* A

45: primary - tail primary k « k+l; P[k] « (‘tail')

46: primary - procdef A

47: primary - Q k «k+l; P(k] « (‘Q?)

an



48:

50:
51:
52:
53:
54:
55:
56:
5T:
58:
59:
60:
6l:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
T2:
73

primary - [ expr 1

¢ primary - in
primary - isn var
primary - isn var
primary - isr var
primary - isl var
primary + isli var
primary - isy var
primary - isp var
primary — isn var
primary — abs primary
primary — length var
primary — integer primary
primary - real primary
primary — logical primary
primary — list primary
factor- — primary
factor- - factor- T primary
factor - factor-
term- - factor
term- - term- X factor
term= — term- / factor
term- - term- + factor
term- - term- mod factor
term - term-
sum- — term

65

«k+1; P[k] « (‘in")

« k+1; P[k] « (“isb?)

« k+l; P[k] « (“isn?)

« ktl; P[k] « (“isr?)
«ktl; P[k] « (‘is1?)
«ktl; P[k] « (%is1i”)
«k+1; Plk] « (“isy?)

« k+1; P[k] « (“isp?)
«k+1; P[k] « (¢isn?)
«k+1; Plk] « (‘abs?)

« k+l; Plk] « (‘length')
«k+l; P[k] « (‘integer')
« k+l; P[k] « (‘real')
«k+l; P[k] « ('logical')

« k+1; P[k] « (‘list'")

“k+tl; P[k] « (¢1?)

« k+l; P[k] « (¢x?)
« k+1; P[k] « (¢/?)
~ktl; P[k] « (¢+7)

« k+1; Pk] « ('mod')




Th:
75:
T6:
e
78:
79:
80:
81:
82:
8:
84:
85:
86:
87:
88:
89:
90:
91:
92:
B

95 :

96

I

98

99:

sum-

Sum-

sum- -

sum- -

sum -

choice- +

sum-

sum

choice =
gelation -

relation -

choice- - choice- min sum

choice- —» choice- max sum

choice=

chaice

choice choice

relation -

choice # choice

relation -

choice < choice

relation -
relation -

relation -

chaice <

choice
choice-> choice

choice > choice

negation -

negation -

relation

1 relation

conjhead - negation A
conj- — conjhead conj
conj- - negation
co_nj - conj-

: disjhead - conj V
disj - disjhead disj

: disj - conj
catena 3 catena & primary

k «k+tl; Pl[k] « (¢2?)
k «k+l; P[k] « (¢+?)

k «k+l; Plk] « (¢-?)

k «ktl; P[k] « (“min?®)

k « k+l; P[k] « (*max?)

k «ktl; P[k] « (¢=?)

k «ktl; Plk] « (‘£ )

k « k+l; P[k] « (‘<?)

k «k+l; P[k] « (¢<?)

k «ktl; P[K] « (¢>)

k « k+l; P[k] « (¢>?)

A

k «k+l; Plk] « (¢7?)

k «ktl; P[k] « ("A', 0); V[j] «k
PIV[ j1)[2] « k+1

A

A

k «ktl; Plk] « (‘V?, Q)5 V[j] «k
PV[j]l[2] « k+1

A

k «k+l; P[k] « (‘&°)
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100:

101:

102:

103:

104:

105:
106:

107:

108:
109:
110:
111:
112:

113:

114:

115:
116: blokhead - blokhead labdecl;

117:

catena -» disj

truepart 3 expr else

ifclause — if expr then

expr- - 'Block

expr- — ifclause truepart

expr-

expr- — Var « expr-

expr- - potoi mary

expr- - out expr-

expr-= — catena

expr - expr-

stat- — labdef stat=

stat- - expr

stat - stat-

labdef - A

— L1131:
L1132:
L 1133:
L1134

blockhead - begin

blokhead - blokhead vardecl;

_blokbody - blokhead "

118: blokbody - blokbody stat;

119: block

120:

program

— blokbody stat end

- 1 block _L

A
k « k+l; P[k] « (‘else?, Q); V[j] « k
k « k+1; P[k] « (*then?, Q); V[j] «k
A

PIV[j11[2) «V([j+1] +1; P[V[+1]][2] « &+l

k « k+l; P[k] « (t")

k « k+l; P[k] « (‘goto?)

k « k+tl; P[k] « ('out')

A

A

A

A

A

ttn;

ift<m then oto ERROR;

_1_f_ N[t][_l] then goto L1132;
t «t-1; to Lllﬁl,

if N[t][& Q then goto ERROR;

s e—N[t][5], N[t][3] « k+1;
N[t1[4] «“label?;

if s = Q then go to L«llB)-l-
t (--P[S][ I Pls ] « k+1;
s «t; goto L1135,

bn «bntl; on « 0; k « k+l;

P[k] « (“begin?);

nentl; N[n] «(Q, m); m «n
A

A

A

k «k+l; P[k] « (¢;°)

k « k+tly P[k] « (‘end');

bn tm-1; m « N[n][2]
A
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Phase II (Interpreter)

The following is the definition of the execution code produced by Phase I.

The variables involved are:
S (tree structured memory stack)
i (stack index)

mp (stack ndex, points at the last
element of a linked list of Marks)

P (program)

k (program index of the instruction
currently being interpreted)

fct (counter of formal parameters)

s, t, A, B, C (variables and labels local to any interpretation

rule)

€2={s,i,mp,P,k,fct}

The following types of quantities are introduced, which were not men-

tioned in Chapter II

labels Ei.e. program references)
procedures i.e. procedure descriptors)

with the accompanying type-test operators isl, isp and the following
type-conversion operators
progref converting the two integers pa and bn into the pro-
gram-reference with address pa defined in the block
with number bn.
roc converting three integers (block-number, Mark-index,

program-address) into a uniquely defined procedure-

descriptor,
bln converting a procedure-descriptor into its block-number,
mix converting a procedure-descriptor or a label into the

index of the Mark belonging to the block in which the

procedure-descriptor or label is defined (Mark-index),
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adr converting a procedure-descriptor or a label into its
program address.
Also, there exists an operator
reference converting the two integers on and bn, into the
reference of the variable with ordinal number on in the
variable-list of the block with number bn.

The detailed description of these operators depends on the particular
scheme of referencing used in an implementation, for which an example is
given in Appendix II. It should be noted, however, that a reference,
label or procedure-descriptor, may become undefined if it is assigned
to any variable which is not in its scope. Since procedures and blocks
may be activated recursively, the actual identity of a reference, label
or procedure-descriptor can only be established in Phase II, which makes
it necessary for Phase I to describe them in terms of more than one quan-
tity. The sufficient and necessary amount of information to establish
these identities is contained in the 'Marks' stored in S . Marks are
created upon entry into a block (or procedure) and deleted upon exit.

A Mark contains the following data:

block-number

link to its dynamically enclosing block
a link to its statically enclosing block

a list of its variables
a program return address

a
a

.

o WO -

By ‘link' is meant the index of the Mark of the indicated block. —
The following list indicates to the left the operator P[k][1] currently
to be executed, and to the right the corresponding interpretation
algorithm. At the end of each rule a transfer to the Cycle routine has
to be implicitly understood. This basic fetch cycle is represented

as follows:
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Initialize: 1 « 03 mp « 0; k « 0;

Cycle
T

k « kt+l;
Obey the Rule designated
by P[k][1]; goto Cycle

Operators Interpretation Rules UYQ)

-+

8o X 1

3

ax

i
9]
]

.’_.n.||_.
n |n
s |o

(=
2]
=

i
[9)]
o

[
(93]
=
-

~"

if 7 isn S[i-1] then goto ERROR:
if - isn S[i] then goto ERROR;
S[1-1] < 8[i-11"+ S[i]; i « i-1

defined analogously to +

if 7 isn S[i] then goto ERROR;
S[i) « - s[i]

defined analogously to -

3; 1 isb S[i] then goto ERROR;
S[i] « real S[i

if 7 isn 8[i-1] then goto ERROR;
_; 1 isn S[i] then goto ERROR;
« i-1;
[1] < S[i+1] then goto_A;

i
i["] « S[i+1]; A:

defined analogously to min

isr S[i] then goto_A;
«S[i). ;

if 1
s(il]
A: S[i] «isn S[i]

=
w0
=]

defined analogously to
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> T~ VIVIA

list

if 7 _isn 8[i-1] then goto ERROR;
1f‘| isn S[i] then goto ERROR;
s[i-1] < s[i-1] < s[1]; it i-1

U)

defined analogously to <

if 7 isb 8[i then goto ERROR;
if 8[i then goto A;

k « P[k]T2 goto T;
A: 1 -1 —1

if 7 isb §[i] then goto ERROR;
if71 S[i] then goto A;

k « P[k][2T; goto T;

Ay 1«1 -1

if 71 isb 8[i] then goto ERROR;
s[il <« s[i] ----

if —1isb 8[i] then goto ERROR;
1eid l,

if S[1+l] then goto A;
k «P[k][2]; poto T ;
A:

k « P[k][2]; goto T

if 7 isr S[i] then goto A;
S[i] « s[i].;
A: if 7 isli 8[i] then goto ERROR;
S[i] « length S[i]

if 71 isli S[i] then goto ERROR;
S[i] « tail S[i]

if 7 isli S[i-1] then goto A;
if 71 isli S[i] then g goto ERROR;
S[i-1] « S[i-11 & S[i]; 1 i -1

A: if 7 isn S[i] then poto ERROR;
t «S[il; S[i] « T 5;

B: if t € 0 _then goto C;
S[i] «S[i] & () t «t - 1;
goto B; C:
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number

logval
Q

string

label

new

formal

begin

end

value

« i+l; S[i] « P[k][2]

-

« i+l s[i] « P[k][2]

-

i« it+l; S[i] «Q

-

« i+l; s[i] « P[x][2]

i « i+l; S[i] « progref(P(k][2], P[k1[3])
i «i+l; S[i] « reference(P[k][2], P[k][3])
Slmp][4] « s[mp][4] & ()

fet « fet+l;

AT e A el

if 7 isr S[i-1] then goto ERROR;

S[i-1]. «s[i]; s[i-1] « s[i]
i ei-1;

iei -1

1 isn S[i] then goto ERROR; (subscript)
i s[i_Tg 0_then goto ERROR; i ti-1;

if 7 isr S[i] then goto ERROR;

sTi] «s[i].;

if 71 isli S[i] then goto ERROR;

t « length S[il;

if Sll+l > t EheR ta0 R ;

sTi) « @s{i][s[i+1

1 e i+l
S[i] « (S[mpl[1]+1, mp, mp, ()); (a Mark)
mp « i

H- -
Fh

=

t « s[mpl[2]; S[mp] « S[i];
itmp; mp «t

1 « i+l
S[i] « proc (S[mp][1]+1, S[mpl[3], x)
k « P[k][2]; goto T

if 1 isr S[i] then goto A;

s[i] «s[il.;

A: if 71 isp S[i] then goto B;

fet « 03 t «S[il;

S[l] « Q]_'_n t’ﬁx t/ mp, (); k); (a Mark)
mp «1ij; k «adr t; B:
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call 1 e1-1;
if 1isr S[i] then goto A;
S[i] «s8[il.;
A: if lisp S[i] then goto ERROR;
fct « 0; t «8[il;
S[i] « (bln t, mix t, mp, S[i+l], k); (a Mark)
mp ti; k «adr t

’ k « S[mpl[5];t « S[mpl[2];
S[mp] « S[i];
itmp; mp &t

got0 if 71 isl S[i] then goto ERROR;
mp « mix S[i]; pp «adr S[il;
i «mp; goto T

) t <—P[k][2], S « (build a list)
if t = O then oto B;

t « t-1; S(—-S&:Slt]), otoA

B: i «i+l; i 1 - P[k][2

S[i] « s

=
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Certain features of ALGOL are not included in EULER, because they were
thought to be non basic (or not necessary), or because they did not fit
easily into the EULER definition, or both.
Examples are

the empty statement, allowing an extra semicolon before end,

the declaration 1list, avoiding the necessity of repeating the

declarator in front of each identifier,
the conditional statement without else,
the for-statement,

the own type.

It is felt that these features could be included in a somewhat
‘fancier' EULER+ language, which is transformed into EULER by a prepass
to the EULER processing system. This prepass might include other features
- like ‘macros' or ‘clichés’, it would take care of the proper deletion of
comments,etc. Certain standard macros or procedures might be known to
this prepass and could thus be used in EULER+ without having been declared,
like the standard functions in ALGOL. The set of these procedures would
necessarily have to include a complete set of practical input-output pro-
cedures. It should be noted, however, that in contrast to ALGOL, they can
be described in EULER itself, assuming the existence of appropriate opera-
tors in and Duth (eeading and eedstisg mharacters)o £ s ymb ol s
and lists (formats are lists of symbols), of type-test- and conversion-
operators are of course instrumental in the design of these procedures.
A few other useful ‘standard procedures' are given as programming exam-—

ples in the following paragraph. (cf. ‘for', ‘equal' and ‘array')
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C. Examples of Programs

A list can contain elements of various types, here numbers and procedures:

begin new Xx; new s;
s « (2, ‘begin x «x+1; s[x] end', ‘out x') x « s[1]; s[x]

end

¥R X K K K X X ¥ X

A reference can be used to designate a sublist. Thus repeated double
indexing is avoided:

begin new a; new rj
a « (1,(2,3),4); The output is: 2, 3

r «@a[2];
out r.[1]; out r.[2];
r.[1] «0Q

end

X X K K K X X ¥ X X

A procedure assigned to a variable (here p) is replaced by a constant,

as soon as further execution of the test n < 100 is no longer needed:

begin new p; new n; new f;

n « 0;
P« 'n«ntly if n < 100 then f(n) else p « f(n)';
f « ‘formal x; e X

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

end

¥ X X X K X X X X X

If a parameter is a ‘value-parameter', the value is established at call
time. In the case of a ‘name-parameter', no evaluation takes place at

call time. Thus the output of the following program is 4,16,3
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begin new p; new a; new 1i;

p « 'formal x; formal k;

begin k «kt+l; out x end';
1« 1;
a e« (4, 9,16);
p(alil, @i); p(‘ali]’, @i); out i
end

begin new p; new a; new i;

p « ‘formal x; formal k;

begin k « k+l; X «k end';
a e« list 35 1 «1;
r(@a[i], @i); p( @ali]’, @i)

end

Here the final value of a is (2, Q,3).

