UNIX Compiler Manual:
C, Pascal, FORTRAN 77

H

An NBI
Company

Integrated Solutions

<oy é ey ol
ks
oSt S

‘AH'- - FR 3 B
¥

2 I v o

UNIX Compiler Manual:
C, Pascal, FORTRAN 77

Integrated Solutions
1140 Ringwood Court
San Jose, CA 95131
(408) 943-1902

UNIX is a registered trademark of AT&T in the USA and other countries.

4.2BSD and 4.3BSD were developed by the Regents of the University of California (Berkeley),
Electrical Engineering and Computer Sciences Departments.

VAX is a trademark of Digital Equipment Corporation.

Green Hills is a trademark of Green Hills Software, Inc.

490292 Rev. A

April 1989

Copyright 1988 by Green Hills Software, Inc.

Copyright 1989 by Integrated Solutions. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means (e.g.,
electronic, mechanical, photocopying, recording) without the prior written permission of

Integrated Solutions.

The information in this publication is subject to change without notice.

Preface

Integrated Solutions distributes compilers for C, Pascal, and FORTRAN. This manual
describes these three compilers. Information in this manual is applicable to all 68000 series
targets; that is, 68000, 68010, 68020, and 68030.

Effective with ISI Release 5.1 (4.3BSD), we offer a second FORTRAN compiler. This
compiler is called ftn(1). Information on ftn is not included in this manual. Refer to the online
man page for a description of the compiler. To get additional documentation on NKR
FORTRAN, order part number 720110 from Sales or Customer Support.

Section 1 - Introduction
This section explains the general characteristics of the compilers.

Section 2 - Optimization
The Optimization section gives detailed information about the optimizations used
by the three ISI compilers (ISI C, ISI Pascal, and ISI FORTRAN) to improve
program performance. It also gives you general ideas as to how to get the best
performance out of your program.

Section 3 - Porting Programs to ISI Compilers
This section discusses difficulties that you may encounter in moving a program
developed with another compiler to the ISI compiler. It gives specific examples of
problems that may appear and how to resolve them. Although many examples are
shown for ISI C, this section is applicable to ISI C, ISI Pascal, and ISIFORTRAN.

Section 4 - Using the 68000 Series Compilers
This section describes the target processor and operating system environment in
which your program will operate. It describes calling conventions, register
allocation and memory allocation strategies. Restrictions imposed on the compiler
by the MC68000 are included. It also tells how to modify the output of the
compiler to be compatible with different target environments. This section is
applicable to all ISI compilers (ISI C, ISI Pascal, and ISI FORTRAN).

Section 5 - Pascal
The section contains a discussion of the implementation of the Pascal
programming language. The Pascal compiler is referred to as ISI Pascal in this
document. Additional information can be found in the pc(1) man page.

Section 6 - FORTRAN 77
The section contains a discussion of the implementation of the FORTRAN
programming language. The FORTRAN compiler is referred to as ISI F77 in this
document. Additional information can be found in the f77(1) man page.

Section 7 - C Language
This section contains a discussion of the implementation of the C programming

iii

language. The C compiler is referred to as ISI C in this document. Additional
information can be found in the cc(1) man page.

Section 8 - Compile Time Options
This section describes how to adjust the output of the ISI compilers to
accommodate your needs by using the many variations that have been
implemented.

Appendix A - Man Pages
The man pages for the three compilers (cc(1), pe(1), f77(1)) are included here.

You will see these uses of boldface in this manual:
« Section headings.

« References to UNIX commands (tar (1) refers to the command tar; the (1)’ shows
that you can find a description of tar in "Section 1: Commands" of the UNIX 4.3BSD
User’s Reference Manual (URM)).

o Commands that you type to UNIX exactly as printed (for example, ‘‘Enter fsck and
press RETURN™).

e Messages that UNIX prints on your screen (for example, login:).

e User account names (for example, the root login account, the group operator).

iv

Table of Contents

Preface voevveiiiiieeiccnniinecnnenncevenee eeeereeereneteteseessaeeetr st et et ee et e ettt s e et e s et e e s seaabaan cecreenenees il
Section 1; INIrOQUCHION ..oiiiueiiiimiiiiietiiiietttienttttetiestaesrraneeseseassssseesseesssrssessssssassssssrass 1-1
1.1 Memory ReqUIrementscceeeeeececacerecens eeeevannes teeeeetetaraaieerearaa e sesebaanas 1-1
1.2 Memory Allocationccccceeeevnenne reeeesatesateseesesnessansasaseesessessessssnnnsasasasaaseeass 1=1
1.2.1 Local Variables rrr e ssssee s s teerreessesrtenennas ceeeeens e 12
1.2.2 Static and Global Variables ceerteessaensneseeeseneeseeesennannarane 1-2
1.3 Converting Programs Developed with Other Compilersccccecumuiiiiiiinenen 1-2
1.3.1 Byte Ordering Ceeeeeteseseetetteettatae bttt re st e e s arba e ee e se s s 1-2
1.3.2 Byte Machine Portabilityccooceccceeeiencnnans ceessaratntaretteaetaaes . 13
Section 2: Optimizationcceeeeeeeveenn ceereeerenane Ceeetatnreeteettetat e se st et ba e sesebaraissaeas 2-1
2.1 Introductioncccceeeeeviiiieiiinieninenenes Ceeeteseteeieettatataa i esee st aeatraes et ranresetans 2-1
2.2 General Optimizations Ceeeeraear et tete e e e bt ssese s b s b bt s bt n bt ae s e ee 2-1
2.2.1 Register Allocation by COIOTINGceceeeieririiiineeeceirienienineresssennaene 2-1
2.2.2 Memory ALIOCAION .icveveeeiieererenuneeieerenennsnereseaeeseseesnnsseressennns eereen 2-3
2.2.3 Entry and Exit Code Optimization
2.2.4 Stack Adjustment CoalesSCiNgG ...cccevereerrerererererreeaannas eeereeerernsanannans 2-4
2.2.5 Static Address Elimination ceeeerrennans teeeeereresereseeeeesseseasaeranarans 2-4
2.2.6 LOOD ROLALION ..cuveeiiiiiiiiiiiiiitiecineninneenene et cece e secesesestveassassssssenes 2-5
2.2.7 Peephole Optimizations
2.3 Speed Optimizations terereresesesseanenaettanane tereessresrssss e esestesese st assnnans 2-6
2.3.1 In Line Multiplicationccccee.. eereerrereneaenens eeeeteereensannnsanessanns 2-6
2.3.2 Loop Invariant Analysis rerarettt et ae et tesesesese e s snanes 2-7
2.3.3 Strength Reductioncoceceeiiiainiceninencacae eeeetereeetaee et ac i eenen 2-7
Section 3: Porting Programs to the ISI COMPIIETS ..c.cuveeeeeernenneeeneresarreeeeeaeeerrecenenennnnns 3-1
3.1 Introduction reetereeenanes cerneeraes ceveeees cersrreseeens rereseeeeas cerrreereeeeeane 3-1
3.2 Compatibility with Other Compilers resetaterte et eeer e s et atasaeatasaee e 3-1
3.3 WOrd Size Problemccciieiiiiiiiiinnnintnieiiiitieinieiinnnceeceeesesssssasesesesessscaseses 3-1
3.4 Byte Order PrODIEIMSccveeveeereeireeiresiaeeisessesaesseessssssessesssesssessassssensssnsanns 3-1
3.5 Alignment Requirements e ereeee et te et tetreeteteteteteseteteaanase e naane erees 3-2
3.6 Character Set Dependencies eeereeeeeeeeeeeteteeeteneaes ceeereeeeereetetetananaananes 3-2
3.7 Floating Point Range and Accuracy creees et s e et e e bbb 3-3
3.8 Operating System Dependencies ...
3.9 Assembly Language INterfacescceiveerieieiiimeneummeneeeniuenemeeentmenenresreessaeceeeeene
3.10 Expression Evaluation OIAErc.coeiiiiiieiuieemeneemeenmiememenmmenmeeeesssiesenseeeeeessssans
3.11 C Preprocessor Incompatibilities
3.12 Tllegal Assumptions about Compiler Optimizationccceeeeeereceeeerueecnenns 3-5
3.12.1 Problems with Setjmp and LONZimpP ...ccceeeeeeirreiiieiniemmemunenceeeenenns 3-5
3.12.2 Implied ReZIStEr USAZEoumenrmrieieieinriiinintteteteeesseeeaaesaaeseaonne 3-5
3.12.3 Memory Allocation ASSUMPLIONS ..c...ecevivvneerinivirneneerensinneseseeennns 3-6
3.12.4 -OM RESITICHOMS wevvrireerireiiiiiiiriinenineteeseniniineesieseeeseesessssesssasssnas 3-6
3.12.5 Problems with Source Level DebUZZETS .ococeevieeiiriiieiieerenennerennnnnns 3-6
3.13 Problems with Compiler Memory Sizeccceeeeeuenene ceeeerretreeteateteeaeeeaaesans 3-7

3.14 Detection of Portability Problemscccceriivveieieniisnnnceeieciniosessenecsesaeseas 3-7

Section 4: Using the 68000 Series Compilers cereneens ceeeteeseeeanasaene ceeretereeeeneraraaaens 4-1
4.1 68010 Target Environment crneeeens ceeeesnnteetesetsaenaeasssessannaes ceesresaanes 4-1
4.2 68020 Target Environment eerenane eeeereenennne eererenenncnsanaes cerreereianan 4-1
4.3 Memory Allocation eeeeeeresetteetstet it tetttres et et beasrtbare st sasseeesasasess eereeeeen 4-1
4.4 Calling Conventions eesesserestraran eeeeeeiseretts sttt sessseesesesnosaesens e 4-3

4.4.1 Stack Probesccceevuenenne cevenneresssenanaane cerrerneaoes ceeennoteasesnranen e 4-4
4.5 Local Variables retererereretetereteseseasassesantstaseananessnns ceeeereneeenee ceereerennens 44
4.6 Assembler Format eeereteteteeteeetstaeetrersesastsaranassnsesennsasanareaanen teererereananns 4-4
4.6.1 Symbolic Debugger SUPPOITcccieeeeceeeeeeereerereceenrrennerenssrsecesaanases 4-4
4.7 Motorola ASSEmDbIET VEISIONccovvveureriereiiiiiniirisinesnesacsceresseseseesossnsesane e 4-5
4.8 Common Compile Time Option Combinations eereenenenns ceerenennnnnranns 4-6
4.8.1 68000 Cross Developmenteeceveeeieeececearecssenee ceeresenanreenees veeeee 4-6
4.8.2 Motorola/AT&T System V eeeeeenee eeerenenenaes cereornenen ceeereeeees 4-6
4.9 RUntime LIDIari€scceceeeeeereereeeeesnorssanseanasseresseasaaes reveeneeeseasae eeeoesernereananns 4-6
4.9.1 Motorola and MIT lerary Entry Pomts erererrerereearasannns eoeneens ceerenee 4-6
4.9.2 Floating Point, IEEE Support erererensteseasasanaas ceverirereracananeneseess 4-7

Scction 5: Pascal ceveeervaennne cetteesrentesstaeenaaesranes eereerreeesaeesraeesaaesaeaas rrveeaee e 5-1
5.1 Pascal Standards ceeeesrenntatanasresoansas ceenemnnnens teeereeterarernraareanteaaaesesaesananns 5-1
5.2 Extensions to the Basic Pascal Languageccooeveeeeceeeccisaneees ersesinaaeaan, 5-1
5.3 Comment Delimitersccceeeccnneene cerererereneseete e s esteee s beaasase 5-1
5.4 Argc and Argvoooiiiiiiiiiiiniinnnnineens eanrreaenee Ceeereseeibastasts et setsasss o e sesanase 5-1
5.5 Set Implementationcceeeeececesnencae cecsesersrenans eereererecerasnnsensens eeereeae ceeonenae 5-2
5.6 Separate COompilationccceccvveeniiersearecsesecennaes cerersrsanrraar it astetseses e sasanees 5-2

5.6.1 External DIT€CUVEcccccrercecracarcrrncsacecseaseanenassracasnsnnnene cereesensesenees -2

5.6.2 Static DITECHVE ..veevevaerenrecrerrereerensasesaessensensesseres aeeveerennns .. 53

5.6.3 Relaxed Declaration Orderccceceeerrecunevcenneneneneecaens eererreeerereonnne 5-3

5.6.4 #INCIUAEcouurreereirrcrnrienicneeneennnreeeeaesennans evereeeeenns ceereerereeearennnanes 5-3

5.6.5 Example of Multiple Module Program SRR ceeroneen 5-3

5.7 C Extensions rereesestetastetaaeseaaens teeeeesesnsnsnnsantentatatatataseeanasssnnsranntns 5-4
5.7.1 Hexadecimal CONSLantscceeeeceeecreercrsneercesacnnene cereressnseseaene 3-4

5.7.2 Case SENSItIVILY ..cccccreecrreeecrsreecrsaeacesraneesserasasssssaesenns cereenenraneas veee 5-4

5.7.3 Additional Operators eeeeeteeteteeeteteseesesnansssrasnsrenraratenaeaens cerecnneee -4

5.8 Input and Outputccueveeeeeen cetrerantateteeaesasananes ceeeeenns ceerenaennes ceeeeennne ceenonnne 5-5
5.8.1 Interactive I/Occcveieeeceninnnnne cereseseeatatenseanataas . . 55

5.8.2 Default Field Widthscccocvceveiieeannnn. eteeeeeeenrtranaesnnransens reeenenanas 5-5

5.8.3 Second Argument to Reset and Rewnte cecenee ceeeeseenanann 5-5

5.9 Predefined Constants and Typesc.ccue.. cerresneennneteeataeaaees ceeeretnaneanaeaaes .. 55
5.10 Float and Double Typescccceevenen eeeereeeereraseeanarnane crereeeeees cereerenererscaceess 90
5.11 New and DiSPOSEc.eeeeeerrecenananenn eeetretareseateennnateseae eretreeeenestannasesesone 5-6
5.12 Record Comparison teeerereeerenteeeseseaneseracerarane cereereenenaeanne ceeeereereserenens 5-6
5.13 Compile Time Options crveeessanne RN e s e rseaeas 5-6
5.14 Interface to the C Library rereeeeterttese s raaeaesesennne R ceeeeesereeenanne 5-6
Section 6: FORTRAN 77 ..ccovvirriiiiinnennneceneeens T ceveeeen ceeeeenens ereetreee et eeeteten e aenaas 6-1
6.1 FORTRAN Standard eeeeeranerenens erereeeteettteenntanaannnneraasseaesasaaeaenens 6-1
6.2 Extensions t0 4.XBSD F77 DOCUMENLALIONueeveveeeneneeeeeeeeeaeaeaeneesernnnneenes 6-1

vi

6.3 T1eZAl PIOZTAIMS ...ociiiiiiiieieeiieieieierteeieeaeenseaaeaeaeeeseeeeceseseesensassssssnssnssnsnssssnsns 6-2

6.4 Compile Time OpLionscccceeeeeeenenee et eeeeet e eete bbb s e aera e seseatbarreseseas 6-2
Section 7: C Languageccccceeeeeeeeee eeeeeetsseetestesat it sese et taststeteasaaresstesaasrnsnseasseterannanan 7-1
7.1 INITOAUCTION «.cieiiiiiiiiiiiiiiieieuiusateenieneereseesaeeessesesnsnnessssnnnsnssassassassassaseeeeasaraees 7-1
7.2 Additions to the Basic C Languagecccceeevvunneee eereerrnaaeataeteseta e e s annae 7-1
7.2.1 Preprocessorc.cc.... eeeettetetrasetetsaa b eesessaassseeseteasrennnsastaas 7-1
7.2.2 Backslash vcvvceneneeienniinccnnnene ettt e tese s s aatseaeaeaeeaes 7-1
723 VOIAd TYPE ceeiieiieaiireiitnteecrteteecssnetesesesoeaseesesssasaesssssaseasasssnsens 7-1
724 _LINE__ .cccevrvevnnnnn. eeeeteeetteeteeeee s nnnrantat ettt etaatesesannsrnnatrasaaaean 7-1
7.2.5 _FILE__ cciiviviviiiinnnennaen reteetatteteteteee s tnnan e et aeaeteaaeese e nnnnstrraaan 7-1
7.2.6 Structure and Union EXtENSIONS ..cccocvueerieeerinecteenercnieeeesencsenreecesanens 7-1
7.2.7 Enumeration Type eeeeeeeseeeenaeretettetteatasersnnssnsasennsnaasaanaas 7-2
7.2.8 The VARARGS(3) FaCilitycecccuuieiiiiiieiiniiiiiiicirnrneecneeceeeececaeannns 7-3
7.3 BILFIELAS «evuerieiiiiiiiieiieiiiceeeetaeeeeecirsentaeteseaesessssssnnssasesesssassasseeessssssnsnsnnes
7.4 Extern and Common
7.5 Unsigned Char and Unsigned Shortceeuevennnee. teeteeeereeeeeteatarnrnnransnsannnnnes 7-4
7.6 aSM STALCINENL .eeiieiiiiietereeirrtneeesisrssateesssreseessssecessessssssasssssssssasasssssssssaeasssnne 7-5
7.7 Compile Time OPLOMNS .cccceereetieerrnteeerrreeeseerrneeeeesessnseasesssssasesaesssssssesasns 7-5
Section 8: Compile Time OPLONS .iciivrruieireirrneeerrsieessssireteteecsssneeeessessssseassessssssaesssssens 8-1
Appendix A: Man Pagescoceeeeeecorirrcinirrcrnreineenennn Ceeetereesesteattraeseseaanrsnsesseaeeennns A-1
cc(l)
pe(l)
f77(1)

vii

Section 1: Introduction

1.1 Memory Requirements

The Integrated Solutions compilers are advanced optimizing compilers. They are a major
improvement over the current generation of microprocessor compilers. In accordance with their
complexity they require a lot of memory. These compilers require up to 200K for the program
(after using a compiler to compile them). They are designed to work best when they have at least
400K of memory available.

