
MEGATEK 7000 SERIES
SOF'IWARE MANUAL

FORTRAN

Revision Date: 23-DEC EMBER-7
Document No. 250-0004-03

MEGATEK
CORPORATION

GRAPHIC SYSTEMS

~ AaYciware 1
~ -

MEGATEK 7000 SERIES
SOFTWARE MANUAL

FORTRAN

Revision Date: 23-DECEMBER-78
Document No. 250-0004-03

PAGE 2

NOTICE

MEGATEK corporation has prepared this manual for use by
MEGATEK personnel, Licensee's, and customers. The informa­
tion contained herein is the property of MEGATEK and shall
not be reproduced in whole or in part without MEGATEK'S
prior written approval.

Users are cautioned that MEGATEK reserves,the right to make
changes without notice in the specifications and materials
contained herein and shall not be responsible for any dam­
ages (including consequential) caused by reliance on the ma­
terials presented, including, but not limited to typographi­
cal, arithmetic, or listing errors.

Copyright (C), MEGATEK corporation, 1978
All Rights Reserved

TABLE OF CONTENTS

MEGATEK 7000 SERIES
SOF1WARE MANUAL

FORTRAN

Chapter 1: INTRODUCTION

MGS
THE PICTURE
LABELS
POINTERS

Chapter 2: INITIALIZATION ROUTINES

ALLOCATING 7000 MEMORY

Subroutine DPSET

INITIALIZING THE PICTURE

Subroutine PINIT
Subroutine DSET

Chapter 3: VECTOR MOVE AND DRAW ROUTINES

COMMON parameter DEFINITIONS

ABSOLUTE VECTOR ROUTINES

Subroutines BDRWA, IDRWA
Subroutines BMOVA, IMOVA

RELATIVE VECTOR ROUTINES

Subroutines BDRWR, IDRWR
Subroutines BMOVR, IMOVR
Subroutines BDXRY, IDXRY
Subroutines BMXRY, IMXRY
Subroutines BDYRX, IDYRX
Subroutines BMYRX, IMYRX

PAGE 3

TABLE OF CONTENTS

POINT PLOT ROUTINES

Subroutines BPYRX, IPYRX
Subroutines BPNTA, IPNTA
Subroutines BPNTR, IPNTR

VECTOR STRINGS

Subroutines BRSTG, IRSTG
Subroutines BIXTG, IIXTG

PAGE 4

Chapter 4: Rotation, Translation, Scaling, and Clipping

HARDWARE REQUIREMENTS

Subroutines BXLT, IXLT
Subroutine DTRANS
Subroutine PTRAN

Chapter 5: Character String Manipulation

STRING HANDLING ROUTINES

Subroutine BSTNG
Subroutine GNUM

Chapter 6: Format Control and List Manipulation

Subroutine PMODE
Subroutine BDELV
Subroutine LAGPT
Subroutine POPEN
Function IGPTR
Subroutine IPPTR
Subroutine SWORD

Chapter 7: Jump and' Jump-Subroutine Calls

JUMP routines

Subroutine BJMLB
Subroutine BJMAD
Subroutine BVJLB

JUMP-SUBROUTINE SEQUENCES

Subroutine BJSLB
Subroutine BJSAD
Subroutine BRETN

TABLE OF CONTENTS

Chapter 8: Picture Control Routines

Subroutine PONOF
Subroutine PXLT
Subroutine PSCAL
Subroutine PMAP
Subroutine PW ORD

Chapter 9: Display Processor Function and Control

Subroutine DSTRT
Subroutine DHALT
Subroutine SETZ
Subroutine CHREF

Chapter 10: Graphics Peripheral Routines

JOYSTICK ROUTINES

Subroutine JOYON
Subroutine JOYRD
Subroutine JOYOF
Subroutine JOYLM

DATA TABLET ROUTINES

Subroutine TABON
Subroutine TABRD
Subroutine TABLM
Subroutine TABOF
Subroutine KEYON
Subroutine KEYOF
Subroutine KCHAR
Subroutine KCHNW
Subroutine KLINE

Appendix A: Error Reporting

Index

PAGE 5

CHAPTER 1

INTRODUCTION

MGS

MGS (MEGATEK Graphic Software) is a system of integrated,
Fortran-callable subroutines which enable the Fortran
programmer to manipulate and display graphical images on the
MEGATEK 7000 Graphic Display System. The system is designed
to minimize user attention to the screen coordinate system
and to permit maximum flexibility in defining user
coordinate systems for the various images displayed on the
monitor. Bookkeeping for display processor addresses has
also been minimized.

THE PICTURE

A "picture" is a display list in the memory of the 7000 and
consists of three specific sections: the picture header,
the picture components, and the picture trailer.

The picture header contains display list commands which set
translation, transformation, special display functions. The
first word the picture header is a jump instruction which is
used to turn the picture "on" or "off". If the picture is
off, the jump instruction destination address is the first
word of the next picture. If the picture is on, the jump
instruction destination address is the next word of the
header (refer to Figure 1). The "P" routines (names
starting with a "P") all modify the picture header.

INTRODUCTION PAGE 1-2

The picture component section consists of display list
commands inserted via calls to the "B" or "I" routines
(those routines with names starting with the letter B or I).
The "B" and "I" routines permit MOVE, DRAW, JUMP, etc.,
commands to be built in the 7000 memory. Those "B" routines
which require X and Y coordinate information expect the
v a 1 ue s i n use r un i ts • The " I" rout i n e s ex pe c t s c r e en
coordinates. The picture data base is referenced by the
routine which converts user coordinates to screen
coordinates before building the instruction in 7000 memory.
Pointers are maintained in the picture data base and are
used by the "B" and "I" routines to determine where the
instruction will be placed. With the use of labels the user
may locate specific picture components. Refer to LABELS for
additional information.

The picture trailer is two words: one special function word
and a JUMP instruction with the destination address being
the first word of the next picture. The last picture's
trailer instruction is a "STOP".

INTRODUCTION

JUMP (l WORD)

DISPLAY FUNCTION (1 WORD)!

TRANSLATION (1 WORD)

TRANSFORMATION MATRIX
(6 WORDS)

CLIPPING (2 WORDS)

COLOR (1 WORD)

PICTURE COMPONENTS
(ANY NUMBER WORDS)

DISPLAY FUNCTION (1 WORD)!

JUMP (1 WORD)

PAGE 1-3

> HEADER

> COMPONENTS

> TRAILER

FIGURE 1 - PICTURE FORMAT IN 7000 MEMORY

INTRODUCTION PAGE 1-4

Once a picture is the current picture, MOVE, DRAW, JUMP,
etc., picture components may be placed in the picture with
the "B" or "I" subroutines. The components are inserted at
the location pointed to by the insert component pointer
(ICP) or the last component pointer (LCP) and replace the
previous contents of the picture. Before returning, the
subroutine may,depending upon the picture mode increment the
ICP or LCP to point to the next available 7000 memory
location.

It is possible to fill a picture with picture components,
and with the use of labels to modify the contents of the
picture by writing over old picture components. It is also
possible to delete components from the picture. This is
done with the BDELV subroutine. BDELV removes the specified
components from the picture and compresses the result into
minimum 7000 memory. For details on BDELV refer to Chapter
6.

LABELS

Labels are a convenient way to keep track of specific
locations in a "picture". To mark a location in 7000 memory
for later reference, a call is made to subroutine BPLBL.
The current value of the memory pointer (ICP, if in insert
or re-write mode; LCP, if in append mode), is placed in the
label address vector (LAV) when BPLBL is called. Refer to
the following example:

C *** EXAMPLE 1-1
C * USING LABELS
C *** SET APPEND MODE

CALL PMODE (0)
CALL BPLBL (LBLl)
CALL BDRWR (X, Y, 0, 0, 0)

C *** GO BACK AND RE-WRITE INSTRUCTION AT LBLl

C * SET RE-WRITE MODE
CALL PM ODE (2)
CALL LABGT (LBLl)
CALL BDRWR (Xl, Yl, 0, 0, 0)

INTRODUCTION PAGE 1-5

In the above example a picture component was written at c.
location marked with a label "LBLl" and was then re-written
with a new component at the same location.

The mode selected before the instruction is written is very
important. Referring again to the previous example, notice
the effect of the various modes as the instruction is
written the second time. If the mode was not set to
re-write, but instead remained in append mode, the
instruction would be written at the end of the picture, not
at the location LBLl.

C *** EXAMPLE 1-2
C * USING LABELS
C *** THE FOLLOWING SEQUENCE HAS NO

C * EFFECT ON THE INSTRUCTION AT

C * THE LOCATION MARKED BY "LBLl"
CALL PMODE {0)
CALL LABGT {LBLl)
CALL BDRWR {Xl, Yl, 0, 0, 0)

As mentioned previously, when the mode is insert {l) the
instruction will be written at the location marked by "LBLl"
but all the instructions below this one will be moved first
to make room. The user should be aware of two additional
facts: the labels used must be initialized to zero before
use, and components pointed to by labels are not lost after
insert or delete operations. Example 1-3 illustrates the
use of labels during an insert operation. A portion of the
display list is "pushed down" as elements are added above
it.