*****St****

A for statement is not provided in EULER. It can, however, easily be pro-
grammed as a procedure and adapted to the particular needs. Two examples
are given below, the latter corresponding to the ALGOL for:

for « ‘formal v; formal n; formal s;

begin label ki v «1;
k: if v < n then
begin s; v « vtl; goto k end
else @
end’
algolfor « ‘formal v; formal f; formal step; formal u; formal s;

begin label k; v « /13
k: if (v-u) X step < 0 then

begin s; v «V + step; goto k end

else Q

end'
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It should be noted that the decision whether the iterated statement should
be able to alter the values of the increment and limit is made in each
call for ‘for' individually by either enclosing the actual parameters
in quotes (name-parameter), or omitting the quotes (value-parameter).
E.g. &) n « 5; for (@i, n, ‘begin n « n-1j out.n end’)

b) n «5; for (@i, ‘n', ‘begin n tn-1; out n end')
a) yields 4,3,2,1,0, while b) yields 4,3,2

¥ X K K K X X X X ¥

There is no provision for an operator comparing lists in EULER. But
list comparisons can easily be programmed. The given example uses the
‘for' defined above:

equal « ‘formal x; formal y;

begin new t; new i; label k;

t « false;

if isli x A isli y A length x = length y then

begin for (@i, length x,
‘if -1equal (@x[i], @y[i]) then goto k else Q7’);

t ttrue
end else

t tisn x A isn y A x=y;
k: t
end'
It should be noted that the definition of A deviates from ALGOL and
thus makes this program possible; therefore in
t tisn x A isn y A x=y
the relation x=y 1is never evaluated if either x or y is a number.

If the list elements may also be logical values or symbols, then the above

statement must be expanded into:
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t «ish x A isn y A x=y V isb x A isb y A real x

= real y V
isy x A isy y A real x =

real y

¥ K X X X K X K K X

There is no direct provision for an array declaration (or rather array

‘reservation') either. It can be programmed by the following procedure:

array « ‘formal !; formal x;

begin new t; new a; new b; new i;

b «1l; t «1list b[l];

a «1if length b > 1 then array (tail b, x) else x;
for (@i, b[1], “t[1i] «a’);
t

end’

The statement a « array ((xl, x2, , Xn)) would then correspond to

the ALGOL array declaration

array a[l: x1, 1: x2, , 1: xn],

while the statement a «array ((x1, x2, , xn), a) would additionally

‘initialize all elements with o .

* K X XK X K X X X

The following is an example of a summation procedure, using what is

in ALGOL known as ‘Jensen's device'
u
has the meaning of 2 t
i=t

The statement sum (‘t’, @i, I, u)

begin new k; new I;

new sum; nNew a; new b;
sum & ‘formal t; formal i; formal f3 formal u;

begin i « 13

if 1> uitl, u)else t + sum (‘¢°, @i,
end ;

a « (1, &, 9,16)3

b« ((1, 4), (9, 16));
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sum (‘&[k] ,) @k, 1/ 4);
sum (‘alk] X a[5-k]’, @k, 1, 4);
out sum (‘sum (‘b[k][2]’, @, 1, 2)°, @k, 1, 2)

o) Io
g g

end

¥ K K X X ¥ ¥ X ¥

begin new x; new sqrt; new elliptic; label K;

elliptic « ‘formal a; formal b;
if abs [a-b] < ,o° 6 then 1.570796326/a else

elliptic ([a+b]/2, sqrt (axb))’;

sqgrt « ‘formal a;
begin label L; new x; g e—a/Q;
L:if abs T 2 - a] < ;8 then x else
begin x « [x+a/x]/2; goto L
end
end';
X « 0.73
K: out x; out sqrt(x); out elliptic (1,x);

X «x+0.1; if x < 1.3 then goto K else Q

end
This program contains a square-root procedure using Newton's method

and a procedure computing the elliptic integral

E/

2] dt -
) \;a?coset + bgsinzt
0

using the Gaussian method of the arithmetic-geometric mean recursively.

iteratively,

¥R K K X K ¥ X X ¥

As a final example, a permutation generator is programmed in EULER, so

that the value of

perm (1, £)
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is the list of all permutations of the elements of list {, i.e. a list with
1 x2X3x . . . Xbengthl i s t s

begin new perm;new a; new k; label f;

perm « ‘formal k; formal y;

begin new rogiey exch; new X;

X <Y,

rot « ‘formal k; formal m;

if m > length x then () else
perm (k+l, exch (k, m, @x)) & rot (k, m+l)’;
exch « ‘formal k; formal m; formal x;
begin new b; new t;
t tx;
b «t[k]; t[k] «tlm]; t[m] «Db; t

end';

if length x = k then (x) else rot (k, k)

end';
a<—0;
f: out perm (1, a); a «a & (length a); goto £
end

This program generates the following lists:

()

((0))

((o,1), (1,0))

((o,1,2), (0,2,1), (1,0,2), (1,2,0), (2,1,0), (2,0,1))
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Appendix I
The following is a listing of the syntax-processor programmed in Extended
ALGOL* for the Burroughs B5500 computer. The organization of this program

is summarized as follows:

Input lists of non-basic symbols, basic symbols and productions

A,
51
[?l. Build list of leftmost and rightmost symbols, cf. III B2.
[?2. Establish precedence relations, cf. III B2.
F%E. Find precedence functions, cf. III B5.
_éB. Build tables to be used by the parsing algorithm of the
L___- EULER processor. (punch cards)

Most of the program is written in ALGOL proper. Often used extensions
of ALGOL are:

1. READ and WRITE statements

(symbol strings enclosed in < and > denote a format)

2. DEFINE declarations, being macros to be literally expanded by the
ALGOL compiler.

3. STREAM procedures, being B5500 machine-code procedures, allowing the

use of the B5500 character mode.

*
cf. Burroughs B5500 Extended ALGOL Reference Manual.
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BEGIN COMMVENT SYNTAX=PROCESSORs NIKLAUS WIRTHDEC.19643
DEFINE NSY =#150%3 COMMVENT MAX NO, OF SYMBOLS)
DEFINE NPH ® 150#} COMVENT MAXes NOy OF PRODUCTI ONSJ
DEFINE UPTO s STEP § UNTIL #)

DEFINE LS o "<" £, EQ & n"ma" g, GR o "wg,NULLes""g;

FILE OUT PCH 0 (€2,10)) COMMVENT PUNCH FILEJ

INTEGER LT# COMMENT NUMBER OF LAST NONBASIC SYMBOLS

INTEGER K»oM»N» MAX, OLON} BOOLEAN ERRORFLAG)

ALPHA ARRAY READBUFFERCO039), WRITEBUFFER[O3148))

ALPHA ARRAY TEXT (0813113 COMMVENT AUXILIARY TEXT ARRAY}

ALPHA ARRAY SYTB [OINSY)3 COMMVENT SYMBOLTABLEU

INTEGER ARRAY REF COSNPR»085)3 COMMENT SYNTAX REFERENCE TABLEJ
LABEL STARTLEXIT)

LABEL A»sBsCrEsF»sG}

STREAM PROCEOURE CLEAR (D2NJ)} VALUE N
BEGIN 01 ¢ DI OS ¢ 8 LIT ""3JSItDJDsStN WDS
END J° )
STREAM PHOCEOURE MARK (D»S)} VALUES)
BEG{I;I DI ¢« DJIS]T t LOC SJ S1tSle¢7) DSt CHR
END
BOOLEAN STKEAM PROCEDUREFINISCS))
BEGIN TALLY €13 SItSJIF SC ® ™™ THEN FINIS ¢ TALLY
END J
STREAM PROCEDURE EDIT (Ss0sN)}
BEGIN DI ¢ D SItNJ) OS t IDECISI ¢t SJ DS ¢ O WDS3
END J
STREAM PROCEDURE MDVE (S»D)}
BEGIN SI ¢ §$301 tD3 OS ¢ WSJ
END J
STREAM PROCEDURE MOVETEXT(S»DsN)3 VALUE NJ
BEGIN DItDJ Sle ssOS ¢nNNWDSS
END J
BOOLEAN STREAM PROCEDURE EQUAL ($»0))
BEGIN SI t SJ 0ItDJ TALLY ¢ 13IF S8SC s DC THENEGQUAL eTALLYS
END J
STREAM PROCEDURE SCAN (S»DDsN)}
BEGIN LABEL A28,CsD,E}
SI ¢t ST DI tODJ DS t 48 LIT "0"3.Dle¢ DDJ Slt SI¢l}
IF SC & " " THEN DItDl+¢8}
Al IF SC " ™ THEN BEGIN SI ¢SI+¢13G0T0AEND J
IF SC » "9" THEN GO TO DJ
8 CIFSCem® THEN BEGINOSeLIT™™3 GO TO E END J DS¢CHRIES)}
B% IF SC #" "™ THEN BEGIN SI ¢SI41360 08 END J
Cs STt SI*13 GO TO AJ
DI DI ¢ NI SI ¢SI+453 OS ¢3 OCT
END 3
STREAM PROCEDURE EDITTEXT (S»DsN)J VALUE NI
BEGI N SI ¢ S301 t030)e¢ DI+103 NCDI ¢D1+23 DS ¢ 8 CHR
END J
STREAM PROCEDURE SETTEXT CAsBsCsDrEr2)}s
BEGIN 01 €23 01 ¢t DI+83 SI t A DSe 3 DEC) SI ¢B) DS ¢ WDS)
DI ¢ DI*S3 SI t o s ¢3DECS DIe pIle3ds SI ¢DJ DS ¢ 3 DEC)
Ol t DI+33 SI t EJ] OS ¢ 3 0OECJ
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END }
STREAM PROCEDURE PCHTX(S»DsN)} VALUE N)

BEGIN SI ¢ S) UI ¢ D3D1leDI4}
NCDS ¢ LIT """} DS ¢ 8 CHR; DS ¢ LIT """j DS ¢ LIT "»")}
END }

PROCEDURE I NPUT)

READC(CARDFIL»10s, READBUFFERL*]) [EXIT])

PROCEDURE OUTPUT)

BEGIN WHITE (PRINFIL» 15, WRITEBUFFER(#1)}
CLEAR (WRITEBUFFERLO),» 14)3
END

INTEGER PROCEDURE IN% (X)J3 REAL X3

BEGIN INTEGER II LABEL F}
FOR 1 «0UPTO M DO
IF EQUAL (SYTBLIJ» X) THEN GO TO F J
WRITE (<"UNDEFINED SYMBOL">)} ERRORFLAG ¢ TRUE}
Fs INX ¢ T
END)

START?

At

(]
Fi

G
Bt

FOR N ¢ 0 UPTO 5 DO

FOR M ¢ 0 UPTO NPR DO REP [MsN) ¢Q

M e Ne MAX ¢ ULON ¢ 0} ERRORFLAG ¢ FALSES

CLEAR {WRITEBUFFER{O)»14)}

COMMENT READ LIST OF SYMBOLS, ONE SYMBOL MUST APPEAR PER CARD»
STARTINGIN COLe9¢8 CHARSs ARE SIGNIFICANT), THE LIST OF NON'
BASIC SYMBOLS IS FOLLOWED BY AN ENDCARD ¢"#" IN COLe1)e THEN
FOLLOWS THE LIST Of BASIC SYMBOLS AND AGAIN AN ENDCARD

WRITE (< "NONBASIC SYMBOLSt">»)}

I NPUTJ

IF FINLS C(READBUFFERLO)) THEN GO TO E3

M ¢ M+1)}

MOVE (READBUFFERC1l), SYTB [M,;

EDIT CREADBUFFERCO), WRITEBUFFER[1])s M)}

OUTPUTJ GO TO A}

WRITE (</"BASIC SYMBOLSI">)} LT ¢ M}
INPUT)

IF FINIS (READBUFFER(O0J) THEN GO T0G)
M e Mel)

MOVE (READBUFFER[1), SYTB(MI)}
EDIT (READBUFFERLO), WRITEBUFFER[11, M)J
OUTPUT] GO TO FJ

COMMVENT READ THE LIST UF PRODUCTIONS, ONE PER CARD, T LEFTPART
IS4 NONBASIC SYMBOL STARTING IN COLe24 NO FORMAT IS8 PRESCRIBED
FOR THE RIGHT PARTs ONE OR MORE BLANKS ACT 4 SSYMBOL SEPARATORS,

IF COLs2 IS BLANK» THE SAME LEFTPART AS IN THE PREVIOUS PRODUCTION

IS SUBSTITUTED. THE MAX. LENGTH OF A PRODUCTION IS 6 SYMBOLS)
WRITE C</"SYNTAX3I">)}
INPUTS
IF FINLS C(READBUFFERCOI) THEN GO TO €3
MOVETEXT C(READBUFFER(OJ)» WRITEBUFFERC1)» 10)3 OUTPUT}
MARK (READBUFFER[91,» 12)3 SCAN (READBUFFER[O)s» TEXTCOJ2N)J
IFN S 0 OR N > NPR OR REF{Ns0) # 0 THEN
BEGIN WRITE C(<"UNACCEPTABLE TAG">)} ERRORFLAGtTRUES GO TO B
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END #

IFN> MAX THEN MAX t NJ

COMMVENT THE SYNTAX IS STORED IN REFs EACH SYMBOL REPRESENTED BY
ITS INDEX IN THE SYMBOL=TABLE}

FOR K ¢ 0 UPTO 5 DO REF [NaK) ¢ INX CTEXTLKI))

IF REF (N»20) 8 0 THEN REF (NsOl ¢ REF [OLDN»OJ ELSE.