The compilers’ primary use of memory is for the program and static data structures, global
declarations, parse trees, and generated machine code. The program and static data structures
consume approximately 250K. Global declarations consist of the global constant, type, variable,
and procedure declarations. This is a major use of memory when large numbers of declarations
are included in a program, since even unused global declarations must be stored throughout the
compilation.

The compilers are one pass, reading the source program only once. Each procedure is
converted into a parse tree as it is read. When the end of the procedure is reached the optimizer is
called with the parse tree as input. The optimizer modifies the parse tree and passes it on to the
code generator. The code generator produces an internal representation of the machine code to be
output for the procedure. After another optimizer phase is called to modify this machine code,
the final machine code for the procedure is output. After the machine code is output, the memory
being used for the parse tree and machine code is reclaimed for use in compiling the next
procedure.

The memory usage for parse trees and machine code is determined by the size of the largest
procedure in the program. If memory size problems exist, try to reduce the size of the include
files by including just the declarations that are needed. Simple procedures of less than 100 lines
should not cause memory size problems. Procedures which are more than 1000 lines can require
more than a megabyte of memory to compile.

1.2 Memory Allocation

Memory is allocated by the ISI compilers in a different way than by other compilers. The ISI
compilers perform a number of optimizations which other compilers do not. This can lead to
problems in porting some programs from other compilers to the ISI compilers if the programs
depend on memory or register allocation peculiarities of other compilers.

The Pascal compiler pc(1) allocates variables based on their size, frequency of use, and other
factors. No assumptions regarding contiguous allocation of variables can be made safely (except
where specified by the language standard). Programs that otherwise rely on the ordering of
variables within memory may not work. Variables may be reordered, some may be in registers,
others may be eliminated altogether.

1-1 Introduction 1-1

Compiler Guide Integrated Solutions Compiler Guide

1.2.1 Local Variables

Unlike other compilers, local variables (automatic variables in C) may be put into registers by
the compiler even if a register declaration is not used. In addition, the lifetime of each local
variable is studied, and if possible several variables may share the same register in one routine.
By default there is no upper limit on the number of variables allocated to a register. This is
determined by their lifetimes.

Scalar, pointer, or floating point variables generally qualify for allocation to a register unless
they are passed by reference or by its address. A floating point variable generally doesn’t qualify
for allocation to a register unless an architecture directly supports floating point arithmetic (i.e.,
the MC68881 is used). The compiler, by default, tries to allocate all eligible local variables to
registers.

When a variable is allocated to a register it always resides in that register. However, since
other variables may share the register, the value of the register may not always contain the value
of the variable.

Variables declared in register declarations are allocated to registers before any non-register
variables are allocated to registers. This allows you to specify the most important variables.

1.2.2 Static and Global Variables

A static variable may be allocated to a register if the compiler can determine that the variable
can never hold a value across invocations of the routine in which it is declared; i.e., the static
variable is always assigned in the subroutine before it is referenced. This optimization is
particularly important to FORTRAN 77, which uses primarily static variables. A static variable
may have no memory allocated if it is never used.

1.3 Converting Programs Developed with Other Compilers

There are a number of general problems involved with transporting programs from other
compilers. The most common problems to watch out for are explained in the following
subsections. Refer to Section 3 for more detailed information.

1.3.1 Byte Ordering

Most machines today are byte oriented. That is, they address 8 bit bytes. They have operations
which operate on 8, 16, 32, 64 and/or 128 bit quantities. Most older machines are word oriented,
in that they address words of a standard size varying from 16 to 64 bits.

The word size of a machine has several effects on the transportability of programs. The
standard integer and floating point data types of C, Pascal, and FORTRAN are generally defined
by the word size. In particular, the word size affects the range of numbers implemented by the
integer data type and the precision and range of the standard floating point datatypes. Most
programs expect the size of the integer and single precision floating point data type to be 32 bits
and the double precision floating point data type to be 64 bits.

The most common word size problems are (often undetected) integer overflows and floating
point underflows and overflows. The layout of bit aligned data structures in C and Pascal will
vary with the word size. Overlaying structures in memory (with C union types or Pascal
unchecked variant records) makes programs difficult to transport. Doing pointer arithmetic in

1-2 Introduction : 1-2

Compiler Guide Integrated Solutions Compiler Guide

integer variables is generally not transportable between machines with different word sizes. C
provides portable pointer arithmetic if it is used correctly.

Programs designed for maximum portability should only assume 16 bit integers and 32 bit
floating point.

1.3.2 Byte Machine Portability

Compilers developed on machines with different byte ordering, programs which overlay
characters and integers in memory, or which use character pointers to integer variables and vice
versa are generally not portable.

1-3 Introduction 1-3

Section 2: Optimization

2.1 Introduction

ISI C, ISI Pascal, and ISI FORTRAN do many optimizations which are not available in other
compilers. These optimizations can reduce the size of a program by as much as 30% and increase
its speed by up to four times. The ISI compilers also perform all of the optimizations done by
most other compilers. They fold constant expressions, convert multiplications into shifts and
divides into multiplications when advantageous, and eliminate redundant jumps and unreachable
code.

2.2 General Optimizations

General optimizations always make programs smaller and faster. Therefore, by default, these
optimizations are always performed.

2.2.1 Register Allocation by Coloring

Register allocation by coloring is used to keep the most commonly used values in registers at
all times. The entire function is examined to determine which local variables and parameters are
used most frequently. The most commonly used variables and parameters are allocated to
machine registers. No memory is allocated for them. This optimization has a significant savings
in execution speed and it saves a great deal of space. Referencing a variable in a register usually
takes one-third of the space and one-third of the time of referencing a variable in memory.

The register allocator uses data flow analysis to find the lifetime of each variable. Using this
information, it increases the number of variables which are stored in registers by using the same
register for several variables in the same function. Two variables may be allocated to the same
register if there is no place in the program in which both variables hold a value that is used later
on. Often, all local variables are kept in registers and none in memory.

By default, any integer, pointer, enum, float, or double automatic (or register) variable in Cis a
candidate for allocation to a register, unless its address is taken with the ‘‘&’’ operator. The
same is true for any integer, real, or logical local variable of the main program or function for
FORTRAN, unless it is passed to a function, and any integer, pointer, or real local variable of a
function for Pascal, unless it is passed by reference.

By default, all register candidates are allocated to the available registers so as to give either the
fastest or densest code possible (as controlled by the -OL compile time option). Most C
compilers allocate one register variable to each available register and then allocate all other
register variables and all automatic variables in the stack frame. Most Pascal compilers will
allocate all local variables in memory. The ISI compilers allocate as many of the register
variables to registers as possible. Then they allocate any automatic variables to registers if
possible. Overall, the ISI compilers allocate registers more effectively than most other compilers.

2-1 Optimization 2-1

Compiler Guide Integrated Solutions Compiler Guide

In the following example, ISI C allocates i and j to the same register because their lifetimes do
not overlap.

proc()
{ . . .
inti,j;
fori=1;i<10; i++)
05
for(G=1;j<10; j++)
} g0;
ISI C UNIX PCC
proc: proc:
link a6,#-12
movl d2,sp@- moveml #128,a6@(-12)
moveq #1,d2 movl #1,a6@(-4)
jra .L15
.L7: . .L20001:
josr f jsr f
addql #1,d2 addgl #1,a6@(-4)
.L15:
moveq #10,d0
cmpl d2,d0 cmpl #10,a6@(-4)
bgt L7 jlt .L20001
moveq #1,d2 movl #1,a6@(-8)
L4: .L20003:
jbsr g jsr g
addql #1,d2 addql #1,a6@(-8)
moveq #10,d0
cmpl d2,d0 cmpl #10,a6@(-8)
bgt L4 jlit .L20003
movl sp@+,d2 moveml ab@(-12),#128
unlk a6
Its ‘ s
.data
| allocations for f
I a2 i
l d2 j
38 bytes 76 bytes
The savings by ISI C can be summarized as:
putiand jind2 16 bytes
replace movem! by movl 8 bytes
delete link/unlk 6 bytes
use moveq 6 bytes

2-2 Optimization 2-2

Compiler Guide Integrated Solutions Compiler Guide

rotate loop 2 bytes
The same results can be seen using ISI Pascal, as follows:

procedure proc;
var
i, j: integer;
begin
fori:=1t09do
f;
forj:=1t09do
g
end;

The same results can be seen using ISIFORTRAN, as follows:

subroutine proc
integer i,j
i=1

10 callf
i=i+l
if (i .1t. 10) goto 10
j=1

20 callg
j=j+1
if (j .1t. 10) goto 20
end

2.2.2 Memory Allocation

The ISI compilers allocate variables based on their size, frequency of use, and other factors.
Variables which are never used are usually not allocated. Variables are usually sorted to allocate
the smaller and more frequently used variables first, and the larger and less frequently used
variables later. This allows the use of optimized short addressing modes to access commonly
used variables. If the compiler allocated some very large variable first, the short addressing
modes might not be able to access variables allocated after it. By putting the smallest and most
frequently used variables first, the compiler makes the greatest possible use of the small address
offsets. Some variables which other compilers would allocate in memory are allocated in
registers as explained in Section 2.2.1.

2.2.3 Entry and Exit Code Optimization

Most compilers use a frame pointer register in each function. The frame pointer is used to
access local variables, to point up the call stack to allow stack back traces to be printed during
debugging, and to unwind the stack for an exception mechanism. The frame pointer is valuable,
but it is usually not necessary. By default, the ISI compilers do not set up a frame pointer in each
function. It generates a frame pointer if the code is the same size or smaller with a frame pointer;
otherwise, it does not create a frame pointer and accesses all local variables by using the stack
pointer instead.

2-3 Optimization 2-3

Compiler Guide Integrated Solutions Compiler Guide

If it is necessary to have a frame pointer in every function, the ‘‘-ga’’ compile time option can
be specified on the command line. This compile time option guarantees that there will always be
a frame pointer, but it usually increases the size of the program.

‘When only one or two registers need to be saved in a function, the ISI compilers may generate
code to save registers one at a time instead of with a general save under mask instruction. This
can result in considerable savings in function entry and exit code.

If a function is very short (a common occurrence in structured programming), the entry and
exit code may take a large fraction of the space and execution time of the function. If all of the
parameters and local variables of a function are allocated in registers (usually for a function of 20
lines or less), the compiler can often eliminate the subroutine entry and exit code entirely. This
optimization generates code much like the best assembly language implementation.

See Section 2.2.1 for an example of improvements to the entry and exit code.

2.2.4 Stack Adjustment Coalescing

In many programs, function calls require a substantial amount of code. Each time a function is
called, the arguments are pushed on the stack. When the function returns, the arguments are
removed from the stack by adding to the stack pointer. In many programs a substantial savings in
code size is realized by the compiler by not adding to the stack pointer after each call. Instead,
the total amount of space that needs to be removed is accumulated until some occurrence such as
a branch forces the compiler to adjust the stack.

This optimization may cause a program to use more stack space than it otherwise would have.
The -X23 (dbpopalot) compile time option forces an adjustment of the stack after each call. This
stops stack frames from growing too large at the expense of generating more code.

See the example in next section for use of Stack Adjustment Coalescing.

2.2.5 Static Address Elimination

A valuable optimization performed by the compilers is to store frequently used static addresses
in registers. Since static addresses are 4 bytes long, it a static address is used just twice in a
function, it is faster and smaller to load the address into a register just once at the beginning of
the function and always use "register indirect” addressing to access it. In this way, most static
references are reduced to one-third the space and a shorter execution time. The following
example was done using ISI C.

2-4 Optimization 2-4

Compiler Guide Integrated Solutions Compiler Guide

PO
{
f(1);
(2);
f(3);
f(4);
}
ISIC UNIX PCC
p p:
link a6,#0
movl a2,sp@- moveml #0,a6@(0)
movl #f,a2
pea 1w movl #1,sp@-
jbsr 2@ jsr f
addql #4,sp
pea 2:w movl #2,sp@-
jbsr 2@ jsr f
' addql #4,sp
pea 3w movl #3,5p@-
jbsr a2@ jsr f
addql #4,sp
pea 4:w movl #4,sp@-
jbsr Q2@ jsr f
addql #4,sp
lea sp@(16),sp
movl sp@+,a2 moveml a6@(0),#0
unlk a6
s ItS
40 bytes 76 bytes

The savings by ISI C can be summarized as:

static address elimination 10 bytes
use movl instead of moveml 8 bytes
use pea instead of movl # 8 bytes
eliminate link/unlk 6 bytes

stack adjustment coalescing 4 bytes

2.2.6 Loop Rotation

In the ISI Compilers, the ‘‘for’’ and ‘‘while’’ statements specify the loop termination
conditions at the top of the loop. Therefore, many C compilers generate a termination test at the
top of the loop and an unconditional branch from the bottom of the loop to the top of the loop.
The loop executes two branch instructions on each iteration of the loop.

2-5 Optimization 2-5

Compiler Guide . Integrated Solutions Compiler Guide

A better way to generate code for loops, called loop rotation, is to place the test at the bottom
of the loop. Ifit can be determined at compile time that the loop always executes at least once,
the loop is entered from the top. If it cannot be determined that the loop will be executed at least
once, an unconditional branch to the termination test is placed before the loop entry. With the
test at the bottom only one branch is executed on each iteration of the loop.

2.2.7 Peephole Optimizations

Peephole optimizations are local improvements to the code which are certain to be correct
without further analysis of the surrounding code. An example would be two machine instructions
where the first moves the contents of register A to register B, and the second instruction moves
the contents of register B to register A. If the program code never branches to the second
instruction (i.e. both instructions are always executed together), and subsequent instructions do
not use the condition codes set by the second instruction, the second instruction can be safely
eliminated. The ISI compilers keep the full lifetime information available at this stage, so many
optimizations which would be unsafe for a peephole optimizer can be performed. For this reason
we refer to them as *‘local’’ optimizations.

All of the peephole optimizations which have been implemented are safe for device driver
code. Should there be any reason to suppress these optimizations, it can be done with the -X9
compile time option.

2.3 Loop Optimizations

Programs which execute for long periods of time execute millions or billions of instructions.
Since most programs consist of tens or hundreds of thousands of instructions, some instructions
must be executed many times. To increase the speed of a program it is necessary to identify
which instructions are executed the most often and concentrate the optimizations in these areas.
Computer languages have two main constructs for repeating the execution of instructions: loops
and subroutines. By making specific optimizations for each of these constructs it is possible to
significantly improve the performance of most programs.