INTRODUCTION

C *** EXAMPLE 1-3

C * USING LABELS TO UPDATE ICP

C *** DEFINE A CURSOR
CALL LABPT (!CURS)
CALL IDRWR (-64, 0, 15, 0, 0)
CALL IMOVR (48, 16)
CALL IDRWR (16, -16, 15, 0, 0)
CALL IDRWR (-16, -16, 15, 0, 0)

C *** NOW MAKE IT MOVE AS LIST IS BUILT

C * CHANGE TO INSERT MODE
CALL PM ODE (-1)
DO 100 I = 1,250

C *** UPDATE THE ICP
CALL LABGT (!CURS)
CALL BDRWA (X(I), Y(I), IZ(I), 0, 0)

100 CONTINUE

C *** NOW DELETE THE CURSOR
C *** CHANGE TO RE-WRITE MODE

CALL LABGT (!CURS)

C *** CHANGE TO RE-WRITE MODE
CALL PMODE (2)
CALL BWORD (!STOP)

PAGE 1-6

C *** MSWSTOP AND LSWSTOP WERE PREVIOUSLY DEFINED TO CAUSE
C DISPLAY PROCESSOR STOP

Two things are illustrated by the previous example:

1. In insert mode (-1) the ICP is not incremented
after

each operation.
2. A label may be used to keep track of a specific

display list element.

INTRODUCTION PAGE 1-7

POINTERS

Labels are very handy when the user wants to "remember"
where a picture component is, even after a delete or insert
operation which affects the actual address in 7000 memory.
When a large number of locations in the picture must be
saved for future reference and insert or delete operations
will not cause these components to change actual address,
pointers may be used.

Pointers are user provided integer variables which contain
addresses of specific picture elements. The user can at any
time obtain the value of the system pointers (ICP or LCP)
with function IGPTR. Subroutine IPPTR is used to set the
insert component pointer to a user defined value. Any
number of user pointers may be used.

Example 1-4 illustrates the use of pointers during an insert
operation. A portion of the display list is "pushed down"
as elements are added above it, just as they were in the
previous example.

INTRODUCTION

C *** EXAMPLE 1-4

C * USING POINTERS TO UPDATE ICP

C*** DEFINE A CURSOR
IADR = IGPTR (0)
CALL IDRWR (-64, 0, 15, 0, 0)
CALL IMOVR (48, 116)
CALL IDRWR (16, -16, 15, 0, 0)
CALL IDRWR (-16, -16, 15, 0, 0)

C *** NOW MAKE IT MOVE AS LIST IS BUILT

C * CHANGE TO INSERT MODE
CALL PM ODE (1)
DO 100 I = 1,250

C *** POINT TO CURSOR
CALL IPPTR (IADR)
CALL BDRWA (X(I), Y(I), IZ(I), 0, 0)

100 IADR = IADR + 2

C *** NOW DELETE THE CURSOR

C * CHANGE TO RE-WRITE MODE
CALL PM ODE (2)
CALL SWORD (MSWSTOP,LSWSTOP)

PAGE 1-8

C *** MSWSTOP, LSWSTOP WERE PREVIOUSLY DEFINED TO CAUSE
C * DISPLAY PROCESSOR STOP

CHAPTER 2

INITIALIZATION ROUTINES

ALLOCATING 7000 MEMORY

MGS maintains a data base in the host processor in a Fortran
common block (57000). This data base contains the pointers
to each picture and other information which controls the
location and method for inserting display list commands in
7 0 0 0 memory •

SUBROUTINE DPSET

DPSET is called to inform MGS of the amount and location of
7000 memory available to the Fortran program. It is called
as follows:

CALL DPSET (!UNIT, IWRDS)

I UNIT is the unit number. IWRDS is the
memory to use, in 1024 word increments, eg:
a typical call would look like:

CALL DPSET (0, 4)

amount of 7000
for a 4K system

If the user is unaware of how much memory is available,
DPSET will select the maximum amount available by setting
IWRDS = 0 before the call, eg:

CALL DPSET (0, 0).

INITIALIZATION ROUTINES PAGE 2-2

INITIALIZING THE PICTURE

All MGS display list commands are inserted in "pictures" as
previously discussed. To inform MGS of the existence of
each picture, subroutine calls are made which allocate
memory space and set picture attributes (normal or text).

SUBROUTINE PINIT

PINIT sets the picture number and allocates picture space in
7000 memory. It is called as follows:

CALL PINIT (IP, IWDS).

PINIT parameters are:

IP - picture number (1-32)

IWDS - number of words of 7000 memory to reserve*

* IWDS may be set = 0 when actual ultimate picture size
is not known. This parameter will be set to actual
picture size when the next call is made to PINIT.

INITIALIZATION ROUTINES PAGE 2-3

C *** EXAMPLE 2-1

C * TYPICAL MEMORY ALLOCATION AND PICTURE INITIALIZATION
C SEQUENCE

C * DISPLAY LIST IN LOW MEMORY

CALL DPSET (0,0)

C *** INITIALIZE A 1000 WORD PICTURE
CALL PINIT (1, 1000)

C *** INITIALIZE A PICTURE
C * RESERVED MEMORY = 0, SO MGS WILL UPDATE MEMORY USED
C LATER

CALL PINIT (2, 0)

SUBROUTINE DSET

DSET is a simple routine which is used to initialize the
graphics processor for a single picture/display. It is
called as follows:

CALL DSET (IUNIT)

Where IUNIT is the unit number. This routine can only be
used for a single picture. It is equivalent to:

CALL DPSET (!UNIT, 0)
CALL PINIT (1, 0)
CALL PONOF (1, 1)
CALL DSTRT (!UNIT)

CHAPTER 3

VECTOR MOVE AND DRAW ROUTINES

COMMON PARAMETER DEFINITIONS

The following common parameters are used when calling vector
routines:

IX - X or horizontal displacement or position in
screen coordinates (-2048 through +2047)

IY - Y or vertical displacement or position in
screen coordinates (-2048 through +2047)

IZ - intensity (less than or equal to +15)

I B - blink (-1, 0, 1)

ID - dash (-1, 0, 1)

X - X or horizontal displacement or position in
user coordinates

Y - Y or vertical displacement or position in
user coordinates

VECTOR MOVE AND DRAW ROUTINES PAGE 3-2

In general, negative values for intensity, blink, or dash
cause the current value to be used (eg: blink= -1 means
current blink). Values of IZ in the range (-15 through -1)
cause current intensity with beam on, values of IZ less than
-15 cause current intensity with beam off. For point-plot
routines, blink can not be set unless the preset (negative
IZ) intensity form is used. The absolute point-plot
routines do not set a new current intensity with negative
values of IZ. Dash is always reset when the preset Z
point-plot mode is used. One additional fact: point-plot
routines truncate the least significant bit of intensity.
Displayed intensity is therefore 2, 4, 6, 8, etc.

ABSOLUTE VECTOR ROUTINES

Routines which cause movement of the display beam to a
specified absolute position on the user or screen coordinate
systems are referred to as absolute vector routines. If the
beam intensity is non-zero when the beam is moved to the
specified position, a visible line or "vector" is drawn on
the screen. If the beam intensity is zero when the beam is
moved, no visible line or "vector" is drawn on the screen.
The result of this movement is referred to as a vector move
or a hidden vector.

SUBROUTINES BDRWA, IDRWA

Subroutines BDRWA and IDRWA are called as follows:

CALL BDRWA (X, Y, IZ, IB, ID)
CALL IDRWA (IX, IY, IZ, IB, ID)

These routines build an instruction in the
which causes an absolute vector display.
originate at the previous beam position and
at the specified X,Y or IX,IY coordinates.

current picture
The vector will
will terminate

VECTOR MOVE AND DRAW ROUTINES

SUBROUTINES BMOVA, !MOVA

Subroutines BMOVA and !MOVA are called as follows:

CALL BMOVA (X, Y)
CALL !MOVA (IX, IY)

PAGE 3-3

These routines operate in a similar fashion, but cause beam
movement with the beam "blanked". Current values of blink,
dash, etc., are not affected.

C *** EXAMPLE 3-1

C * USE OF ABSOLUTE VECTOR ROUTINES TO DRAW A BOX
C * (REFER TO FIG. 2).

C * THIS EXAMPLE PRODUCES A BOX IN THE
C * CENTER OF THE DISPLAY.
C * EACH SIDE IS 500 SCREEN UNITS IN LENGTH.