IF REF (N»0) > LT THEN
BEGIN WHITE (<"I|LLEGAL PRDDUCTION">)3 ERRORFLAG ¢ TRUE END }

OLDN ¢ N3 GO TO B}

Ct IF ERRORFLAG THEN GO TO EXIT)
N ¢ MAX}
COMMVENT M IS THE LENGTH OF THE SYMBOL-TABLE, N OF THE REF=TABLE)

BEGIN COMMVENT BLOCK A3
INTEGER ARRAY HCOtM, O8M)}3} COMMENT PRECEDENCE MATRIX}
INTEGER ARRAY F» GC(OSMJ)} COMMVENT PRECEDENCE FUNCTI ONSJ
BEGIN COMVENT BLOCK 813
INTEGER ARRAY bLINXs RINX COSLT)} COMMENT LEFT / RIGHT INDICES)S
INTEGER ARRAY GWEFTLIST2RIGHTLIST[O011022))
BEGIN COMMENT BLOCK (I, BUILD LEFT- AND RIGHT-SYMBOL LISTS)
INTEGER [2J}
INTEGER SP» RSP} COMMVENT STACK- AND RECURSTACK=POINTERS)
INTEGER LPs RPJ COMMENT LEFT/RIGHT LIST POINTERS}
INTEGER ARRAY INSTACK (OtM]) ’
BOOLEAN ARRAY DONE» ACTIVE (OSLT))
I NTEGER ARRAY RECURSTACKs STACKMARK [OSLT+11}
I NTEGER ARRAY STACK, (0381022313 COMMENT HERE THE LISTS ARE BUILT)

PROCEDURE PRANTLIST (LX»2L)3 ARRAY LXs L [0)}
BEGIN INTEGER [»sJsK3}
FOR I ¢ 1UPTO LT DU IF DONECI) THEN
BEGIN K ¢0} MOE (SYTB(I}» WRITEBUFFERLO))
FOR J ¢ LX{I)pJ*1 VWHILE LIJI # 0 DO
BEGIN MDVE (€SYTBLLLJ))» TEXTIK]I)) K ¢ Kei1)
IF K 210 THEN
BEGIN EDITTEXT (TEXTLO)s WRITEBUFFERCO0)»10)3 OUTPUT}
Ke 0)
END 3
END 3
IFK » 0 THEN
BEGIN EDITTEXTCTEXT(O)» WRITEBUFFERLOJs K)} OUTPUT END J
END
END J
PROCEDURE DUMPIT)
BEGIN INTEGER IsJd3 WRITE ((PAGE])}
WRITE (<X9»"DONE ACTIVE LINX RINX">)}
WRITE (€516, FOR 1¢ 1 UPTOLT DO
LI, DONECIJ» ACTIVELIY» LINX CI3» RINXCII1))
WRITE (</"STACK? se By 13> SP))
WRITE (€I10s™1 ",1016» FOR I ¢0STEP 10 UNTIL §P DO
CI» FOR J ¢IUPTO I¢9 DO STACK [J)1)}
WITE (</"RECURSTACKiI™>)}
WRITE (<€316®» FOR 1¢1UPTO RSP DO
(I, RECURSTACK(Il» STACKMARKCII)))
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END 3
PROCEDURE KESET (X)3 VALUE X3 INTEGER X;
BEGIN INTEGER Ii

FOR I ¢ X UPTO RSP DO STACKMARK [1}) ¢ STACKMARK (X1}

END }
PROCEDURE PUTINTOSTACK (XJ)} VALUE XI INTEGER X3

COMMVENT X Is PUT INTO THE WORKSTACK, DUPLICATION IS AVOI DED!

BEGIN IF INSTACK [X) # 0 THEN

BEGIN SP ¢ SP+1J3 STACK (SPJ) ¢ X3 INSTACK [XI ¢ SP END

ELSE IF INSTACK [X) €« STACKMARK [RSPJ) THEN
BEGIN SP ¢ SP+1} STACK [SP) ¢ X3

STACK (INSTACKIX1) ¢ 0J INSTACK [X) ¢ SP}
END J

IF SP > 1020 THEN

END 3
PROCEDURE COPYLEFTSYMBOLS (XJ}3 VALUE X3 INTEGER Xi

BEGIN WRITE (</"STACK OVERFLOW®™/>)3 DUMPITS GO TO EXIT END J

' COMMENT COPY THE LIST OF LEFTSYMBOLS OF X INTO THE STACK}

BEGIN FUR X ¢ LINXUX)» X¢i WHILE LEFTLISTIX] # 0 DO
PUTI NTOSTACK CLEFTLIST(X))}
END /

PROCEDURE COPYRIGHTSYMBOLS (X)3 VALUE X3 INTEGER X}

COMMENT COPY THE LIST OF RIGHISYMBOLS OF X INTO THE STACKJ

BEGIN FUR X ¢RINX{X1s X+{ WHILE RIGHTLISTI{X) ¥ 0 DO
PUTINTOSTACK (RIGHTLISTIXI1)}
END 3

PROCEDURE SAVELEFTSYMBDLS (X))} VALUE Xi INTEGER XI

COMMVENT THE LEFTSYMBOLLISTS OF ALL SYMBOLS IN THE RECURSTACK
W TH INDEX » X HAVE ' BEEN BUILT AND MJUST NOW BE REMDVED, THEY ARE
COPIED INTJ "LEFTLIST™ AND THE SYMBOLS ARE MARKED "DONE"

BEGIN INTEGER 1sJsU} LABEL LsEXJ
L8 IF STACKMARK CXJ ® STACKMARK (X+§{] THEN

BEGIN X ¢ X*1} [F X € RSP THEN GO TO L ELSE GO TO LXEND 3}

STACKMAHK ([RSP+1]¢ SP+13}
FOR I ¢ X+1 UPTQ RSP DO
BEGIN LINX (RECURSTACK[Ille¢ LP+13

ACTIVE (RECURSTACKII]) ¢ FALSES DONE [RECURSTACKIIlle TRUEJ

FUR J ¢ STACKMARK({I] UPTD STACKMARK[I+1)*! DO
IF STACK (J) # 0 THEN

BEGIN LP ¢ LP+#1JLEFTLIST [LP) ¢ STACK (J1}

If LP > 1020 THEN

BEGIN WRITE (</"LEFTLIST OVERFLOW"/>)3 DUMPIT}

PRINTLIST SCLINX» LEFTLISTYS GO TO EXIT
END3

END

END

LP ¢ LP+3} LEFTLIST (LP] ¢ 0J
EXSRSP ¢ XJ
END 3

PROCEDURE  SAVERI GHTSYMBOLS (X33 VALUE X3 INTEGER X}

COMMENT ANALOG TO "SAVELEFTSYMBOLS"™;
BEGIN INTEGER IsJ3 LABEL L2EX}
L8 T F STACKMARK [X] = STACKMARK [X+1] THEN

BEGIN X ¢ X#13JF X< RSP THEN GO TO L ELSE GO TO EX END 3}

STACKMARK [RSP+1) ¢ SP+13
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FORI¢X+l UPTD RSP
BEGIN RINX (RECURSTACKU]] ¢ RP+t}
ACTIVE (RECURSTACKCI))e FALSE; DONE [RECURSTACK(IJ) t TRUE}
FUR J ¢ STACKMARKCI) UPTD SI’ACKMARK[IMJ'l DO
IF STACK (J) # 0 THEN
BEGIN RP¢RP+1J RIGHTLIST (RP) e STACK (J))
IFRP » 1020 THEN
BEGIN WRITE (€</"RIGHTLIST OVERFLOW"/>)) DUMPIT}
PRINTLIST CRINXsRIGHTLIST)YS GO TO EXIT
END 3
END
END 3
RP e RP+1} RIGHTLIST (RPle 03
EXSIRSP ¢ X}
END 3

PROCEDURE BUILDLEFTLIST (X)3 VALUE Xi INTEGER X3}

COMMENT THE LEFTLIST UF THE SYMBOL X IS BUILT BY SCANNING THE
SYNTAX FORPRODUCTIONS WITH LEFTPART = X, THE LEFTMDOST SYMBOL IN
THE RIGHTPART IS THEN INSPECTED: IFIt1$ noNBASIC AND NOT MARKED
DONE, ITS LEFTLIST IS BUILT FIRSTe WHILE A SYMBOL IS BEING INSPECTED
IT IS MARKEO ACTIVE}
BEGIN INTEGER [sR,0OWNRSP}
ACTIVELX] ¢ TRUE}
RSP ¢ OWNRSP ¢ LINX [X)e RSP#+1) _
RECUHSTACK CRSPJ ¢ Xi STACKMARK [RSP)e¢ SP¢i)
FOR 1 ¢ §{ UPTO N DO
IF REF [I»0) 8 X THEN
BEGIN IF OWNRSP <« RSP THEN SAVELEFTSYMBOLS COWNRSP)}
R ¢ REF(I»1)3 PUTINTOSTACK (R)}
IfR $ LT THEN
BEGIN IF DONE [RJ) THEN COPYLEFTSYMBOLS CR) ELSE
IF ACTIVELR) THEN RESET CLINX CRJ) ELSE
BUILDLEFTLIST (R})J
END
END 3
END 3

PROCEDURE BUILDRIGHTLISTC(X)} VALUE X3 INTEGER XJ

COMVENT ANALOG TO "BUILOLEFTLIST"™;
BEGIN INTEGER [sRsOWNRSP3 LABEL QQ}
ACTIVE (X} ¢ TRUE;
RSP ¢ OWNRSP ¢ RINX [X)e RSP#+1}
RECUKSTACK (RSPJe¢ Xi SJACKMARK (RSP)e SP+1)
FOR I ¢ 1 UPT0 N DO
If REF (1,018 X THEN
BEGIN IF OWNRSP <« RSP THEN SAVERIGHTSYMBOLS C(OWNRSP)J
FOR R ¢ 25354,5 00 If REF (1,R1w@ THEN GO TO 0@}
QO R ¢ REF (lsR=33J) PUTINTOSTACK (R))
If R SLT THEN
BEGINIF DONE (R) THEN COPYRIGHTSYMBOLS(R) ELSE
IF ACTIVE tR) THEN RESET CRINX{RJ)ELSE
BUILORIGHTLIST (R)}
END
END
END 3
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SP ¢ RSP ¢ LP ¢ 0J
FORI+ 1 UPTU LT 00 DONEC!) ¢ FALSE;
FOR I[¢1UPTO LT D0 IF NOT DONE (l) THEN
BEGIN SP ¢ RSP 0}
FOR J ¢« 1UPTOMDO INSTACK LJ) ¢ 03
BUILOLEFTLIST (I)3 SAVELEFTSYMBOLS ¢0)}
| END 3
WITE ([(PAGE]})} WRITE (<X20s%"ww% LEFTMOST SYMBOLS ###%"/3)}
PRINTLIST CLINX, LEFTLIST)S
SP ¢ RSP ¢ HP ¢ 0}
FOR I¢ 1 UPTO LT 00 OONECI] ¢ FALSES
FOR I ¢ 1 UPTO LT DO IF NOT OONE ([l) THEN
l BEGIN SP ¢ RSP ¢ 0;
| FOR J ¢ 1 UPTO M 00 INSTACK [J) ¢ 03
BUILDRIGHTLIST (1); SAVERIGHTSYMBOLS (0))
END ]
WRITE €({3))} WITE (<€X20s"ww® R]IGHTMDST SYMBOLS ###%/>)}
PRINTLIST (RINX, RIGHTLIST)}
END BLOCK Ci}

BEGIN COMVENT BLOCK (2, BUILD PRECEDENCE RELATI ONS:
INTEGER J2KsPsQsRsLoT}
LABEL NEXTPRODUCTION)
PROCEDURE ENTER (X»Y»S5)} VALUE XsY»$S3 INTEGER X»YsS}
COMMENT ENTER THE RELATION § INTO POSITION ([XsY)y CHECK FOR DOUBLE=
OCCUPATION OF THIS POSITION:
BEGI N T ©eHI(XsY)} If T# NULL ANDT#S THEN
BEGIN ERRORFLAG t TRUE}
WRITE (<"PRECEDENCE VIOLATED BY "»2A{," FOR PAIR",214,
" BY PRODUCTION™sI4%>s Ts» S» Xao Y» J)J
END J
HEX2Y)e St
END J
WITE ([PAGE)))
FOR K ¢1VUPTO M DO
FOR J ¢ 1 UPTD M DO H[KsJ) ¢ NULL;
FOR J¢ 1 UPTO N DO
BEGIN FUR K ¢ 2»,3,4,5 00 IF REF [JsK) # 0 THEN
BEGIN P ¢ REP [J,K=113 Q@ ¢ REF [JsK)}
ENTER (P»Q,EQ)}
IfP S LT THEN
BEGIN FORR¢RINX{P)s» R+1 WHILE RIGHTLIST (R}# 0 DO
ENTER (RIGHTLISTCR)»Q,»GR)}
If Qs LT THEN
FORL ¢« LINX(Q)»L+3 WHILE LEPTLIST [L) # 0 00
BEGIN ENTER (Ps LEFTLIST tL3» LS))
FOR R¢RINX{P)sR+4y WHILE RIGHTLIST[R) ¥ 0 DO
ENTER CRIGHTLISTCRI,LEFTLISTIL)»GR)
END
END
ELSE IF @S LT THEN
FUR L®LINX[QJsL¢t WHILE LEFTLIST CLY # 0 00
ENTER (Ps LEFTLISTCLI,»LS)S
END
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ELSE GO TO NEXTPROOUCTIONS}

