

APL2 Language Summary

SX26-3851-02

APL Products and Services

IBM Silicon Valley Laboratory

555 Bailey Avenue

San Jose, California 95141

APL2@vnet.ibm.com

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

2

Copyrights

© Copyright IBM Corporation 1984, 2016 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corporation

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

3

Contents

o Notices

o We Would Like to Hear from You

o Introducing APL2

o Primitive Functions

o Primitive Operators

o System Functions

o System Variables

o System Commands

o Defined Functions and Operators

o Error Reports and Error Codes

o Glossary

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

4

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make

these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is

not intended to state or imply that only IBM's product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe on any of IBM's intellectual property rights may

be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject material in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries, in

writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

5

Programming Interface Information

This language summary is intended to help programmers write applications in APL2. It documents General-Use

Programming Interface and Associated Guidance Information provided by APL2. General-use programming

interfaces allow the customer to write programs that obtain the services of APL2.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

6

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

APL2

IBM

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

7

We Would Like to Hear from You

APL2 Language Summary

Please let us know how you feel about this online documentation by placing a check mark in one of the columns

following each question below:

To return this form, print it, write your comments, and mail it to:

International Business Machines Corporation

APL Products and Services - PGUA/E1

555 Bailey Avenue

San Jose, California 95141

USA

For postage-paid mailing, please give the form to your IBM representative.

You can also send us your comments by email. To send us this form, copy it to a file, write your comments

using a file editor, and then send it to:

apl2@vnet.ibm.com

Overall, how satisfied are you with the online documentation?

 Very Very
 Satisfied Dissatisfied
 1 2 3 4
 Overall Satisfaction ___ ___ ___ ___

Are you satisfied that the online documentation is:

 Accurate ___ ___ ___ ___
 Complete ___ ___ ___ ___
 Easy to find ___ ___ ___ ___
 Easy to understand ___ ___ ___ ___
 Well organized ___ ___ ___ ___
 Applicable to your tasks ___ ___ ___ ___

Please tell us how we can improve the online documentation:

 __
 __
 __

Thank you! May we contact you to discuss your responses?

 ___Yes ___No
 Name:

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

8

 __
 Title:
 __
 Company or Organization:
 __
 Address:
 __
 __
 __
 Phone:
 (___)___
 E-mail:
 __

Please do not use this form to request IBM publications. Please direct any requests for copies of publications, or

for assistance in using your IBM system, to your IBM representative or to the IBM branch office servicing your

locality.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

9

Introducing APL2

If you're new to APL, this material may provide some understanding of what it is all about; we'll discuss the

syntax and characteristics of the language.

If you're not new to APL, we still recommend looking through what follows. APL2 offers capabilities that are

not present in other versions of APL. Reading this may acquaint you with some features you are not familiar

with, particularly if the versions you have used have not included APL2-style nested arrays.

Here are the major sections of this introduction:

 APL - What Is It?

 Getting Started in APL

 Fundamentals

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

10

APL - What Is It?

APL2 is a general-purpose language that enjoys extensive use in such diverse applications as commercial data

processing, system design, mathematical and scientific computation, and the teaching of mathematics and other

subjects. It has proved to be particularly useful in data base applications, where its computational power and

communication facilities combine to enhance the productivity of both application programmers and end users.

When implemented as a computing system, APL2 is used from a typewriter-like keyboard. Statements that

specify the work to be done are entered by typing them, and in response, the computer displays the result of the

computation. The result appears at a device that accompanies the keyboard, such as video display or printer. In

addition to work that is performed purely at the keyboard and its associated display, entries may also invoke the

use of printers, disk files, or other remote devices.

The letters "APL" originated with the initials of a book written by Dr. Kenneth E. Iverson, A Programming

Language (New York: Wiley, 1962). Dr. Iverson developed the APL language first at Harvard, and then at

IBM, in collaboration with Adin Falkoff and others. The term APL now refers to the language that is an

outgrowth of that work.

APL2 is a particular implementation of that language including array extensions researched by Trenchard More,

elaborated by James A. Brown in his doctoral dissertation, and developed at IBM under the direction of Dr.

Brown.

For additional highlights of the language, see:

 Power, Relevance, and Simplicity

 A Short Example of the Use of APL

 The Characteristics of APL

Power, Relevance, and Simplicity

A programming language should be relevant. That is, you should have to write only what is logically necessary

to specify the job you want done. This may seem an obvious point, but many programming languages force you

to be concerned as much with the internal requirements of the machine as with your own statement of your

problem. APL2 takes care of those internal considerations automatically.

A programming language needs both power and simplicity: The power to handle large or complicated tasks, and

the simplicity to state what must be done briefly and neatly, in a way that is easy to read and easy to write. You

might think that power and simplicity are competing requirements, but that is not necessarily so. The power of

APL as a programming language comes in part from its simplicity; it is this simplicity that makes it

simultaneously well suited to the beginner and to the advanced user.

A Short Example of the Use of APL

Problems can often be solved in APL without writing programs, or even dealing with named variables. Simply

typing in the expression to be evaluated causes the result to be displayed. Let's try out an example:

Many bacteria can duplicate themselves once every half hour. If a single infectious organism

began reproducing at 9 o'clock in the morning, how fast would the resultant colony grow?

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

11

Let's compute the number of bacteria at noon, 6 PM, and midnight. In other words, 3 hours, 9 hours, and 15

hours later. It's a doubling process, so we want 2 to some power. We write this as

 2* ...

where ... is not APL, it just indicates we haven't finished yet. Since the doubling happens twice every hour,

we continue like this

 2*2× ...

Show the hours we are interested in, and we have told the system all it needs to know to solve the problem:

 2*2×3 9 15
64 262144 1073741824

So by noon there are 64 bacteria, but by 6 PM there are more than a quarter of a million, and by midnight there

are over a billion!

Several distinctive features of APL2 are illustrated in this example: familiar symbols, such as × for

multiplication, are used where possible, other symbols are introduced where necessary to make the notation

linear (such as the * instead of a raised expression for the power function), and (very important!) a group of

numbers can be worked on together.

The Characteristics of APL

The primitive objects of the language are arrays (lists, tables, lists of tables, and so forth). For example, A+B

is meaningful for any arrays A and B.

The syntax is simple. There is no hierarchy of function precedence, and built-in functions and user-defined

functions (programs) are treated alike.

The rules of programming grammar are few. The definitions of the built-in functions are independent of the

type of data to which they apply, and they have no hidden side effects.

The sequence control is simple. One statement type embraces all types of non-sequential flow (return,

conditional execution, case, goto), and the termination of the execution of any function always returns control to

the point of use.

External communication is established by means of data that is directly shared between APL and other systems

or subsystems. These shared variables are treated both syntactically and semantically like other data. A

subclass, called system variables, provides convenient communication between APL programs and their

environment.

The utility of the built-in functions, called primitive functions, is vastly enhanced by operators which modify

their behavior in a systematic manner. For example,

 Reduction (denoted by /) modifies a function to apply over all elements of a list, as in +/L for

summation of the elements of L.

 Axis specification (denoted by [n]) allows functions to be applied to a table in a specified direction.

In addition, APL2 allows you to define both functions and operators for your own needs, and such user-defined

programs are syntactically equivalent to primitive functions and operators.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

12

The number of primitive functions is small enough that each is represented by a single easily-read and easily-

written symbol, yet the set of primitives embraces operations from simple addition to complex types of

formatting and advanced mathematical concepts such as hyperbolic cosine and matrix inversion.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

13

Getting Started in APL

Here are some topics that can help you get started using APL:

 APL Is Interactive

 Who Typed What?