C * MOVE TO LOWER LEFT HAND CORNER OF BOX
CALL !MOVA (-250, -250)

C * DRAW BOTTOM
CALL IDRWA (250, -250, 15, 0, 0)

C * DRAW RIGHT SIDE
CALL IDRWA (250, 250, 15, 0, 0)

C * DRAW TOP
CALL IDRWA (-250, 250, 15, 0, 0)

C * DRAW LEFT SIDE
CALL IDRWA (-250, -250, 15, 0, 0)

-250,250

-250,-250 250,-250

FIGURE 2 - BOX DISPLAY PRODUCED BY EXAMPLES 3-1, 3-2

VECTOR MOVE AND DRAW ROUTINES PAGE 3-4

RELATIVE VECTOR ROUTINES

Routines which cause movement of the display beam relative
to the current beam position are referred to as relative
vector routines. If the beam intensity is non-zero when the
beam is moved, a visible line or "vector" is drawn on the
screen. If the beam intensity is zero when the beam is
moved, no visible line or vector is drawn but the current
beam position is updated with a hidden vector.

Relative vector routines differ from absolute vector
routines in their use of the provided X,Y data. The X and Y
data specify a point relative to the previous beam position.
Unless that previous position is known, the resultant beam
position after the relative vector is drawn will not be
known. If the previous beam position is known, the new beam
position will be the addition of the previous beam position
coordinates and the specified X and Y values.

SUBROUTINES BDRWR, IDRWR

Subroutines BDRWR and IDRWR are called as follows:

CALL BDRWR (X, Y, IZ, IB, ID)
CALL IDRWR (IX, IY, IZ, IB, ID)

VECTOR MOVE AND DRAW ROUTINES PAGE 3-5

The box in Figure 2 may be drawn using relative vectors as
Example 3-2 below illustrates.

C * EXAMPLE 3-2

C * USE OF RELATIVE VECTOR ROUTINES TO DRAW A BOX.
*REFER TO FIGURE 2).

C * THIS EXAMPLE PRODUCES A BOX IN THE
C * CENTER OF THE DISPLAY.
C * EACH SIDE IS 500 SCREEN UNITS IN LENGTH.

C * MOVE TO LOWER LEFT HAND CORNER OF BOX
* ASSUME BEAM POSITIONED FIRST AT (0, 0)

C * AND INTENSITY SET TO A NON-ZERO VALUE.
CALL IMOVR {-250, -250)

C * DRAW BOTTOM
CALL IDRWR {500, 0, 15, 0, 0)

C * DRAW RIGHT SIDE
CALL IDRWR {0, 500, 15, 0, 0)

C * DRAW TOP
CALL IDRWR {-500, 0, 15, 0, 0)

C * DRAW LEFT SIDE
CALL IDRWR (0, -500, 15, 0, 0)

C * MOVE TO CENTER OF SCREEN
CALL IMOVR {250, 250)

SUBROUTINES BMOVR, IMOVR

Subroutines BMOVR and IMOVR are called as follows:

CALL BMOVR {X, Y)
CALL IMOVR {IX, IY)

BMOVR and IMOVR act exactly like BDRWR and IDRWR, except
that intensity is zero and blink and dash information is not
required.

VECTOR MOVE AND DRAW ROUTINES PAGE 3-6

INCREMENTAL VECTOR ROUTINES

An "incremental" vector is produced by specifying an
absolute X or Y coordinate and a relative Y or X coordinate.
An incremental-X vector is one in which a relative X
displacement is specified with an absolute Y position. An
incremental-Y vector is one in which a relative Y
displacement is specified with an absolute X position.

SUBROUTINES BDXRY, IDXRY

Subroutines BDXRY and IDXRY build an
current picture which causes an
display. If the current beam position
beam position will be NX,NY where:

instruction in the
incremental-Y vector
is CX,CY, the new

NX = X value specified in call
NY = CY + Y value specified in call

Subroutines BDXRY and IDXRY are called as follows:

CALL BDXRY (X, Y, IZ, IB, ID)
CALL IDXRY (IX, IY, IZ, IB, ID)

One use of the incremental-Y vector is the carriage return/
line feed sequence required between lines of text. The
specified X value is used as the left hand margin, the Y
value is used as line spacing.

VECTOR MOVE AND DRAW ROUTINES

SUBROUTINES BMXRY, IMXRY

Subroutines BMXRY and IMXRY are called as follows:

CALL BMXRY (X, Y)
CALL IMXRY (IX, IY)

PAGE 3-7

An incremental-Y "move" may be performed with subroutines
BMXRY and IMXRY. The operation of these routines is exactly
like BDXRY and IDXRY except no intensity, blink, or dash
information is required, and the resultant vector is
"hidden".

VECTOR MOVE AND DRAW ROUTINES

SUBROUTINES BDYRX, IDYRX

Subroutines BDYRX and IDYRX are called as follows:

CALL BDYRX (X, Y, IZ, IB, ID)
CALL IDYRX (IX, IY, IZ, IB, ID)

These routines build an instruction in the current
which causes an incremental-X vector display.
current beam position is CX,CY the new beam position
NX,NY where:

NX = ex + X value specified in call
NY = Y value specified in call

SUBROUTINES BMYRX, IMYRX

Subroutines BMYRX and IMYRX are called as follows:

CALL BMYRX (X, Y)
CALL IMYRX (IX, IY)

PAGE 3-8

picture
If the
will be

An incremental-X "move" may be performed with subroutines
BMYRX and IMYRX. The operations of these routines are
exactly like BDYRX and IDYRX except no intensity, blink, or
dash information is required, and the resultant vector is
"hidden".

VECTOR MOVE AND DRAW ROUTINES PAGE 3-9

POINT- PLOT ROUTINES

Routines which cause display of a single point are referred
to as point-plot routines. These routines combine a
"hidden" or zero intensity vector and a vector of zero
length but with the beam intensity set to cause a visible
mark on the screen.

SUBROUTINES BPYRX, IPYRX

Subroutines BPYRX and IPYRX cause a "hidden" incremental-X
vector with a visible end point. The user specifies an
absolute Y position and an incremental-X displacement.

Subroutines BPYRX and IPYRX are called as follows:

CALL BPYRX {X, Y, IZ, IB)
CALL IPYRX {IX, IY, IZ, IB)

If the current beam position is CX,CY then the final beam
position where the point will be placed will be NX,NY where:

NX = CX + X value specified in call to BPYRX or
IPYRX

NY = Y value specified in call to BPYRX or
IPYRX.

Example 3-3 below illustrates how a series of points might
be plotted using BPYRX.

VECTOR MOVE AND DRAW ROUTINES PAGE 3-10

C *** EXAMPLE 3-3

C * POINT-PLOT DATA USING SUBROUTINE BPYRX

XINC = 10

DO 10 I = 1, 100

10 CALL BPYRX (XINC, Y(I), 15, 0)

THE PREVIOUS STATEMENTS CAUSED PLOTTING c ***
c
c

OF DATA POINTS AT EVEN INCREMENTS OF TEN USER UNITS.
ONE HUNDRED POINTS WERE PLOTTED.

SUBROUTINES BPXRY, IPXRY

Subroutines BPXRY and IPXRY cause a "hidden" incrernental-Y
vector with a visible end point. The user specifies an
absolute X position and an incrernental-Y displacement.
These routines are called as follows:

CALL BPXRY (X, Y, IZ, IB)
CALL IPXRY (IX, IY, IZ, IB)

VECTOR MOVE AND DRAW ROUTINES
I

PAGE 3-11

If the current beam position is CX,CY, then the final beam
position where the point will be placed will be NX,NY where

NX = X value specifed in call
NY = CY + Y value specified in call

SUBROUTINES BPNTA, IPNTA

Subroutines BPNTA and IPNTA are used when absolute X,Y
positioned points are to be displayed. These routines are
called as follows:

CALL BPNTA (X, Y, IZ, IB)
CALL IPNTA (IX, IY, IZ, IB)

SUBROUTINES BPNTR, IPNTR

Subroutines BPNTR and IPNTR are used when points are to be
displayed with positioning based on X,Y relative
displacement. These routines are called as follows:

CALL BPNTR (X, Y, IZ, IB)
CALL IPNTR (IX, IY, IZ, IB)

If the current 'beam position is CX,CY the point position
will be NX,NY where:

NX = ex + X value specified in routine call
NY =CY+ Y value specified in routine call.

VECTOR STRINGS

Vector strings are a way to describe a character,
point plot series, and are extremely memory
because common data for each vector in the string
in memory only once.

figure, or
efficient

is stored

VECTOR MOVE AND DRAW ROUTINES PAGE 3-12

SUBROUTINES BRSTG, IRSTG

Subroutines BRSTG and IRSTG output a short relative vector
string. The vectors produced by these routines are called
short because only seven bits of X or Y information are used
for each vector in the string versus the twelve bits used in
other vector formats. Three additional bits are used for a
multiplying factor (1-8) on each X or Y displacement value.

These routines are called as follows:

Where:

CALL BRSTG {XA, YA, IZ, N, !BLAN, IR, ISIZ}
CALL IRSTG (IXA, !YA, IZ, N, !BLAN, IR, ISIZ}

XA, IXA are arrays of X-displacement values.
YA, IYA are arrays of Y-displacement values.
IZ is intensity {-15 through +15).
N is dimension of the the X, Y, and blanking

arrays.
!BLAN is array of blanking data

{0 blank, 1 display}
IR is return-from-subroutine indicator

(0 = no return, 1 = return from subroutine} •
ISIZ is size multiplying factor {0-7)

Actual result is (1-8).