NEXTPROOUCTIONY END U ;

WITE (</X3,3913/»s FOR J «1UPTO M 00 J);

FOR K ¢1UPTO M DO

WRITE (<I13239(X2,A1)>» K» FOR J ¢ | UPTO M DO HIK»J)))
END BLOCK €2 J
END BLOCK 81}

IF ERRORFLAG THEN GO TU EXIT;

WRITE (</“SYNTAX IS A PRECEDENCE GRAMMAR"/>);

BEGIN COMMENT BLOCK B2, BUILD F ANO G PRECEDENCE FUNCTIONS1
INTEGER I» Jo Ko Ki» N» FMIN» GMIN» T3
PROCEDURE THRU (I»JsX)3 VALUE 1#JsX3 INTEGER 1sJsX}
BEGIN WHITE (</"NDO PRIORITY FUNCTIONS EXIST "»316>» l0oJsX)}
GO TO EXIT
END 3
PROCEDURE FIXUPCOL CL»JsX)} VALUE L»JsX3 INTEGER LoJ2X} FORWARD;
PROCEDURE FIXUPROWCIoLsX)3 VALUELIsL2»X3 INTEGER IsLaX)
BEGIN INTEGER J3FLI)eaG(L)+ X}
IF K} 8 K THEN
BEGIN IF H{I,K)=s EQ ANO FI[I) #GCK]J THEN THRU (€I1sK»0) ELSE
IF H{l1,K)s LS ANDFCI) 2GCK] THEN THRU (I»K»0)
END J
FOR J ¢K31 STEP=1 UNTIL 1 00
IF HEI»J1® EQ@ ANO FLI) #G{JY THEN FIXUPCOL CI»V»0)ELSE
If HEI»Jd] = LS AND FC1) 2 GCJI THEN FIXUPCOLCIsJsri))
END 3
PROCEDURE f IXUPCOL CLs JsX33 VALUE L» JsX3 INTEGER Ls Ja X}
BEGIN INTEGER UI3GCJ] ¢ FLL) ¢ X}
IF Ki# K THEN
BEGIN IF HIK,J) = EQ AND F(K) #GCLJ) THEN THRU(K»J21) ELSE
IF HEK»J) ®» GR ANO F(KJ) $ GCJJ] THEN THRU (KsdJ2l)
END )
FOR I1¢ K STEP *%1 UNTIL 1 DO
IF H(I»J] = EQ AND FLI) #GCJ) THEN FIXUPROW(I»J»0)ELSE
IF H{IsJ) 8 GR AND F(1) $SGCJ) THEN FIXUPROWCI»Jsl))}
END 3
Kit 03
FOR K ¢1UPTO M DO
BEGIN FMN e1{}
FOR J ¢ § UPTO Kg 00 -
IF H{KsJ) = £EQ AND FM N < G{J) THEN FMIN ¢ G{J) ELSE |,
IF HCK»J)® GR AND FMINS GLJ) THEN FMIN t GCJ)*1}.
F(K] ¢ FMN;
FOR J ¢K§ STEP -1 UNTIL 1 DO
IF H{Ks»J] ® EQ AND FMIN > GCJ) THEN FIXUPCOL (KsJds0) ELSE
IF HEK2J) = LS AND FMIN 2GCLJ) THEN FIXUPCOL (Ksdo§)}
Ki ¢ K1+13 GMIN ¢ )
FOR 1¢1UPTO K 00
IF HELoK)I®= EQ ANO FCI)>» GMIN THEN GMN ¢F[{l) ELSE
IF HCIsK1m LS ANDF{II2 GMIN THEN GMN eF{l1¢1}
GCLK] ¢« GMINJ
FORI® K STEP *={UNTIL I DO
IF HCI,K) s EQ ANO FLI) <GMIN THEN FIXUPROW(I»K»0) ELSE:
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END

IF H[I,K] = GR AND FL[I1) € GMIN THEN FIXUPROW(CI»Ks»1)}
END K 3

BLOCK B2 3
WRITE CLPAGE])}

BEGIN COMMENT BLOCK B3+ BUI LD TABLES Of PRODUCTION REFERENCES3S

END
END

INTEGER IsJdsKal3}
INTEGER ARRAY MTB [(OIM]} COMVENT MASTER TABLE 3
INTEGER ARRAY PRTB [Ott02211 COMMVENT PRODUCTI ON TABLE #
L ¢ 03
FOR I¢1UPTO M DO
BEGI N MTB(IJ)e|+1}
FUR J ¢1UPTO N 0O
IF REF{J»1) SI THEN
BEGIN FOR K ¢ 223»4,5 DO
IF REFLJsK] # 0 THEN
BEGIN 1. ¢ L+1J} PRTBIL]) ¢ REF(J»K)
END 3
L ¢ L+1) PRTBIL) ¢ =J3 | ¢ L+8} PRTBIL]) ¢ REF ([J»0))
END 3
L ¢L+1IPRTBLLIC O
END 3

COMVENT PRINT AND PUNCH THE RESUTS1
SYMBOLTABLE» PRECEDENCE FUNCTIONS» SYNTAX REFERENCE TABLES)
VWRITE (€X02"NOs",X5,"SYMBOLM»X8s "FPH,XB,"G"yX4,"MTB"/>))
FOR I1e¢1UPTO M DO
BEGI N SETTEXTCI»SYTBCI)oF{I)sGLI)s MTBLI)» WRITEBUFFER(O1))
OUTPUT
END J
WRITE (</"PRODUCTION TABLES"/>)}
FOR Ie 0 STEP 10 UNTIL & DO
WRITE (€192X2»,3016>, FOR I ¢ 0 STEP 10 UNTIL I. DO
(I» FOR J ¢ 1 UPTO I+9 DO PRTBCJII))
WITE ((/"SYNTAX VERSION "»AS5>, TIME €0))}
WRITE (PCHs X3, "FTe¢"o13,%"3 LT ¢"518,"3 LP ¢"518,"3">,LT+1,M2L))}
FOR I¢ 1 STEP 6 UNTIL M DO
BEGIN PCHTX (SYTBL1)s» WRITEBUFFER{O)s IF M=l126 THEN 6 ELSE M=]l+1)}
WRITE (PCHs$§ 0, WRITEBUFFERC*1)3 CLEAR ¢CWRITEBUFFERLO0)»9)
END }
WRITE (PCH» €X4,12(14»"»")>» FOR I1¢ 1 UPTOM OO FLI)}
WITE (PCHs <X4,12C18,"»")>, FORTI ¢ 1 UPTO M DO 6[11)}
WRITE (PCHs <X4,12(145"»")>» FOR 1 ¢ 1 UPTOM D O MTBLI1)))
WRITE (PCHa<X8,12(14,"»")>» FOR 1 ¢1UPTO L DOPRTB(II)}
BLOCK B3
BLOCK A

EXIT:

END,
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Appendix IT
The following is a listing of the FULER processing system programaed on
Extended ALOL for the Burroughis B55C0 computer. The organization of

this program is summarized a:; follows :

FULER Translator

Declarations including the procedure INSYMBOL and the code-gererating
procedures P, P2, P3, FIXUP,

Initialization of tables with data produced by the syntax-prcce-sor,
The parsing algorithm,

The interpretation rules (their labels correspord to their numbe -ing

in IV B)

EULER Interpreter

Declarations including the procedures DUMPOUT (used for outputting
results) and FREE (used to recover no longer used storage space =whan
memory space becomes scarce)

The interpretation rules for the individual instru.ctions

The source program is punched on cards (col. i-72) in free field

format. Blank spaces are ignored, but may not occur within identifiers or

word-delimiters.
An identifier is any sequence of letters and digits (starting with

a letter), which is not a word-delimiter. Only the first 8 characters

are significant; the remaining characters are ignored.
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Appendix II (continued)

A word-delimiter is a sequence of letters corresponding to a single

EULER symbol, which in the reference-language is expressed by the same
sequence of underlined or boldface letters. E.g., begin - BEGIN,
end -» END etc. Note: ¢ -»ILQ, ’ - RQ, ,, — TEN, Q@ — UNDEFINED.

A symbol is any BCL-character* (or sequence of up to 5 XL-characters)

enclosed between characters *"’. E.g. "*"

An example of an EULER program is listed at the end of this

Appendix.

*
cf. Burroughs B5500 Extended ALGOL Reference Manual.

93



BEGI N COMMENT EULER 1V SYSTEM MARCH 1965 }
INTEGER FT» LT} COMMENT INDEX OF FIRST AND LAST BASIC SYMBOL}

INTEGER LP3 COMMENT LENGTH OF PRODUCTION TABLE)

ARRAY PKOGKAM CO1102211

DEFINE AFIELD = (3919)#,BFIELO=(9330)#, C F 1 E L D=®(118]#}
LABEL EXIT3}

FT ¢ 45; LT « 1193 LP ¢ 4653 COMMVENT DATA GENERATED BY SY®PR.}

BEGIN COMMENT E UL E R IV TRANSLATOR NeWIRTH 3
DEFINE MARK ® 119 #, IDSYM 3 63 #» REFSYM = 59 #,; LABSYM = 2 #}
DEFINE VALSYM = 56 #, CALLSYM 3 55 #, UNDEF 3 0 #» NEWSYM = 60 #)
DEFINE UNARYMINUS = 116 #, NUMSYM = 68 #», BOOLSYM ® 64 #3
DEFINE LISTSYM = 1028, SYMBYM = 113 #» FORSYM = 1 #}
DEFINE NAME =3 VCOl #3
INTEGER 1oJsoKsMsNsRsT»T1»SCALES BOOLEAN ERRORFLAGS
INTEGER BN»s ONJ COMMVENT BLOCK- AND ORDER=NUMBER}
I NTEGER NP} COMVENT NAME LIST POINTER 3
INTEGER MPJ COMVENT MARK- POINTER Of NAME=LIST)
I NTEGER PRP} COMVENT PROGRAM POI NTER;
INTEGER WC» CC3 COMMENT INPUT POINTERS;
ALPHA ARRAY READBUFFERs WRITEBUFFERCO$14))
ALPHA ARRAY SYTB [0Q$LT13} COMMENT TABLE QF BASIC SYMBOLS)
INTEGER ARRAY F, G LOYLT)S COMMENT PRIORITY FUNCTIONS 3
INTEGER ARRAY MIB [0%LT)3 COMMENT SYNTAX MASTER TABLE #
INTEGER ARRAY PRTB (Q$LPJ} COMMENT PRODUCTION TABLES
INTEGER ARRAY § [0812713 COMMENT STACK 3
REAL ARRAY V (031273 COMMVENT VALUE STACK }
ALPHA ARRAY NL1 (0363)) COMMENT NAME LIST J
INTEGER ARRAY NL2, NL3, NL4 (086333
LABEL AO»AL1»A25A35A85A5-,A6,AT»AB»A9S
LABEL LO, L1131, NAMEFOUND,»
L1sL2sL3,LAsL5»L6sL7s0L08sL9»L10,L31,0L22,0L035L84,L185,L16,L17,0L18,L19»
L20,L21,L22,0L23,L28,L255L265L275L28,0L29,L30,L312L32,L33sL34,
L35,L36sL37,L38,L39,L40,L415L82,L03,0L88,0L85,L86,0L87,L48,0L49,L50,5L58,
LS52,L53sL5851L55sL56,L57,L58sL59,L60,L61,L625L63,L68,L65,L662L67,L68>
L69oL70sL71oL725L73oL78sL75s5LT76sLTToL78,L79,L80,L81,L82,0L83,184,L89,
LB6,LB7,LBB,LB9,L90,L91,0L92,L93,L94,L95,L96sL97,L98,L99,L800,L101,
L102,L103,L1082L105,L306,L107,L108,L109,0L810,L811,0L012s0L113,0L114)
L115»,L116,L1171118,1119,1L1203

SWTCH BRANCH ¢ |
L1oL2,L35LA8sL5sL6,L7oL8sL9,L10,L81,L82,L83,L84,L85,L86,0L875L88,L19,
L20,0L21,0L22,0L23,L28,1L.255L26,L27s0L28,0L29,0L.30sL31,L32,L33,L34,
L35,L36sL3750L38,0L39,L480,L081,L82,5L83,L84,0L855L86,L47,L48,0L489,L50,L5Y,
L52sL53sL58s1L55sL56s 1572158201592 L60sL61s0L622L6320L645L655L665L672L68,
L69aL70sLT1oL725LT735L70sL75sL76sLTTsL78,L79,L80,L81,0L82,L83,L84,L85,
LB86sLB7sL88,sLB9»1.90,L91s0L922L93,L98,L9S5L96sL97»L98,L995L100,L101>
L102,L103,L1048,1105,1.106,L.107,1.108,L109,L110,L111,0L0322L283,L1184,
L115»L316oL317o0L118,0L1195L1203

STREAM PROCEQURE ZERO (D))
BEGIN Dle¢ D3 0S ¢ 8 LIT "™0"}
END J
STREAM PROCEDURE CLEAR (0)}
BEGII;I Dle€Dj0Se 8 LIT ™ "3 SI ¢ D3 DS o 14 WDS
END
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STREAM PROCEDURE MOVE ¢S»0)3
BEGIN SI & SJ 0I¢D30Se WDS
END }
BOOLEAN STREAM PROCEDURE EQUAL (XsY)}
BEGIN TALLY ¢ 1; SI ¢ X3 DI ¢Y3 [F 8SC s DC THEN EQUAL ¢ TALLY
END J