 Expressions

 The APL Character Set

APL Is Interactive

The APL2 system takes one APL2 expression at a time, converts it to machine instructions (the computer's

internal language), executes it, and then proceeds to the next line. This is in contrast to traditional program

compilers which convert complete programs to machine language before executing any expressions. This

allows you a high degree of interaction with the computer. If something that you enter is invalid, you will get

quick feedback on the problem before you proceed further.

Who Typed What?

Typically APL2 conducts a long-running conversation between the user and the APL system. The conversation

is recorded in a log, managed by an APL2 component called the Session Manager. When you start APL, the

session manager opens any existing log, letting you review or reuse previous information in it. The period of

time during which the log is open is called an APL2 session.

During an APL2 session, you and APL2 will take turns adding information to the log. While you type

information in, APL2 waits for some signal from you that it is its turn to use the information and display the

results in the log. The normal signal from you is pressing the Enter key. When you press Enter, the session

manager changes a mode indicator from Input to Running. (This indicator is normally in the lower left corner of

the log window.) When it is your turn again, the mode is changed back to Input.

The session manager mode indicator is very useful while you and APL2 are "talking" to each other. However it

does not help when you go back later to review the conversation. If you have a color display, you can tell the

APL2 session manager to display input and output in different colors, but even that is of no use when reviewing

earlier APL2 sessions, since the log is just a standard operating system file recording the conversation.

When APL2 displays information for you, it starts each new line at the left margin. After it finishes displaying

any such output, it signals to you that it is ready for you to type in another keyboard input by indenting six

spaces from the left margin and halting. This position is another indication that it's ready for you to take "your

turn", and is useful when rereading the log.

 2+2
4
 3×4
12

Expressions

A typical expression in APL2 is of the form:

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

14

 AREA←3×4
The effect of the statement is to assign to the name AREA the value that is the result of 3×4 to the right of the

assignment arrow (←). The expression may be read informally as "AREA is three times four."

If the leftmost part of an expression is not a name followed by an assignment arrow, the result of the expression

is displayed. For example:

 3×4
12
 PERIMETER←2×(3+4)
 PERIMETER
14

The leftmost part of the expression is significant here, because APL2's order of evaluation is right-to-left. The

leftmost part of the line, therefore, is the last part to be evaluated. But we'll get to the order of evaluation rules a

little later on.

In this documentation, CAPITALS in the Courier APL2 font are used to indicate the portions of the

examples that you might actually see on your display, even though you can use lower case letters in an actual

APL2 session, and can choose whether you wish to see italic or upright characters. Traditionally APL systems

have used italic capitals, so you will see that convention used throughout the literature.

In addition to the Enter key, you can send other signals to APL2 by using the session manager's Signals menu.

These signals are normally used while APL2 is running, rather than waiting for input from you. The Attention

signal says "stop when it's convenient", and the Interrupt signal says "stop immediately".

The APL Character Set

The characters that may occur in a statement fall into four main classes: alphanumeric, operational, special, and

blank.

 Alphanumeric characters are used in names and constants.

 Operational characters are used to represent operations (called functions) that are to be applied to data,

or in some cases, represent what are called operators, that modify the way functions behave.

 Special characters include characters like parentheses that are not functions or operators, but affect the

interpretation of the expression.

 The blank serves as a separator to mark divisions between names.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

15

Fundamentals

The topics here provide a more complete overview of the language than the section on Getting Started in APL,

but are still not a formal presentation. You will find complete details in the chapters on Arrays and Syntax and

Expressions in APL2 Programming: Language Reference.

 Names

 Numbers

 Functions

 Operators

 Data

 Assigning Values to Names

 Order of Evaluation

 Errors

Summaries of facilities provided by specific language elements can be found under:

 Primitive Functions

 Primitive Operators

 System Functions

 System Variables

 System Commands

See also Defined Operations.

Again, the Language Reference provides complete information.

Names

Valid characters for forming names are:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ∆
a b c d e f g h i j k l m n o p q r s t u v w x y z ⍙
Ç ü é â ä à å ç ê ë è ï î ì Ä Å ô ö ò û ù Ö Ü ø á í ó ú ñ Ñ Ì ß
0 1 2 3 4 5 6 7 8 9 ¯ _

Names of workspaces, functions, variables, operators, and labels may be formed of any sequence of the above

characters, except that the characters on the last line above cannot start a name.

Valid names include:

A
ABc
SALES_REPORT
TAX1984
∆

Here are some examples of Invalid names:

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

16

A B
contains a space

1984TAX
starts with a numeric digit

_REPORT
starts with "_"

DATA.3
"." isn't allowed

The environment in which APL2 operations take place is bounded by a workspace. The same name may be

used to designate different objects (that is, variables, functions, operators, and labels) in different workspaces,

without interference. It is also possible for a workspace to have the same name as an object it holds.

The workspace name is normally limited to eight characters, and the characters must form a valid APL name.

(By using a special syntax, though, it is possible to use any name supported by the operating system as a

workspace file name.)

The names of variables, functions, operators, and labels, however, may be of any desired length - up to 255

characters, which is probably longer than any name you would ever want to deal with.

Numbers

All numbers entered or displayed are in decimal, either in conventional form (including a decimal point if

appropriate) or in scaled form. The scaled form consists of an integer or decimal fraction called the multiplier

followed immediately by an "E" and then by an integer (which must not include a decimal point) called the

scale. The scale specifies the power of ten by which the multiplier is to be multiplied. Thus 1.44E2 is

equivalent to 144.

APL2 supports complex numbers, which are normally represented with a "J" separating the real and imaginary

parts. Polar forms are also available, with the angle expressed in either radians or degrees. For example, the

square root of negative one may be entered as 0J1 in its standard form, as 0R1.570796327 in polar radian

form, or as 1D90 in polar degree form. Complex numbers are always displayed using the J form.

Negative numbers are represented by an overbar immediately preceding the number. For example, ¯1.44 and

¯144E¯2 are equivalent negative numbers. Note that the overbar (¯) used to start a negative number differs

from the bar (-) that denotes the subtract and negative functions. This avoids ambiguity in use of optional

spaces when entering data.

 5 3
5 3
 5 ¯3
5 ¯3
 5-3
2
 5 -3
2

Conversely, the overbar cannot be used as a function:

 X←5
 Y←3

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

17

 X-Y
2
 -X
¯5
 X¯Y
VALUE ERROR
 X¯Y
 ^
 ¯X
SYNTAX ERROR
 ¯X
 ^

X¯Y is a valid name, but does not currently have a value. ¯Y is not a valid name, but is treated as a single token,

because its characters are all alphanumeric.

Functions

The word function derives from a word that means to execute or to perform. A function executes some action on

its argument (or arguments) to produce a result that may serve as an argument to another function. For example:

 3×4
 12
 2+(3×4)
 14
 (-6)÷3
 ¯2

Functions represented by symbols, such as +, -, × and ÷, are called primitive functions. They are automatically

available for use in any workspace without having to copy them from somewhere.

Other functions are represented by names. They include user-defined functions (which are APL programs), and

system functions. System functions, like primitive functions, are automatically available for use in any

workspace, but they have distinguished names that begin with the ⎕ character, followed by a sequence of letters.

For example, ⎕DL is a system function used to wait (delay execution) for a specified length of time.

A function that takes one argument, such as the - in (-6) above, is said to be monadic; a function that takes

two arguments, such as the times function, is said to be dyadic. Monadic functions always have their argument

on the right in APL. Dyadic functions (whether primitive, system, or user-defined) take a right argument and a

left argument.

In all cases, the same symbol or name can represent both monadic and dyadic functions. For example, X-Y

denotes subtraction of Y from X (a dyadic function), and -Y denotes negation of Y (a monadic function). In fact

APL2 assumes that every function defined to be dyadic can also be called monadically. This characteristic is

called ambi-valence.