The X and Y values provided to the routine are truncated to
seven bits and then the current multiplying factor is
applied. A maximum length of 512 screen units (64 x 8) is
thus possible for each vector in the string.

SUBROUTINES BIXTG, IIXTG

Subroutines BIXTG and IIXTG output an incremental-X series
string. A single X-increment value is provided and an array
of Y data. Each vector in the string is drawn from the
current point to the new point using the incremental
(relative) X value and an absolute-Y value taken from the
Y-array. '

VECTOR MOVE AND DRAW ROUTINES PAGE 3-13

Points may be plotted in lieu of vectors by setting the mode
flag (M).

These routines are called as follows:

CALL BIXTG (X, YA, IZ, N, !BLAN, IR, M)
CALL IIXTG (IX, !YA, IZ, N, !BLAN, ,IR, M)

VECTOR MOVE AND DRAW ROUTINES PAGE 3-14

Where:

hyphenate

X, IX are the incremental-X value used for
each vector or point in the string.

YA, IYA are arrays of absolute-Y positioning
data for each vector or point.

IZ is intensity (-15 through +15).
N is dimension of the YA, IYA, and blanking

arrays.
IBLAN is array of blanking data

(0 blank, l display)
IR is return-from-subroutine indicator

(0 = no return, 1 = return from subroutine).
Mis mode; 0 =vector, l = point-plot. flags

CHAPTER 4

ROTATION, TRANSLATION, SCALING, AND CLIPPING

HARDWARE REQUIREMENTS

MEGATEK
hardware
permits
vectors
traffic

7000 Series Graphic Systems are provided with
translation circuitry as standard equipment. This

the user to move a complete "picture" or series of
on the display screen with a minimum amount of I/O

to the host CPU.

When provided with additional circuitry, the 7000 Graphic
System is also capable of hardware rotation, scaling, and
clipping. With this additional capability, it is possible
to perform complete two-dimensional transformations of a
user "picture" with negligible host CPU action. The host
provides the translation, rotation, scaling, and clipping
parameters; the 7000 Display Processor then applies these
parameters to each affected vector before it is displayed.
The parameters are all set in display list instructions,
hence it is possible to apply different parameters to
different "pictures" with no host CPU action.

SUBROUTINES BXLT, IXLT

Subroutines BXLT and IXLT are used to set hardware
translation parameters for vectors following the call.
These routines are called as follows:

CALL BXLT (X0,Y0)
CALL IXLT (IX0,IY0)

ROTATION, TRANSLATION, SCALING, AND CLIPPING PAGE 4-2

Where:
XO is the new X-origin in user coordinates.
Y0 is the new Y-origin in user coordinates.
IX0 is the new X-origin in screen units (-2048 to
+2047).
IY0 is the new Y-origin in screen units (-2048 to
+2047).

The effect of the translation call is to change the
positioning of the origin (0, 0) to a location other than
the center of the screen. If an or1g1n in the lower left
hand corner of the screen is desired, this call might be
used:

CALL IXLT (-2048, -2048)

SUBROUTINE DTRANS

The DTRANS routine allows the programmer to use the Fortran
Graphics Display System without being burdened with the
problems of scaling data to conform with the screen
coordinate system. Parameters allow the user to specify:

1. A rotation angle (about the user origin).

2. The window boundaries (in user coordinates).

3. The screen boundaries within which the data
will be displayed (clipping all data outside
of the boundaries) •

ROTATION, TRANSLATION, SCALING, AND CLIPPING PAGE 4-3

The transformation process proceeds logically as follows:

1. The picture is rotated through the indicated
angle (about the user orig in) •

2. The picture is scaled and translated to match
the user data with the corners of the screen
window.

3. The picture is clipped to eliminate any vec­
tors outside of the window.

The display buffer filled by this call should not be the
current refresh buffer for the display (no allowances have
been made for stopping the display while vectors are being
added). DTRANS is called as follows:

Where:

CALL DTRANS (X, Y, Z, C, N, IP, IFL)

X =An array containing X values (in user coordi­
nates) •

Y =An array containing Y values (in user coordi-
nates) •

z = An array containing intensity codes.
C =A nine-element control matrix.
IP = Picture number
N = Number of points (in X, Y, Z arrays).
IFL = Execution control word

ROTATION, TRANSLATION, SCALING, AND CLIPPING PAGE 4-4

The transformation control matrix should
following information:

contain the

C(l), C(2) =Coordinates of the lower left corner
of the user window (in user units).

C(3), C(4) = Coordinates of the upper right corner
of the user window (in user units).

C{S), C(6) = Coordinates of the lower left corner
of the screen boundaries (in screen units).

C(7), C(8) = Coordinates of the upper right corner
of the screen boundaries (in screen units).

C(9) =Angle (in radians) to rotate data about
user origin prior to scaling, translation, and
clipping.

The execution control word has the following effect:

!FL = 0 =Clipping calculations performed

!FL = 1 =Clipping calculations eliminated

NOTE: DTRANS does not utilize any hardware rotation, trans­
lation, scaling, or clipping cabability of the 7000.

ROTATION, TRANSLATION, SCALING, AND CLIPPING PAGE 4-5

SUBROUTINE PCLIP

The PCLIP routine allows
picture clip boundaries
element is installed in
called as follows:

the programmer to change the
when the optional hardware clip

the graphics system. PCLIP is

WHERE:

CALL PCLIP (IP, LX, LY, HX, HY

IP = Picture number
LX = X-coordinate of lower left hand
corner of clip window
LY = Y-coordinate of lower left hand
corner of clip window
HX = X-coordinate of upper right hand
corner of clip window
HY = Y-coordinate of upper right hand
corner of clip window

NOTE: All coordinates are screen coordinates.

SUBROUTINE PTRAN

The PTRAN routine allows the programmer to change the
transformation matrix elements in the picture header. When
the graphics system is equipped with the optional 2-d
transformation element (HRST}, pictures may be quickly
scaled, rotated, and translated with the PTRAN call.

PTRAN is called as follows:

WHERE:

CALL PTRAN (IP, SCLX SCLX, STRX, STRY, ROT,
RTRX, RTRY, TRX, TRY}

IP = Picture number
SCLX = X scale factor
SCLY = Y scale factor
STRX = Center of scale X
STRY = Center of scale Y
ROT = Rotation angle (radians}
RTRX = Center of rotate -x
RTRY = Center of rotate -Y
TRX = Translation -x
TRY = Translation -Y

NOTE: Refer to Display Command Format manual for details of
of the transformation process.

CHAPTER 5

TEXT AND CHARACTER STRING MANIPULATION

STRING HANDLING ROUTINES

SUBROUTINE BSTNG

Subroutine BSTNG is used to place alphanumeric character
strings in a picture with normal attribute. The string is
located at the current beam position, and depending upon
specified character rotation, may extend to the right, left,
top, or bottom of the "picture".

Subroutine BSTNG is called as follows:

Where:

CALL BSTNG (IZ, ISIZ, !ROT, ISTNG, NUMCHR)

IZ is intensity (-15 through +15)
ISIZ is character size (0 through 7)
IROT is character rotation (0 through 3)
ISTNG is string of alphanumeric characters
NUMCHR is number of characters in string

Character rotation is in 90 degree increments from 0 through
270 degrees counterclockwise. As in subroutine BTEXT,
NUMCHAR may be set = -1, in which case the end of the string
is detected at the occurence of a null character.

TEXT AND CHARACTER STRING MANIPULATION PAGE 5-2

SUBROUTINE GNUM

Subroutine GNUM is provided in order to permit conversion of
a floating point number to a string of alphanumeric
characters for display by subroutines BTEXT and BSTNG. GNUM
is called as follows:

Where:

CALL GNUM (FNUM, IB, NDP, IL, ICRAY, IFMT)

FNUM is floating point number for display.
IB is radix of FNUM.
NDP is number of digits past decimal point.
IL specifies leading zeroes or blanks in output
if necessary to achieve desired IFMT.
(0 = leading blanks, 1 = leading zeroes).
!CRAY is array to receive characters.
IFMT is number of chars in output string

If the user desires
include any digits
decimal point itself
Refer to Example 5-1

to output a number which does not
past the decimal, set NDP = 0. If the

is to be eliminated, set NDP = -1.
for typical use of GNUM.

C *** EXAMPLE 5-1

C * USING GNUM TO DISPLAY FLOATING POINT NUMBERS

C *** FIRST POSITION BEAM WHERE NUMBER TO BE DISPLAYED
C (CENTER OF SCREEN)

CALL !MOVA (0, 0)

C *** CONVERT NUMBER TO A STRING (X IS THE VARIABLE
C CONTAINING A FLOATING POINT NUMBER)

CALL GNUM (X, 10, 2, 0, IBUF, 6)

C *** ASSUMING X = 99.99999, THE FOLLOWING IS EXPECTED:

C * IBUF CONTAINS A STRING: " 99.99"

C *** NOW DISPLAY THE NUMBER
CALL BSTNG (15, 1, 0, IBUF, 6)
•

•

CHAPTER 6

FORMAT CONTROL AND LIST MANIPULATION

SUBROUTINE PMODE

As described in Chapter 1, display list "pictures" are built
in three different modes: append mode, insert mode, and
re-write mode. The appropriate mode is selected using a
subroutine which modifies the MGS data base. The default
mode is append.