The loop optimizer is selected by the -OL compile time option. This compile time options
informs the compiler that most computation is performed in inner loops. When this compile time
option is specified, the compiler assigns most of the machines resources, registers in particular, to
uses in the innermost loop. This can result in significant performance increases in programs
which do most of their computation in loops. The loop optimizer draws resources away from
other useful optimizations. If -OL is specified for a program in which very little computation is
done in inner loops, most of the machine’s resources will be misdirected in attempting to
optimize infrequently executed loops. This can result in decreasing the total performance of the
program. The -OL compile time option should only be used on modules for which the
programmer is certain most processing occurs in loops.

2.3.1 In Line Multiplication

The MC68000 has no 32 bit by 32 bit multiply instruction, so most compilers call a library
routine to do a 32 bit multiply. When transporting code from larger machines to a MC68000,
severe performance degradation can occur on programs which do a lot of 32 bit arithmetic. On
most mainframes a 32 bit multiply can be expected to take from 3 to 20 times as long as a 32 bit
add. But on a MC68000, under most compilers, the ratio is greater than 100 to 1. Under the -O

2-6 Optimization 2-6

Compiler Guide Integrated Solutions Compiler Guide

compile time option, the compiler expands 32 bit multiplications into in line code. This reduces
the multiply to add ratio to about 20 to 1. The size of the in line multiplications is somewhat
larger than a call to a library routine, and the compiler will run more slowly and take more
memory if a function has a very large number of 32 bit in line multiplications, but the in line
multiply is about 5 times faster than the typical library routine.

To further avoid 32 bit multiplications, the compiler uses 16 bit arithmetic for array index
calculations if the compiler can determine that the computation will not overflow. Sometimes the
declaration of an array is only a dummy declaration. The array might be entirely different than
the size specified. To avoid any problems, the compiler assumes that the programmer is lying
about the dimension of an array if it is specified to be of length 0 or 1. In these cases, the
compiler uses 32 bit arithmetic. If the dimension is specified to be anything greater than 1, then
it is assumed to be legitimate.

Multiplications by constants are also dealt with to reduce the use of 32 bit multiplications. If
the constant is a 16 bit value then an in line 16 by 32 bit multiply is done instead of a 32 by 32 bit
multiply. If the constant is of the form 2**n + 2**m + 1 (or simpler) it is expanded in line as
shifts and adds.

2.3.2 Loop Invariant Analysis

Loop invariant analysis is used to speed up loops. Each loop is examined for expressions and
address calculations which do not change in the loop. These computations are moved out of the
loop and the value is stored into a register. This optimization is particularly valuable for
removing array subscripts from a loop when the subscript is a variable or expression which is not
modified in the loop. In a small loop, all invariant expressions are accessed with *‘register
mode’’ and all invariant addresses are accessed with *‘register indirect modes.’’ This
optimization usually eliminates all computations of invariant expressions and addresses in loops.

2.3.3 Strength Reduction

Strength reduction is found only in the most advanced compilers. It applies to loops which
have an index variable which is incremented by a constant on each iteration of the loop. When a
loop index variable is used as the subscript for an array, most compilers multiply the loop index
by the size of the array elements and add this offset to the base of the array. Each such reference
typically requires at least three instructions. After the application of strength reduction, outside
of the loop, a register is loaded with the address of the array element to be accessed on the first
iteration of the loop. The array access is replaced by an indirect register addressing mode. On
each iteration, the element size is added to the register so that it contains the address of the
element to be accessed on the next iteration of the loop. This optimization results in a four to
twenty times speed improvement.

Strength reduction also reduces multiplication of the loop index by a loop invariant value to
addition of a constant to a register.

2-7 Optimization 2-7

Section 3: Porting Programs to the ISI Compilers

3.1 Introduction

Some programs, which appear to compile and operate correctly when compiled with other
compilers, may not operate correctly when compiled with ISI compilers. The language
specifications define legal programs in such a way that legal programs will always work with all
compilers, including those from ISI. The problem is that many programmers make illegal
assumptions about the machine or compiler that they are using. This section discusses many
illegal assumptions which can cause programs to fail when compiled with ISI compilers.

3.2 Compatibility with Other Compilers

The ISI languages (C, Pascal, and FORTRAN 77) use the same calling conventions for all
subroutines, routines, procedures, and functions. Therefore, code from other languages can be
freely used in your ISI programs.

3.3 Word Size Problems

Some machines are byte addressable. That is, they have addresses which refer to 8 bit bytes.
They typically have operations which operate on 8§, 16, 32, 64 and 128 bit quantities. Other
machines are word addressable in that they have addresses which refer to words of a standard size
varying from 16 to 64 bits. They typically have operations which operate on multiples of the
word size.

If two different machines have different word sizes or if one is word addressable and the other
is byte addressable, a program which operates on one machine may not operate on the other
machine for several reasons. The word size affects the range of numbers implemented by the
“‘int’’ data type (ISI C), INTEGER data type (ISI FORTRAN), or integer data type (ISI Pascal).
The word size also affects the precision and range of the float and double data types (ISI C), real
data types (ISI Pascal), and READ and DOUBLE PRECISION data types (IS FORTRAN).

The most common word size problems are (often undetected) integer overflows and floating
point underflows, overflows, and loss of precision. The layout of bit aligned data structures will
vary with the word size, so overlaying structures in memory (with union types or pointers in ISI
C, with unchecked variant records or pointers in ISI Pascal) makes programs difficult to port to
another compile. Address arithmetic done in integer variables is often not portable. C provides
portable pointer arithmetic if it is used correctly.

3.4 Byte Order Problems

There is one major portability problem between byte machines. Some machines place the most
significant byte of a multiple byte integer value at the lowest address. Many byte machines such
as the MC68000 have followed this convention. Other machines place the least significant byte
of a multiple byte integer value at the lowest address. These two groups seem to be so well

3-1 Porting Programs to ISI Compilers 3-1

Compiler Guide Integrated Solutions Compiler Guide

entrenched that no agreement on byte ordering is possible.

Between machines with different byte ordering, programs which overlay characters and
integers in memory or which use character pointers to integer variables and vice versa are often
not portable. Programs that declare a variable as type ‘‘int’’ in one module and as type ‘‘char’’ in
another may not work.

3.5 Alignment Requirements

The ISI compilers always align multiple byte data items on appropriate address multiples so
that all accesses will be legal and efficient. The maximum optimal alignment is the largest
alignment required by any data type for optimal access. It is typically the word size or the
external bus width. The exact alignment conventions for the compilers are defined in Section 4.
It is possible for the compiler to guarantee that there will be no illegal references if the
programmer follows simple rules.

When using the ISI compilers, the size of all compound data types are rounded up to a multiple
of the maximum alignment required for any component data type. The compiler always aligns
parameters and local variables within the stack at an allowable offset from the beginning of the
frame. The compiler always rounds up the size of the frame to the minimum alignment of the
MC68000/10/20/30. If the initial stack pointer is aligned to the maximum optimal alignment of
the MC68000/10/20/30 and if the program involves no explicit manipulation of the stack pointer,
all stack references are optimal and legal.

All variables within the global frame are allocated at a legal offset from the base of the global
frame. If the assembler and/or linker allocates the global frame with the minimum legal
alignment of the MC68000/10/20/30, all global data references are optimal and legal.

The ISI compilers alway ensure that components of a data structure requiring alignment appear
only at a legal offset from the beginning of the data structure. If all allocation routines always
return pointers which are aligned to the minimum legal alignment of the MC68000/10/20/30 and
the program does not use integer arithmetic for pointer computations, all references to
dynamically allocated memory are optimal and legal.

Variables within a frame or components within a larger data type are optimally packed together
inmemory. When a data type has an alignment requirement, the least possible unused space is
left between the end of the previous item and the next item so that the next item is optimally
aligned.

In satisfying different alignment requirements, complex data types may be allocated differently
on different machines. This leads to the usual problems with programs which rely on memory
overlays. It also leads to problems with programs which make implicit assumptions about the
size and/or offset of objects.

3.6 Character Set Dependencies

Not all computer systems use the same characters. All computer systems recognize letters,
digits, and the standard punctuation characters. But there is considerable variation among the
less commonly used characters. Therefore programs which use the less common characters may
not be portable.

3-2 Porting Programs to ISI Compilers 32

Compiler Guide Integrated Solutions Compiler Guide

The compilers use the ASCII character set and the ASCII collating sequence. Some
implementations of compilers use a different collating sequence such as EBCDIC.

Programs which manipulate character data, especially string sorting algorithms may be
dependent on a particular character collating sequence. The collating sequence is the order in
which characters are defined by the implementation. If one character appears before a second
character in the collating sequence, then the first character will be *‘less than’’ the second
character when they are compared. In the ASCII collating sequence, the lower-case letters ‘‘a’”
to ‘‘z’’ appear as the contiguous values 97 to 122. In other collating sequences the lower-case
letters are not contiguous.

To make character and string sorting programs portable, care must be taken to avoid
dependence on the character collating sequence. If a program is designed to operate with a
collating sequence other that ASCII it may be necessary to modify string and character
comparison code to operate with ASCIL

3.7 Floating Point Range and Accuracy

One of the most variable aspects of different machines is floating point arithmetic. The range,
precision, accuracy, and base vary widely. This can lead to many portability problems which can
only be addressed numerically.

3.8 Operating System Dependencies

Programs which access operating system resources, such as files, by their system names are
often not portable. The file and I/O device naming conventions vary greatly among computer
systems. In order to write portable programs it is necessary to minimize the use of explicit file
names in the program. It is best if these names can be input to the program when the program is
run. If a program contains explicit file names it may be necessary to change the names to names
acceptable to the target system in order to get them to operate with the ISI compilers. Refer to
your target operating system documentation for a description of legal file names for your
environment.

3.9 Assembly Language Interfaces

Programs which use embedded assembly code or interface to external assembly code may
require assembly code to be rewritten when the program is transported to a new machine.

3.10 Expression Evaluation Order

The C Language specification does not fully specify the order in which the various components
of an expression or statement must be evaluated, but it disallows computations whose results
depend on which permitted evaluation order is used. Many illegal programs have gone
undetected for years because they have only been compiled with one compiler. Since the
compiler evaluation order is not identical to the evaluation order of other compilers, some of
these illegal programs which operate as expected with another compiler may not operate the same
way when compiled with an ISI compiler.

Some implementations of the languages evaluate the arguments to a function from right to left,
others from left to right. See Section 4 for details of the ISI compiler calling conventions.

3-3 Porting Programs to ISI Compilers 3.3

Compiler Guide Integrated Solutions Compiler Guide

Expressions with side effects, such as function calls and the operators ‘++’’, *‘--"’, “‘+="", etc.,
may be executed in a different order by the ISI compilers than by other compilers. When a
variable is modified as a side effect of an expression and its value is also used at another point in
the expression, it is not defined whether the value used at each point in the expression is the value
before or after modification. Potentially, different values for the same variable could be used at
different places in the expression depending on the order the compiler chose for evaluation.

ISI C may allocate some pointer variables not declared ‘‘register’’ to registers. This may allow
ISI C to generate more efficient sequences for post increment operators than other C compilers.
These sequences may involve incrementing at a different position in the statement than with other
compilers. In particular, statements of the form ‘‘*p++ = <expression involving p>’’ often
evaluate differently under PCC than they do under ISI C.

A particular case of evaluation order dependency is the use of the ‘‘?:’’ operator in an
expression which is an argument to a function call. ISI C evaluates the question-mark operator
before any other arguments, and keeps the result in a temporary variable. ISI C evaluates the
¢“2:’” operator at its position in the argument list. The call*‘foo(b?i:i+i, i++)’’ will usually
evaluate differently under PCC than under ISI C.

3.11 C Preprocéssor Incompatibilities

The C preprocessor that is provided with PCC has many undocumented features. Most of these
undocumented features are implemented in ISI C. One little known feature of the C Preprocessor
allows the results of two macro expansions to be concatenated into a single token. For instance:

#define x /

#define y *

x/**/y A comment */
int val;

The program above is preprocessed by PCC into the following legal program before being
compiled:

/* A comment */
int val;

Due to the one pass nature of ISI C it is not possible for its builtin preprocessor to manufacture
a token such as *‘/*’’. In order to compile a program with such constructs it is necessary to run
ISI C in two passes. First compile the program with the -E compile time option to produce the
preprocessed source. Then compile the preprocessed source as you would normally.

However as a special case the compiler can construct an identifier as:

#define O 1
intval;
main()
{

va/**/0 = 1;
}

3-4 Porting Programs to ISI Compilers 34

Compiler Guide Integrated Solutions Compiler Guide

which becomes (in both PCC and ISI C):

main()
{
val=1;

}

3.12 Illegal Assumptions about Compiler Optimizations

Some programs illegally depend on the exact code that a particular compiler generates. Such
programs are particularly difficult to port to an advanced optimizing compiler, such as ISI C,
because the optimizer makes major changes in the code in order to make the program smaller
and/or faster. Described below are some of the most common illegal assumptions about code
generation that some programs depend on to work. Please familiarize yourself with the
optimizations described in Section 2 before reading this section.

3.12.1 Problems with Setjmp and Longjmp
skekk NO"rE e sk 3k

Under the default configuration of ISI C, an occasional problem surrounds the undocumented
subtleties of the “‘setjmp’’ and ‘‘longjmp’’ functions in some UNIX programs. Setjmp is a
function which saves the contents of the registers, the stack context, and the program counter into
a ‘‘label’’ variable. The longjmp function restores the contents of the ‘‘label’’ variable and
continues executing after the call to setjmp. The other variables will remain on the stack. Ifa
‘‘register’’ variable is modified after the call to setjmp, a longjmp will restore the ‘‘register’’
variable to the value saved in the *‘label’’ variable, so the modification will be lost. However if a
non-‘‘register’’ variable is modified after the call to setjmp, a longjmp will not affect the value of
the variable and the modification will be retained. Some versions of UNIX programs depend on
whether a variable’s value will be restored by longjmp. Since the compiler may allocate
automatic variables to registers and may allocate ‘‘register’’ variables in memory, it is not
predictable as to whether any modifications to a variable which take place after a setjmp will be
retained or lost after a call to longjmp on the same *‘label’’ variable.

The -X18 switch causes all programmer defined variables which are not declared ‘‘register’’ to
be allocated in memory as in the portable C compiler. The -X18 switch generates worse code
than the default configuration, but in the few cases in which the (undocumented) subtleties of
setjmp and longjmp are depended upon, it will operate consistently with the portable C compiler.
The compile time option -X125 automatically activates the -X18 compile time option for any
function in which there is a call to a function called ‘‘setjmp’’. This option is turned on by
default.

3.12.2 Implied Register Usage

Some programs rely on the exact register allocation scheme used by the compiler. Such
programs are completely illegal, and will never transport without modification.

For instance, programs relying on ‘‘register’’ variables being allocated sequentially to pass
hidden parameters will not work. Hidden returns (using ‘‘return;’’ and expecting to return the
value of the last evaluated expression) will not work either.

3-5 Porting Programs to IST Compilers 3-5

Compiler Guide Integrated Solutions Compiler Guide

3.12.3 Memory Allocation Assumptions

Memory is allocated by the ISI compilers in a different way than with most other compilers.
Therefore, there can be problems in porting programs which illegally depend on the memory
allocation peculiarities of other compilers. Some programs depend on the compiler allocating
variables in memory in the order that they are declared. The compilers will not necessarily
allocate variables in the order of declaration. Some programs depend on knowing that the
compiler will allocate all variables even if they are not used. The ISI compilers may not allocate
unused variables. Some programs depend on knowing that certain variables will be allocated in
memory. It will allocate certain variables to registers that other compilers would always allocate
to memory. Programs compiled with ISI compilers must not make assumptions regarding the
order of allocation of variables in memory (except where the C language standard specifies it).

3.12.4 -OM Restrictions

The -OM and -OLM compile time options should only be used in algorithmic programs, that
is, programs in which memory cannot change except under control of the compiler. The -OM
and -OLM compile time options tell the compiler that memory locations do not change
asynchronously with respect to the running program. In particular, if the compiler reads or writes
some memory location, three instructions later it can assume that the same value is still in the
memory location. '

This simple assumption is not true for many parts of operating systems, device drivers,
memory mapped I/O locations, shared memory environments, multiple process environments,
interrupt driven routines, and when UNIX style signals are enabled. The -OM and -OLM
compile time options MUST NOT be used in these cases. Use -O or -OL instead.