User functions can also be defined to be niladic (taking no argument). There are no primitive or system

functions which are niladic, and the system treats a niladic function much as if it were a variable.

See also Terminology: Functions versus Operators.

Operators

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

18

The normal operation of a function may be altered by applying an operator to it. For example, + and × are

primitive functions which apply independently to each element of an array.

 A←5 6 7
 B←2 3 4
 A+B
7 9 11
 A×B
10 18 28

Applying the / operator to produce +/ and ×/ modifies their normal operation, creating derived functions

which apply between the items of a single argument. Using the same data as in the previous example:

 +/A
18
 ×/B
24

The / operator can be used with any dyadic function. Operators apply equally to user-defined functions, and, in

fact, the operators themselves may be user-defined.

See also Terminology: Functions versus Operators.

Terminology: Functions versus Operators

Computer languages have sometimes created confusion between the terms function and operator. In APL, it's

important to differentiate the terms.

 A function takes data objects as arguments and returns new data as a result.

 An operator takes functions (or occasionally data objects) as operands and returns a new function,

called a derived function. The new derived function acts like any other function.

Note that we referred to operators as taking operands, and functions as taking arguments. This distinction is

mostly useful when identifying the way that a token is being used. An operator always has an operand on its

left. If it is a dyadic operator, it will have a second operand on its right. You can, if you wish, put parentheses

around the operator and its operands. Once you have done that, you will see the arguments to the derived

function outside the parentheses.

For example, ⍴ is a function called Reshape which accepts a left argument telling it how it should reshape its

right argument. ¨ is an operator called Each which applies its operand to each item of the derived function

argument(s).

 3⍴4 ⍝ Create 3 instances of the number 4
4 4 4
 2 3(⍴¨)4 5
 4 4 5 5 5
 2 3⍴¨4 5
 4 4 5 5 5

The last two expressions are exactly equivalent. The parentheses just help us see that ⍴ is an operand, while 2
3 and 4 5 are arguments. APL2 itself doesn't need the parentheses to recognize that.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

19

Data

Data used in APL2 is one of two types, either numeric or character. Data is produced by:

 Explicit entry at the keyboard.

 Execution of APL2 functions and operators.

 Use of shared variables, system variables, system functions, and system commands.

The following topics provide information about data:

 Arrays

 Rank and Shape

 Variables and Constants

 Bracket Indexing

 Index Origin

 Adding More Structure to Arrays

Arrays

APL2 functions apply to collections of individual data items called arrays. An array is an ordered collection of

items arranged along rectangular dimensions (called axes). The items of the array are numbers, characters, or

other arrays, in any combination. For example, an array might be a list of three items, where the first is a

character, the second a number, and the third a character string (which is really a subarray containing a list of

characters).

Rank and Shape

The rank of an APL2 array is the number of dimensions or axes that it has. If you are familiar with some other

computer languages, you may be thinking of the term dimension as the amount of data that can be stored; that's

not what we mean here. We are referring to the axes, not the length of the data. For our purposes, a dimension

and an axis are synonymous. When we want to refer to the amount of data along each of those dimensions,

that's what we will call shape.

For example, a simple list of numbers has only one dimension - only length - and therefore is of rank one:

 V←2 3 5 7 11 13 17 19
 V
2 3 5 7 11 13 17 19

In APL, data in a list form like this is referred to as a vector.

An example of a rank-two object would be a table of numbers:

 M← 2 5 ⍴ ⍳10
 M
1 2 3 4 5
6 7 8 9 10

(We'll talk about ⍴ and ⍳ in a moment)

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

20

In APL2, two-dimensional data like this is referred to as a matrix.

Either of these examples could just as easily have used character data, or a mixture of numeric and character

data.

A scalar has no dimensions and is of rank zero. APL2 supports arrays of up to rank 64, though most of us have

trouble visualizing anything beyond rank 3 or 4.

The shape of an array may be measured by using the shape function, denoted by the rho (⍴) symbol:

 V
2 3 5 7 11 13 17 19
 ⍴V
8
 A←'ABCDEF'
 ⍴A
6

The shape function returns a count of the number of items along each of the dimensions. In the case of the

vectors above, there was only one dimension. A matrix, because it is two-dimensional, will return two numbers:

 N
1 2 3 4
5 6 7 8
9 10 11 12
 ⍴N
3 4
 M
HELLO
THERE
 ⍴M
2 5

We showed an example above of how a vector is entered at the keyboard, but a matrix cannot be directly

entered. You'll have to use a function to tell APL2 the shape that you want. A matrix is commonly formed by

listing the items of data that the matrix is to contain, and then using the reshape function to create the desired

shape. The reshape function uses the same rho symbol that the shape function uses, but has a left argument

stating the desired resultant shape. (Note that the two functions are closely related. The result of monadic ⍴ for

an array shows the left argument of the dyadic ⍴ required to create that array.)

The numeric matrix shown above, for instance, could be formed like this:

 N← 3 4 ⍴ 1 2 3 4 5 6 7 8 9 10 11 12

The number of numbers used to the left of the ⍴-symbol determines the rank of the object being formed. Here,

the two numbers 3 4 create a rank two object - a matrix. In a similar fashion, the rank of an object may be

measured by counting the number of numbers that are returned with the monadic use of the ⍴-symbol... in other

words, measuring the shape of the shape:

 N← 3 4 ⍴ 1 2 3 4 5 6 7 8 9 10 11 12
 N
1 2 3 4
5 6 7 8

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

21

9 10 11 12
 ⍴N
3 4
 ⍴⍴N
2

The right argument for the reshape function may be in any form. It could be a directly-entered list of items as

we discussed above, or it could be data already stored under a name:

 V←2 3 5 7 11 13 17 19
 M←2 4⍴V
 M
 2 3 5 7
11 13 17 19
 A←3 2⍴'ABCDEF'
 A
AB
CD
EF
 B←2 4⍴A
 B
ABCD
EFAB

The rank and shape of the right argument to ⍴ are of no concern. Its data items are just used in sequence to build

the result array. If the right argument has extra items, they are ignored. If it doesn't have enough (as in the last

example above) the function simply goes back to the beginning of the array, and continues selecting items as it

needs.

Arrays of arbitrary shape and rank may be produced by the same scheme. For example:

 T←2 3 4⍴'ABCDEFGHIJKLMNOPQRSTUVWX'
 T
ABCD
EFGH
IJKL
MNOP
QRST
UVWX
 ⍴T
2 3 4

This three-dimensional array has two planes, each with three rows and four columns. Three-dimensional arrays

are displayed with a blank line separating the planes, and higher-dimensional arrays simply extend this scheme.

Variables and Constants

An array that is stored under a name is called a variable, because its value may be varied at any time simply by

reassigning a new value to the name. All of the names that we have shown in the discussion of Rank and Shape

are variables.

A constant is a number or string of numbers or a character or string of characters that appears explicitly in an

APL2 expression.

A single number entered by itself is accepted by the system as a scalar. A constant vector may be entered by

listing the numeric components in order, separated by one or more spaces.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

22

A scalar character constant may be entered by placing the character between single quotation marks (as in

'A'), and a character vector may be entered by listing the characters between single quotation marks (as in

'THIS IS TEXT'). The blanks are part of the data, and are treated like the other characters, but the enclosing

quotation marks are not part of the data. That last example is twelve characters long, because it includes the two

blanks, but not the two quotation marks.

To include a single quotation mark character within a character constant you must enter it as a pair of single

quotation marks. Thus, the contraction of CANNOT is entered as 'CAN''T'. APL2 displays it as CAN'T, and it

consists of five characters.