Subroutine PMODE is used to change mode, and is called as
follows:

Where:

CALL PMODE (!MODE)

!MODE is 0 for append mode, 1 for insert mode, 2
for re-write mode, -1 for insert mode without ICP
update, -2 for re-write mode without ICP update.
For information on effects of the various modes,
refer to Chapter 1.

FORMAT CONTROL AND LIST MANIPULATION PAGE 6-2

SUBROUTINE BDELV

Subroutine BDELV is used to delete vectors from the current
picture.. When the operation has been completed, the
resulting display list picture is compressed into m1n1murn
7000 memory. All MGS pointers together with user labels are
updated by the call. All labels point to the same picture
element after the operation, even if the delete operation
caused movement of the picture element associated with a
particular label. The calling sequence for BDELV is as
follows:

CALL BDELV (IWCNT) Where:
IWCNT number of words to be deleted.
from the current pointer.

In append mode, vectors are deleted
from before the LCP.

Example 6-1 below illustrates the use of BDELV.

C *** EXAMPLE 6-1

C * USING SUBROUTINE BDELV TO DELETE VECTORS

C * GET POINTER TO VECTORS TO BE DELETED
CALL BGLBL (LABEL)

C * NOW GO TO INSERT MODE SO THE ICP CAN BE USED
CALL PM ODE (1)

C * DELETE 10 VECTORS
CALL BDELV (10)

C *** AT THIS POINT THE LCP IS TEN LESS THAN IT WAS
C * BEFORE BDELV, THE ICP IS UNCHANGED,
C * ALL LABELS BELOW "LABEL" HAVE BEEN
C * UPDATED, AND THOSE ABOVE "LABEL" ARE UNCHANGED

FORMAT CONTROL AND LIST MANIPULATION PAGE 6-3

SUBROUTINE LABPT

Subroutine LABPT is used to save a display address for later
reference, and is called as follows:

Where:

CALL LABPT (ILABL)

ILABL is an integer variable in the user program
(not an integer constant). Refer to Chapter 1 for
typical uses of BPLBL.

SUBROUTINE LABGT

Subroutine LABGT is used to retrieve display list
information previously saved with a call to subroutine
LABGT. The information retrieved is placed in the insert
component pointer (ICP). Refer to Chapter 1 for examples
where LABGT is used

SUBROUTINE POPEN

Subroutine POPEN is used to change the "current" picture to
a specified value. POPEN is called as follows:

CALL POPEN (ICPCT)

Where:
ICPCT is an integer value (1-32).

To make Picture 2 the current picture, the following call
could be made:

CALL POPEN (2)

FORMAT CONTROL AND LIST MANIPULATION PAGE 6-4

FUNCTION IGPTR

This function gets the actual value of the last component
pointer (LCP) or the insert component pointer (ICP) of the
current picture. IGPTR is called as follows:

Where:

IVALU = IGPTR (MODE)

IVALU will receive the pointer value.
MODE is the control (0: get value of LCP; not 0:
get value of ICP).

SUBROUTINE IPPTR

This routine puts a value in the insert component pointer of
the current picture. IPPTR is called as follows:

Where:

CALL IPPTR (IVALU)

IVALU contains data for the ICP of the current
picture.

FORMAT CONTROL AND LIST MANIPULATION PAGE 6-5

SUBROUTINE BWORD

SWORD is used to insert information in the current picture
without any formatting. SWORD is called as follows:

Where:

CALL BWORD (MSW,LSW)

MSW =is the Most Significant Word
LSW =is the Least Significant Word

CHAPTER 7

JUMP AND JUMP-SUBROUTINE CALLS

JUMP ROUTINES

Several routines are provided which build display list jump
instructions in the current picture. These routines are of
two types:

1. Jumps to absolute addresses.
2. Vectored jumps.

Using labels and pointers, it is possible to provide
addresses to the jump routines which may then be used to
affect the order in which the display list is processed.

SUBROUTINE BJMLB

BJMLB builds a jump-to-label instruction in the current
picture. The address used is fetched from the LAV based
upon the contents of the specified label. BJMLB is called
as follows:

Where:

e.

CALL BJMLB (LABEL,IZ)

LABEL is a user label variable previously set in a
CALL BPLBL.
1 Z - Intensity control (< :15. <0 is preset).

JUMP AND JUMP-SUBROUTINE CALLS PAGE 7-2

SUBROUTINE BJMAD

BJMAD builds a jump instruction in the current picture using
either absolute or relative address formats. BJMAD is
called as follows:

CALL BJMAD (IVAW, IZ)

Where:
IVALU is the address value.
1 Z is intensity control (<=15. <0 is preset)

SUBROUTINE BVJLB

Subroutine
instruction
follows:

BVJLB adds a vector-jump-through-label
to the current picture. BVJLB is called as

Where:

CALL BVJLB (LABEL, IZ)

LABEL is a user label previously initialized with
a CALL BPLBL.
1 Z is intensity control (<= 15. <0 is preset)

JUMP AND JUMP-SUBROUTINE CALLS PAGE 7-3

The vector-jump-through-label is illustrated in Example 7-1
below.

C *** EXAMPLE 7-1

C * USE OF A VECTOR JUMP

C * RESERVE A LOCATION FOR THE VECTOR WORD
CALL BPLBL (IVWORD)

c ***

c ***
c

c ***
c
c

c ***
c
c

c ***
c

NOW PLACE A CONSTANT IN THE VECTOR WORD
MSW (1) = 0
LSW (2) = l
CALL SWORD (MSW, LSW)

BUILD THE VECTOR JUMP INSTRUCTION AND
POSSIBLE DESTINATION JUMPS.
CALL BVJLB IVWORD,O)
CALL BJMLB (LABLA, 0)
CALL BJMLB (LAB LB, 0)
CALL BJMLB (LABLC, 0)

INSTRUCTION SEQUENCE IS COMPLETE.
WHEN EXECUTED,THE DESTINATION WILL BE THE LOCATION
POINTED TO BY LABEL n LABLB".

TO CHANGE THE DESTINATION OF THE VECTOR JUMP
TO LABEL "LABLC" ,
THE FOLLOWING SEQUENCE MAY BE EXECUTED:
CALL BGLBL (IVWORD)
CALL PM ODE (2)
LSW (2) = 2
CALL BWORD (MSW, LSW))

NOTICE THAT ALL VECTOR JUMPS
WHICH JUMP THROUGH LABEL n IVWORD"
WILL BE AFFECTED BY THE NEW CONSTANT.

JUMP AND JUMP-SUBROUTINE CALLS PAGE 7-4

JUMP-SUBROUTINE SEQUENCES

Just as the jump routines (BJMAD, BJMLB, etc) build jump
sequences in the current picture, there are routines
available which build jump-subroutine sequences in the
current picture.

A jump-subroutine sequence differs from a jump sequence in
that a return address (the location of the instruction in
the display list plus one) is pushed on the display
processor stack when the instruction is encountered by the
display processor. The user may return to this location by
setting the return bit in his display list "subroutine"
(refer to subroutine BRETN, below).

Display list "subroutines" are one way of conserving display
processor memory. Software symbols, etc., which are
displayed more than once may be defined in subroutine
sequences, then "called" as many times as required by the
main-line display list sequence.

Caution should be exercised in locating display list
"subroutines". These instruction sequences should not be
executed in the main line display list, as they can only be
executed properly by a "call" from the main display list.
See Example 7-2.

JUMP AND JUMP-SUBROUTINE CALLS PAGE 7-5

SUBROUTINE BJSLB

BJSLB builds a jump-subroutine-to-label instruction in the
current picture. The address used is fetched from the LAV
based upon the contents of the specified label. BJSLB is
called as follows:

Where:

0.

CALL BJSLB (LABEL, IZ)

LABEL is a user label previously set in a
CALL BPLBL
1 Z is intensity control (<=15. <0 is preset) =

SUBROUTINE BJSAD

BJSAD builds a jump-subroutine-to-address instruction in the
current picture. BJSAD is called as follows:

CALL BJSAD (IVALU, IZ)

Where:
IVALU is the address value
1 z is intensity control (<= 15. <0 is preset) 0.