For example, most UNIX device drivers use memory locations which are I/O registers that can
change at any time. In particular, a typical loop waiting for a device register to change is:

while (lio_register);

If -OM is specified when compiling this loop, the compiler will read the value of io_register only
once. If io_register is zero when the loop is entered, zero will be loaded into a register and on
each iteration of the loop the register value will be tested instead of the memory location.
Whether or not the memory location is changed by an external device, under -OM the loop will
never stop.

3.12.5 Problems with Source Level Debuggers

Once a variable is allocated to a register it will always reside in that register. However, since
other variables may share the register, the register may not always contain the value of the
variable. This may cause a source level debugger to give incorrect results. If you ask for the
value of a variable at a point at which the variable is about to be written, the compiler may have
temporarily assigned that register to some other purpose. Always check results after they are
written, or when the current value is going to be used later. Near the end of a function, most of
the local variables are no longer going to be used, so the chance that the register has been
reallocated is much higher.

3-6 Porting Programs to ISI Compilers 3-6

Compiler Guide Integrated Solutions Compiler Guide

3.13 Problems with Compiler Memory Size

The ISI compilers are advanced optimizing compilers. They are much better that the current
generation of ‘‘optimizing’’ microprocessor compilers. In accordance with the greater capability
they require more memory. Each compiler requires 300 Kbytes just for the program. They are
designed to work best when it has at 1 Mbyte or more of memory available. They will run in less
memory but with some degradation of performance or capability. The compiler’s primary use of
memory is for the program, static data structures, global declarations, parse trees, and generated
machine code. Global declarations consist of the global constant, type, variable, and function
declarations. This is a major use of memory when large numbers of declarations are included
into a compilation. Even unused global declarations must be stored throughout the compilation.
If memory size problems exist try to reduce the size of the include files by including just the
declarations that are needed.

Each compiler is a one pass compiler. That is, it reads the source program only once. Each
function is converted into a parse tree as it is read. When the end of the function is reached the
optimizer is called with the parse tree as input. The optimizer modifies the parse tree and then
passes it on to the 68000/10/20/30 code generator. The code generator produces an internal
representation of the 68000/10/20/30 machine code to be output for the function. Another
optimization phase is then called to modify this machine code. Finally the optimized machine
code for the function is output. After the machine code is output, the memory being used for the
parse tree and machine code is reclaimed for use in compiling the next function.

The maximum memory usage for parse trees and machine code is determined by the size of the
largest function in the program. If memory size problems exist, turn off the optimizer and reduce
the size of the largest function. Simple functions of less than 100 lines should not cause memory
size problems. Procedures which are more than 1000 lines or contain very complex statements
can require more than a megabyte of memory to compile.

3.14 Detection of Portability Problems

Many of the problems associated with porting programs to ISI C from other compilers can be
detected with the UNIX utility program lint(1). You should look for variables used before
definition, routines using return and return(e), nonportable character operations, evaluation order
undefined, and routines whose value is used but not set. lint is not able to detect programs that
rely on the allocation order of memory variables, or that rely upon the arithmetic characteristics
of short data types. Furthermore, since lint does not do actual data flow analysis, the absence of a
message does not imply the absence of a problem.

3-7 Porting Programs 10 ISI Compilers 3-7

Section 4: Using the 68000 Series Compilers

4.1 68010 Target Environment

The ISI compilers generate code for the 68000 by default. The compile time option -X12 can
be used to generate code for the 68010 instead. The major difference relates to how condition
codes are saved and restored. This code is rarely used. It should normally only occur in very
complex routines.

4.2 68020/68030 Target Environments

NOTE:

In all cases, the 68030 is treated identically to the 68020.

The compile time option -X98 enables 68020 code generation. You should also have the -X12
compile time option on when you use it.

The -X75 compile time option causes a COFF ‘‘-0’’ file to be generated directly, eliminating
the need for an assembly pass. This must be used with the -X74 (System V) switch.

The -X122 compile time option generates 68020 instructions as binary words in the assembly
code so that the code can beassembled by a 68000 or 68010 assembler.

The -X130 (full 68020) compile time option generates code for the 68020 with no
consideration for compatibility with old code compiled for the 68000 or 68010.

The -X140 (68020 alignment) compile time option aligns data in memory to be optimal for the
68020. This alignment is incompatible with the default alignment used by most 68000 and 68010
compilers (including ISI compilers).

If - X130 or -X140 is used in compiling any libraries or any modules of your program it must
be used in compiling ALL libraries and modules.

The -X99 compile time option specifies to generate code for the 68881 floating point
processor.

4.3 Memory Allocation
The 68000 memory is byte addressed.

Bytes are ordered as on the IBM/370 and Z8000, opposite of the 8086, VAX, Clipper, and
NS32032. The most significant byte is at the lowest address. Bits are numbered with bit zero as
the least significant bit. This is the so-called Big-Endian format.

The character encoding is ASCIL.

The stack is always aligned on a 2 byte boundary On the 68020, it is always aligned on a 4
byte boundary (-X140). All complex data types in memory are 2 byte aligned, and on the 68020

4-1 Using the 68000 Series Compilers 4-1

Compiler Guide Integrated Solutions Compiler Guide

they are 4 byte aligned.

Every packed field must be fully contained in four or fewer bytes. Packed fields are allocated
starting at the most significant bit. No effort is made to reshuffle bits within a packed structure
for greater access efficiency.

For ISI C, the alignment is as follows:
Data Type Size Alignment

68000/10 68020 (-X140)

int 32 word long
long 32 word long
* 32 word long
short 16 word word
char 8 byte byte
float 32 word long
double 64 word long
unsigned 32 word long
unsigned char 8 byte byte
unsigned short 16 word word
enum (default) 32 word long
enum (option) 8,16,32 varies varies

For ISI Pascal, the alignment is as follows:

Data Type Size Alignment

 68000/10 68020 (-X140)

integer 32 word long
real (default) 64 word long
real (-X155) 32 word long
Constant Value
maxint 2%%31-1
minint -2%%31

For ISTFORTRAN, the alignment is as follows:

Data Type Size Alignment

68000/10 68020 (-X140)

INTEGER 32 word long
LOGICAL 32 word long
REAL*4 32 word long

4.2 Using the 68000 Series Compilers 4-2

Compiler Guide Integrated Solutions Compiler Guide

REAL*8 64 word long
CHARACTER*1 8 byte byte
INTEGER*1 8 byte byte
INTEGER*2 16 word word
INTEGER*4 32 word long
LOGICAL*1 8 byte byte
LOGICAL*2 16 word word
LOGICAL*4 32 word long
COMPLEX*8 64 word long
COMPLEX*16 128 word long

4.4 Calling Conventions

Arguments are evaluated from right to left. Each scalar argument is extended to a 32 bit value
and then it is pushed onto the stack. Each floating point argument is extended to a 64 bit value
and then it is pushed onto the stack. All other arguments are extended to a multiple of 2 bytes
and then pushed onto the stack (the extra bytes are at the high addresses). Under the 68020
alignment (-X140) compile time option, all other arguments are extended to a multiple of 4 bytes
and then pushed onto the stack (the extra bytes are at the high addresses).

Scalar values are returned in d0. For instance, in ISI Pascal, a char return value has only the
low 8 bits of dO valid, the high order 24 bits should be considered undefined. When the size of
the return value is specified as less than 32 bits only the required number of bits should be
depended on in d0. The compiler presently fills the additional high order bits for compatibility
with other compilers. This is controlled by compile time option -X19.

When software floating point conventions are used, single precision floating point values are
returned in d0, double precision in d0/d1.

When 68881 floating point conventions are used (-X99, -X130), single and double precision
values are returned in fp0.

When Weitek 1167 floating point conventions are used (-X143, -X130), single precision values
are returned in fp2, double precision in fp2/fp3.

If the -X130 (full-68020) switch is not used in Weitek or 68881 mode, results are returned in
do/d1 for compatibility.

A call to a function uses either the *‘jsr’’ or ‘‘bsr’’ instruction. A return from a function uses
the “‘rts’’ instruction.

The dO0, d1, a0, and al registers on the processor, fp0 and fp1 on the 68881, and fp1 through
fp13 on the Weitek 1167 are assumed to be destroyed by a call to a function. All other registers
are saved and restored by a function if they are used.

The compiler has several methods of generating the local stack frame for a function. Ifa
function requires no local storage, no frame is generated and all access to variables and
parameters on the stack use the a7 relative addressing mode. A6 is not used. If only one register
is saved, it is pushed on the stack at the entry to the function and popped at the exit. If more than
one register is saved, the moveml instruction is used to push them on entry and pop them on exit.
If an 68881 is present, the floating point registers are pushed in a similar fashion.

4-3 Using the 68000 Series Compilers 4-3

Compiler Guide Integrated Solutions Compiler Guide

If a function requires local stack storage, or the -g, -ga or -pg compile time option is specified,
the procedure will do a *‘link’’ instruction (using a6 as the frame pointer) on function entry and
an unlink instruction on exit. Accesses to parameters or local stack storage will be made with the
a6 relative addressing mode. The stack frame size is always rounded up to the nearest 4 bytes.
On the 68020 this allows for a longword aligned stack.

Following the return of a function, any arguments pushed on the stack are (at least
conceptually) removed. If several function calls follow each other in a basic block, the stack will
continue to grow until the end of the block. If less than 8 bytes must be removed from the stack, a
‘‘addql #xx,sp’’ instruction is used. If more than eight bytes, but less than 32768 bytes must be
removed from the stack a ‘‘lea x(sp),sp’’ instruction is used. If more than 32768 bytes must be
removed from the stack, an ‘‘addl #x,sp’’ instruction is used.

A function frame that is in excess of 32K bytes is considerably less efficient than a smaller
frame. The 68000/10 addressing modes are designed for 16 bit offsets. When offsets are larger
than that, every machine instruction with a large offset will require from 1 to 3 extra instructions
to bring the offset within range.

4.4.1 Stack Probes

The compile time option -X11 generates a stack probe instruction at the start of a function
before the frame is allocated. The stack probe is a ‘‘tst.b -x(sp)’’ instruction, where ‘‘x’’ is about
200 bytes greater than the stack frame size. The ‘‘tst’’ instruction is restartable in the event of a
trap. This allows a memory management unit to expand the stack on demand. A stack probe
instruction will not be generated for a function with a small frame and no calls. This works
because the stack probe is generally about 200 bytes ahead of actual usage.

4.5 Local Variables

The ISI compilers may allocate 8 bit and 16 bit local variables to registers. In this case, only
the low order bits of the register are valid, and the high order bits are undefined.

4.6 Assembler Format

As a default, the ISI compilers generate UNIX (MIT) format assembler code. There are several
options for the different nuances of the UNIX (MIT) assembler.

Floating point is IEEE (32/64) format by default. The MIT VAX-like format is no longer
supported, but can be obtained with -Z22.

4.6.1 Symbolic Debugger Support

The -g option generates debugging information pseudo-ops in the assembler language output.
This allows the program to be debugged by a source level debugger such as ‘‘cdb’. Both BSD and
System V conventions are supported. A separate compile time option must be used to tell the
compiler which of these three formats is desired. If you want to change it, refer to Section 8 for
instructions.

4-4 Using the 68000 Series Compilers 4-4

Compiler Guide Integrated Solutions Compiler Guide

4.7 Motorola Assembler Version

The compile time option (-X35) causes the compiler to generate Motorola format assembler
code. This assembler is quite different than the assembler language supported on most 68000
UNIX systems. The Motorola Assembler is the most common assembler language used in cross
development environments.

By default, the compiler will pass through the case of letters in identifiers to the assembler.
Some Motorola compatible assemblers will only accept upper case identifiers. The -X21 compile
time option causes the compiler to convert all identifiers to upper case when they are output in the
assembler code.

The -X14 compile time option causes the compiler to prepend an underscore to all identifiers
when they are output in the assembler code. Some Motorola compatible assemblers, including
the ISI compiler, will not accept an underscore in an identifier. If the -X14 and -X20 compile
time options are both specified, the compiler will prepend identifier names with a period when
they are output to the assembler code.

Floating point is IEEE format by default, most significant byte at the lowest address. This
obsolete MIT format can be obtained with -Z22

The -g option generates human readable comments in the assembler code to specify line
numbers.

In FORTRAN, the -X93 (dbnamedsections) compile time option must be used in order to use
common variables. If your assembler does not support named sections then you will be unable to
use common variables.

The C language implies the ability to reference variables from multiple modules, with all
modules defining the variable in the same way. Most Motorola-compatible assemblers do not
support large numbers of named SEGMENTS. Therefore, the following conventions should be
observed:

extern int x; /* will emit an XREF to x*/
int x; /* will emit XDEF of x, with a DCB.B size(x),0*/
intx=35; /* will emit an XDEF of x, witha DC.L 5 */

A convenient programming method is to declare each variable in one module, and declare it
extern in all other modules. Alternatively, if your assembler supports named sections, the -X93
compile time option may be used. This should also be used with FORTRAN, if assembler support
is available.

Variables will exist in SECTION 14 by default; if the -R compile time option is used,
initialized variables will be placed in SECTION 13. This is useful if you want your initialized
variables to be separate, e.g. in ROM.

Variables can be placed in other SECTIONS by defining the preprocessor symbols CODESEG,
INITSEG, and DATASEG with the desired values. This can be conveniently done from the
command line. It can also be done inline, in which case it will take effect the next time a
SECTION statement is output.

There is no default initialization.

4-5 Using the 68000 Series Compilers 4-5 -

Compiler Guide Integrated Solutions Compiler Guide

The compiler generates obscure numeric names for static variables in C, rather than refraining
from XDEFing them.

4.8 Common Compile Time Option Combinations

The compile time options for several common environments are listed below. If you encounter
difficulty in conjunction with your assembler, try some of the following combinations.

4.8.1 68000 Cross Development

Use compile time options -X20, -X29, -X35 with the OASYS or Microtec Assembler. Use
-X22 if you will be using IEEE arithmetic, -X12 if you will be operating on a 68010, and -X23 if
you have a very small stack. -X23 if you have a very small stack.

Use compile time options -X20, -X29, -X35, -X22, -X98, -X99, -X122, -X129 with the
OASYS or Microtec Assembler. Do not use -X140 if you wish to return alignment compatibility
with the old 68000 compiler. Use -X130 if you want return values in fp0. These compile time
options should be used with ALL of your modules if they are used with any modules.

4.8.2 Motorola/AT&T System V

Use compile time options -X12 -X74 -X22 -X39 -X42 -X92 -X97. Note that some versions of
System V use routine names of the form ‘‘Imul__"’ etc. for 32 bit arithmetic, others use
“Imul%%°’. You may need to create a glue routine, or process the output with a sed script.

4.9 Runtime Libraries

The compiler will generate out of line calls for certain operations that are not supported by the
68000/10, such as 32 bit divides and floating point. The source for this part of the runtime library
is provided.

4.9.1 Motorola and MIT Library Entry Points

The arithmetic library routines accept parameters in d0/d1 first, and use the stack if that is
insufficient. Return values are placed in dO or d0/d1.

Name Arguments Result Function

ulmult d0,d1 do (signed multiplication)
1divt do,d1 do (signed division)
uldivt do,d1 do (unsigned division)
Imodt d0,d1 do (signed remainder)
ulmodt do,d1 do (unsigned remainder)
fnegi do,d1 d0,d1 (DP negation)

fabsi do,d1 d0,d1 (DP absolute value)
fsinglei* do.d1 do (DP->SP)

fdoublei* do d0,d1 (SP->DP)

ffixi do,d1 do (DP-> Integer)

fflt do d0,d1 (Integer -> DP)
filtis* do do (Integer -> SP)

4-6 Using the 68000 Series Compilers 4-6

Compiler Guide

fmuli
faddi
fdivi
fsubi
fcmpi
fsmuli
fsaddi
fsdivi
fssubi
fscmpi
maovfsub
madivOsub

do/d1,Stack
d0/d1,Stack
d0/d1,Stack
d0/d1,Stack
do/d1,Stack
do/d1
do/d1
do/d1
do/d1
do/d1

* No actual code is provided for these routines.

Integrated Solutions

do/d1
do/d1
do/d1
do/d1
CCR
do/d1
do/da1
do/d1
do/d1
CCR

4.9.2 Floating Point, IEEE Support

Floating point constants will be in IEEE format by default. The obsolete MIT format constants
can be obtained with -Z22.