There are no special considerations for entering double quotation mark characters:

 'Do you know what "rank" means?'
Do you know what "rank" means?
 'No, I don''t'
No, I don't

Bracket Indexing

Note: The examples here assume the default index origin.

The items of an array may be selected by bracket indexing. For example:

 V←2 3 5 7 11 13 17 19
 V[3 1 5]
5 2 11
 (2 3 5 7 11 13 17 19)[3 1 5]
5 2 11
 A←'ABCDEFGH'
 A[8 5 1 4]
HEAD
 'ABCDEFGH'[8 5 1 4]
HEAD

The numbers within the square brackets indicate the positions of the data that is being selected. If any of the

indices are out of range, you'll get an error message:

 'ABCDEFGH'[8 5 1 35]
INDEX ERROR
 'ABCDEFGH'[8 5 1 35]
 ^

Elements may be selected from any array by indexing in the manner shown for vectors, except that indices must

be provided for each dimension.

 M
 2 3 5 7
11 13 17 19
 M[2;3]
17
 M[2 1;2 3 4]
13 17 19
 3 5 7

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

23

Note: Scalars are a special case, because they have no dimensions. You can't use bracket indexing for them, but

you can use the similar "Index" (⌷) function.

That last example introduced the idea of using bracket indexing to select a cross section of the array. All rows

(listed before the semicolon) and all columns (listed after the semicolon) are selected, and then arranged in the

order specified. Of course you can select cross sections of arrays of any dimension. The shape of the result will

directly correspond to the shapes of the vectors used to select the items.

 ⍴M[2 1;2 3 4]
2 3
 T
ABCD
EFGH
IJKL
MNOP
QRST
UVWX
 T[2;1;4]
P
 T[2;1 2 3;1 2 3 4]
MNOP
QRST
UVWX
 ⍴T[2;1 2 3;1 2 3 4]
3 4

As a special convention, you can omit the indices along one or more axes, but not the associated semicolons, to

select all items in order along that axis. Thus the last examples above can be written more simply as

 T[2;;]
MNOP
QRST
UVWX
 ⍴T[2;;]
3 4

Index Origin

The indexing used in examples throughout this document is called origin 1 because the first element along each

axis (or dimension) is selected by the index 1. This is the default for a new workspace, but you may also use

origin 0 indexing by setting the index origin to 0. The index origin is controlled by a system variable denoted

by ⎕IO. Thus:

 V←2 3 5 7 11 13 17 19
 ⎕IO←1
 V[1 2 3]
2 3 5
 ⍳3
1 2 3
 ⎕IO←0
 V[0 1 2]
2 3 5
 ⍳3
0 1 2

The ⍳ function shown above is called Interval, because it produces a progression of integers. The first integer in

the progression is ⎕IO, and the interval between values is 1.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

24

In APL2, you always have the choice of using either origin 1 or origin 0. You may find that the use of origin 0

may make some applications easier to write. This is especially true where certain mathematical operations are

being performed. Calculations involving number-base conversions, for example, are often cleaner if you're

working in origin 0. Some indexing operations themselves are also a little cleaner. For example:

 N
1 2 3 4
5 6 7 8
9 10 11 12
 ⎕IO←1
 '∘⎕'[1+N>6]
∘∘∘∘
∘∘⎕⎕
⎕⎕⎕⎕
 ⎕IO←0
 '∘⎕'[N>6]
∘∘∘∘
∘∘⎕⎕
⎕⎕⎕⎕

However, origin 0 can also be confusing at times, simply because most of us grew up being accustomed to

thinking of series of numbers as starting with one instead of zero. [Neither of these is correct, of course; in our

hearts we all know that the number series really begins at negative infinity.] Years of seeing lists numbered "1,
2, 3" instead of "0, 1, 2" tends to leave its mark. Throughout our lives we have seen that

1. House numbers start with 1 (Number 0 Downing Street?)

2. Magazine page 0 is consistently missing

3. Days of the month start with 1 (it's really hard to find an exception here)

So, rather than complicating your life by bucking this ingrained bias, APL2 uses origin 1 as its default. You can

always change it, but that's what you'll see in any new workspace.

Adding More Structure to Arrays

Let's assume that we have an array named A, which contains two pieces of data: a string of numeric data having

the value 1 2 3, and a similar string of numeric data having the value 4 5 6. A then can be represented as a

two-item vector. We can think of the array as looking like this:

┌──────────────────┐
│ ┌─────┐ ┌─────┐ │
│ │1 2 3│ │4 5 6│ │
│ └─────┘ └─────┘ │
└──────────────────┘
The outer box represents A, which contains two items. Each item is a three-item vector. In APL2, an item of an

array can be any other array. Arrays containing items which are other arrays are called nested arrays.

It's very easy to create such an array in APL2. Just use parentheses to group the items:

 MORE←(1 2 3) (4 5 6)
 ⍴MORE
2
 MORE
 1 2 3 4 5 6

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

25

⍴MORE tells us that the shape of MORE is 2; i.e. that it has two items. Note that when APL2 displays a nested

array it adds a blank in front of the first item in each nested group. You can also request a display with boxes by

using a DISPLAY function which we provide. (See DISPLAY under workspaces in the APL2 User's Guide.)

)COPY 1 DISPLAY DISPLAY
 DISPLAY MORE
┌→────────────────┐
│ ┌→────┐ ┌→────┐ │
│ │1 2 3│ │4 5 6│ │
│ └~────┘ └~────┘ │
└∊────────────────┘

The degree of nesting of an array is called depth. A simple scalar has a depth of 0. The simple vector (or even

an n-dimensional array) has a depth of 1. This means that all of its items are simple scalars, that is, either single

numbers or single characters. The depth of MORE above is 2. A depth of 2 means that at least one of its items

has a depth of 1.

APL2 provides a depth function (≡) which shows the depth of an array.

 ≡1 2 3
1
 ≡MORE
2

The matrix M, below, shows the use of nested arrays to add headings to a table and to substitute 'NONE' for

items whose value is 0. The matrix has five rows and three columns. Each item in the first row is a character

vector, and each item in the first column is a character vector. NONE in the last row, last column, is also a

character vector. The depth of M is 2.

 M
FOOD CALORIES PROTEIN
milk 160 9
apple 60 1
bread 75 2
jelly 50 NONE

Assigning Values to Names

The left arrow is used to assign a value to a name. As we have usually shown it throughout this material, the

arrow is near the left end of an APL statement, with only the associated name to its left.

 HYPOTENEUSE←((LEG1*2)+(LEG2*2))*.5

When used this way the APL statement evaluates the expression and assigns the result to the name instead of

displaying the result.

But a specification arrow (as the left arrow is often called) can be used in the middle of an APL statement as

well. In this case the value assigned to the name is made available for additional operations. Consider a function

called REPORT_SALES which takes a region number as an argument; and another function called

REGION_FOR which takes a city name and returns a region number. You might use these functions as follows:

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

26

 REPORT_SALES REGION_FOR 'Chicago'

But if you needed the region number for several statements, you might instead decide to do something like:

 REGION←REGION_FOR 'Chicago'
 REPORT_SALES REGION

Many APL users prefer to keep the statements simple, with the names assigned at the left end of the statements.

But it is also legal to combine the above two statements into one:

 REPORT_SALES REGION←REGION_FOR 'Chicago'

In this statement REPORT_SALES is the last operation performed. Since the last operation is not specification,

a result will be displayed if REPORT_SALES produces one.