SUBROUTINE BRETN

BRETN is used to build the return-from-subroutine sequence.
BRETN is called as follows:

CALL BRETN

JUMP AND JUMP-SUBROUTINE CALLS PAGE 7-6

C *** EXAMPLE 7-2

C * USING DISPLAY LIST SUBROUTINES

C * TURN OFF PICTURE 1
C (THIS IS WHERE THE SUBROUTINES WILL BE PLACED) •

CALL PONOF (1, 0)

C *** BUILD A SUBROUTINE SEQUENCE (AN "X")
CALL POPEN (1)
CALL BPLBL (LX)
CALL BMOVR (-25., -25.)
CALL BDRWR (50., 50., -15, 0, 0)
CALL BMOVR (-50., 0.)
CALL BDRWR (50., -50., -15, 0, 0)
CALL BRETN

C *** NOW CALL THE SUBROUTINE TO DISPLAY THE "X"

CALL POPEN (2)
CALL BMOVA (-500., 0.)
CALL BJSLB (LX,-1)
CALL BMOVA (0., 0.)
CALL BJSLB (LX,-1)
CALL BMOVA (500., 0.)
CALL BJSLB (LX,-1)

C *** THERE ARE NOW THREE SYMBOLS ("X") ON THE SCREEN

CHAPTER 8

PICTURE CONTROL ROUTINES

As indicated in Chapter 1, there is a header on each picture
which controls the way in which that picture is displayed.
The picture control routines (those routines beginning with
the letter "P") all modify the picture header.

SUBROUTINE PONOF

PONOF is used to control whether or not the picture is
displayed. A picture is "on" when it is being displayed and
is "off" when it is not being displayed. A picture is
turned "off" by changing the destination of the jump
instruction in the picture header. PONOF is called as
follows:

CALL PONOF (IP, ICNTL)

WHERE:
IP is the picture number (1-32).
ICNTL is on/off control (0= off, l= on) •

To turn off picture 1, the following call is made:

CALL PONOF (1, 0)

To turn it back on, the following call is made:

CALL PONOF (1, 1)

PICTURE CONTROL ROUTINES PAGE 8-2

SUBROUTINE PXLT

PXLT is used to control the translation of a picture. PXLT
operates exactly like BXLT, described in Chapter 4, except
that the header translation word of the picture is modified.
PXLT is called as follows:

WHERE:

CALL PXLT (IP, XO, YO)

IP is picture number (1-32)
XO is X or1g1n in user units
YO is Y origin in user units

To set the origin in picture 2 to (-100., -100.) the
following call is made:

CALL PXLT (2, -100., -100)

For a detailed discussion of tanslation, refer to BXLT in To
set the origin in picture 2 to (-100., -100.) the following
call is made:

PICTURE CONTROL ROUTINES PAGE 8-3

SUBROUTINE PSCAL

PSCAL allows the user to set the ratio of screen units/ user
units in both the X and Y directions. The routine is called
as follows:

WHERE:

CALL PSCAL (IP, XRAT, YRAT)

IP = Picture number
XRAT = Ratio of screen units/user
units in the X direction.
YRAT = Ratio of screen units/user
units in the Y direction.

FOR EXAMPLE - If the user wished to have the screen divided
into 100 user units along the Y axis and 200 ~ser units
along the X axis for picture 5-

The program should call PSCAL (5, 20.48,40.96)

PICTURE CONTROL ROUTINES PAGE 8-4

SUBROUTINE PMAP

PMAP allows the user to translate the or1g1n to any location
on the screen and to set the ratio of screen units/user
units in both the X and Y directions.

The routine is called as follows:

CALL PMAP (IP, XL, yl, USERX, USERY)

WHERE:
IP = Picture number
XL = x coordinate of the lower left corner
of screen
YL = y coordinate of the lower left corner
of screen.
USERX= Number of user units on the x axis
USERY= Number of user units on the y axis

FOR EXAMPLE - If the user wished to have the origin in the
lower left corner of the screen, 100 user units along the Y
axis and 200 user units along the X axis. The program
should call all PMAP (1, 0. ,0., 200, 100).

PICTURE CONTROL ROUTINES PAGE 8-5

SUBROUTINE PWORD

PWORD re-writes the special function word in the referenced
picture. PWORD is called as follows:

Where

CALL PWORD (IP, MSW, LSW)

IP is the picture number
MSW is the Most Significant Word
LSW is the Least Significant Word

Each bit set in the conrol constants will set a
corresponding bit in the special function word in the
picture header. For a detailed discussion on the form of
MSW and LSW refer to the Display Command Format
documentation.

CHAPTER 9

DISPLAY PROCESSOR FUNCTION AND CONTROL

This chapter describes the display processor function and
control routines. These routines control display refresh,
which monitor (if any) is inhibited from display, etc.
There are also routines which start and stop the display
processor.

SUBROUTINE DSTRT

DSTRT is used to initialize and start the 7000 display
processor. It is called as follows:

CALL DSTRT (!UNIT)

Where !UNIT = unit # of screen (0-3)

DSTRT should not be called before a call to subroutine BIN7,
which establishes a "skeleton" display list, and BINIT which
establishes a "skeleton" picture.

SUBROUTINE DHALT

DHALT is used to stop the 7000 display processor.
called as follows:

CALL DHALT (IUNIT)
Where IUNIT = unit of screen (0-3)

It is

DISPLAY PROCESSOR FUNCTION AND CONTROL PAGE 9-2

SUBROUTINE BSETZ

Display processor current intensity may be set without the
use of one of the vector routines. This is accomplished
with a call to subroutine BSETZ as follows:

CALL BSETZ (IZ)

Where:
IZ is the new display intensity (0-15).

SUBROUTINE DREFR

The display may be set to run in one of two modes:
continuous or line-synchronized. When refresh mode is
continuous, the display processor will immediately jump to
the beginning of the display list when it encounters the end
of the list. When the refresh mode is line-synchronized,
the display processor halts when the end of the display list
is encountered, and it re-starts at the beginning of the
list when the next line sync pulse is received. Continuous
refresh mode is used when maximum display intensity is
desired and the number of vectors displayed remains
relatively constant. A wide change in the number of vectors
in the display list can cause variations in display
intensity. For this reason, most display lists will be
processsed in line-synchronized mode. Subroutine DREFR is
used to change refresh mode, and is called as follows:

Where:

CALL DREFR (!UNIT, !REF)

!UNIT = unit I of screen (0-3)
!REF - 0 causes continuous refresh
IREF = 1 causes line-synchronized refresh

NOTE: DREFR also starts the display processor
if not already running.

CHAPTER 10

GRAPHICS PERIPHERAL ROUTINES

JOYSTICK ROUTINES

Four routines are provided for controlling joysticks and
retrieving data:

1. JOYON - Starts the joystick digitizing
hardware.

2. JOYRD - Gets joystick X,Y coordinates and
button status.

3. JOYOF - Turns off the joystick digitizing
hardware.

4. JOYLM - Establish tracking limits for the
joystick cursor.

SUBROUTINE JOYON

JOYON starts the joystick digitizing hardware. It is called
as follows:

JOYON (IUNIT, ICRSR, ICTL, IER)

GRAPHICS PERIPHERAL ROUTINES PAGE 10-2

Where:
ICRSR = 0 for default cursor;

cursor. ICRSR if not
user label previously
to subroutine BPLBL.

not = 0 for user
= 0 should be a
set with a call

!UNIT = unit number (0 through 3).
ICTL = 0 - local tracking.

1 - local track, interrupt
2 - local track, interrupt
3 - local track, interrupt

down.

button down.
button up.
button up and

4 - local track, 100 Hz interrupt.
5 - local track, 100 Hz interrupt button

down.
IER = 1 for success; -1 for no such device.

SUBROUTINE JOYRD

JOYRD retrieves the joystick data, and is called a~ follows:

Where:

JOYRn(ruNIT, IX IY, IPEN, IRDX, IRDY)

IX is X-cursor position in screen units.
IY is Y-cursor position in screen units.
IPEN is pen status; 0 = pen up, 1 = pen down.
IRDX is raw X data (-3 through +3).
IRDY is raw Y data (-3 through +3).
!UNIT is unit number (0 through 3).

SUBROUTINE JOYOF

JOYOF is
hardware.

Where:

called to turn off the joystick
It is called as follows:

JOYOF (!UNIT)

!UNIT is unit number (0 through 3).

digitizing

GRAPHICS PERIPHERAL ROUTINES PAGE 10-3

SUBROUTINE JOYLM

JOYLM is called to establish tracking limits for the joy­
stick cursor. It is called as follows:

Where:

JOYLM (IUNIT, IYL, IXR, IYU, IXL)
T7'fE~J I

) ~1~\.J ' --= ~· \) '1x L ~ 1. 'J L ,
IXL is left screen limit for cursor movement.
IYL is lower screen limit for cursor movement.
IXR is right screen limit for cursor movement.
IYU is upper screen limit for cursor movement.
IUNIT is unit number (0 through 3).

DATA TABLET ROUTINES

Four routines are provided for controlling data tablets and
retrieving data:

1. TABON - Starts the data tablet
digitizing hardware.

2. TABRD - Gets data tablet X,Y coordinates and
pen status.

3. TABOF - turns off the tablet digitizing
hardware.

4. TABLM - Establishes tracking limits for the
joystick cursor.

SUBROUTINE TABON

TABON is called to start the data tablet
hardware. It is called as follows:

digitizing

CALL TABON (IUNIT, ICRSR, ICTL, ITRES, IER)

GRAPHICS PERIPHERAL ROUTINES PAGE 10-4

Where:
ICRSR = 0 for default cursor, not= 0 for user

cursor (ICRSR = label previously
defined by a call to subroutine BPLBL) •

!UNIT = unit number (0 through 3).
ICTL = 0 - local tracking.