4-7

(DP*DP -> DP)
(DP+DP -> DP)
(DP/DP -> DP)
(DP-DP -> DP)
(DP-DP -> CCR)
(SP*SP -> SP)
(SP+SP -> SP)
(SP/SP -> SP)
(SP-SP -> SP)
(SP-SP -> CCR)
Overflow destination
Floating divide by zero

Compiler Guide

These routines obey the customary register conventions; a0/a1/d0/d1 can be expected to be
destroyed on a function call except for return values.

Using the 68000 Series Compilers

4.7

Section 5: Pascal

5.1 Pascal Standards

There are currently two competing standards for Pascal. The first is the international effort of
the British Standards Institute (BSI) and the International Standards Organization (ISO); this
standard will be referred to as the BSI/ISO standard. The BSI/ISO standard has two levels, Level
1is a superset of Level 0. The second is the U.S. effort of the American National Standards
Institute (ANSI) and the Institute of Electrical and Electronic Engineers (IEEE); this standard,
ANSI/IEEE770X3.97-1983, will be referred to as the ANSI/IEEE standard.

The Integrated Solutions Pascal compiler (ISI Pascal) implements the ANSI/IEEE standard and
the BSI/ISO standard Level 0. In addition, ISI Pascal implements many of the extensions present
in the Berkeley 4.X BSD pc(1) Pascal compiler.

5.2 Extensions to the Basic Pascal Language

ISI Pascal implements a number of extensions to the ISO and ANSI/IEEE Pascal Standards.
These features are enabled by default. If you want to run in standard only mode, you must
specify the -X56 compile time option. If you want runtime checking as well, specify -X57. On
UNIX versions of ISI Pascal, the -s compile time option sets both -X56 and -X57.

5.3 Comment Delimiters

The symbol “‘(*’’ is equivalent to *‘{’* and ***)”’ is equivalent to **}"’.

5.4 Argc and Argv

There is an additional built-in function, argc, which takes no arguments and returns an integer.
Argc returns the number of command line arguments on a UNIX Target. The number of
command line arguments includes the command name, so argc() is always greater than zero.
When run on a non-UNIX system it returns 0.

There is an additional built-in procedure, argv, which takes two arguments. The first argument
is an integer which is an argument number. The second argument is a string variable. Argv reads
the command line argument specified by the first argument into the string variable specified by
the second argument. If the string variable is longer than the corresponding command line
argument, the rightmost characters of the command line argument are truncated. If the string
variable is shorter than the corresponding command line argument, the string variable is padded
on the right with blanks. It is illegal to attempt to access an argument number greater than
argc()-1. Argument number zero is the command name.

In non-UNIX versions of Pascal, argv is illegal.

5-1 Pascal 5-1

Compiler Guide Integrated Solutions Compiler Guide

5.5 Set Implementation

Sets of subranges of char, boolean, and enumeration types are implemented as sets of the base
type. This allows sets to be operated upon directly with in line code.

The above rule is inadequate for integer subrange sets, because the base type is integer, and a
‘‘set of integer’’ would require an exorbitant amount of memory. Therefore, sets of integer type
are implemented as sets of some subrange of integers.

When the -X56.(ISO compatibility) flag is set, all sets of integers are implemented as ‘‘set of
0..255°’. When the -X56 flag is not set, by default, sets of integers are 0..31. The implementation
of **set of 0..31"" is much more efficient than ‘‘set of 0..255".

5.6 Separate Compilation

ISI Pascal has been extended to make multiple module program development possible. In
every executable program there must be one file which consists of a program declaration and a
main begin-end block. This is called the program module. This may be the entire program or it
may only be a part of the program. If it is only part of the program, some of the procedures,
functions, and variables referenced in the main program must be declared ‘‘external’’. These
external procedures, functions, and variables must be linked with the main program file to obtain
a complete program. These external procedures, functions, and variables may be implemented in
Pascal, assembly language, or any other programming language.

To implement external procedures, functions, and variables in Pascal, create a file, called a
declarations module, which consists only of a series of declarations. The declarations may
include procedures, functions, constants, types, and variables. It must not contain a program
statement, a main begin-end block, or a final period. The procedures, functions, and variables
declared at the top level of a declarations module and at the outermost level of the program
module are declared external to the linker.

If the system linker has a limit to the symbol length, this limit must be observed for all external
names. Some versions of Pascal prepend an underscore or period to all external names, so this
extra character must also be counted in any symbol length restrictions.

5.6.1 External Directive

A new identifier ‘‘external’’ is recognized as an alternative to ‘‘forward’’ in procedure and
function declarations. It specifies that the named procedure or function exists in a separately
compiled module. In addition, the identifier ‘‘external’’ followed by a semicolon may appear
directly after a variable declaration. This specifies that the declared variable actually exists in a
separately compiled module.

In UNIX target environments the same variable may be declared in the outer scope of several
declarations modules. Each declaration refers to the same variable. That is, in UNIX target
environments, the ‘‘external’’ declaration is unnecessary for variables. It is, however, required
for external procedures and functions.

It is legal to declare a function or procedure external, and then later in the same module to give
a declaration of the function or procedure body. If this is done, the function or procedure body
must not include a parameter list or return type. The external declaration works exactly like the
forward declaration, except that it may only appear in the outer scope, and it is legal for the body
of an externally declared function or procedure not to appear in the module.

5-2 Pascal 5-2

Compiler Guide Integrated Solutions Compiler Guide

It is NOT legal to declare a variable external and then to declare it again.

5.6.2 Static Directive

If you want a variable declared in the outer scope of a declarations module or the program
module to not be exported to other modules, specify the identifier ‘‘static’” followed by a
semicolon after the declaration of the variable.

5.6.3 Relaxed Declaration Order

Standard Pascal requires all constants to be declared before any types, all types to be declared
before any variables, and all variables to be declared before any procedures or functions. To
make Pascal easier to use, ISI Pascal allows declarations to be in any order, provided that the
declaration appears before any reference to the symbol defined by the declaration (except as
allowed by standard Pascal).

5.6.4 #include

If a “‘#include’’ appears at the start of a line followed by a file name enclosed in single quotes
(apostrophes), the named file is read as input to the program. At the end of the named file input is
taken starting at the beginning of the line following the #include. This feature works exactly like
#include in ISI C. Itis intended to be used to include declarations common to several modules.

5.6.5 Example of a Multiple Module Program

The following program consist of the program module ‘‘filel.p’’, the declarations module
‘“file2.p’’, and the include file ‘“file3.h’’. The main program calls the procedure ‘‘p’’ in another
module. Notice that the variable ‘‘y’’ in each module is the same, but the variable *‘x”’ is
different. Notice that an include file is used to hold the declaration of the procedure *‘p’’.
Keeping external procedure and function declarations in include files makes sure that all calls to
the procedure or function are made with the correct arguments. This allows type checking
between modules. Notice also that the relaxed declaration order permits procedure and variable

declarations to be intermixed for convenience.

filel.p:
program prog;
#include ’file3.h’
var
X: integer; static;
y: integer;

p(16);
if x + y <> 20 then
writeIn("ERROR’);
end.

file2.p:

5-3 : Pascal ' 53

Compiler Guide Integrated Solutions Compiler Guide

#include ’file3.h’
var

X: integer; static;

y: integer; external;
procedure p{(z: integer)};

begin
Xx:=8;
yi=1z;
end;
file3.h:

procedure p(z: integer); external;

5.7 C Extensions

Several features of C have been added to ISI Pascal to make it more useful for systems
programming.

5.7.1 Hexadecimal Constants
The C syntax of Ox<hex digits> is accepted for hexadecimal integer constants.

5.7.2 Case Sensitivity

For compatibility with C, by default, the compiler is case sensitive. For example, the
identifiers ‘*‘ABC’’ and ‘‘abc’’ are distinct. Keywords are recognized only in lower case. For
example, the identifier ‘‘BEGIN’’ is not a keyword. This default is not compatible with either
Pascal standard, both of which specify that case is to be ignored. The compile time option -X599
The compile time option -X56 sets full standard compatibility and so also sets -X59.

5.7.3 Additional Operators

The most commonly used C operators have been added to ISI Pascal. Note that **/”’ and “‘/=""
represent floating point division for integer operands, unlike in C.

& The unary address of operator takes one variable operand and retumns a pointer
to its operand.

The one’s complement operator takes one integer operand.

& The bitwise logical and operator takes two integer operands. Same precedence
as X3 * LRl .
% The C modulo function takes two integer operands. This modulo function is the

natural remainder from integer divide supplied by the Target. Generally the
sign of the result is the sign of the second operand.

>> The right shift operator takes two integer operands. The first operand is shifted
right by the number of bits specified by the second operand. Same precedence
as XT3l .

5-4 Pascal 5-4

Compiler Guide Integrated Solutions Compiler Guide

<< The left shift operator takes two integer operands. The first operand is shifted

left by the number of bits specified by the second operand. Same precedence as
(X3 * b Al

The bitwise logical or operator takes two integer operands. Same precedence as
¢ L+ 29 .

5.8 Input and Output

The predefined file ‘‘input’’ is initially set to the standard input device. The predefined file
‘“‘output’’ is initially set to the standard output device. The exact meaning of the standard input
and standard output device are defined by the Target system, but they are usually the user’s
terminal.

5.8.1 Interactive I/O

All input files are organized for interactive I/O. In many implementations of Pascal the
program will wait for input to become available on a file when it is reset. Since ‘‘input’’ is reset
by default before the program starts executing, many implementations will wait for a line to be
typed before they will begin executing the user’s program. Under the Pascal library, reseting a
file will not cause the program to wait for input to become available. The program will only wait
if an access is made to the file buffer variable or information is requested about the file, such as
eoln or eof.

5.8.2 Default Field Widths
The default field width for the standard data types are given in the following table.

char 1

integer 12

Boolean length of true or false
real 25

5.8.3 Second Argument to Reset and Rewrite

The built-in procedures reset and rewrite can have an optional second argument. The second
argument must be a string. The string is interpreted as name of the file to be opened. If the
second argument is not a string constant, it must contain a character with an ordinal value of 0,
this character marks the end of the file name. The string is interpreted by the host operating
system and therefore programs using this feature may not be transportable to systems with
different file naming conventions.

5.9 Predefined Constants and Types

The following symbols are defined as if the following declarations occurred just before the
beginning of each source file.

const
maxint = 2147483648;

type

5-5 Pascal 5-5

Compiler Guide Integrated Solutions Compiler Guide

integer = -2147483647..maxint;
char = chr(0)..chr(127);

The type ‘‘real’’ is 64-bits. The -X155 compile time option specifies that ‘‘real’” is 32 bits.

5.10 Float and Double Types

There are two additional types: float and double. Float is a 32 bit real data type, and double is a
64 bit real data type.

5.11 New and Dispose

If initial values for tag fields are specified to ‘‘new’’, the record will be allocated to have the
minimum possible size for the tag fields specified. It is illegal to change tag fields set in this way,
but no checking is performed. If the tag field is changed illegally, serious problems may occur
because insufficient memory may have been allocated for the variant designated by the new tag
ficld value. Attempts to store into these new fields may store into adjacent memory allocated to
an entirely unrelated variable.

5.12 Record Comparison

Record comparison is implemented. However, it is illegal if either of the operands is not of the
maximum variant size. It is wise to limit record assignment and comparison only to records
which do not have variants.

5.13 Compile Time Options

Refer to Section 8 of this manual and to the pc(1) man page for a complete list of options.
Additional options are supported by 1d(1).

5.14 Interface to the C Library

By default, the names of Pascal external variables, procedures, and functions are accessible
from C functions linked with the Pascal program. Names in Pascal can be accessed with the
same name in C. When compiling with the -s or -X56 compile time options (ANSI standard
features only) or the -X174 compile time option (Append Underscore), the names of Pascal
external procedures and functions are changed by adding an additional underscore ("_"). To
access the Pascal function "func" one must use the name "func_" in C. This change in names
causes all of the C library functions provided with ISI Pascal to become inaccessible.

If a Pascal program redefines the built in procedure "WRITE" or "READ" it must be compiled
with the -X174, -X56, or -s option. The ISI Pascal Runtime Library and the UNIX C library use
the names "write" and "read" (to which "WRITE" and "READ" are by default translated) for the
basic I/O primitives. If the program redefines these names very strange results (often infinite
loops) will occur. The -X174, -X56, and -s compile time options will translate these names to
"write_" and "read_" instead, so no redefinition will occur. However, under these options
communication between Pascal and C or the C Library becomes rather cuambersome.

5-6 Pascal 5-6

Section 6: FORTRAN 77

6.1 FORTRAN Standard

The Integrated Solutions FORTRAN compiler (ISI F77) implements the ANSI FORTRAN-77
(Full Language) standard. It also implements all of the extensions to FORTRAN-77 documented
in the 4. XBSD F77 documentation and many of the undocumented extensions in the 4. XBSD F77
implementation. The documentation for ISI F77 consists of the ANSI FORTRAN-77 standard
plus the 4. XBSD F77 documentation in addition to this document.

6.2 Extensions to 4.XBSD F77 Documentation

The 4. XBSD F77 documentation is suitable for ISI F77. The same language, switches, and
arguments are accepted, the code generated is compatible, and the libraries are identical.

All of the enhancements to the FORTRAN-77 standard included in the BSD F77
implementation have been included in ISI F77.

None of the violations of the FORTRAN-77 standard documented in Section 3 of the BSD F77
manual exist in Integrated Solutions FORTRAN implementation.

The -1166 command line argument generates proper printer carriage control operation on all
files and terminals (but not on pipes).

The T and TL formats work on terminals using the termcap features of UNIX. T and TL do
not work on pipes (a concept foreign to FORTRAN).

The BSD F77 restrictions on double precision alignment don’t apply to ISI F77.

The Dummy Procedure Arguments restriction in BSD F77 don’t apply to ISI F77.

The switches -O and -g are compatible in ISI F77.

The 4.2BSD documentation never gives the calling sequence for the following additional
built-in functions:

integer*4 function iargc()

subroutine getarg(arg_number, arg_value)
integer*4 arg_number
character*20 arg_value

subroutine getenv(env_name, env_value)
character*(*) env_name

character*20 env_value

integer function or(il, i2)

6-1 FORTRAN 77 6-1

Compiler Guide Integrated Solutions Compiler Guide

integer function and(il, i2)
integer function xor(il, i2)
integer function rshift(value, bits)
integer function Ishift(value, bits)

integer function not(il)

6.3 Illegal Programs

Floating point computations are done at compile time to simulate floating point constant
computations. Illegal constant computations may cause unrecoverable floating point errors at
compile time causing the compiler to crash.

The list in an assigned goto statement must be correct. The optimizer makes use of the list to
determine data flow. Programmers have been known to put in dummy lists because many
compilers ignore the list; this could cause unexpected results. If no list is present the optimizer
assumes that the goto could branch to any label which appears in any ‘‘assign’’ statement in the
program unit containing the assigned goto. The assigned goto may not be used to jump from one
program unit to another program unit. Jumps from assembly code to assigned labels will only
work if extreme care is taken. Excessive subroutine size will cause the compiler to grow very
large.

Complex multiply, add and subtract calculations are done in line for maximum speed. Each
complex multiply generates at least four floating point multiplies, two floating point adds, and
two temporary variables. Routines containing in excess of 100 complex operations may require
more than a megabyte of memory.

TL (tab left) and T (tab) to a column left of the current output column does not work on pipes.
The -w66 switch does nothing. There are no FORTRAN-66 wamings.

Some intrinsics (as allowed by the standard) cannot be passed as arguments to other
procedures. The compiler will not detect this error and an undefined reference will occur at link
time.

Many intrinsics are implemented as generics even though the standard specifies that they are
not generic.

No check is made for recursive statement functions.

Error messages follow the style of F77. There is no indication of the position within the line of
an error.

1/0O system error messages are quite verbose but often unhelpful.

6.4 Compile Time Options

Refer to Section 8 of this manual and to the f77(1) man page for a list of options. Additional
options are supported by 1d(1).