Any number of assignment arrows may occur in an expression. Displaying any intermediate result in an APL2

expression can be obtained by including the characters "⎕←" to the left of any portion of the expression. For

example:

 A←2+⎕←3×B←4
12
 A
14
 B
4

The cases covered so far are called simple specification (or simple assignment). The reason for that becomes

obvious as you look at some of the other things you can do with a specification arrow:

 Indexed Specification

 Vector Specification

 Selective Specification

Indexed Specification

If the token to the left of a specification arrow is a right bracket, the bracket operation is first performed, then

the value to the right of the specification arrow is assigned to the items selected by the bracket indexing.

 A←1 2 3
 A[2]←4
 A
1 4 3
 A[2 3]←5 6
 A
1 5 6
 A[2 3]←2
 A
1 2 2

Note that the bracket operation can produce either a single item or multiple items. When multiple items are

produced, the shape must be conformable with the expression on the right, which means that either the rank and

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

27

dimensions must agree, or that the right expression must be a single item so that it can be extended to all

selected items, as in the last example above.

Vector Specification

You can use a single left arrow to assign values to a set of names from the items of a vector:

 (A B)←14 4
 A
14
 B
4

The shape of the vector has to agree with the number of names being assigned; and normally the expression has

to be a vector. But there is one case where APL even relaxes that rule:

 (MY THREE VARIABLES)←0
 MY
0
 THREE
0

(Talk about a confusing choice of names.)

The trick there is that the expression to the right of the left arrow is a scalar rather than a vector, so it has no

shape. This is an example of an APL principle called scalar extension. Having no shape, the scalar can take on

whatever shape it is needed for.

The expression on the right also need not be a simple vector. It can be an arbitrarily nested array:

 (ADR¯NUM ADR¯STREET)←555 ('Bailey' 'Avenue')
 ADR¯STREET
 Bailey Avenue
 ⍴ADR¯STREET
2

Selective Specification

If the token to the left of a specification arrow is a right parenthesis, the expression within the paired

parentheses is performed symbolically (but not actually evaluated), and the value to the right of the arrow is

assigned to the resulting item or items. This is called selective specification and has a number of restrictions.

The supported functions are:

Monadic ↑ ⍉ , ⌽ ,[X] ⌽[X]

Dyadic [L] ⊃ ⍴ ⍉ ↑ ↓ ⌷ ⌽ ↑[X] ↓[X] ⌷[X] ⌽[X]

Derived LO\ LO/ LO\[X] LO/[X]

Selective specification is normally used to replace selected items within an array. In this case the shape of the

array containing replacement data must agree with the shape of the selected items.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

28

Sometimes selected items are not simple data items, but are themselves subarrays. When a whole subarray is

replaced as an item, the structure of the replacement item is not relevant. The replacement could have a different

shape, rank, or depth from the item it is replacing.

In ordinary cases, selective specification can be understood if you understand how the selection expression

works when it is not on the left of an assignment. For example:

 V← 10 20 30 40
 2↑V
10 20
 (2↑V)←100 200
 V
100 200 30 40

The function Take does not select the first two items of V, it selects the locations of the first two items of V. This

resulting vector of locations is considered a simple vector even if the items at those locations are deeply nested.

The data on the right of the assignment then replaces data at those locations.

Various selections and replacements are shown below for the matrix M. The examples assume that each

selective specification expression uses the original specification of M.

 M←3 4⍴'ABCDEFGHIJKL'
 M
ABCD
EFGH
IJKL
 (2 3⌷M)←'⎕'
 M
ABCD
EF⎕H
IJKL
 (1(2 4)⌷M)←'∇*'
 M
A∇C*
EF⎕H
IJKL
 (2 1↑M)←'⊖⌹'
 M
⊖∇C*
⌹F⎕H
IJKL
 (,M)←⍳12
 M
1 2 3 4
5 6 7 8
9 10 11 12
 M←3 4⍴'ABCDEFGHIJKL'
 (4↑,⍉M)←'○*÷⎕'
 M
○⎕CD
*FGH
÷JKL

The last example above demonstrates the application of several functions in selective specification. The

positions replaced were the first four taken in row-major order after M was transposed (its rows and columns

interchanged). These are the characters AEIB, which are then replaced with the ○*÷⎕, respectively.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

29

The example below shows that scalars being selectively assigned to a non-scalar array of locations are

replicated as necessary.

 M←3 4⍴'ABCDEFGHIJKL'
 ((1 3)(1 4)⌷M)←'*'
 M
BC
EFGH
JK

Restrictions

If B is a shared variable, then

 ((B=' ')/B)←'*'

is an error because the leftmost mention of B is a reference of the shared variable and causes B to receive a new

value.

Order of Evaluation

In APL2, the order of evaluation is from right to left, with a few qualifications that we will get to in a moment.

In particular, there is no hierarchy among the functions, such as multiplication being executed before addition.

All functions are treated alike. This should come as a real relief if you have used other programming languages.

(The C language, for example, has 15 levels of precedence!)

It would be confusing enough to try to define a hierarchy among the very complete set of primitive functions

provided by APL2, but even that wouldn't begin to be enough. APL2 allows you to define your own functions,

which behave just like the primitive functions. Would you appreciate having to specify a precedence for every

routine you write, compared with every other routine you or anyone else has ever written?

So, despite the initial shock at learning that 2×3+4 is 14 in APL (right to left, not multiplication first), it is

soon reassuring to know without worrying about it that in

 2 FOO 3 + 4

the addition happens before calling FOO, while in

 2 + 3 FOO 4

the addition happens last.

Exceptions to the Rule

Now we take up the few qualifications which modify the basic right-to-left order. In order of execution priority

they are:

1. Parentheses

2. Bracket notation.

3. Specification object.

4. Vector notation.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

30

5. Operand binding.

followed by the basic rule,

6. Normal function processing order.

Parentheses

Parentheses are used in the familiar way to control the order of evaluation in a statement. Any expression within

matching parentheses is evaluated before applying any function to the result outside the matching pair.

Parentheses are always permissible if they are properly paired and what is inside evaluates to an array, a

function, or an operator. There are no restrictions on levels of nesting.

Parentheses are often used to surround the left argument of a function, so that it is evaluated in one complete

piece. For example, (7-3)×2 is 8 whereas 7-3×2 is 1.

Parentheses are not needed for the right argument of a function, because of APL's normal evaluation order.

This, combined with the careful design of many APL functions so that the primary data is in the right argument,

means that fewer parentheses are required in APL than in most languages.

Priority of Bracket Operations

Brackets provide a very useful notation, but one that does not fit in perfectly with the rest of APL syntax. Like

parentheses, brackets completely override the order of processing for the expressions contained within them.

But unlike parentheses, brackets are an implied function or operator (depending on what is to the left of the left

bracket), and are tightly bound to the closest function or data that can be identified on their left.

For discussion of brackets as a function, see Bracket Index. Use of brackets as an operator is restricted to

specific primitive and derived functions, and is discussed with those functions or the operators deriving them, as

a "with axis" variant.

The tight binding of bracket notation to the token on the left takes priority over all other language constructs

except parentheses.

 A←1 2 3
 A[2]←4
 A
1 4 3
 A A[2]
 1 4 3 4
 1 1 2 3 5 8[4]
RANK ERROR
 1 1 2 3 5 8[4]
 ^ ^
 (1 1 2 3 5 8)[4]
3

Priority of Specification

Normally the token to the left of a left arrow is the name of a variable, or an unused name that can become the

name of a variable. The left arrow is called Specification or Assignment, and associates the name on its left with

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

31

the evaluated expression on its right. Although Specification is not, formally, a function or operator, it does

make the value of the expression to its right available for further use in the APL expression, much as if it were a

function result. (But this is done only if the value is required. Unlike a real function, if assignment is the last

operation the value is not displayed.)

Two constructions can be used to modify this normal behavior:

 If the token to the left of a specification arrow is a right bracket, indexed specification is performed.