I NTEGER PROCEDURE I NSYMBOL;
COMVENT "INSYMBOL"™ READS THE NEXT EULER=SYMBOL FROM INPUT. 4
STRINGS Of LETTERS aND DIGITS ARE RECOGNIZED AS IDENTIFIERS»IF
THEY ARE NUT EQUAL TO AN EULER=IVWOROD=DELIMITER,
A CHARACTER=SEQUENCE ENCLOSED IN " IS RECOGNIZED AS A SYMBOL;
BEGIN INTEGER I} LABEL AsBsCsD,E)
STREAM PROCEDURE TRCH (S2MsD»N)3 VALUE MsN}
BEGIN SI ¢ SJ] s ¢SI+M} DI ¢ D3 DI ¢ DI+NJ OS ¢ CHR
END J
BOOLEAN STREAM PROCEOURE BLANK (SsNJ)3 VALUE N3
BEGIN TALLY ¢13SI ¢ SJ Sl ¢SI+NJIFSC = " "™ THEN BLANK ¢ TALLY
END J
STREAM PROCEDURE BLANKQUT (0);
BEGIN Dl«D} DS ¢ 8 LIT """}
END 3
BOOLEAN STREAM PROCEDURE QUOTE (S»sN)3 VALUE NI
BEGIN TALLY ¢ 1; SI®sySI ¢ SI+NJIF SC & ®"%" THEN QUOTE ¢ TALLY
END J
BOOLEAN STREAM PROCEDURE LETTER (S$S#N)3 VALUE NI
BEGIN TALLY ¢ 13 SI ¢ SJ SI ¢SI+N}
IF SC # ALPHA THEN '
BEGIN IF SC € “0” THEN LETTER ¢ TALLY END
END J
BOOLEAN STREAM PROCEDURE LETTERORDIGIT (€S$»N)3 VALUE NJ
BEGIN TALLY ¢ 1; SI ¢siSIeSI+N3
IF SC ® ALPHA THEN LETTERORDIGIT ¢ TALLY
END J
STREAM PROCEOURE EOIT (N» S» 0): VALUE NJ.
BEGIN 81 ¢ LOC NI DI «03 OS ¢ 3 OEC]
SI1 €S} 01 ¢ 01 +133DSe 10 WDS
END J
PROCEDURE ADVANCE;
COMVENT ADVANCES THE INPUT POINTER BY § CHARACTER POSITIONS
BEGIN IF CC s 7 THEN
BEGIN IF WC ® 8 THEN
BEGIN READ (CAROFIL»10sREADBUFFERL#])(EXIT))
EOIT (PRP+1» READBUFFER(O0)» WRITEBUFFER(O0J)))
WRITE (PRINFIL215» WRITEBUFFERI[*))3 W ¢ 0
END ELSE WC ¢ WC+i}
cc ¢ 03
END
ELSE CC ¢ CC+13
END ADVANCE J
BLANKQUT (NAME):
A, IF BLANK (READBUFFER CWCJ)» CC) THEN
BEGIN ADVANCE3- GO TO A END J
IF LETTER C(READBUFFER (WC)» CC) THEN
BEGIN FOR I¢ 0 STEP 1 UNTIL 7 00
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BEGIN TRCH (READBUFFER ([WCJls CC, NAME, 1); AOVANCEJ
If NOT LETTERORDIGIT (READBUFFER [WCl)» CO THEN GO TO C

END J
Bt AOVANCEJ
IF LETTERORDIGIT (READBUFFER C(WCJ)» CC) THEN GO TO BJ
Cs
END ELSE
IF QUOTE (READBUFFER (WCJls CC) THEN
BEGIN AOVANCE] ZERO (NAME)} NAME e " "

ES TRCH (READBUFFERLWCI» CC, 1s7; ADVANCE;
IF T #7""  THEN
BEGIN NAME ¢ 1,(8286) & NAME (188241248)3 GO TO E END
ELSE I¢ SYMMYM GO TO 0
END ELSE
BEGIN TRCH (REAOBUFFER (WCls CC, NAME» 0)3 ADVANCE
END U
FOR I¢ FT STEP 1 UNTIL LT DO
I EQUALC(SYTBLIJd» NAME) THEN BEGIN ZERO(NAME)S GO TO 0 END J
I ¢« IDSYM}
Ds INSYMBUL ¢ I
END INSYMBOL J

PROCEDURE P1(X)} VALUE X} INTEGER X}
BEGIN PRP ¢ PRP+13 PROGRAM{PRP] ¢ X
END J
PROCEDURE P2(X»Y)} VALUE XsY} INTEGER X3REAL Y
BEGIN PRP ¢PRP+1} PROGRAMLPRP] ¢ X3 PROGRAMIPRP)(BFIELD ¢ YI
END J
PROCEDURE P3(XsY»£)} vaALUE XsYs2Z3 INTEGER XoYsZ3
BEGIN PHP ¢PRP+13 PROGRAMCPRP) ¢ XI PROGRAMCPRP)BFIELD ¢ vy
PROGRAMIPRPICCFIELD ¢ 2
END J
PROCEDURE FIXUP(l1,X)3} VALUE IsX3 INTEGER 11X}
PROGRAMIIILBFIELD ¢ X3
PROCEOURE ERROR (N)JVALUE NI INTEGER NJ
BEGIN SWTCH FORMAT ERR ¢
("UNDECLARED IDENTIFIER"™),
("NUMBER T0U LARGE"),
("LABEL IS OEFINEDTWICE™),
("A LABEL IS NOT DECLARED"),
("LABEL DECLARED BUT NOT DEFINED?),
("PRUGRAM SYNTACTI CALLY INCORRECT");:
ERRORFLAG ¢ TRUE;
WITE C[NOJs ERR{NII} VRITE C€X80,"COL"»13>5 WCX8 ¢ CC +1)
END ERROR J

PROCEDURE PRUGRAMOUMP}
BEGIN REAL TJ INTEGER 1} LABEL LJ
STREAM PROCEDURE NUM (N»D)} VALUE NJ
BEGI N 01l ¢ DJ SI ¢« ,L0C NJ OS ¢3 OEC
END U
READ €<A4>» T) (L1} If T # "DUMWP" THEN GO TO L3}
WRITEC<//"PROGRAM DUMP®">)}
FORI¢ 1 STEP 1 UNTIL PRP 00
BEGIN CLEAR (NRITEBUFFER({O0})}
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T ¢ PROGRAMIII} NUM (1» WRITEBUFFERL[O1)}
MOVE (SYTB ([(T,AFIELD),» WRITEBUFFERCL1))S
IF TeBFIELD # 0 THEN NUM (T+BFIELD, WRITEBUFFER[2]1)3
IF ToCFIELD # 0 THEN NUM (T .CFIELDs» WRITEBUFFERL31)3
IF T«AFIELD = NUMSYM THEN
BEGIN I ¢I+33 WRITE C(INOl»<X18,E16,8>» PROGRAMLI)) END 3
WRITE (PRINFIL» 150 WRITEBUFFERLw%))
END J
LIEND PROGRAMDUMP ]

COMMENT INITIALISE THE SYMBOLTABLE» THE PRIORITY FUNCTIONS AN0 THE
PRODUCTI ON TABLES W TH DATA GENERATED BY THE SYNTAX- PROCESSORJ
FILL SYIBL#IWITH On
"PROGRAM "»"BLUOCK ", "BLOKHEAD"»"BLOKBODY"»"LABDEF ","STAT "
"STAT- ", "EXPR ","EXPR= "o"IFCLAUSE™>"TRUEPART™»"CATENA "
"DISJ ","DISJHEAD",»"CONJ "s"CONJe n,"CONJHEAD™» "NEGATION®»
"RELATION™»"CHOICE "™,"CHOQICE~ "»"SUM ®y"SUMe Bs"TERM "
"TERM= ., "s"FACTOR ","FACTOR® "#"PRIMARY ","PROCDEF"»"PROCHEAD"»
“LIST=* Ry  ISTHEAD",»"REFERENC"»"NUMBER ", "“REAL®* "y"INTEGER#")»

“INTEGER-“#“DIGIT ","LOGVAL M™,"VAR ", "VARw ","VARDECL "
"FORDECL "»"LABDECL",»"0 nyny ","2 n,n3 ",
“ g4 n,ng n,"g n,ny n,ng n,ng ",
N, n,n. ﬂ,ﬂ] n,n. n,np I,NNE“ ”'
"FORMAL "»"LABEL ",TIDENT ", n,n] ","BEGIN "
"END nyn( ",") ",mMQ ","RQ ","G0T0 "
" OUT e ","IF ","THEN ", "ELSE nyng "
"OR ", "AND ","NOT nyng n,ny n,ng ",
ng n,n> n,"> "ymMIN ", "MAX LAY ",
Ne n,n,( n,n, n,ng n’nMUD N.ﬂ' ",
®ABS PHy"LENGTH "#"INTEGER "»"™REAL “#4“LOGICAL "»s"LIST ",
“TAIL "s"IN ","1S8 ","ISN ®,"ISR mymlIsL "
*ISLl nynisyY w,"ISP LV §11] ","SYMBOL® "s"UNDEFINE"™»
"TEN fonyg ", "TRUE "a"FALSE n,ng “J

FILL FC*) WITH 00
1» 40 190 1, 20 1» 28 30 4, 1 40 4,
58 50 50 6, 60 60 Ts 7, 8, 9, 10, 11,

11» 3§12, 12, 13, {3 3, 13, 3, 130 13, 13, 15,
17» 190 130 130 150 10 10 1, 190 19» 19 190
190 19» §9» 19, 19 190 190 186 210 19» 13 148
140 140 160 3, 16, 2138 58 190 13» 19, 13, 2,
48 48 30 19, 19: 120 190 190 111» 80 8, 8,
80 80 80 90 90 10, 10, 118 11» 12,
1§ 13, 13, 13, 13,

13» 13, 13, 12, 12; 120 16, 116, 13, ¥ 5)

FILL GC*) WITH 0013, 13, ,

10 50 6 60 3 10 20 30 40 50 1, S,
50 60 60 60 T» T» (&) 8, 90 13» 13, 10,
118 11, 12 128 138 138 138 14, 130 18, 18» 160
178 17+ 130 13, 14, 19, 3, 19, 180 18,
§18» 180 18» 180 180 180 30 1%, 1» 160 130 200
40 200 140 15, 30 60 1» 148 3, 13 kP S,
5 13 S» 3 3 40 50 60 14 7 7» 7»
4] 70 7» 8, 80 10» 10, 14, 110 110 $1» 12,
138 13, 13, 13, 130 138 13, 13, 13, 13, 13» 13,
130 138 13+ 13, 13, 130 130 160 130 130 43



FILL MTHC*) WITH O»
1» 2, 5» 16, 258 298 30, 338 390 42, 470 48,
558 958s 62 : 68, T1s TS5, 81, B84, 111» 122, 125, 136,
1398 158» 1610 168¢ 1710 174,183, 186, 198,201,208, 2160
2238 2298 232s 235, 245, 256, 257, 258, 289s 2620 2650 268,
2710274852772 2805, 283, 2860 289, 2908 29122920 2930 297,
3018 305, 3098 315» 320,321,328, 325, 328,329,332, 3330
3370 3410 3428 347, 348, 3498350, 351» 3528 3568 3570 358,
3590 360,361 362s 3638 3648 368, 372, 3730 374,375» 3740.
3770 381,385, 389, 3930 3978 401, 405, 4080 #412» 4160 420,

424, 428548320 4360 440, 4438 446r 454, 4558 858,461

FILL PRTBIL*) WITH 0,
02,=103,» 98 0, 42, 57,=115, 38 48, 87s=116» 3,
117, 40 0» 68 ST»=118, 4, 6> 67,119, 20 0,
7»=110» T» 0, 0,={12, 68 0, 770°1010 11»+111,
T» 0,°109,» 80 0, 11 9,104, 90 0, 00 78,
135 990 $2»=108, 9, 0,=100, 12, 02 138 -970 138
0» 79» *96» 140 -988 138 0 950 150 0» 162 =93,
162 0o 80s =92, 178 “940 168 ~0» =90, 180 0» =83,
19, 62, 20, =84, 19, 83, 200 -850 198 84,20, -860
190 85, 20s =87, 19, 868 20, =88, {19, 870 200 =89,
19, 0, 88, 22, =80, 21, 89, 9220 -810 21» =82, 20,
0sr =79» 21» 0, 90, 28, =76, 23, 0910 28» =77» 238
=78, 220 08 =73, 238 08 92, 265 =68s 258 930 26,
#8695 25, 940 26, =70, 25, 950 26, =T41s 252 °72» 143
O *67» 25 0, 96, 28, =65, 27, =66s 26 0 8 =64,
27, 08 =46 280 08 438 S7» -350 300 88 710 =37,
298 08 “448 28, 08 8, 550 =31, 328 80 690 =33,
310 692 -340 310 08 '430 28, 0»®41s 280 0s =25,
340 115, 360 %26, 348 1150 3§16, 36, -270 340 0» 560
360 -230 350 =24, 350 0, 38, -210 370 "220 360 0,
=20, 370 0» -400 280 08 -380 28, 310 *39» 280 740
9,=105, 90 O, 640 80 65, S, 841, 56, =6» 418

7 400 08 0, 0» 0» =10, 38, 08 *11» 380 Oy
120 38, 0, =313, 38, 0, =14, 380 0» *1%» 380 0,
-160 38, 08 =iT, 38, 0 -180  38» 0» =19» 380 0 8

08 08 0o 0, 400 »30, 330 0 8 630 <18 420 08
638 '20 438 0, 63, =3, 440 0» =8, 410 58,=1413,
50 08 80 650 =48, 28, 0, 0s=314» 3 O 0, 0,
=32, 32» 0o 0, =365 300 0, 0, 28,106, 90 0,
9,=407>» 9 0, 0» 80 T6,=102, 10, 0, 0, 0,

08 08 0r 19, =914, 180 0, 0» 08 0, 0» 0,
0, 0, 0r 340 =74, 230 0., 240 -750 238 0» 0,
0» 08 Or 0, 280 "580 28 08 400 9590 28, 0,
280 -600 280, 280 =61, 28, 08 280 -620 28» 0,