6-2 FORTRAN 77 6-2

Section 7: C Language

7.1 Introduction

The ISI C compiler contains everything in the basic C language, as well as all of the
documented Western Electric extensions, and all of the undocumented features of the Berkeley
compiler used in implementing UNIX. There are hundreds of extensions to the basic C language
which are implemented in all versions of PCC. Without these extensions it is impossible to
compile UNIX and many existing C application programs. Several of the most important of
these extensions are contained in this section, but this is by no means a complete list.

7.2 Additions to the Basic C Language
7.2.1 Preprocessor

In addition to the standard UNIX preprocessor, ISI C includes a preprocessor which is
functionally identical to the UNIX C preprocessor. Unlike PCC which depends on an initial text
processing pass by a preprocessor program, ISI C preprocesses the input program in the compiler
itself. This makes the compilation process faster because the source program is read only once
and one less process is run.

7.2.2 Backslash v

Lower case v is a special backslash character denoting vertical tab.

7.2.3 void type

There is a type named void. There are no operations defined on the type void. Void is used as
the return type for functions which do not return a result.

724 _LINE__

__LINE__is a predefined preprocessor symbol whose value is a character string which consists
of the ASCII representation of the current line number within the current file.

725 _FILE _

__FILE__ is a predefined preprocessor symbol whose value is a character string which consists
of the ASCII representation of the current file name.

7.2.6 Structure and Union Extensions

Two structures or unions with the same type may be assigned or compared for equality or
inequality. Assignment of two structures or unions is done with a memory copy of the data.
Comparison is done on a bit by bit basis of the total size of the structure or union.

7-1 C Language 7-1

Compiler Guide Integrated Solutions Compiler Guide

If there are holes between fields or members of a structure or union due to memory alignment
requirements, those holes cannot be accessed. Global variables will always be initialized to zero
so the holes will always be zero, but local variables may have random data in the holes.
Therefore, two structures or unions with the same values for every field may not be equal when
compared. For structures or unions that will be compared, it is important to have no holes in the
memory representation. The alternative is to explicitly initialize each such variable with a
structure assignment from a global variable known to have zeros in the holes.

A structure or a union may be passed as an argument to a function without restriction. Since
the structure or union is copied when it is passed, passing a very large structure or union is not
recommended.

For compatibility with the PCC implementation of C, returning a structure or union from a
function is done in a NON-REENTRANT fashion. A structure or union return value is returned
by copying the return value into a static variable in the function. A pointer to this static variable
is returned and used to copy the static variable. A problem occurs if an interrupt or signal occurs
after a function returns but before the caller had time to copy the return value and the interrupt or
signal handler calls the function which was interrupted. If the function call in the interrupt
routine then modifies the static return variable that the interrupted routine is using, the interrupted
routine, when it continues, accesses the value of the static variable set in the interrupt level
routine instead of the value it would have accessed had there been no interrupt or signal.

7.2.7 Enumeration Type

There is an enumeration type similar to that of Pascal. Its syntax is similar to that of the struct
and union declarations.

<enum-specifier>:
enum { <enum-list> }
enum <identifier> { <enum-list> }
enum <identifier>

<enum-list>:
<enumeration-declaration>
<enumeration-declaration> , <enum-list>

<enumeration-declaration>:
<identifier>
<identifier> = <constant-expression>

Example:
enum color {red, white=4, blue};

The enumerated type name may be the same as the name of a variable in the same scope but
may not be the same as the name of any struct or union in the scope. Each enumeration-
declaration declares a scalar constant of the enumeration type. If a constant-expression appears in
an enumeration-declaration it specifies the ordinal value of the constant. If no constant-
expression is given in an enumeration-declaration, the value of the constant for the first
enumeration-declaration is zero, and for subsequent enumeration-declarations the value is one
greater than the value of the previous enumeration-declaration.

7-2 C Language 7-2

Compiler Guide Integrated Solutions Compiler Guide

Enum types are signed by default for compatibility with PCC. A compile time option is
described below which changes the definition of enum types to unsigned, which is a more rational
form.

7.2.8 The VARARGS(3) Facility

ISI C supports the varargs(3) facility. This allows a function to access its parameters in left to
right order even if the number and/or types of the parameters are not known until run time. To
use the varargs facility:

1. The line ‘‘#include <varargs.h>"’ must appear before the first function definition.
2. The last parameter to a variable argument list function must be named *‘va_alist’’.

3. The last parameter declaration of a variable argument list function must be
““va_dcl’’. There must not be a semicolon between ‘‘va_dcl’’ and the initial left
brace(‘‘{’") of the function.

4. There must be a variable declared in the function of type ‘‘va_list’’.

5. The varargs(3) facility must be initialized at the top of the function by passing the
variable of type ‘‘va_list’’ to a call of the macro *‘va_start’’.

6. To obtain the variable arguments to the function, in left to right order, the macro
‘‘va_arg’’ is invoked once for each argument. The first argument to the macro
‘‘va_arg’’ is the variable of type ‘‘va_list’’. The second argument is the type of the
current argument of the function. The ‘‘va_arg’’ macro returns the value of the
current argument of the function.

7. The varargs(3) facility must be terminated by passing the variable of type
““va_list”’ to a call of the macro ‘‘va_end’’ at the end of the function.

/* Sum returns the sum of a variable number of ‘‘int’’ arguments. */
#include <varargs.h>
Sum(x, va_alist)

int x;

va_dcl

{
va_list params;
int ret = 0;

va_start(params);
while (x '=0) {
ret += x;
X = va_arg(params, int);

}
va_end(params);
return(ret);

7.3 Bit Fields
ISI C supports signed and unsigned bit fields. All versions of the MC68000 PCC that we have

7-3 C Language 7-3

Compiler Guide Integrated Solutions Compiler Guide

examined support only unsigned bit fields. Therefore, for compatibility with these
implementations of PCC bit fields are unsigned by default, even if a signed type is used to declare
the field. Unsigned bit fields are recommended for most applications since they are more efficient
to fetch on most machines. For compatibility with the BSD implementation of C, a compile time
option (-X55), is provided which specifies that a field whose type is signed is to be interpreted as
a signed quantity. The consequences of having signed fields can be seen in the following
gxample.

{
struct {int x:2;} y;
y.x=3;
i=yx;

}

In this example, if ‘‘x’’ is an unsigned field, ‘‘i’’ will have the value of 3 at the end of the block.
However, if signed fields are accepted, ‘‘i’” will have the value -1 at the end of the block.

7.4 Extern and Common

In PCC, the default storage class for a variable declared in the outer scope is ‘‘common’’. That
is, the variable will be allocated separately from this module. It will be allocated with the same
initial address as all other variables of storage class ‘‘common’’ with the same name declared in
the outer scope of other modules. The size of the variable allocated will be the size of the largest
of the ““common’’ variables of that name. In PCC, the storage class ‘‘extern’’ defines a variable
to be a reference to the ‘‘common’’ variable of that name. If there is an ‘‘extern’’ declaration for
a name there must be at least one ‘‘common’’ declaration of that name in the program. There
may be many ‘‘extern’’ and ‘‘common’’ declarations of the same name. The PCC model for
‘‘extern’’ and ‘‘common’’ is supported by all UNIX versions of C.

In some target environments ‘‘common’’ is not implemented, or it is implemented very poorly.
In those cases a different interpretation is made for the default storage class. If a variable is
declared ‘‘extern’’ in one module there must be exactly one declaration of a variable of the same
name and type with the default storage class in exactly one module in the same program. There
may be many ‘‘extern’’ declarations for the variable. This interpretation for the default storage
class seems to fit the definition in Kemnighan and Richie better than the PCC definition.

If the second method is followed, a program can be ported to any implementation of C. The
first method is more convenient when using include files. It is the only method used in UNIX.
Most UNIX programs cannot be ported unchanged to target environments that do not support
‘‘common’’.

7.5 Unsigned Char and Unsigned Short Int

The data types ‘‘unsigned char’’ and ‘‘unsigned short int’’ are not defined in the Kernighan &
Ritchie C manual, although they are supported by ISI C and by many implementations of PCC.

There appear to be numerous bugs and/or inconsistencies in the way different versions of PCC
evaluate expressions involving unsigned char and unsigned short. An attempt has been made to
follow the BSD compiler whenever possible.

7-4 C Language : 7-4

Compiler Guide Integrated Solutions Compiler Guide

7.6 asm Statement

The asm statement (for in line assembly code) in ISI C is somewhat different than the asm
construct in PCC. In ISI C the asm statement can be used anywhere a statement can appear. In
PCC, the asm construct is also allowed to appear in declarations and between functions.

Since the code generated by ISI C is substantially different than the code generated by other
compilers it is usually necessary to modify asm statements.

7.7 Compile Time Options

Refer to Section 8 of this manual and to the cc(1) man page for a list of options. Additional
options are supported by 1d(1).

7-5 C Language 7-5

Section 8: Compile Time Options

The ISI compilers are configured to enable some of the compile time options described in this
section and to disable the rest. Most of the options are documented in this section. Refer to the
cc(1), pe(1), and £77(1) man pages for a complete list of options.

If you want to use the compiler in an environment other than the one that was intended, or if
you have unusual requirements, you may find that the default options are not what you want. It is
quite possible that you may find just the option you need in the list below. However, you should
be warned that using option combinations that have not been recommended may produce
unpredictable results.

There are a number of options which are intentionally left undocumented. The undocumented
options are disabled, obsolete, or are for compiler debugging only. Using undocumented options
may generate poor or incorrect code. Before the description of each option, enclosed in
parcntheses, there may be a restriction on the use of the option. The option is only to be used
when that restriction applies. Using an option when it is not allowed may cause all sorts of
errors. The term ‘‘Motorola Assembler’’ refers to the MC68000 assembler defined by Motorola.
This assembler is quite different from the assembly language available on most MC68000 based
UNIX systems.

Integrated Solutions does not guarantee that the compilers will act as you expect when using
these options. We retain the right to change any options without notice.

-20 (UNIX Host only) Produce MC68020 code.

-C (UNIX Host only) Do not produce executable files, produce only object files. For
each source language file specified, compile the source language file into object
code output. Put the object code output into a file whose name ends in ‘“.0”".

-C (ISI C) If this option is given, comments are output in the preprocessor output.
The default is to strip comments from the output.

(ISI Pascal and FORTRAN) Tum on runtime checking of subranges and array
bounds. The code will be much slower under this option.

-Dname (ISI C)Define ‘‘name’’ to the preprocessor with the value 1. This is equivalent
to putting ‘‘#define name 1°’ at the top of the source file.

-Dname (ISIFORTRAN) (UNIX Host only) For files named *.F define ‘‘name’’ to the
preprocessor with the value 1. This is equivalent to putting ‘‘#define name 1’
at the top of the source file.

-Dname=string (ISI C) Define ‘‘name’’ to the preprocessor with the value ‘‘string’’. This is
equivalent to putting ‘‘#define name string’’ at the top of the source file.

8-1 Compile Time Options 8-1

Compiler Guide Integrated Solutions Compiler Guide

-Dname=string (ISI FORTRAN)(UNIX Host only) For files named *.F define ‘‘name’’ to the
preprocessor with the value “‘string”’. This is equivalent to putting
‘‘#define name string’’ at the top of the source file.

-DCODESEG=xx (ISI C) (Motorola Assembler only) Place the code in section ‘‘xx’’. This may
also be set with a #define statement. ‘‘xx’’ is passed directly through to
the assembler; by default it is 9.

-DDATASEG=xx (Motorola Assembler only) Place data in SECTION *‘xx’’ rather than SECTION 14.

-DINITSEG=xx (Motorola Assembler only) If the -R option is enabled, place initialized
data in SECTION xx rather than 13.

-E (ISI C) Do not compile the program, instead place the output of the preprocessor on
the standard output file. This is useful for debugging preprocessor macros.
The integrated preprocessor cannot generate output as *‘cpp’’, so use
“‘cpp’’ for big jobs.

-Exxx (ISIFORTRAN) (UNIX Host only) Pass the string ‘‘xxx’’ to EFL as an option when
preprocessing .e files into .f files.

-f (UNIX Host only) Generate code for the MC68881 floating point coprocessor.
The default is for all functions supported by the MC68881 to be performed
in line. The option -Z129 will disable this feature, e.g. if you want
a call to “‘sin(3M)’’ to go to the library.

-fsky Generate code for Sky floating point board. If this option is used for any module,
it must also be used when linking.

-F (ISIFORTRAN) (UNIX Host only) Do not produce assembly, object, or executable
files, produce only FORTRAN source files. For each source language file
named ‘‘* F*’ preprocess the source language file with the C preprocessor and
leave the preprocessor output on a file whose name ends in *“.f*’. Similarly
preprocess files named ‘‘*.e’’ with the EFL preprocessor, and files named
** 1’ with ratfor.

-g (UNIX Target only) Generate source level symbolic debugger information and a
frame pointer for stack traces. The amount and form of debug information
varies with the capabilities of the target system.

-ga Generate a frame pointer for stack traces. The default compiler setting is
to optimize the program to the point that stack traces become impossible
in some programs. This makes program debugging difficult. When debugging a
program this option should be used. This option does not imply *‘-g’’.

-2 (ISTFORTRAN) Make the type INTEGER be INTEGER*2.,

-Istring Include file names which are not absolute (do not start with ‘‘/”) are searched
for in the directory ‘‘string’’ before a standard list of directories. Multiple

8-2 Compile Time Options 8-2

Compiler Guide

-OM

-OLM
-OML

-onetrip

-0 filename

Integrated Solutions Compiler Guide

-I options can be specified. They will be searched in the order encountered.

(ISI FORTRAN) (UNIX Host only) Preprocess files whose names begin
with *“.r’’ with ‘‘m4°’ before running the ratfor preprocessor.

The -O option activates the optimizers. These are safe for use on all
programs, except the loop optimizer.

Optimize the program to be as fast as possible even if it is necessary to make the
program larger. In particular, most of the available resources are allocated

to optimizations of the innermost loops. The -OL compile time option will
perform optimizations which may make the program faster and larger. Itis
counter-productive to specify -OL on code which contains no loops or that is
rarely executed as it will make the whole program larger bot not necessarily faster.
After experimenting with a program, it is possible to discover which modules
benefit from -OL and which ones do not. In addition, all scalar

multiplies are performed inline, and larger block moves are performed with
sequential moves rather than an inline loop.

Allow the optimizer to assume that memory locations do not change except by
explicit stores. That is, the optimizer is guaranteed that no memory locations
are I/O device registers that can be changed by external hardware and no
memory locations are being shared with other processes which can change
them asynchronously with respect to the current process. This compile time
option must be used with extreme caution (or not at all) in device drivers,
operating systems, shared memory environments, and when interrupts (or
UNIX signals) are present.

This option is equivalent to -OL and -OM.
This option is equivalent to -OLM.

(ISIFORTRAN) Execute at least one iteration of every DO loop. The default

is that if the lower bound is greater that the upper bound to execute

no iterations of the DO loop (this is the ANSI FORTRAN-77 standard).

This was unspecified under the ANSI FORTRAN-66 standard and some important
implementations (especially IBM) chose to always execute the loop at least

once. The use of this option makes the compiler incompatible with the ANSI
FORTRAN-77 standard, but it may be necessary to use it to get certain old
FORTRAN-66 programs to operate correctly.

(UNIX Host and Target only) Generate calls for execution profiling and links
the code with routines which support prof(1).

(BSD UNIX Host and Target only) Generate more profiling information,
and force all routines to have frames.

(UNIX Host only) Place the executable file output into the file named *‘filename’’.
If this option is not specified the executable file will be named ‘‘a.out’’.

Compile Time Options 8-3

Compiler Guide Integrated Solutions Compiler Guide

This option is ignored if *‘-¢’’, *‘-8’” “*-F’* (FORTRAN)
is present.

-R (UNIX Host only) Put all data in the text section.
(Motorola Assembler only) Place explicitly initialized variables in a different
segment from uninitialized variables so that they can be placed in ROM.

-Rxxx (ISIFORTRAN) (UNIX Host only) Pass the string ‘‘xxx’’ to ratfor as an option
when preprocessing .r files into .f files.

-S (ISI Pascal) (UNIX Host only) Compile the program in the ANSI compatible mode.
Generate errors for the use of extensions to the ANSI Pascal Standard. This
also changes the default supported range for set of subrange of integer from
0..31 to 0..255. The code for sets of subranges of integers under this option
is much worse than under the default.