 If the token to the left of a specification arrow is a right parenthesis, selective specification is performed.

In either case, note that if the value is used further in the expression, it is the value to the right of the

specification arrow that is propagated, not the value of the named variable or variables.

 A←1 2 3
 2+A
3 4 5
 2+A[2]←10
12
 B←'HELLO'
 2+(A B)←1 2
3 4
 A
1
 B
2

Vector Notation and its Priority

A series of value expressions separated from each other by nothing but spaces is treated as a vector. Here are

some examples:

 2 3 4
 'A' 'B' 'C'
 1 (2 3) 4

In that last example, (2 3) is a value expression which is then combined with the remainder of the expression

to form a three-item nested array. Here are some additional examples which extend that concept:

 2 'ABC'
 1 (2+3) 4
 AA←2 3
 1 AA 4

Note that the last example has exactly the same value as the last example in the previous group.

Order of Evaluation

Like other APL expressions, the items within a vector notation are evaluated from right to left:

 A←1
 A (A←2) A
2 2 1

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

32

But forming a vector using vector notation takes precedence over applying an array to the function or operator

on its right.

 1 2 3 + 4 5 6
5 7 9
 A←1
 3 A + 1 1
4 2

Vector notation does not take precedence over assignment.

 A←1
 A B←2 3
 1 2 3
 A
1
 B
2 3
 (A B)←2 3
 A
2
 B
3

Nor does it take precedence over bracket indexing.

 A←1 2 3
 A A[2]
 1 2 3 2

Operand Binding

Monadic Operators

Most operators are monadic; which means they take an operand on the left. There is little chance of confusion

with these. Working from right to left, APL2 finds an operator, then looks to its left for an operand.

 If it finds an array, it first applies the vector notation rule, then uses the resulting array as an operand.

 If it finds a function, that becomes the operand.

 If it finds another operator, APL2 knows that it will first have to produce a derived function from that

operator, and the derived function will then become the operand for the first operator.

An example will make the last case clear. The Each (¨) operator applies its operand function to each item (at the

top level) of the data argument. The Reduce (/) operator applies its operand function between each item (at the

top level) of the data argument. Thus:

 ×/2 3 ¯1
¯6
 ×¨2 3 ¯1
1 1 ¯1

In the first case × is applied between each item, so is used as a multiplication:

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

33

 2×3×¯1
¯6

In the second case × is applied to each item, so it becomes a monadic function which returns the sign of the

value:

 (×2) (×3) (×¯1)
1 1 ¯1

(Actually, the function would do that even without the ¨. See Scalar Functions.)

All that was background. Now we are ready for the real example:

 ×/¨(2 3 ¯1) (2 3 4)
¯6 24

Looking from right to left we can see that APL2 will first create two vectors and then combine them into one

nested vector. Now it encounters the ¨ operator, so it looks to its left. It sees /, which is also an operator; so

cannot be an operand. Continuing left it sees that it can form the derived function ×/, which is a product

reduction. It can then use that function as the operand for ¨, like this:

 (×/2 3 ¯1) (×/2 3 4)
¯6 24

Dyadic Operators

APL2 includes only one primitive dyadic operator, the Array Product operator, but users can define additional

dyadic operators. The Array Product operator, when used with a left and right function, produces any of an

infinite variety of Inner Product derived functions. The specific inner product derived function corresponding to

the original mathematical use of the term is +.×, which forms products of pairs of values from the left and right

argument data, and sums groups of those products.

 A←2 3⍴⍳6
 B←3 4⍴⍳12
 A
1 2 3
4 5 6
 B
1 2 3 4
5 6 7 8
9 10 11 12

Multiplying the first row of A by each of the first two columns of B gives:

 +/1 2 3 × 1 5 9
38
 +/1 2 3 × 2 6 10
44

+.× does that for each row of A combined with each column of B:

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

34

 A+.×B
38 44 50 56
83 98 113 128

The point to focus on right now is not why anyone would want such an oddly defined facility (though it does

turn out to be extraordinarily useful), but why APL2 analyzes the syntax of the expression the way it does. Note

that the right-most part of the expression is ×B, which APL2 is quite capable of evaluating on its own:

 ×B
1 1 1 1
1 1 1 1
1 1 1 1

Not a terribly exciting result, but it does say that all items of B are positive.

But APL2 does not evaluate the expression that way. This is the first real example that we have seen showing

that operands take priority over normal right-to-left function processing. When APL2, scanning right to left,

encounters the ×, it has to look further anyway to find out whether there is a left argument, i.e. to decide

whether × is the monadic Direction function or the dyadic Product function. When it finds the dyadic operator

symbol . it knows that × is being used as an operand.

To carry this one step further, / which we also used above, is a monadic operator. How should APL2 evaluate

an expression like +.×/? ×/ is a derived function which could become the right operand to +., but +.× is also

a derived function which could become the left operand to /. The answer is that the right operand of an dyadic

operator is bound more tightly than the left operand of an operator. i.e.,

 +.×/ ⍝ Is equivalent to
 (+.×)/ ⍝ this
 +.(×/) ⍝ not to this

Errors

Entry of a statement that cannot be executed will invoke an error report. Newcomers to APL2 often tend to

worry needlessly about typing inputs that result in errors. These error reports are some of the most helpful aids

that you could ask for toward learning the language. APL2 error reports are designed to be clear, concise, and

precise.

As opposed to doing everything that you could do to prevent generating errors, it may be helpful to deliberately

try out many of the error conditions. This is a good way of learning how various functions are defined. Learning

by doing is always preferable. And don't worry that you may enter something that you shouldn't have... nothing

that you can enter can hurt the machine. This gives you full freedom to experiment.

An APL2 error report indicates the nature of the error and displays carets, indicating both where the error

occurred and where the execution halted. For example:

 B←1 2 3 + A←4 5
LENGTH ERROR
 B←1 2 3+A←4 5
 ^ ^

There's a wealth of information available from these error reports. Let's see just what this message is telling us:

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

35

 B←1 2 3 + A←4 5 Here is the line that you typed in.

LENGTH ERROR Two lengths are incompatible

 B←1 2 3+A←4 5 Here is your input line
 (unneeded blanks have been removed)

 ^ ^ Scan position and error position

There will typically be two carets under the line of code. The left caret shows you how far APL2 got in its right-

to-left scan of the line (here, the system has recognized that 1 2 3 is a numeric vector to be treated as a left

argument, and it has stopped at the assignment arrow, which it has not yet processed). The right caret shows

you the point of the actual error. Normally, that will indicate which function APL2 was evaluating when the

error occurred. In this example, the arguments to the + function aren't compatible with each other, so the

requested addition can't be performed.

Sometimes one caret will be "on top of" the other, so it will look like there is only one.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

36

Primitive Functions

In this section we use L to refer to the left argument, R to refer to the right argument, and X to refer to an axis

value.

You will find below a complete Alphabetic List of primitive function names, from each entry of which you can

get to information about that function. In addition, you can use any of the following lists to get to that same

information:

Primitive Function Symbols

This list shows which symbols are used monadically and dyadically, and the function names associated

with each usage.

Scalar Functions

Functions which transform simple scalar values within any array, no matter how the data is structured,

and produce results whose structure matches their arguments.

Structural Functions

Functions which retain part or all of the data in their arguments, but produce results whose structure has

been changed.

Information Functions

Functions which return information about the structure or content of their arguments, but do not return

the data itself.