1 - local track, interrupt pen down.
2 - local track, interrupt pen up.
3 - local track, interrupt pen up and down.
4 - local track, 100 Hz interrupt.
5 - local track, 100 Hz if pen down.

ITRES = Number of bits of tablet data mapped
to screen:
1 = 11 bits (2048 units)

~ 2 = 12 bits (4096 units)
3 = 13 bits (8192 units)

(

\ "~Zz. 0 i ~ cJ\i k\-
4 = 14 bits (16,384 units)

NOTE:
--/'

This is a function of tablet size.
There are 200 tablet units· per tablet
inch. An 11-inch tablet has available
11 x 200 = 2,200 tablet units and is
considered to have 11 bits of reso­
lution for mapping to screen coor-

··- d inates.
IER =(JV for success, -1 for error (no such pce-ie.,~lt-i "1

device) • ·t ... ,,. •4L<"i._..1

C\., l)i+l...er- I".(!'.\"~ '-')

SUBROUTINE TABRD

TABRD is used to retrieve the data tablet X,Y coordinate
data and pen status. TABRD is called as follows:

Where:

CALL TABRD (!UNIT, IX, IY,IPEN,IRDX,IRDY,IRDP)

IX is X-cursor position screen units.
IY is Y-cursor position screen units.
IPEN is pen status; 0 = pen up, 1 = pen down.
IRDX is tablet raw x-data.
IRDY is tablet raw y-data.
IRDP is tablet raw pen status data (5 bits).

LSB = dual tablet flag
Next LSB = pen flag 3
Next LSB = pen flag 2
Next LSB = pen flag 1
Next LSB = primary pen status

!UNIT is unit number (0 through 3).

GRAPHICS PERIPHERAL ROUTINES PAGE H'J-5

SUBROUTINE TABLM

TABLM is called to establish the data tablet cursor tracking
limits. TABLM is called as follows:

Where:

CALL TABLM (IUNIT IYL, IXR, IYU, IXL)
lx L , I Y L . ·1 ·x u > 1 ~ 1 u ·)

IXL is left screen limit for cursor movement.
IYL is lower screen limit for cursor movement.
IXR is right screen limit for cursor movement.
IYU is upper screen limit for cursor movement.
IUNIT is unit number (0 through 3).

SUBROUTINE TABOF

TABOF is called to stop the data tablet digitizing hardware.
TABOF is called as follows:

CALL TABOF (IUNIT)

Where:
IUNIT is unit number (0 through 3).

GRAPHICS PERIPHERAL ROUTINES PAGE 10-6

KEYBOARD HANDLING ROUTINES

Input from the keyboard is disabled until a call is made to
KEYON. There are two routines which enable the user to
retrieve keyboard characters:

1. KCHAR retrieves a single character from
the keyboard; task waits until a key is struck).

2. KCHNW retrieves a single character from the
keyboard (no suspension of task) •

3. KLINE retireves a string of characters,
terminated by a null, carriage return, or form
feed. (Task waits until a line is returned).

Displaying the characters on the screen (echoing) is left to
the user. Input from the keyboard can be disabled and the
input buffer cleared by a call to KEYOF.

SUBROUTINE KEYON

Subroutine KEYON initializes keyboard input routine. The
keyboard is enabled and the interrupt service routine is
initialized. This call must be made before any keystrokes
from the keyboard can be accepted. KEYON is called as
follows:

CALL KEYON (!UNIT, IER)

Where:
IUNIT is unit number (0 through 7).
IER is error code. l = success; -1 = no

GRAPHICS PERIPHERAL ROUTINES PAGE 10-7

such device in system.

SUBROUTINE KEYOF

Subroutine KEYOF turns the keyboard off. The interrupt
service routine is disabled and the input buffer is cleared.
Any further calls to KCHAR or KLINE will cause a graphics
error (see Appendix A). Subroutine KEYOF is called as
follows:

CALL KEYOF (!UNIT)

Where:
!UNIT is unit number (0 through 3).

SUBROUTINE KCHAR

Subroutine KCHAR gets a single character from the keyboard.
The character is returned in the low order byte of the
single integer argument. The user task is suspended until
the character is available. KCHAR is called as follows:

Where:

CALL KCHAR (!UNIT, ICH)

!UNIT is unit number (0 through 3).
ICH is a single integer variable
into which the character is to be stored.

SUBROUTINE KCHNW

Subroutine KCHNW, like KCHAR, gets a single character from
the keyboard. Unlike KCHAR, KCHNW does not suspend the user
task while waiting for the character.

KCHNW is called as follows:

SUBROUTINE KCHNW (!UNIT, ICH, IER)

GRAPHICS PERIPHERAL ROUTINES PAGE 10-8

WHERE:

!UNIT is unit number (0 through 7)
!CH is a single integer variable into
which the character is to be stored.
!ER is error code -1 =no char. available;
+ l= success.

SUBROUTINE KLINE

Subroutine KLINE gets a string of characters from the
keyboard (terminated by a carriage return, line feed, or
null). The characters are packed two per word. The
terminating character is also returned. A string is also
terminated if 127 characters are received without a
terminator. The user's task is suspended until this call
can be completed (a complete string is available). KLINE is
called as follows:

Where:

CALL KLINE (IUNIT, INCR, ISTNG, INCD)

!UNIT is unit number (0 through 3)
INCR is number of characters requested
ISTNG is array to receive characters
INCD is the returned value representing the actual
number of characters returned.

APPENDIX A

ERROR REPORTING

7000 system software makes checks for valid instructions,
adequate memory, etc. When errors are detected, an error
code is displayed on the terminal and the program pauses.
Fatal errors cause program execution to terminate. A
typical error message from a 7000 graphics program looks
like the following:

*** ERROR DETECTED
PICTURE: XX
LCP: XXXX
ICP: XXXX
I ERW 1: XXXX
IERW2: XXXX
!MODE: X

PAUSE IN ERROR ROUTINE

IERWl and IERW2 are error codes (see below), and ICP and LCP
are the insert and last component pointers, converted to
displacement in the picture. !MODE (0, 1, or 2) is insert
mode: append, insert or re-write.

ERROR WORDS

1

1 10

1 11

DESCRIPTION

INSUFFICIENT MEMORY FOR PICTURE BEING
INITIALIZED (FATAL ERROR) SUBROUTINE
BINIT.

CALL TO SUBROUTINE BTXAT WITHOUT FIRST
INITIALIZING PICTURE FOR TEXT USE
{FATAL ERROR)

PICTURE NUMBER SPECIFIED TO SUBROUTINE
BTXAT IS LESS THAN 1 OR
GREATER THAN 32 (FATAL ERROR)

ERROR REPORTING

1 12

1 13

ERROR WORDS

1 20

1 21

1 31

2 14

2 25

2 35

2 45

2 56

2 66

3 17

5 15

5 26

5 36

6 11

PAGE A-2

INVALID CHARACTER SIZE SPECIFIED TO
SUBROUTINE BTXAT.

INVALID SCREEN COORDINATES SPECIFIED TO
SUBROUTINE BTXAT.

DESCRIPTION

PICTURE NOT INITIALIZED BEFORE CALL TO
SUBROUTINE BPNT.

PICTURE NUMBER SPECIFIED TO SUBROUTINE
BPNT IS LESS THAN 1 OR GREATER THAN 32.

INVALID INSERT MODE IN CALL TO
SUBROUTINE BNSRT.

LABEL ADDRESS VECTOR OVERFLOW IN CALL
TO SUBROUTINE BNSRT.

INVALID LABEL REFERENCE IN CALL TO
SUBROUTINE BGLBL.

INVALID LABEL REFERENCE IN CALL TO
SUBROUTINE BJMLB.

INVALID LABEL REFERENCE IN CALL TO
SUBROUTINE BJSLB.

INVALID ADDRESS SPECIFIED IN CALL TO
SUBROUTINE BJMAD.

INVALID ADDRESS SPECIFIED IN CALL TO
SUBROUTINE BJSAD.

INSUFFICIENT MEMORY FOR CALL TO
SUBROUTINE BTEXT.

INVALID LABEL REFERENCE IN CALL TO
SUBROUTINE GTON.

INVALID ADDRESS SPECIFIED IN CALL TO
SUBROUTINE BDELV.

INVALID ADDRESS SPECIFIED IN CALL TO
SUBROUTINE IPPTR.

INVALID PICTURE NUMBER IN CALL TO
SUBROUTINE PONOF.

ERROR REPORTING

6 10

6 20

7 18

7 28

ERROR WORDS

7 38

7000 100

7000 101

PAGE A-3

REFERENCED PICTURE NOT INITIALIZED
IN CALL TO SUBROUTINE PONOF.

REFERENCED PICTURE NOT INITIALIZED
IN CALL TO SUBROUTINE PSFWD.