280 =63, 280 On 280 =45, 28, 0» -490 280 08 40,
-500 280 0r 408 =51, 280 0, 400 *952» 280 08 408
-530 280 0» 400 <54, 280 0, 400 “558 280 0» 408
"560 28, 0» 400 =37, 280 0, =42, 2380 08 =47, 28,

0» 36> -280 34, 1168 36, =29, 348 0, 0» =8, 39,
0 *=9» 390 0, 2, 119,120, 1, 0J

NC ¢ 8: CC ¢ 7. CLEAR CWRITEBUFFERLO0})3 CLEAR (READBUFFER[01)J

S(0) « MARK} ERRORFLAG ¢ FALSE;
[¢ J ¢ BN ¢ ON ¢ NP ¢ PRP ¢0J
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COMMVENT ALGURITHM FOR SYNTACTIC ANALYSISS
COMPARE THE PRIQRITIES OF THE SYMBOL R AN0 OF THE
SYMBOL UN TOP OF THE STACK Se¢ TIF SCJ)e,eSLI) CONSTITUTE A RIGHT=
PART OF A PRODUCTION, THEN REPLACE THI SSEQUENCE BY THE
CORRESPONDI NG LEFT- PART AND BRANCH TO THE INTERPRETATI ON- RULE
BELONGING TO THE PERFORMED PRODUCTI ON;

AOS R ¢ INSYMBULJ
Al IF FLSUIJ) > GERY THEN GO TO A2}
IF R # MARK THEN GO TO A9}
I ¢ J ¢1+13SL1) « R} MOVE (NAME» VII))} GO TO AQJ
A1 IF FLSLJ=11]1 = G[{SCJ]) THEN BEGIN J ¢ J=13 GO TO A2 ENDUJ
M ¢ MTBISTJIY)
A3s IF PRTBI(M) = 0 THEN BEGIN ERROR(5)} GO TO EXIT ENDJ
N ¢ JJ}
A4 N ¢ N+1}
IF PRTBIM] € 0 THEN GO TO A8}
IF NS I THEN GO TO AT}
ASs M, ¢ M+13
IF PRTBIM] 2 0 THEN GO TO A%}
A6 M e M®23 GO TO A3}
AT IF PRTB(M) # SCNI THEN GO TO AS3
M ¢ M¥13 GO TO A4S
A8 IF N 4 I THEN GO TO A61
GO T O BRANCH[=PRTB(MI1)J
LO: SCJ] € PRTBIM+1)3 1 ¢ J} GO TO All'
COMMVENT THE FOLLOWING ARE THE INTERPRETATION=RULES)
Lis
L2s P1¢(SLJI)3 NP ¢ Np+1} MOVE CVIIJANLICNPI)S ZERO (V(11)}
NL2INP] ¢ BNJ NL3INP] ¢ ON ¢ON+13 NLA4INP) ¢ SLJIS GO TO LOJ
L3t NP ¢ NP+13 MOVE (VIIJ»NLLIINPIYS ZERO (¢VC11))
NL2CNP] ¢ BNJ NL3IINP] e NLAINP) ¢ UNOEF] GO TO LOJ
Las FOR T ¢ NP STEP =1 UNIIL { DO
IF EQUAL (NL1(T), V(I)) THEN GO TO NAMEFOQOUND}
ERROR (0)} GO TO L0OJ
NAMEFOUND 3
IF NL4LT) ® NEWSYM THEN
PICREFSYMy NL3CTI» NL2CTI) ELSE
IF NL4(T)} = LABSYM THEN
PICLABSYM, NL3CT)» NL2[T)) ELSE
If NL4[T) 8 FORSYM THEN
BEGIN P3CREFSYMs NL3CTI» NL2[T))S PICVALSYM) END ELSE
BEGIN P3CLABSYM» NL3CTIs NL2ETI)3 NLILT) ¢ PRP END
GO TO LO3
L5% P1¢SCI})3 GO TO LO3
L6 PL1C(VALSYM)} GO T0 LO3
L1003
L9 VLJ) ¢ 03 GO TO LOJ
LIty
L83 ViJl ¢ 13 GO TO LO3
Li2s VIJ) ¢23 GO TO LO
Li13t V(J) ¢ 33 GO TO L0}
L1411 VIJ) ¢ 43 GO TO LO,
L1Ss VCIJ ¢ 53 GO TO L0}
Li6es vCJJ € 61 GO TO LO3
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L1788 VIJl ¢ 73 GO TO (03
L18: VIJ) ¢ 83 GU TO L0}
L19% V(J) ¢ 93 GO TO |0}
L2208 SCALE ¢} GO TO LO}
L2313 VIJ) ¢ V{J) x 10 +V[11} SCALE ¢ SCALE+!}
IF SCALE » 11 THEN ERROR (€13} GO TO LOS
L23s VIJ) ¢ VII) X O * (‘SCALE) ¢+ VtJ1)a60 TO LOJ
L26% VIJ] ¢ V{JI x 10 e VIII} GO TO LOJ
L278 VIJ) ¢ V(IJ) x 41+*V[I}} GO TO LO}
L28% V{J) ¢ 10 * VII1} GO TO LOJ
L29t VIJY ¢ o8 * V{113 GO TO LOJ
L3ts VIJ] eVIJI*13 G O TU LOJ
L32¢ VIJ) ¢ 03 GUO TO LOJ
L3331 P2¢SLI)» VIJI*L)3 GD TO LOS
L34s P2¢S{I)» VIVII)} GO TO LO3
L36t BN e BN+13 UNe 03 P2¢(SLJ)s UNDEF)3 vL Jle PRPJ
"NP ¢ NP+%} ZERO (NLICNP1)J NL2INP) &« MP3 M ¢ NP3 GO TO LOJ
L37PICSTEI)3 FIXUP (VIJ1» PRP41)J NP. ¢ MP=13 MP ¢ NL2(MP))
BN € BN={3 GO TO L0’
L3883 PI(VALSYM)} GO TO LO,
L39: PIC(CALLSYM)} GO TO LO;
L40s P2(BOOLSYM»VIIII}I G O TO LOJ
L4183 PIC(NUMSYM)} PHP ¢ PRP+13 PROGRAM{PRP) ¢ V[II} GO TO LO3
L42s P2¢SEI)» VIIY)S GO TO LOJ
L7583 P1CUNARYMINUS)S GO TO LOJ
L9238 196: L1013L102% P2C¢SLI)s UNDEF)S VLJ) ¢ PRP} GO TO LOJ
L93s L97TY FIXUP (V[J)» PRP#+1)3 GO TO LOJ
L10as FIXUP (V[J)e VIJ+11+1)3 FIXUPCVIJ+11,PRP+123GOT OLOJ
L1138 FOR T ¢ NP STEP =i UNTIL MP+% DO
If EQUAL (NL1(TI,V(J]) THEN
BEGIN IF NL4(CT) # UNDEF THEN ERROR(C2)}
TI1 ¢ NL3{T)S NL3(T) e PRP+13 NLACT) ¢ LABSYM} ZERO (V(LJ1)}
Lit1313 IF TI # UNDEF THEN
BEGIN T ¢ PROGRAMITL1)4,BFIELDS FIXUP (Ti» PRP¢1)}
T1¢T3 GO TO L1131
END 3 GO TO LO3
END 3
ERROR(3)3 GO TO LO,
L1143 BN ¢ BN+1JUN ¢ 03 P1¢SCI3))
NP ¢NP+33 ZERO (NLICNPIJ)} NL2INP) ¢ MP} M e NP} GO TO LOJ
L118IPICSCINIIGU TO (03
L1198 FOR T ¢ MP+1 STEP § UNTIL NP DO If NL4CT) = UNDEF THEN ERROR(4))
NP ¢ MP=1} MP ¢ NL2(MP)JP1(¢SCI1)} BN ¢ BN®"i{} GO TO LOJ

L85t 147: LA49% L5008 LSts L5283 LS31 L5418 L5518 L56% LS71 L58% 159 L6O?
L61s 1.62: L63: L9118 L106% LIOTsP1(SCJIISGOTOLOS

L651 L6811 169: L7088 L7318 L7638 L7Ts LBOY LBy LB4S 185 LB6s LB7s L8BY
L89: 199: L1051P1(S(J+1))} GO TO LO)

L7: L22: Le4% L25% 308 L35t L43% LAas Lass Lads L6at L6608 L67s LT28
L73: L74% L788 L79s LB25 183: L90¢ L94as L9%s 198: L1003 L1033 L4081
L1098 L1108 L123% L1128 L3158 L1168 L1178 L1208 G O 70 LOJ

A9 P1(MARK) S PROGRAMDUMP} 1f ERRORFLAG THEN 60 TO EXIT
END # }
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BEGIN COMMENT E U L E R I NTERPRETER MCKEEMAN & W RTH 3
HEAL ARRAY S» Sls F» r! t01102211 COMMVENT STACK}

INTEGER I1s 122 LVLs FURMALCOUNTJ

INTEGER &P} COMMENT TOP=STACK POINTERJ

INTEGER F Pi COMMENT FREE STORAGE SPACE POINTER;
INTEGER MP3 COMMENT BLOCK- OR PROCEDURE- MARK POI NTER;
INTEGER PP} COMMENT PROGRAM POI NTER)

LABEL ADDs SUBs MUL» DIVIDE, IDIVs REMAINDER, POWERs NEG» ABSV»
INTEGERIZE» REALLs LOGICALs MIN, MAX EQLs NEQ» LSS, LEQ, GEQ,» GTR»
LENGTH, ISLUGICAL» ISNUMBER» ISREFERENCE, ISLABEL»,» ISSYMBOL»

ISLIST, ISPROCEDUREs ISUNDEFINEDs» LAND» LOR» LNOT, LEFTQUOTE,

RI GHTQUOTE, RIGHTPARENs, REFERENCE, PROCEDURECALL, VALUEOPERATOR,
GOTO, NEW» FORMAL, BEGINVs ENDV, STOREs» THENVs ELSEV» NUMBER, LOGVAL»
LABELL» SUBSCRIPT» SEM COLON, UNDEFIND» OUTPUT, INPUTs TAIL,
CATENATE, LISTT» SYMBOL» DONE» UNDEFINEDOPERATORs NEXT» TRANSFER;

COMMENT SI AND FI FIELD OEFINITIONS

' 1°4 8=17 18=27 28=37 38e=4y7 48=97
NUMBER TYPE VALUE
BOOLEAN TYPE VALUE
SYMBOL TYPE VALUE
UNDEFI NED TYPE
LIST TYPE LENGTH ADDRESS
REFERENCE TYPE MARK ADDRESS
LABEL TYPE MARK ADDRESS
PROCEDURE TYPE BLOCK NOes MARK ADDRESS
BLOCKMARK TYPE DYNAM C BLOCK NOe STATIC ADDRESS LISTS

- DEFI NE

TYPE=[114)#)

WCT=[281101]¢#,

‘ADORESS=([381101¢#,

STATIC=(283101¢%,

DYNAMIC=[81101)#,

BLN=[1881101%,

NSA=[18810)%, COMVENT NEW STARTING ADDRESS FOR FREE)}

UNDEF INED=0#,
NUMBERTYPE=1#%,
SYMBOLTYPERZ#,
BOOLEANTYPE=3#,
LABELTYPE=®4#,
REFERENCETYPE=®S#,
PROCEDURETYPE=G6#,
LISTTYPE=T#)
BLOCKMARK=8#% }

STREAM PROCEDURE MOVE(CFts T1s W)J

BEGIN LOCAL Ri, R23
SI ¢ W} SI ¢ SI + 63
DI ¢ 1LOC R1} DI ¢ DI ¢« 73 DS ¢ CHR)
DI € LOC R23 DI ¢ (01 + 75 DS ¢ CHRS
SI ¢ Fi1} DI ¢ T1J
R1¢2¢DS ¢ 32 WDS))I DS ¢ R2 WDSS

ENDJ

101



PROCEDURE DUMPUUT(XI» X)3 VALUE XI» X3 REAL XI, X}
BEGIN INTEGWER T» 1i

PROCEDURE LISTUUT(X1)} VALUE XI5 REAL XI:
BEGIN COMMENT RECURSIVE LIST OUTPUT;
INTEGER I» NI
SWTCH FORMAT LPAR ¢
("(")’(”o(")’("cc‘")’("ooo("’l("oooa(“)l("oooo.(")l‘”ooo.oc(”)’
SWTCH FURMAT RPAR ¢
(”)"))(”.)")p(”oo)")’("ooQD")D‘"Oooo)")!("ooool)"))‘"cooooo)")’
WRITEC<X9»"LIST"»110>» XI,ADDRESS)} WRITE (CNO3» LPARCLVLI]))
LVL ¢ LVL + 1; N ¢ XI,ADDRESS + XI,WCT =4}
FOR I ¢ XI+ADDRESS STEP 1 UNTIL N 00 DUMPOUT (FICIJ)» FCI1)}
LVL ¢ LVL = 13 NRITE (RPARCLVL1)}
END LIST OUT;

T ¢ XI1.TYPES

IF T = UNDEFINED THEN WRITE(<X9, "UNDEFINED"™>) ELSE

If T » NUMBERTYPE THEN

BEGI N
If X # ENTIER(X) THEN WRITE(<X9»"NUMBER™»E20,10>»» X) ELSE
WRITEC<X9» "NUMBER'O 120>»s X)

END ELSE

IF T » BOOLEANTYPE THEN WRITEC<X9,"LOGICAL"™» 18X%, L5>» BOOLEANCX))