Non-scalar transform Functions

Functions which transform data and either work on certain types of structures, or return data structures

different from their arguments.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

37

Alphabetic List of Functions

 Add

 And

 Binomial

 Bracket Index

 Catenate

 Catenate with Axis

 Ceiling

 Circle Functions (trigonometric)

 Conjugate

 Deal

 Decode

 Depth

 Direction (sign)

 Disclose

 Disclose with Axis

 Divide

 Drop

 Drop with Axis

 Enclose

 Enclose with Axis

 Encode

 Enlist (structure to vector)

 Equal

 Execute

 Exponential

 Factorial

 Find

 First

 Floor

 Format (default)

 Format by Example

 Format by Specification

 Grade Down

 Grade Down with Collating Sequence

 Grade Up

 Grade Up with Collating Sequence

 Greater Than

 Greater Than or Equal to

 Index (select items)

 Index with Axis

 Index of

 Interval

 Laminate (add dimension)

 Less Than

 Less Than or Equal to

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

38

 Logarithm

 Magnitude (absolute value)

 Match

 Matrix Divide

 Matrix Inverse

 Maximum

 Member

 Minimum

 Multiply

 Nand

 Natural Logarithm

 Negative

 Nor

 Not

 Not Equal

 Or

 Partition

 Partition with Axis

 Pi Times

 Pick

 Power

 Ravel (array to vector)

 Ravel with Axis

 Reciprocal

 Reshape

 Residue (remainder)

 Reverse

 Reverse with Axis

 Roll

 Rotate

 Rotate with Axis

 Shape

 Subtract

 Take

 Take with Axis

 Transpose

 Transpose (reversed axes)

 Without

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

39

Names and Valences of Primitive Function Symbols

Symbol Monadic Use Dyadic Use

+ Conjugate Add

- Negative Subtract

× Direction Multiply

÷ Reciprocal Divide

* Exponential Power

| Magnitude Residue

⌈ Ceiling Maximum

⌊ Floor Minimum

⍟ Natural Logarithm Logarithm

? Roll Deal

! Factorial Binomial

○ Pi Times Circle Functions

⌹ Matrix Inverse Matrix Divide

^ And

∨ Or

⍲ Nand

⍱ Nor

~ Not Without

< Less Than

≤ Less Than or Equal

= Equal

≥ Greater Than or Equal

> Greater Than

≠ Not Equal

≡ Depth Match

, Ravel Catenate or Laminate

⍴ Shape Reshape

⊃ Disclose Pick

⊂ Enclose Partition

⌽ Reverse Rotate

⍉ Transpose (reversed axes) Transpose

↓ Drop

↑ First Take

[] Bracket Index

⌷ Index

⍋ Grade Up Grade Up with Collating Sequence

⍒ Grade Down Grade Down with Collating Sequence

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

40

Symbol Monadic Use Dyadic Use

⍳ Interval Index of

⍷ Find

∊ Enlist Member

⍎ Execute

⍕ Format (default) Format by Example or Format by Specification

⊥ Decode

⊤ Encode

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

41

Scalar Functions

Monadic

These functions apply to scalar items within an arbitrarily structured array, and produce a result with the same

structure.

Note: Trigonometric functions are provided as dyadic Circle Functions.

Syntax Name

-R Negative

÷R Reciprocal

⌈R Ceiling

⌊R Floor

|R Magnitude (absolute value)

×R Direction (sign)

+R Conjugate

*R Exponential

⍟R Natural Logarithm

!R Factorial

○R Pi Times

?R Roll

~R Not

Dyadic

These functions apply to scalar items within any pair of arbitrarily but equivalently structured arrays, and

produce a result with the same structure. They also permit scalar extension, replicating a scalar item to agree

with the shape of the other argument.

Syntax Name

L+R Add

L-R Subtract

L×R Multiply

L÷R Divide

L|R Residue (remainder)

L⌈R Maximum

L⌊R Minimum

L○R Circle Functions (trigonometric)

L*R Power

L⍟R Logarithm

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

42

Syntax Name

L^R And

L∨R Or

L⍲R Nand

L⍱R Nor

L<R Less Than

L≤R Less Than or Equal to

L=R Equal

L>R Greater Than

L≥R Greater Than or Equal to

L≠R Not Equal

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

43

Structural Functions

The following functions manipulate data structures without affecting the values of individual items.

Monadic

Syntax Name

↑R First

⌽R Reverse

⌽[X]R Reverse with Axis

⍉R Transpose (reversed axes)

,R Ravel (array to vector)

,[X]R Ravel with Axis

∊R Enlist (structure to vector)

⊂R Enclose

⊂[X]R Enclose with Axis

⊃R Disclose

⊃[X]R Disclose with Axis

Dyadic

Syntax Name

L⍴R Reshape

L⌽R Rotate

L⌽[X]R Rotate with Axis

L⍉R Transpose

L,R Catenate

L,[X]R Catenate with Axis

L,[X]R Laminate (add dimension)

L~R Without

L↑R Take

L↑[X]R Take with Axis

L↓R Drop

L↓[X]R Drop with Axis

L⌷R Index (select items)

L⌷[X]R Index with Axis

A[I] Bracket Index

L⊃R Pick

L⊂R Partition

L⊂[X]R Partition with Axis

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

44

Information Functions

Monadic

Syntax Name

⍴R Shape

≡R Depth

⍋R Grade Up

⍒R Grade Down

Dyadic

Syntax Name

L≡R Match

L∊R Member

L⍳R Index of

L⍷R Find

L⍋R Grade Up with Collating Sequence

L⍒R Grade Down with Collating Sequence

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

45

Non-scalar transform Functions

Monadic

Syntax Name

⍳R Interval

⍕R Format (default)

⍎R Execute

⌹R Matrix Inverse

Dyadic

Syntax Name

L⊥R Decode

L⊤R Encode

L?R Deal

L⌹R Matrix Divide

L!R Binomial

L⍕R Format by Example

L⍕R Format by Specification

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

46

Add

Sum of L and R.

 5+1 2 3
6 7 8
 1 2 3+4 5 6
5 7 9

L,R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

47

And

A 1 if both L and R are 1; a 0 otherwise.

 0 0 1 1^0 1 0 1
0 0 0 1

L,R: Boolean

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

48

Binomial

The number of combinations of R things taken L at a time.

 2!8
28

L,R: Numeric (If R is a negative integer, L must be integer.)

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

49

Bracket Index

The items of A specified by index arrays I.

 LANG←'APPLE PIE'
 LANG[1 7 4]
APL
 M1←2 2⍴⍳4
 M1[;2]
2 4

A: Nonscalar array

I: Simple array of nonnegative integers

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

50

Catenate

L and R joined along the last axis.

 M1←2 2⍴⍳4
 M2←2 2⍴'ABCD'
 M2,M1
AB 1 2
CD 3 4

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

51

Catenate with Axis

L and R joined along axis X.

 M1←2 2⍴⍳4
 M2←2 2⍴'ABCD'
 M2,[1]M1
A B
C D
1 2
3 4

X: Simple scalar, nonempty, nonnegative integer

Implicit argument: ⎕IO

See also Laminate for non-integral values of X.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

52

Ceiling

For a real R: the smallest integer greater than or equal to R.

 ⌈.4 ¯.3 ¯3.4
1 0 ¯3

R: Numeric

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

53

Circle Functions

L specifies the function to be performed on R. The values of L and the functions they represent are shown in the

table below.

 1○1.5708
1
 2○.25
0.9689124217

R: Numeric

L: Integer; ¯12≤L≤12

L Function L Function

 0 (1-R*2)*.5

¯1 Arcsin R 1 Sine R

¯2 Arccos R 2 Cosine R

¯3 Arctan R 3 Tangent R

¯4 (¯1+R*2)*.5 4 (1+R*2)*.5

¯5 Arcsinh R 5 Sinh R

¯6 Arccosh R 6 Cosh R

¯7 Arctanh R 7 Tanh R

¯8 -(8○R) 8 -(¯1-R*2)*.5 for R≥0

(¯1-R*2)*.5 for R<0

¯9 R 9 Real R

¯10 +R 10 |R

¯11 0J1×R 11 Imaginary R

¯12 *0J1×R 12 Phase R

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

54

Conjugate

R with the imaginary part negated.