-S (UNIX Host only) Do not produce object files or executable files, produce only
assembly language files. For each source language file specified, compile the
source language file into assembly language output. Put the assembly language
output into a file whose name ends in ‘‘.s”’.

-u (ISI FORTRAN) Make the default data type for undeclared variables
be ‘‘undefined’’. Asif ‘“‘IMPLICIT UNDEFINED(A-Z)’’ was placed at
the top of the file.
-U (ISI FORTRAN) Do not convert upper case names in FORTRAN to lower case.

By default, FORTRAN is not case sensitive and all FORTRAN names which
are externally visible are in the object file in lower case. In case

one wishes to gain access to names defined in C as upper case this option
can be used. However, use of this option makes the compiler incompatible
with the ANSI FORTRAN-77 standard.

-Uname (ISI C) Undefine the predefined preprocessor symbol ‘‘name’’. This is equivalent
to putting ‘‘#undef name’’ at the top of the source file.

-v (UNIX Host only) Have the compiler driver print out the program name and
command line arguments as it runs each subprocess.

-w Suppress warning diagnostics.

-Xnnn Where nnn is an unsigned integer constant. Turn on compile time option
number nnn. The available compile time options are listed below.

-X6 Use a ‘‘mov #0,x’’ rather than a *‘clr X’ to non-stack addresses. Also use
the output suffix ‘‘.a68’’ rather than ‘“.s’’. Allocate each enum type
as the smallest size predefined type which allows representation of all
listed values (that is, from the list: ‘‘char’’, *‘short’’, ‘‘int”’,
‘““unsigned char’’, ‘‘unsigned short’’, or ‘‘unsigned’’). The default is to
allocate as an *‘int’’.

8-4 Compile Time Options) 8-4

Compiler Guide

-X11

-X12
-X13

-X14

-X16

-X21

-X22

-X23

-X25

-X26

-X29

-X30

-X32

-X35

8-5

Integrated Solutions Compiler Guide

Disable local (peephole) optimizer.

Generate a stack probe at the beginning of each routine which uses more than
40 bytes of stack space, or which calls a routine.

Generate 68010 code rather than 68000 code.

Suppress code generation. An output file of zero length will be created.

Use a “‘skip’’ pseudo-op to allocate blank spaces in the assembly code. This
option formerly indicated prepending an underscore to all programmer defined

names, which is now the default. See also -X58.

(UNIX Target only) Use ‘‘.=.+n’’ to allocate n bytes of blank space. The
defaultis ‘“.blkb’’.

Do not allocate programmer-defined local variables to a register unless they
are declared register.

Functions which return less than a full word (e.g. char x()) will not set
the high order bytes.

(Motorola Assembler only) Replace an underscore as the first character of
an identifier with *‘.”” (period), for assemblers which require this.

Map all identifiers to upper case, for assemblers which require this.

Use the obsolete VAX format for floating point constants rather than the
default IEEE format.

Always adjust the stack after every function call.

Output routine sizes on the error output as the compilation proceeds. Useful
for monitoring compilation progress.

(MIT version only) 1&D space separation; dispatch tables will be located
in data space.

Suffix the output file with ‘‘.asm’’ rather than ‘‘.s”’.

Generate inline calls to the Sky floating point unit. Uses hard coded constants
for the device address.

(non-UNIX Host only) Allow arbitrary filenames to be specified to compiler.

Display the names of files as they are opened. Useful for finding out why
the compiler cannot find an include file.

Generate Motorola Assembler output code; this should be used with most cross
development assemblers.

Compile Time Options 8-5

Compiler Guide Integrated Solutions Compiler Guide

-X36 Presume that all ‘‘switch’’ statements (ISI C), ‘‘case’’ statements (ISI Pascal), and
computed goto statements (ISIFORTRAN) will take a defined label. No check is
made that the index is in the range of the smallest to largest value specified.

If the index is out of range the results will almost certainly be disastrous.
This generates somewhat faster and smaller code, but is not recommended.

-X37 Emit a warning when dead code is eliminated.

-X38 When using the obsolete MIT/VAX floating point format, generate calls to a
rounding routine when changing from double to single precision.

-X39 Do not move frequently used procedure and data addresses to registers.

-X41 For use with -X285, print out more statistics.

-X42 Do not generate calls to single precision routines, except for conversions

to and from double. Use this if you do not have single precision floating
point arithmetic support.

-X55 Make fields of type int, short, and char be signed. The default is for all
fields to be unsigned.

-X56 (ISI Pascal) Allow only ANSI/IEEE features. Generate error messages for any
non-standard constructs which are used.

-X58 Do not put an underscore in front of the names of global variables and
procedures.

-X59 (ISI Pascal) Turn off case sensitivity.

-X74 The target system is UNIX System V.

-X75 (System V only) Generate object files instead of assembly files.

-X80 Turn off the branch tail merging optimization. This can speed up compilation

in some cases.

-X81 Allow extern variables to be initialized (by turning off extern). This is an
error in cc, and by default, in ISI C.

-X84 Generate error messages for C anachronisms. By default the old assignment
operators (=+ =- ...), initialization (inti 1), and references to
members of other structures compile correctly but generate warning messages.

-X89 Pack structures with no space between members (even if it makes them
impossible to access!)

-X90 Tum off code hoister. Same as -X80.

8-6 Compile Time Options 8-6

Compiler Guide

-X92

-X93

-X94

-X95

-X96

-X97

-X98
-X99
-X100 to
-X105
-X105
-X114
-X115

-X120

-X121

-X122

-X125

-X129

Integrated Solutions Compiler Guide

(UNIX Target only) Generate AT&T format assembly code. This is the
format used in AT&T System V as well as the AT&T Software Generation
System.

(Motorola Assembler only) This option specifies that the Motorola compatible
assembler being used supports Named Sections for the definition of C

global variables and FORTRAN COMMON variables. Many Motorola compatible
assemblers do not support this feature.

Remove all garbage from the top of the stack at the end of each basic i
block (before each possible transfer of control).

(UNIX Target only) Use names of the form **.Lnnn’’ for temporaries not ‘‘Lnnn’’.

(UNIX Target only) Generate ‘‘space’’ instead of ‘‘blkb”’
to allocate space for data.

(UNIX Target only) Do not generate the ‘*.ascii’’ directive, use a sequence
of bytes instead.

(Motorola Assembler only) Generate 68020 code. See also -X122.

(Motorola Assembler only) Generate 68881 code. You must use -X22 with
this option. See also -X122, -X129, and -X130.

Customer defined options.

Allow redefinition of #define symbols to the preprocessor.
(UNIX Target only) Target is UNIX 4.2 BSD
(UNIX Target only) Target is UNIX 4.1 BSD

(Motorola Assembler only) Perform the Hunter and Ready code translations
on the assembly language code.

Disable the machine operand specific portions of the local (peephole)
optimizer. This option, or -X9, should be tried if you have reason to
believe the compiler is incorrectly compiling a program.

Pre-assemble 68020 instructions, so that 68020 instructions can be
processed by a 68000 assembler and linker.

Activate -X18 if there is a call to setjmp.
Use the 68881 instructions for evaluation of sin, cos, etc. This is

done by intercepting the calls to these routines; you can still define
‘‘sin’’ etc., however the code will not call it.

Compile Time Options 8-7

Compiler Guide

-X130

-X133

-X136
-X138

-X140

-X153
-X155
-X156

-X157

-X164

-X167

-X168

-X174

8-8

Integrated Solutions Compiler Guide

(MC68020 only) Full 68020 mode. This is reserved for indicating that
the code will only run on a 68020 system. Presently it implies that
floating point values come back in fp0.

(Motorola Assembler only) Use the non-filling declaration ‘‘DS.B’’ rather
than ““DCB.B’’. This prevents large arrays from taking up large amounts
of output module size (and download time). However, they will not be
initialized.

(UNIX Target only) Target the output for an Integrated Solutions Inc. assembler.
Do not use the ‘‘Icomm’’ (local common) directive.

Use MC68020 alignment rules. If you plan to upgrade to a 68020 system, it is
a good idea to use this option for ALL compilations. If this option

is used on any library or any module of your program, it MUST be used

on ALL modules of your program. This option is a good idea for ISI Pascal
and ISI FORTRAN.

Enable ANSI C extensions. Some of the ANSI extensions to C have not
been implemented yet.

(IST'Pascal) Make the type ‘‘real’’ be a 32 bit real. The default is for
‘“‘real’’ to be 64 bits -

—

N

(ISI Pascal) Export the names of variables in the outer most scope of a Pascal
main program for use with other modules of a multiple module program. The
default is for the variables in the outer most scope of a Pascal main program
to be static variables inaccessible to external modules.

(ISI Pascal) Subrange types in unpacked records are packed into bytes or 16 bit
fields if possible. The default is for all subranges to occupy 32 bits in unpacked
records.

Do not stop in the event of a code generator abort or ‘‘Internal Compiler
Error’’ error message. Occasionally useful in determining the cause of
a compiler failure. If this option is used, the compiler may crash or
otherwise terminate abnormally.

Unsupported option, Evaluate expressions involving only float operands as

float (not double). Do not expand float arguments to double. Do not expand

float return values to double.

Do not move invariant floating point expressions out of loops.

(IST Pascal) Append an underscore to the names of all external procedures and functions

to avoid name conflicts with unix library routines. Set by default if
-s specified.

Compile Time Options 8-8

Compiler Guide

-X187

-X188

-X217
-X218
-X219

-X220

-X230

-X233

-X237
-X241

-X243

Integrated Solutions Compiler Guide

Suppress output from #ident.

Use FORTRAN mixed mode expression evaluation rules. In particular, does
float*float computation in single precision; does not convert to double
precision before performing operation.

Don’t output ‘*.”” before assembler directives.

Suppress optimizations that generate inline code for external calls.

Invoke pipeline reordering.

Invoke local optimizations, e.g., inline divide.

Generate code which takes into account the early 68881 *‘FSQRT’’ bug.

Suppress elimination of jumps to jumps.

(ISI Pascal) Generate code to check that correct tag field value is present when
a field of a variant is referenced.

Suppress common subexpression elimination and value propagation, except
for trivial cases.

Functions which return the type ‘‘float’’ return a single precision
value, not a double precision value.

Apply associative rules in common subexpression elimination.
(ISI Pascal) Sets of unknown size will be allocated 256 bits rather than 32.

29

The “‘fsglmul’’ and “‘fsgldiv’’ instructions will be given a size of *‘.s
rather than **.x*’ in UNIX assembly output.

Print a brief description of enable -X switches on the terminal.
Suppress phase that removes useless sign and zero extend instructions.
Suppress register database phase of peephole.

Repeat peephole phase until code no longer improves.

Don’t delete redundant register alignments.

Suppress the phase that merges and removes excess move instructions.
Suppress the realvar code in database phase.

Don’t merge index calculation into load instruction.

Compile Time Options : 8-9

Compiler Guide

-X304
-X306
-X308
-X311
-X312
-X316
-X325
-X326
-X329
-X331
-X332

-X333

-X334

-X344

-X350

-X352
-X353
-X370

-X380

8-10

Integrated Solutions Compiler Guide

Suppress block merge phase.

Pad 68881 instructions with ‘“FPNOP’’ instructions so interrupts are taken at
the correct position.

Truncate names to eight characters on input.

C “‘asm”’ inline directive not recognized.

Perform tail recursion optimizations.

Don’t make multiple copies of blocks in merge blocks phase.

Suppress recognition of ?: operators as absolute value and min/max.

Enable all ANSI C extensions which are sensible in a UNIX environment.
Return large items in a reentrant fashion, rather than following UNIX customs.
Allocate gettarget temporaries as a round robin instead of a stack.

Generate ‘‘stabd’’ pseudo-ops for line numbers instead of stabd line numbers.
Allocate unused variables if symbolic debugging is enabled (-g).

Try to avoid generating floating divides if a multiply can be used instead.

Suppress passing of front end information to the peephole optimizer and
instruction scheduler.

The usual arithmetic rules apply to operator assignments, as
ANSI requires, rather than the Berkeley ‘‘left side prevails’’ rule. For
example, ‘‘charvar *=0.5"" will be performed using floating arithmetic.

Suppress adrconst optimizations. Do not try to undo ineffective allocation of
constants to temporaries.

In ACSI C, allow /**/ to be a concatenation operator in a macro, as it in
the portable C compiler.

Don’t extend float arguments to double in order to pass them to functions.
Perform common subexpression analysis twice. Rarely useful.
Output line numbers in the assembly file.

Parentheses behave as they are said to in (some versions of) the proposed
ANSI C standard; that is, the compiler may not associate over them.

Compile Time Options 8-10

Compiler Guide

Integrated Solutions

Compile Time Options

Compiler Guide

Appendix A: Man Pages

The man pages for the Integrated Solutions’ compilers are included in this section.

A-1 Man Pages

A-1

CC(1) UNIX Programmer’s Manual CC(1)

NAME
cc — C compiler

SYNOPSIS
cc [options] files

DESCRIPTION
cc is an optimizing C compiler. It accepts several types of arguments.

Arguments whose names end with ‘‘.c’’ are C source programs. They are compiled and left in a *“.0”" file
in the working directory.

Arguments whose names end with ‘“.s’’ are assembly language source programs. They are assembled and
leftin a ‘“.0’’ file in the working directory.

The *“.0” file is deleted if a single source file is compiled and linked.
cc creates ‘*.s”’ filés for each module only when the user compiles with the —S option.

OPTIONS
cc accepts the options listed below. Additional options are supported by 1d(1).

—ansi Provides basic compiler support for ANSI C but does not achieve full conformance due to
rounding incompatibilities when allocating floating point variables to machine registers.

—ansiconform
Provides preliminary conformance to the proposed ANSI C draft. However, this option sup-
ports fewer floating point optimizations than does the —ansi flag.

—C Compiles to the ““.0”’ level only. Does not link.

-C Does not strip comments from the preprocessor output. Must be used with the —E option.

—Dname=def

—Dname Defines the name to the preprocessor, as if by ‘‘define’’. If no definition is given, the name is
defined as “‘1”’.

-E Places the output of the preprocessor in the standard output file. Does not compile the pro-

gram. This is useful for debugging preprocessor macros. Use /lib/cpp for big jobs because the
integrated preprocessor cannot generate output as fast as /f2/lib/cpp/f1.

—f Generates code for a 68881 coprocessor. By default many of the functions supported by the
68881 will be inline as well; use -Z129 if you want a transcendental call to go to the routine
instead. The —f option does not support profiling.

-g Generates BSD style debugger information in the assembly file for use with a debugger such
as dbx(2).

—ga Generates a stack frame for every routine, regardless of need.

-k Prevents the compiler from optimizing an ‘‘and’’ with a single bit into a BTST instruction.
Some I/O devices require word access to their registers while BTST is a byte access instruc-
tion.

~Idir Looks for ‘‘#include’’ files whose names do not begin with *‘/*” first in the directory of the file

argument, then in directories named in —I options, then in /f2/usr/include/f1.

—o output Names the final output file ousput. If this option is used, the file a.out is left undisturbed.

March 6, 1989 INTEGRATED SOLUTIONS 43 BSD 1

CC(1)

-OLM
-OML

P

—Uname

-V

March 6, 1989

UNIX Programmer’s Manual CC(1)

Performs various speed optimizations, such as moving constant expressions out of loops. Gen-
erally this makes your programs somewhat larger. If their performance is not loop bound, they
can become slower as well.

This flag is an older version of the —OM flag. It allows backwards compatibility.

Optimizes the program to be as fast as possible even if it makes the program larger. In particu-
lar, most of the available resources are allocated to optimizations of the innermost loops. It is
counter-productive to specify —OL on code that contains no loops or that is rarely executed as
it makes the whole program larger but not necessarily faster.

Specifies that memory locations do not change except by explicit stores. The optimizer is
guaranteed that no memory locations are I/O device registers that can be changed by external
hardware and no memory locations are being shared with other processes that can change them
asynchronously with respect to the correct process.

This option is equivalent to -OL and -OM.
This option is equivalent to -OL and -OM.

Generates profiling code and links the code with routines that support prof(1). However, —p
does not support profiling for programs compiled with the —f (floating point) option. (Not
implemented.)

Generates profiling code similar to —p but links with a more comprehensive profiling mechan-
ism that supports gprof(1). Like the —p option, —pg does not support profiling for programs
compiled with the —f (floating point) option. (Not implemented.)