ELSE

IF T » LISTTYPE THEN LISTOUT(XI) ELSE

IF T = LABELTYPE THEN WRITE(<X9, "LABELO ADDRESS =", [4,

" MRK'"0 I4>» XI«ADDRESS» XI,STATIC) ELSE

If T s REFERENCETYPE THEN WRITE(<X9,"REFERENCEs» ADDRESS=",14,

" MARK®",I4>,X1sADORESS2X1,STATIC) ELSE

If T ® PROCEDURETYPE THEN

WRITEC<X9»"PROCEDURE DESCRIPTORO ADDRESS=™, I4, " BN=®", 14,

" MRK'"0 I4>s XI1.ADORESSs» XI+BLNs XI1,STATIC)Y ELSE

IF T ® BLOCKMARK THEN
WRITEC(<X9, "BLOCKMARK, BN=", I4, " DYNAMC'"O 140 ™ STATICs"»
I4» " RETURN""O0 14 XI,BLNs» XTI ,DYNAMICsXI+STATIC»X1,ADDRESS)

ELSE IF T® SYMBOLTYPE THEN

WRITEC<X9» "SYMBOL "rAS5> X))

END DUMPOUT)

PROCEDURE ERROR(N); VALUE N; INTEGER N3}

BEGI N INTEGER 1}
SWTCH FORMAT ER ¢
(“ILLEGAL INSTRUCTION ENCOUNTERED"10
("IMPROPER UOPERAND TYPE"),
("CANNOT DIVIDE BY 0")»
("CALL OPERATOR DID NOT FIND A PROCEDURE")O0
("REFERENCE OR LABEL OUT OF SCOPE"),
("OUT Of SCOPE ASSIGNMENT OF A LABEL OR A REFERENCE") 0
(“SUBSCRIPT IS NOT A NUMBER"),
("SUBSCRIPT NOT APPLIED TO A VARIABLE")O0
("SUBSCRIPTED VARIABLE IS NOT A LIST"),
("SUBSCRIPT IS OQUT OF BOUNDS"),
("CANNOT TAKE TAIL OF A NULL LIST"),
("STACK UOVERFLOW®™),
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("STACK OVERFLOW DURING GARBAGE COLLECTION"™),
("ASSIGNMENT TO ANON=VARIABLE ATTEMPTED"),

("FREE STUKAGE AREA IS TOO0 SMALL"):
WRITE (CUBLI» ERINI)S
WRI TE (</ "SPs"s[4," FPan,J4," PPa",14," MP=",[4," SYL=",14/>,
SPs» FP» PP» MP, PROGRAMCPPIJAFIELD)}
FOR I ¢ 1 STEP 1 UNTIL Sip DO
BEGI N WRITEC(NOl» <14>» 1)} DUMPOUT (¢SIC11»SCLI)) END
GO TO DONE
END ERROR;

PROCEDURE FREE(NEEO)} VALUE NEED3 INTEGER NEED;

COMMENT "FREE" IS A "GARBAGE COLLECTION' PROCEDURE. ITIS CALLED
WHEN FREE STORAGE f IS USED UP» AND MORE SPACE IS NEEDED.
GARBAGE COLLECTION TAKES THE FOLLOW NG STEPS?H
1. ALL BLOCKMARKS, LIST DESCRIPTORS AND REFERENCES IN STACK
POINT TO VALID INFORMATION IN FREE STORASGE, LIKEWISE, ALL

~LIST DESCRIPTORS AND REFERENCES THAT ARE POINTED TO ARE VALID,

ENTER INTO THE STACK ALL SUCH ENTITIES,
2, THE GARBAGE COLLECYOR MUST KNOW IN WHICH ORDER TO COLLAPSE THE
FREE $TURAGEs THUS SORT THE LIST BY FREE STORAGE ADDRESS,
3, MUVE EACH BLOCK DOWN If NECESSARY,
4, NUW THE ADDRESSES ARE WRONG==MAKE ONE MORE PASS THROUGH THE
SORTELD LIST TO UPDATE ALL ADDRESSES;

BEGIN OWN INTEGER Ge Hs I» J} OW REAL T)

INTEGER PKOCEDUHE FIND(W)} VALUE W REAL W}

_ BEGIN COMMENT BINARY SEARCH THROUGH ORDERED TABLE)

INTEGEK T» N» B» KEY, K}

LABEL FOUND» BINARY)

T ¢« G¢i} B ¢ SP + 1;

KEY ¢ W¢ADDRESS}

BI NARY: N e (B+T) DIV 2;

K ¢ SIIN].ADDRESS}

If K= KEY THEN GO TO FOUND;

IF K € KEY THEN B ¢ N ELSE T ¢ N}

GO TO BI NAKY;

FOUND: FIND ¢ STIN]J,NSA
END FI ND;

PROCEDURE RESET(W» Z)3 REAL Ws Z3

BEGIN INTEGER TY)
TY ¢ WeTYPEJ .
If TY 8 REFERENCETYPE OR TY & LISTTYPE THEN W.ADORESS ¢ FIND(W) ELSE
IF TY 3 BLOCKMARK THEN Z+ADORESS ¢ FIND(Z)

END RESET;

PROCEDURE VALIDATE(P); VALUE P} REAL P}
BEGIN COMMENT TREE SEARCH FOR ACTIVE LIST STORAGE;
INTEGER I» U;
G¢G¢*+ I
IF G > 1022 THEN ERROR(12)}
SI(G) ¢ P}
U ¢ PoADORESS + PoWCT =1} )
IF PoTYPE # LISTTYPE THEN FOR I¢ P,ADDRESS STEP § UNTIL U D@
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IFFICEIeTYPE 3 LISTTYPE OR FIL1)eTYPE = REFERENCETYPE THEN
VALIDATE(CFILI))}

END VALIDATIONJ

PROCEDURE SURT(LB» UB)J VALUE LB» UB3} INTEGER LB»s UBJ
BEGIN COMMENT BINARY SORT)
I NTEGER M}
PROCEDURE MERGE(LB» Mp UB)} VALUE LBs Ms» UB} INTEGER LB2» M» UB}
BEGIN INTEGER KsbasUsKis K25 LABEL As B}
K ¢ UB = L83
MOVECSIILB)» STLB)Yy K)I
L ¢ K¢ LB U ¢ M3 GO TO B3
At Ki ¢ SCLIJADDRESS) K2 ¢ S[UJ,ADDRESSS
IF KI € K2 UR (K1 8 K2 AND SCL)TYPE = LISTTYPE) THEN
BEGI N SI[KIeSCLIJL® L&t
END ELSE
BEGIN SI{Kle SC(U)J U ¢ U+t
ENDJ
K e K + 1}
Bt IF L = M THEN ELSE IF U ® UB THEN
BEGIN K ¢ M=} MOVEC(SILI»SI[UB=K), K)
END ELSE GO TO A
END MERGE}

If LB € UB THEN
BEGIN M ¢ (LBeUB) DIV 2)
SORT(LB» M)} SORT(M*1,» UB)} MERGE(LB, M+1» UB+{)
~ END
END SORT)

INTEGER LLAs LLW}

G ¢ SP}

FOR He¢l STEP 1 UNTIL SP DO

BEGIN CUMMENT LOCATE ALL ACTIVE LISTS AND REFERENCES)
IF SICHIZTYPE ® LISTTYPE OR SICHI.TYPE . REFERENCETYPE THEN
VALIDATECSI(H)) ELSE
IF SICH)sTYPE = BLOCKMARK THEN VALIDATE(CSLHI)}

ENDS

COMVENT SORT THEM IN ORDER OF INCREASING ADDRESS)

SORT(SP+1, G)}

I t 13 COMMENT COLLAPSE THE FREE STORAGE}

FOR J ¢ SP # 1 STEP § UNTIL G DO

IF SICJIsTYPE o LISTTYPE THEN

BEGIN CUMMENTIFGeCe OCCURS DURING ®"COPY®™ THEN WE MJST AVO30D

THE CREATION OF DOUBLE LIST ENTRIES FROM DUPLICATED OESCRIPTORS?

IFSICYInSILJ+1) THENSICJ+3IsTYPE ¢t UNDEFI NED)
LLA ¢ SICJI+ADDRESS) LLW o SICJIWCTS
IF LLA #]1THEN
BEGI N
MOVECFELLA)s FLI)2 LLNW))
MOVECFICLLAI»FICI]s LLWY)
ENDJ
SICJIeNSA ¢ 1
I €1 ¢+ LLW}
END ELSE SICTJ)eNSA ¢]® LLW + SI[TJ)JADDRESS = LLAJ
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FP ¢ 1)

COMMENT RESET ALL AFFECTED ADDRESSES)
FOR I ¢ 1 STEP 1 UNTIL SP DO RESETCSICI),»SCI1)}
FOR I ¢ 1 STEP 1 UNTIL FPe=§ DO RESETCFICI)»FC1))3
IF FP ¢ NEED > 1022 THEN ERROR(14)}

END FREE 3

PROCEDURE MOVESEG(LD)} REAL LD}
BEGIN COMMENT MDVE ONE LIST SEGMENTS
INTEGER W»s X}
We LDe WCTS
IF FP + W > 1022 THEN FREEC(W)}
X ¢ LO+ADDRESS)
MOVECFCX)s FCFPls W)}
MOVECFICX)» FICFP)s W)}
LD.ADDRESS ¢ FPJ
FP ¢ FP ¢ W3
END MDVE SEGMENT}

PROCEDURE COPY(LD)} REAL LD}
BEGIN INTEGERI,» J3 COMMVENT RECURSIVE LIST COPY)
MOVESEGCLD))
J ¢ LDWCT . 13
FOR I ¢ 0 STEP 1 UNTIL J DO .
IF FICI+LD+ADORESSIoTYPE » LISTTYYPE THEN COPYCFICI*LD.ADDRESS))
END coOPY:

PROCEOURE BOOLTEST} IF SIUSP},TYPE # BOOLEANTYPE THEN ERROR(1)}
INTEGER PROCEDURE ROUND(X)} VALUE X3 REAL XJ ROUND e X3

PROCEDURE BARITH}

BEGIN If SILSPJ4TYPE # NUMBERTYPE OR SI[SP=1),TYPE # NUMBERTYPE THEN
ERRORC1) ELSE SP ¢SPejg

END BARITH}

PROCEDURE FETCH}
BEGIN INTEGER Ti
IF SICSPJ)eTYPE 3 REFERENCETYPE THEN
BEGIN 1 ¢ SILSP),ADDRESS) SILSP) ¢ r1C1)) SISP)e FL1] END
END FETCH 3}

INTEGER PROCEDURE MARKINDEX(BL)} VALUE BLJ INTEGER BL)J
BEGIN COMMVENT MARKINDEX IS THE INDEX OF THE MARK W TH BLOCKNUMBER BLJ
LABEL U1J INTEGER I}
1 ¢ MP}
UISTF SICI)eBLN®BL THEN
BEGIN T¢SICIJeSTATICI GO TO ULENDS
If SICIJ«BLN < BL THEN ERROR(4)}
MARKI NDEX ¢ |
END MARKI NDEX J

PROCEDURE LEVELCHECK(Xs Y)} VALUE Y} INTEGER YJ REAL X}
BEGI N I NTEGER T> 18 ts U} T & X, TYPES
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If T = REFERENCETYPE OR T = LABELTYPE THEN
BEGIN IF XeSTATIC > Y THEN ERRORCS5) END ELSE
IF T = PROCEDURETYPE THEN X+STATIC ¢ Y ELSE
IF T = LISTTYPE THEM
BEGIN L ¢ XsADDRESSS U ¢ L + X WCT =»13
FOR I e L STEP 1 UNTIL U DO LEVELCHECK(CFILI).Y)
END
END LEVEL CHECK3}

PROCEOURE SPUPJ IF SP 2 1022 THEN ERRORC11) ELSE SPe¢ SP + {3}

PRDCEOURE SETIS(V)} VALUE V3 INTEGER VJ
BEGIN FETCHS
SUSP) ¢ REALCSILSPI.TYPE 3 v)J
SICSP)sTYPE ¢ BUOLEANTYPES
END SET 183

SWNITCH EXECUTE e
PROCEDURECALLs» VALUEOPERATOR SEMICOLON, UNDEFINEDOPERATOR,
REFERENCES NEWS FORMAL» LABELL» UNDEFINEDOPERATOR, LOGVAL»
SUBSCRIPI» BEGINV, ENDVs NUMBERs RIGHTPARENs» LEFTQUOTE» RIGHTQUOTE»
GOT08 OUTPUTS STOREs UNOEFINEDOPERATOR,» THENVs ELSEVs» CATENATES
LOR» LAND, LNOT» EQL, NEQ,LSS»LEQ, GEQ, GTRsMIN» MAXS
ADDS SUB» MULs, VDIVIDE» IDIVs REMAINDER, POWERs ABSV2LENGTH»
INTEGERIZE» REALL, LOGICAL, LISTTA T AIL ; INPUTs
ISLOGICAL,» ISNUMBER, ISREFERENCE» ISLABELsISLIST,»ISSYMBOLS
I SPROCEDURE ISUNDEFINEDs SYMBOLS UNDEFIND» UNDEFINEDOPERATOR»s NEG?
UNDEFINEDOPERATOR,» UNDEFINEDOPERATOR, DONE}

WRITE ([PAGE]}))
SPeMPe PPe 03 FP ¢ 13 LVL ¢ 0) FT ¢ FT+9)