ATTEMPT TO RETRIEVE DATA FROM
NON-INITIALIZED JOYSTICK.

ATTEMPT TO RETRIEVE DATA FROM
NON-INITIALIZED DATA TABLET.

DESCRIPTION

ATTEMPT TO RETRIEVE DATA FROM
NON-INITIALIZED KEYBOARD.

INSUFFICIENT MEMORY FOR CURRENT GRAPHICS
CALL

ATTEMPT TO WRITE ON TRAILER OF CURRENT
PICTURE

INDEX

ABSOLUTE VECTOR ROUTINES • • • 3-2
ALLOCATING 7000 MEMORY • • • • 2-1

COMMON PARAMETER DEFINITIONS • 3-1

DATA TABLET ROUTINES • • • • • 10-3
DISPLAY LIST MANIPULATION •• 6-1

FUNCTION IGPTR ••••• . . • 6-4

HARDWARE REQUIREMENTS • • 4-1

INCREMENTAL VECTOR ROUTINES • 3-6
INITIALIZING THE PICTURE ••• 2-2
INSTRUCTION FORMAT CONTROL • • 6-1

JOYSTICK ROUTINES • • • • • • 10-1
JUMP ROUTINES • • • • • • 7-1
JUMP-SUBROUTINE SEQUENCES • • 7-4

KEYBOARD HANDLING ROUTINES • • 10-6

LABELS • • • • • 1-4

MGS . . . • 1-1

PICTURE FORMAT •
POINT-PLOT ROUTINES
POINTERS • • • • • •

• • • • • 1-3
• • • • • 3-9
• • • • • 1-7

RELATIVE VECTOR ROUTINES • • • 3-3

SPECIAL FUNCTION CONTROL • • • 9-2
STRING HANDLING ROUTINES • • • 5-1
SUBROUTINE BDELV • • • • • • • 6-2
SUBROUTINE BDRWA • • • • • • • 3-2
SUBROUTINE BDRWR • • • • • 3-4
SUBROUTINE BDXRY • • • • • • • 3-6
SUBROUTINE BDYRX • • • • • • • 3-8
SUBROUTINE BIN7 • • • • • 2-1
SUBROUTINE BIXTG • • • • • • • 3-12
SUBROUTINE BJMAD • • • • • • • 7-2
SUBROUTINE BJMLB • • • • • • • 7-1
SUBROUTINE BJSAD • • • • • • • 7-5
SUBROUTINE BJSLB • • • • • • • 7-5
SUBROUTINE BMOVA • • • • • • • 3-3
SUBROUTINE BMOVR • • • • • • • 3-5
SUBROUTINE BMXRY • • • • • • • 3-7
SUBROUTINE BMYRX • • • • • • • 3-8

INDEX PAGE I-2

SUBROUTINE BPNTA . • . • • • . 3-11
SUBROUTINE BPNTR • • . . • 3-11
SUBROUTINE BPXRY . . . • • . • 3-10
SUBROUTINE BPYRX . • . . • • . 3-9
SUBROUTINE BRETN . • . • • . • 7-5
SUBROUTINE BRSTG • • . . • • . 3-12
SUBROUTINE BSETZ . • . • • • . 9-2
SUBROUTINE BSTNG 5-1
SUBROUTINE BVJLB . • . . . 7-2
SUBROUTINE SWORD 6-5
SUBROUTINE BXLT • . 4-1
SUBROUTINE DHALT 9-1
SUBROUTINE DRE FR 9-2

- - - 2-1 SUBROUTINE DSET 2-3 oPrcr
SUBROUTINE DST RT 9-1
SUBROUTINE OT RANS 4-2
SUBROUTINE GNUM 5-2
SUBROUTINE IDRWA 3-2
SUBROUTINE IDRWR 3-4
SUBROUTINE IDXRY • • 3-6
SUBROUTINE IDYRX 3-8
SUBROUTINE IIXTG 3-12
SUBROUTINE I MOVA . . . • • . . 3-3
SUBROUTINE IMOVR . . • . • 3-5
SUBROUTINE IMXRY . . . • . • . 3-7
SUBROUTINE IMYRX . . . • . • . 3-8
SUBROUTINE IPNTA . . . • . . • 3-11
SUBROUTINE IPNTR 3-11
SUBROUTINE IPPTR . . • 6-4
SUBROUTINE IPXRY . . • • • • . 3-10
SUBROUTINE IPYRX . • . 3-9
SUBROUTINE IRSTG • • . 3-12
SUBROUTINE IXLT • . . 4-1
SUBROUTINE JOYLM • • . . • . • 10-3 • SUBROUTINE JOYOF . • • • • . . 10-2
SUBROUTINE JO YON . . • • • . . HJ-1
SUBROUTINE JOYRD . . . • . • • 10-2
SUBROUTINE KC HAR . . • • • . • 10-7
SUBROUTINE KCHNW . . • • • • . 10-7
SUBROUTINE KEYOF • . • 10-7
SUBROUTINE KEYON • . • 10-6
SUBROUTINE LABGT . • . . . • • 6-3
SUBROUTINE LAB PT . • • . • • • 6-3
subroutine PC LIP • • • • • • • 4-5
SUBROUTINE PIN IT . • • • • • • 2-2
SUBROUTINE PMAP • • • • • • . 8-4
SUBROUTINE PMODE • . • • • • • 6-1
SUBROUTINE PONOF • • . • . . • 8-1
SUBROUTINE POPEN • • • • • • • 6-3
SUBROUTINE PSCAL • • . • • • • 8-3
SUBROUTINE PTRAN • • • • • • • 4-5
SUBROUTINE PWORD • . • • • • • 8-5
SUBROUTINE PXLT • • • • • • • 8-2
SUBROUTINE TABLM . • • • • • • 10-5
SUBROUTINE TABOF • • . • . • • 10-5
SUBROUTINE TABON • • • • • . . 10-3
SUBROUTINE TABRD • • • • • • • 10-4

THE PICTURE • • • • • • • • . 1-1

INDEX PAGE I-3

VECTOR STRINGS • • • • • • • • 3-11

January 19, 1979

MGS-7000 V2 REV 02

The following routines have been added/modified/deleted from the
7000 Software Manual and package:

OLD V2 DESCRIPTION

BIN IT PIN IT PINIT replaces BINIT.
PINIT initializes pictures
"OFF" not'"ON', and has only
two arguments. BIN IT is
still available

BNSRT PMODE PMODE replaces BNSRT.
Identical function, BNSRT
still available.

BPNT POP EN Identical in function, BPNT
still available.

BPLBL LAB PT Identical in function, BPLBL
still available.

BGLBL LABGT Identical in function, BGLBL
still available.

BWORD BWORD V2 call requires two arguments
PS FWD PWORD (MSW,LSW) in lieu of single

two word array.

BT EXT Routines not available
BTXAT Routines not available

CH REF* DREFR* DREFR replaces CHREF.
Identical function, CHREF
still available.

DST RT* DST RT* See Note

DHALT* DHALT* See Note

BJMLB BJMLB Second Parameter now used
BJ MAD BJ MAD to control current intensity
BJSLB BJSLB (L0 Preset Z; 0-15 Set Z)
BJ SAD BJ SAD

BVJLB BVJLB Second parameter added for
intensity control (L0 Preset Z;
0-15 Set Z)

SETZ BSETZ Name Change

~ /\.J

It-
v-~

LA.NI/ NIA
D (TUt\J ft)

PAGE II

OLD

KEYON

KEY OF

V2

KEYON

KEY OF

KCHNW

UNITS 4-7
are special)>
function keys

KC HAR KC HAR

KLINE KLINE

DESCRIPTION

Error Code = +l For
Success, -1 = no such device.

Added unit # parameter

Similar to KCHAR: Gets
character without any task
suspension.Calling sequence:

Call KCHNW (IUNIT, ICH, IER)

Where IUNIT is unit # (0-7)
ICH contains returned CHAR
IER = 1 for valid data

= 1 for no data

Calling sequence revised to:

Call KCHAR (IUNIT, ICH)
where IUNIT is unit #
(0-7 : 0-3 normal keys
4-7 special function keys}

ICH is returned data

Calling sequence revised to:

CALL KLINE (IUNIT, INCR, ISTNG,
INCD) where:

IUNIT is unit (0-3)
INCR is # of characters requested
ISTNG is string to receive characters
INCD is # of characters actually
returned.

PAGE III

RSX GRAPHICS PROGRAMS TASK BUILDING PROCEDURE.

Nonnal Programs (those without Rasterizer or Display Disk
File I/0):

TKB PROG = PROG, GRAPHICS/LB

Programs using Rasterizer:

TKB PROG = PROG, GRAPHICS/LB

UNITS = 8
ASG = GP4:7

Programs using Disk Display File:

TKB PROG = PROG, GRAPHICS/LB

Units = 9
ASG = SY: 8

	000
	001
	002
	003
	004
	005
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	A-01
	A-02
	A-03
	I-01
	I-02
	I-03
	u-01
	u-02
	u-03