Makes initialized variables part of the text segment and passes them on to as.

Compiles the named C programs and leaves the assembler-language output on corresponding
files suffixed *“.s”’.

Removes any initial definition of name .

Turns on verbose mode so cc prints out the arguments to each phase of compilation and link-
ing.

Suppresses warning messages.

Turns on option » (an integer constant). Numerous options are available for such things as
signed bit fields, short return types, etc. Section 8 of the UNIX Compiler Guide: C, Pascal,
FORTRAN 77 describes these options.

Turns off option number n that is on by default or was turned on with the X option.

INTEGRATED SOLUTIONS 4.3 BSD 2

CC(1)

FILES

fle.[cs]

file.o

a.out

/bin/as

Nlib/cpp
Aib/crt0.0
/fusr/lib/ccom
fusr/include
fusr/lib/libc.a
/usr/lib/libc_p.a
Jusr/lib/gert0.0*
/lib/mcrt0.0%
Jusr/lib/libm.a
/usr/lib/libm_p.a

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kemnighan, Programming in C—a tutorial

D. M. Ritchie, C Reference Manual

UNIX Compiler Guide: C, Pascal, FORTRAN 77

as(1), prof(1), gprof(1), adb(1), dbx(1), 1d(1), f77(1), pc(1)

DIAGNOSTICS

The diagnostics produced by the C compiler are self-explanatory and similar to those produced by the BSD
compiler. Occasional messages can be produced by the assembler or loader.

March 6, 1989

UNIX Programmer’s Manual CC(1)

input file

object file

loaded output

assembler

C preprocessor

startup code

C compiler

standard directory for ‘“‘#include’” header files
UNIX standard 1/O library

profiling UNIX standard 1/O library
profiling startup code for gprof(1)

profiling startup code for prof(1)
transcendental floating point math library
profiling transcendental floating point library

INTEGRATED SOLUTIONS 4.3 BSD 3

F77(1)

NAME

UNIX Programmer’s Manual F77(1)

77 — Fortran 77 compiler

SYNOPSIS

77 [options] files

DESCRIPTION

f77 is an optimizing Fortran 77 compiler. f77 accepts several types of arguments:

Arguments whose names end with ‘“.f** are Fortran 77 source programs. They are compiled and left in a
*“,0”’ file in the working directory.

Arguments whose names end with *“F’’ are preprocessed with the C preprocessor before they are com-
piled by 177.

Arguments whose names end with ‘‘.r’’ are Ratfor programs. They are processed by /usr/bin/ratfor before
they are compiled by 77.

Arguments whose names end with ‘“.s’” are assembly language source programs. They are assembled and
leftina *“.0’’ file in the working directory.

The *“.0” file is deleted if a single source file is compiled and linked.
f77 creates “.s’’ files for each module if the user compiles with the —S option.

OPTIONS

77 accepts the options listed below. Additional options are supported by 1d(1).

=20 Generates code for a 68020 CPU. To maintain compatibility with old code, the alignment rules
are not changed unless you specify -X134. This alignment forces longwords to 32 bit boun-
daries.

—C Compiles to the ‘“.0”’ level only. Does not link.

-C Does not strip comments from the preprocessor output. Must be used with the —E option.

—Dname=def

—Dname Defines the name to the preprocessor, as if by ‘‘define’’. If no definition is given, the name is
defined as “‘1’.

-E Places the output of the preprocessor in the standard output file. Does not compile the program.

This is useful for debugging preprocessor macros. Use /lib/cpp for big jobs because the
integrated preprocessor cannot generate output as fast as /lib/cpp,

—f Generates code for a 68881 coprocessor. By default many of the functions supported by the
68881 will be inline as well. Use -Z139 if you want a transcendental call to go to the routine
instead. The —f option does not support profiling.

-F Preprocess the ““.r’’ or *“.F”’ files given to ““.f”’. Does not compile.

-g Generates BSD style debugger information in the assembly file for use with a debugger such
as dbx(2).

—ga Generates a stack frame for every routine, regardless of need.

-k Prevents the compiler from optimizing an ‘‘and’’. with a single bit into a BTST instruction.

Some devices require word access to their registers while BTST is a byte access instruction.

—Idir Looks for ‘“‘#include’’ files whose names do not begin with *‘/°” first in the directory of the file
argument, then in directories named in —I options, then in /usr/include.

—-m Preprocesses ratfor programs with M4,

-0 output Names the final output file output. If you use this option, 77 leaves the file ‘‘a.out’’ undis-
turbed.

February 6, 1989 INTEGRATED SOLUTIONS 4.3 BSD 1

F77(1)

—onetrip

-OLM
-OML

-Pp

-R
—Rstring
-S

February 6, 1989

UNIX Programmer’s Manual F77(1)

Ensures that DO loops are executed at least once.

Performs various speed optimizations while avoiding loop optimizations that expand code and
memory optimizations that are unsuitable for asynchronous memory accesses.

This option is an older version of the —OM flag. It allows backwards compatibility.

Optimizes the program to be as fast as possible even if it makes the program larger. In particu-
lar, most of the available resources are allocated to optimizations of the innermost loops. It is
counter-productive to specify —OL on code that contains no loops or that is rarely executed as
it makes the whole program larger but not necessarily faster.

Specifies that memory locations do not change except by explicit stores. The optimizer is
guaranteed that no memory locations are I/O device registers that can be changed by external
hardware and no memory locations are being shared with other processes which can change
them asynchronously with respect to the correct process.

This option is equivalent to -OL and -OM.
This option is equivalent to -OL and -OM.

Generates profiling code in a manner similar to cc(1) and links the code with routines that sup-
port prof(1). However, —p does not support programs compiled with the —f (floating point)
option. (Not implemented.)

Generates profiling code similar to —p but links with a more comprehensive profiling mechan-
ism that supports gprof(1). Like the —p option, —pg does not support profiling for programs
compiled with the —f (floating point) option. (Not implemented.)

Makes initialized variables part of the text segment and passes them on to as.
Passes string along to ratfor as an option.

Compiles the named programs and leaves the assembler-language output on corresponding
files suffixed “*.s”’.

Makes all undeclared variables ‘‘undefined.”
Retains character case significance. By default, identifiers are converted to lower case.
Removes any initial definition of name .

Turns on verbose mode so f77 prints out the arguments to each phase of compilation and link-
ing.

Suppresses warning messages.

Turns on option number n (an integer constant). Numerous options are available for such
things as signed bit fields, short return types, etc. Section 8 of the UNIX Compiler Guide: C,
Pascal, FORTRAN 77 describes these options.

Turns off option # that is on by default or was turned on with the —Xoption.

INTEGRATED SOLUTIONS 4.3 BSD 2

F77(1)

FILES

file.[fFresc]

file.o

a.out

/bin/as

/lib/cpp
/usr/lib/libc.a
fusr/lib/libc_p.a
/usr/lib/fcom
/fusr/lib/gcrt0.0*
/usr/lib/libF77.a
/usr/lib/libF77_p.a
Jusr/lib/1ibl66.a
/usr/lib/1ibI77.a
/usr/lib/1ibI77_p.a
Jusr/lib/libU77.a
Jusr/lib/libU77_p.a
Jusr/lib/libmU77.a
fusr/lib/libmF77.a
fusr/lib/libmI77.a
fusr/lib/libm.a
Jusr/lib/libm_p.a
mon.out

gmon.out

SEE ALSO
UNIX Compiler Guide: C, Pascal, FORTRAN 77

as(1), cc(1), pe(l), prof(1), gprof(1), adb(1), dbx(1), 1d(1), ratfor(1), m4(1)
DIAGNOSTICS
The diagnostics produced by the f77 compiler are self-explanatory and similar to those produced by the

BSD {77 compiler. Occasional messages can be produced by the assembler or loader.

February 6, 1989

UNIX Programmer’s Manual

source input file

object file

loaded output

assembler

C preprocessor

UNIX standard 1/O library

profiling UNIX standard 1/O library
Fortran compiler

profiling startup code - IEEE floating point
Fortran intrinsic function library

profiling intrinsic function library

Fortran I/O library for Fortran 66

Fortran /O library

profiling Fortran I/O library

UNIX interface library

profiling UNIX interface library

UNIX interface library compiled for the 68020/68881
Fortran intrinsic functions for the 68020/68881
Fortran I/O library for the 68020/68881
Intrinsic floating point math library
profiling intrinsic floating point library

file produced for analysis by prof(1)

file produced for analysis by gprof(1)

INTEGRATED SOLUTIONS 4.3 BSD

F77(1)

PC(1)

NAME

UNIX Programmer’s Manual PC(1)

pc — Pascal compiler

SYNOPSIS

pe [options] files

DESCRIPTION

pc is an optimizing ISO and/or ANSI/IEEE Pascal compiler. pc accepts several types of arguments:

Arguments whose names end with *‘.p’’ are Pascal source programs. They are compiled and leftina *“.0”
file in the working directory.

Arguments whose names end with “‘.f*” are Fortran 77 source programs. They are compiled and left in a
‘.0’ file in the working directory.

The £77(1) and cc(1) commands are normally used for Fortran and C programs. When multi-lingual pro-
grams need to be compiled, you can use any one of the three commands (cc, pe, or f77).

Arguments whose names end with ‘“.s’’ are assembly language source programs. They are assembled and

leftina ‘.0’

* file in the working directory.

If you compile and link a single source file, pc deletes the “*.0’" file.

pc creates ‘“.s”” files for each module only if the user compiles with the —S option.

OPTIONS

pc accepts the following options. Additional options are supported by 1d(1).

-20

-8

~1dir

—o0 output

March 6, 1989

Generates code for a 68020 CPU. To maintain compatibility with old code, the alignment rules
are not changed unless you specify -X134. This alignment forces longwords to 32 bit boun-
daries,.

Compiles to the *“.0’” level only. Does not link.

Compiles code to perform runtime checks, verifies assert calls, and initializes all variables to
zero as in pi.

Generates code for a 68881 coprocessor. By default many of the functions supported by the
68881 will be inline as well. Use -Z129 if you want a transcendental call to go to the routine
instead. The —f option does not support profiling.

Generates BSD style debugger information in the assembly file for use with a debugger such
as dbx(2).

Generates a stack frame for every routine, regardless of need.

Looks for ““.include’” files whose names do not begin with *‘/”” first in the directory of the file
argument, then in directories named in —I options, then in /f2/usr/include/f1.

Names the final output file ouzput. With this option, pc leaves the file ‘‘a.out’’ undisturbed.
This does not apply to assembly output.

Performs various speed optimizations while avoiding loop optimizations that expand code and
memory optimizations that are unsuitable for asynchronous memory accesses.

This option is an older version of the —OM flag. It allows backwards compatibility.

Optimizes the program to be as fast as possible even if it makes the program larger. In particu-
lar, most of the available resources are allocated to optimizations of the innermost loops. It is
counter-productive to specify —OL on code that contains no loops or that is rarely executed as
it makes the whole program larger but not necessarily faster.

INTEGRATED SOLUTIONS 4.3 BSD 1

=y

PC(1) UNIX Programmer’s Manual f;:PC (1}
PN ’i"i\.;xV -

-OM Specifies that memory locations do not change except by explicit stores. The optimizer is
guaranteed that no memory locations are I/O device registers that can be changed by external
hardware and no memory locations are being shared with olher processes that can change them

_ asynchro"xously with respect to the correct process.

—-OLM This opuon is equivalent to -OL and -OM. .

-OML This option is equivalent to -OL and -OM.

—p Generates profiling code in a manner similar to cc(1) and links the code with routines that sup-

= port prof(1). However, —p does not support programs compiled with the —f (floating point)
option. (Not implemented.)
'~ —pg ~Generates profiling code shnifa; to —p but links with a more involved profiling mechanism that
....supports gprof(1). Like the —p option, —pg does not support profiling for programs compiled
with the —f (ﬂoatmg pomt) opuon (Not implemented.)

-R N Makes mmahzed variables part of the text segment and passes thcm on to as.

-Ss Complles the named C programs and leaves the assembler-language output on correspondmg
files suffixed *‘.s”’

-w Suppresses waming messages.

—Xn Turns on option 7 (an integer constant). Numerous options are available for such things as
signed bit fields, short return types, etc. Section 8 of the UNIX Compiler Guide: C, Pascal,
FORTRAN 77 describes these options.

~Zn Turns off option 7 (on by default or turned on with the X option).

FILES -
 filep o ~ Pascal source file

/bin/as assembler

/usr/lib/pcom .. Pascal compiler

/usr/lib/libc.a UNIX standard 1/O library

fusr/lib/libc_p.a profiling UNIX standard I/O library

/usr/lib/libmc.a UNIX standard I/O library for the 68020/68881

/usr/lib/libpc.a Pascal I/O library with math intrinsics

/usr/lib/libpc_p.a profiling Pascal I/O library with math intrinsics

/usr/lib/libm.a intrinsic floating point math library .

/usr/lib/libm_p.a profiling intrinsic floating point library

/usr/lib/libmm.a 68020/68881 intrinsic floating point math library

fusr/lib/gert0.0* profiling startup code

/lib/mcrt0.0* profiling startup code

mon.out ... file produced for analysis by prof(1)

gmon.out file produced for analysis by gprof(1)

SEE ALSO '

Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report, Springer-Verlag, 1978
American National Standard Pascal Computer Programming Language,

IEEE/John Wiley-Interscience, 1983
UNIX Compiler Guide: C, Pascal, FORTRAN 77
as(1), prof(l) gprof(1), adb(1), dbx(l) 1d(1), ce(1), £77(1), cc(1)

DIAGNOSTICS
- The-diagnostics produced by the Pascal compiler are self-explanatory and similar to ihose produced by the
BSD pe compiler. Occasional messages can be produced by the assembler or loader.

March 6, 1989 INTEGRATED SOLUTIONS.4.3 BSD 2

Integrated Solutions

DOCUMENTATION COMMENTS

AN NBI
COMPANY

AP R DR IPUES S : v o N . .t i . .
Please take a minute to comment on the accuracy and.completeness of this manual. Your assistance will help us
to better identify and respond to specific documentation issues. If necessary you may attach an addmonal page
with comments. Thank you in advance for your cooperation.

‘-L . .-‘ “t
| Manual Title: UNIX Compiler Manual ° ‘ Part Number: -~ 490292 Rev. A |
)‘ X IR X X - ",: - N T I R :r:
Name: : _ — Tltle _ .
Company il UL L Wm0)
Address: PN O (At NPT S I FLASER
City: o © e T 7 Eode: -
oo : ' Rt TR NGV IS (R
1. Please rate this manual for the following: b
Poor Fair Good - Excellent
Clarity =+ m m] s SEECEE . = I -
Completeness * -+ o m] = I = I Lo
Organization O o ot oo
Technical Content/Accuracy n| O e By A B e 5 S
Readability O (mi]]
Please comment: S
g gh
2. Does this manual contain enough examples and figures? S St
YesO NoO : ‘
Please comment:
e
3. Is any information missing from this manual? 7 s
YesO NoO : . R LT

Plcase comment:

4. Is this manual adequate for your purposes?
Yes O NoO

Please comment on how this manual can be improved:

kI

Fold Down First

AN SHNM NN SR TSR G579 GV DS CEIR GNRY SRED SHER TG SIS CNHS SRS SN G VR GO0 GEND WD GOER EERn GREm I SSNUR (IR GNND BT GO GND SR SRR RN DB ST BRI IS CHNE SRS (RS ons

BUSINESS REPLY MAIL

First-Class Mail Permit No. 7628 San Jose, California 95131
g, w2 o o BB A 50t NS g ;B

L0

R

Postage will be paid by addressee

5. Integrated Solutions

ATTN: Technical Publications Manager
canne 1140 Ringwood Court
San Jose, CA95131

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

e U CHM WIS CEES CTES ST ¢ CONG GEWE SEER CAUT GHNS GEDR SELS TGS GESS GHETE GMMG GHNN SR EDI0 OOTS CO7TH GNEYS GHE SN NI SN GRCUN GHLDT GRS SMCS GNET IEAN GNES GHGD GUISH COGD GOV GRS wEem s s

‘old Up Second

Staple Here

Integrated Solutions
1140 Ringwood Court
San Jose, CA 95131
408 943-1902

Telex 499 6929