NEXTS PP ¢ PP¢1}
TRANSFER? o To ExecuTE (PROGRAMIPPI,AFIELD ® FTIJ

UNDEFINEDOPLRATOR?S
ERRORCO0)}
SEM COLON:
se & SP = 1) GO TO NEXT)
UNDEFI ND: SPUPJ
SI{SP) TYPE ¢ UNDEFINED} GO TO NEXT}
NUMBER:
PP ¢ PP ¢ 1} SPUPJ .
SILSPl,TYPE ¢ NUMBERTYPE} SCSPJ] ¢ PROGRAM{PPJIJ GO TO NEXT)
SYMBOLS SPUPJ
SICSP)+TYPE ¢ SYMBOLTYPEJ} SCSPJ] ¢ PROGRAMCLPP).BFIELDS GO TO NEXTJ
LOGVALY SPUPJ
SICSPJ+TYPE ¢ BOOLEANTYPE] SCSPJ ¢ PROGRAMLPP1,BFIELD}
GO TO NEXT]J
REFERENCE: SPUPJ
SICSP) ¢ 03
SICSP).TYPE ¢ REFERENCETYPES
SICSP1STATIC ¢ 11 ¢ MARKINDEXCPROGRAMLPP)OCFIELD))
SICSP)sADDRESS ¢ SCI§).ADDRESS ¢ PROGRAMLPP).BFIELD . 1§}
GO TO NEXT)
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LABELLY SPUP}
SICSP)+TYPE ¢ LABELTYPES
SI{SP),STATIC ¢ MARKINDEXCPROGRAMIPPI,CFIELD)}
SICSP)+ADDRESS ¢ PROGRAMIPP)BFIELD} GO TO NEXT)
CATENATE;
If SICSPI«TYPE # LISTTYPE OR SICSP=11,TYPE#LISTTYPE THEN ERROR(C1)}
IF SICSP=1]¢ADORESS ¢ SILSP~1) WCT # SICSP),ADDRESS THEN
BEGIN CUMMENT MJUST HAVE CONTIGUOUS LISTSS
MOVESEG(SI(SP=11))
MOVESEG(SICSP))}
ENDJ
SP ¢ SP = 1}
SIISP) WCT « SIISPIWCT + SICSP+1),NWCT}
GO TO NEXT)
LOR BOOLTESTS
IF NOT BUOOLEANCS[SP]) THEN BEGIN SP ¢ SP = {13 GO TO NEXT END}
PP ¢ PROGRAMCPP)BFIELD} GO TO TRANSFER;
LANDs BOOLTESTS
IF BOOLEANCS{SP)) THEN BEGIN SP ¢ SP = {3 G0 TO NEXT END;
PP ¢ PROGRAM[PPJ)«BFIELD} GO TO TRANSFER;
ILNOT ¢+ BOOLTESTS
S{SP) ¢ REAL(NOTBOOLEANCS{SP)))3} GO TO NEXT;
LSSt BARITH
S{SP] ¢ REAL(S(SP] < S[SP+11))
SICSPJ}+TYPE ¢ BUDLEANTYPES GO TO NEXTS
LEQ: BARITHS
SCSP) ¢ REALCSESP) S S{SP+11))
SI{SPl«TYPE ¢ BUOLEANTYPES GO TO NEXT;
EQLs BARITHJ
' S{SP] ¢ REAL(SCSP) = S[SP+1)))
SICSPJ.TYPE ¢ BUOLEANTYPES GO TO NEXT;
NEQ3 BARITHI
SESP) ¢ REAL(SISP) # S(SP+11)}
SILSP1,TYPE ¢ BUOLEANTYPES GO TO NEXT;
GEQs BARITHJ
SCSPJ ¢ REALCSISP12S(SP+1))}
SICSP).TYPE«BUOLEANTYPES GO TO NEXT;
GTR: BARJTHI
SCSP) ¢ REAL(SC(SP) > S{SP+1}))}
SILSPloTYPE ¢ BDOLEANTYPE] GO TO NEXT!
MN  BARI THJ
IF SCSP+1) <S[SP) THEN SCSPJ ¢ S[SP+1)3 GO TO NEXT;
MAX, BARITHJ
IF S{SP+1)> SCSPJ THEN SESPl1e¢S(SP+113 GO T O NEXTS
ADDs BAR]ITH}
SCSPJ ¢S{SP)+S[SP+1)) GO TO NEXT;
SU6 1 BARITHJ
SCSPJ ¢S8(SP} =S(SP+1)J GO TO NEXT;
NEGS IFSICSP).TYPE # NUMBERTYPE THEN ERROR(1);
SLSP) ¢ = S[(SP)3 GO TO NEXTS
MULS BARITHI
S{SP)e S{SPIXSISP+1)3 GO TO NEXT;
DIVIDE: BARITH}
IF StSP+1) = 0 THEN ERRUR(C2)}
SESP) ¢ SCSP) / SISP+1)) GO TO NEXT;
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IVIVE BARI TH3
IF ROUNDCSISP#+#1)) = 0 THEN ERROR(2)J
S[SPI€ROUNDC(SISPI)IDIVROUND(SISP+11)360 TO NEXT;
REMAI NDER: BARITHS
IF S{SP+1) = 0 THEN ERRUR(2)}
SESP) ¢« S{SP) MUD S{SP+113 GO TO NEXT:;
POWERS BARITHJ
SESP) ¢ S[(SP) » S(SP+11)3 GO TO NEXTJ
ABSV1 IF SI{SP).TYPEANUMBERTYPE THEN ERROR(1)}
SESP) ¢ ABSC(SLSP1)3 GO TO NEXT;
INTEGERIZE?
IF SI[SP)sTYPE » BOOLEANTYPE THEN ERROR(1):
SCSP) ¢ ROUNDCSISPI)IGO T O NEXT)
REALL?
IF SILSPJ«TYPE > BOOLEANTYPE THEN ERROR(1):
SI{SP)+TYPE ¢ NUMBERTYPES GO TO NEXT;
LOGICALI
IF SICSPJoTYPE # NUMBERTYPE THEN ERROR(C1)}
IF S{SP) & 0 OR SISP1 3 | THEN SI(SPl,TYPEe¢ BOOLEANTYPE ELSE
SIL{SPJ«TYPE¢ UNDEFI NEOJ
GO TO NEXTS
LISTTH
IF SICSP).TYPE # NUMBERTYPE THEN ERROR(1)}3
1 2 ¢S{SP))
IF 12 ¢ FP » 1022 THEN FREE(CI2)}
FOR 11 ¢FP STEP 1 UNTIL FP+12=1 DO FIC11),TYPE « UNDEFINED}
SICSPIJrTYPE ¢LISTTYPEISICSP)oWCT ¢ 12.SILSP1oADDRESSeFP}
FPe FP +123 GO TONEXTS

ISLOGICALS SETISC(BOOLEANTYPE)} GO TO NEXTJ
ISNUMBERS SETVTIS(NUMBERTYPE)S GO TO NEXTS
ISREFERENCE: SETISCREFERENCETYPE)S GO TO NEXTS
ISLABELS SETISCLABELTYPE)? GO TO NEXTJ

ISLISTS SETISCLISTTYPE)S GO T O NEXTS

ISSYMBOLS SETISCSYMBOLTYPE)J GO TO NEXT;
ISPROCEDUREt SETISCPROCEDVURETYPE)S GO TO NEXT;
ISUNDEFINEDS SETISCUNDEFINED)S GO TO NEXTJ

TALL?

IF SICSPJ TYPESALISTTYPE THEN ERROR(C1))

IF SICSPJWNCT » 0 THEN ERROR(10))

SI{SPIWCT ¢ SICSPI4HCT = 13

SICSP)4ADORESS ¢ SI[(SPY«ADDRESS * 13 GO TO NEXT}
THENV?S

BOOLTEST} SP ¢SPe=i)

IF BOOLEANCS{SP+1)) THEN GO TO NEXT}

PP ¢ PROGRAMIPP)«BFIELDS GO TO TRANSFER;
ELSEVS

PP ¢ PROGRAMIPPIBFIELDS GO TO TRANSFER}
LENGTHS

FETCH3

IF SILSP)«TYPE # LISTTYPE THEN ERRORC1)}

SICSPIsTYPE ¢ NUMBERTYPE) S{SP] ¢ SILSPI ., WCTS} GO TO NEXT3
GOTO 3

IF SITSPl«TYPE # LABELTYPE THEN ERROR ( 1)}
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MP ¢SI[SPl1«STATIC]
COMMENT WE MJST RETURIN TO THE BLOCK WHERE THE LABEL IS DEFINED}

PP ¢ SIUSPJ).ADDRESS}) SP ¢ MPJ] GO TO TRANSFER3
FORMAL?S
FORMALCOUNT ¢FURMALCOUNT +1)
IF FORMALCOUNTSSIMPI«WCT THEN GO TO NEXTELSEGOTONEW:;
NEW 1
SCMPI WCI ¢ S{MPl NCT ¢+ 13
FICFP)«TYPE ¢ UNDEFINED)
FP ¢ FP +1}
IF FP > 1022 THEN FREEC1)}
GO TO NEXT}
STORE §
IF SICSP=1)+TYPE # REFERENCETYPE THEN ERROR(C$13)}
LEVELCHECK(SICSP)» SICSP=1).STATIC)}
SP ¢ SP =1} COMMENT NON=DESTRUCTIVE STORE}
I1 ¢ SI{SPl«ADDRESS}
SCSP) ¢ FUIL) ¢ SISP+3)) SILSP) ¢ FIL11] ¢ SICSPe1)}
COMMVENT THE NON=DESTRUCTIVE STORE IS NOT APPLICABLE TO LISTSS
IF SICSPIoTYPESLISTTYPE THEN SILSPI.TYPE ¢« UNDEFINEDJ
GO TO NEXT}
SUBSCRIPTH
If SICSP)oTYPE # NUMBERTYPE THEN ERROR(C6)}
SP ¢ SP =1}
IF SILSPI+TYPE # REFERENCETYPE THEN ERROR(7))
I 1¢SICSP)«STATIC3 SILSP) ¢ FILSICSP).ADDRESS))
IF SICSPI«TYPE # LISTTYPE THEN ERROR(B);
T IF SCSP +1) €1 Of 2 SCSP+1) > SI{SPINCT THEN ERROR(9))
SICSPJ.ADDRESS ¢ SI(CSP)«ADDRESS ¢ StSPe+1} . 13
SICSPITYPE t REFERENCETYPES COMMENT MJIST CREATE A REFERENCES
SICSPI,STATIC¢]I3} GO TO NEXT;
BEGINVS SPUPJ
SILSP) ¢0 4
SIISP).TYPE ¢ BLOCKMARK)
SILSP1.BLN ¢ SI(MP)«BLN ¢ 1}
SICSP).DYNAMIC ¢ MP}
SIISPlSTATIC ¢ MP)
SISPJI TYPE ¢ LISTTYPES
S{SP)+ADURESS ¢ FPJ

SISPleyWCT ¢0 U COMMENT A NULL LISTS
MP ¢ SPJ] GO TO NEXT}

ENDV
11 ¢ SI(MP).,DYNAMIC)

LEVELCHECK(SI[SP), SICMP),STATIC))
SICMPle¢ SICSPJJ SUMP) ¢ S(SP)}
SP ¢ MP] MP ¢l13 GO TO NEXT}
LEF TQUOTE | COMMVENT PROCEDURE DECLARATION}
SPUPJ
SICSP)sTYPE ¢ PROCEDURETYPEJ
SI{SP),ADDRESS ¢ PP]J
COMMENT THE PRUCEDURE DESCRIPTOR MIST SAVE ITS OW LEXI COGRAPHI CAL
LEVEL AS WELL AS THE STACK MARKER FOR UPLEVEL ADDRESSED VARIABLES;
SICSP)BLN ¢ SIIMP)+BLN + 1}
SICSP),STATIC ¢ MPJ
PP ¢ PROGRAMIPPI4BFIELD} GO TO TRANSFER)
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RIGHTQUOTE?®
PP e SI[MP)+ADDRESS) COMMENT A PROCEDURE RETURN}

1 1 ¢«SIIMPY+DYNAMIC)
LEVELCHECK(SILSP)» SICMP),STATIC))
SICMP) ¢ SICLSP)} SIMP) ¢ SCSPJJ
SP ¢ MP} MP ¢ll} GO TO NEXT;
VALUEOPERATORS
IF SI{SP)TYPE = LISTTYPE THEN GO TO NEXT)
FETCHJ
IF SICSP)«TYPE = PROCEDURETYPE THEN
BEGIN FORMALCOUNT ¢ 0J
1 1 ¢SILSP)+ADDRESS/
SIC{SP)TYPE ¢ BLOCKMARK}
SICSP),ADDRESS ¢ PP)
SILSP),DYNAMIC ¢ MPJ
SCSPITYPE ¢ LISTTYPE)
- SLSPlNCT ¢ 0 ;
M ¢ SP} PP ¢113
END ELSE IFSIUSP)oTYPES|LISTTYPE -THEN COPY(SICSP))}
GO TO NEXT
PROCEOURECALL:
SP ¢ SP =1} FETCHI
If SICSPJ+TYPE # PROCEDURETYPE THEN ERRORC3)}
FORMALCOUNT ¢ OJ
1 1 ¢«SIISP),ADDRESS)
SIISP)TYPE ¢ BLOCKMARKJ
SIC(SP1,ADDRESS ¢ PPJ
SICSP).DYNAMIC®¢ MPJ

SLSP) ¢ SICSP+1)s COMMENT THE L1ST DESCe FOR PARAMETERS;
MP ¢ SP] PP e I1) GO TO NEXTS
RIGHTPAREN?

11 ¢ PROGRAMEIPPIBFIELDJ .
If 11 +FP> 1022 THEN FREECI1)}
SP ¢ SP = 11 + 13
MOVECSCSPl» FCFPY» I1)) MOVECSICSPY» FICFP)s I1)3
SICSP)TYPE ¢ LISTTYPES
SICSPIWNCT ¢ 113
SILSP)+ADDRESS ¢ FP)
FP ¢ FP +113GU0 TO NEXTS
INPUT: SPUPJ .
READCSCSPIILEXIT)) SICLSPITYPEe NUMBERTYPES GO TO NEXT:
OUTPUT
DUMPOUTCSILSP)»SISP))IJ ‘GO TO NEXT;
DONE
END I NTERPRETER;

EXIT
END .
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