 +.4 ¯5 3J4 ¯3J¯4
0.4 ¯5 3J¯4 ¯3J4

R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

55

Deal

L integers selected at random from ⍳R without replacement.

 ⎕RL←16807
 5?5
5 1 2 4 3

R: Simple scalar or 1-item vector; nonnegative integer less than 2*31

L: Simple scalar or 1-item vector; nonnegative integer less than or equal to R

Implicit arguments: ⎕IO, ⎕RL

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

56

Decode

The base 10 representation of R, where R is a number of base L. The value of a polynomial having coefficients

R at point L.

 2⊥1 0 0 1
9
 60 60 60⊥1 30 20
5420

L,R: Simple numeric arrays

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

57

Depth

Levels of nesting of R: 0 for a simple scalar; 1 plus the depth of the deepest item for other arrays.

 ≡4
0
 ≡2 2⍴⍳4
1
 ≡2 2⍴1 2 3 (4 5)
2

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

58

Direction

For a real R: ¯1 if R is negative; 0 if R is zero; 1 if R is positive. For an imaginary R: the nonreal number of

magnitude 1 that has the same phase as R.

 ×¯5 0 5
¯1 0 1
 ×3J4 ¯3J4
0.6J0.8 ¯0.6J0.8

R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

59

Disclose

R restructured into an array whose rightmost axes come from the axes of the items of R.

 ⊃(1 2 3)(4 5 6)
1 2 3
4 5 6

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

60

Disclose with Axis

R restructured into an array; X specifies the axes of the array into which items of R are structured.

 ⊃[1]('ABCD')('EFGH')
AE
BF
CG
DH

X: Simple scalar or vector; nonnegative integers

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

61

Divide

L divided by R.

 0 8÷0 0.4
1 20

L,R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

62

Drop

For a positive scalar L: removes the first L items of R.

For a negative scalar L: removes the last L items of R.

 2↓1 2 3 4
3 4
 ¯2↓1 2 3 4
1 2

L: Simple scalar or vector; integer

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

63

Drop with Axis

For a positive scalar L: removes the first L items of the Xth axis of R.

For a negative scalar L: removes the last L items of the Xth axis of R.

(In a matrix, for example, if X is 1, L rows are dropped from R; if X is 2, L columns are dropped from R.)

 H←2 4⍴'ABCDEFGH'
 2↓[2]H
CD
GH

L: Simple scalar or vector; integer

R: Nonscalar array

X: Simple scalar or vector; nonnegative integers

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

64

Enclose

A scalar array whose only item is R.

 R←2 3⍴⍳6
 ⊂R
1 2 3
4 5 6
 ⍴⊂R
 ≡⊂R
2

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

65

Enclose with Axis

An array whose items are those in the axes of R specified by X.

 R←2 3⍴'ABCDEF'
 ⊂[1]R
AD BE CF
 ⍴⊂[1]R
3
 ≡⊂[1]R
2

X: Simple scalar or vector; nonnegative integers

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

66

Encode

The base L representation of R, where R is a base 10 number.

 2 2 2 2 2⊤16
1 0 0 0 0
 60 60 60⊤5420
1 30 20

L,R: Simple numeric arrays

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

67

Enlist

A simple vector whose items are the simple scalars in R.

 R←9 (7 8) (2 3⍴⍳6)
 ∊R
9 7 8 1 2 3 4 5 6

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

68

Equal

A 1 if L is equal to R; a 0 otherwise.

 20 30 40=40 30 20
0 1 0

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

69

Execute

The evaluation of the result of the APL2 expression represented by the character vector R.

 ⍎'3+4'
7

R: Simple character scalar or vector

If the argument is empty, or represents a defined function or operator without an explicit result, then ⍎R has no

result. Execute of a branch statement is permitted only if ⍎ is the leftmost operation on the line.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

70

Exponential

e to the Rth power.

 *0 1 2
1 2.718281828 7.389056099

R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

71

Factorial

For a positive integer R: the product of all positive integers through R.

 !4 3 5
24 6 120

R: Numeric, excluding negative integers

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

72

Find

A Boolean array Z that corresponds to R. Z contains a 1 where pattern L begins in the corresponding position of

R. All other items of Z are 0.

 'AB'⍷'ABABAB'
1 0 1 0 1 0

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

73

First

The first item of R. If R is empty, the prototype of R.

 ↑'ME' 'THEE'
ME

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

74

Floor

For a real R: the largest integer that does not exceed R.

 ⌊.4 ¯.3 ¯3.4
0 ¯1 ¯4

R: Numeric

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

75

Format (default)

A simple character array whose appearance is the same as the display of R.

 M←2 3⍴⍳6
 ⍕M
1 2 3
4 5 6
 ⍴⍕M
2 5

Implicit argument: ⎕PP

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

76

Format by Example

A character array containing the data in R formatted using format model L. L includes control characters and

decorators. The control characters are:

0 Pad zeros to this position

1 Float decorator if negative

2 Float decorator if nonnegative

3 Float decorator

4 Do not float nearest decorator

5 Normal digit

6 Decorator to right ends the field

7 Use next decorator to right for scaled form

8 Fill empty positions of field with ⎕FC[3]

9 Pad zeros to this position if nonzero

. Decimal point

, Controlled comma

All other characters are decorators and are floated if requested.

 ' $53.50'⍕2 2⍴⍳4
 $1.00 $2.00
 $3.00 $4.00

L: Simple character vector

R: Simple real array

Implicit argument: ⎕FC[⍳5]

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

77

Format by Specification

A character array containing data in R formatted using column specifications L. Each pair of items in L

corresponds to a column.

The first of each pair sets column width; the second sets display precision and format (positive for conventional

or negative for scaled).

A single pair of integers extends the specification to all columns. A single integer L is interpreted as (0,L).

 5 3 4 0⍕2 2⍴⍳4
1.000 2
3.000 4

L: Simple integer vector

R: Array of depth 2 or less whose items are simple real scalars or vectors

Implicit argument: ⎕FC[4 6]

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

78

Grade Down

A vector of integers that can be used as an index to sort the subarrays along the first axis of R into descending

order.

 N←23 11 13 31 12
 ⍒N
4 1 3 5 2
 N[⍒N]
31 23 13 12 11

R: Simple nonscalar real numeric array

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

79

Grade Down with Collating Sequence

Same as Grade Down (⍒R) except that the collating sequence used is defined by L.

 'ABCDE'⍒'BEAD'
2 4 1 3

L: Simple nonempty nonscalar character array

R: Simple nonscalar character array

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

80

Grade Up

A vector of integers that can be used as an index to sort the subarrays along the first axis of R into ascending

order.

 N←23 11 13 31 12
 ⍋N
2 5 3 1 4
 N[⍋N]
11 12 13 23 31

R: Simple nonscalar real numeric array

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

81

Grade Up with Collating Sequence

Same as Grade Up (⍋R) except that the collating sequence used is defined by L.

 'ABCDE'⍋'BEAD'
3 1 4 2

L: Simple nonempty nonscalar character array

R: Simple nonscalar character array

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

82

Greater Than

A 1 if L is greater than R; a 0 otherwise.

 20 30 40>40 30 20
0 0 1

L,R: Real numeric

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

83

Greater Than or Equal to

A 1 if L is greater than or equal to R; a 0 otherwise.

 20 30 40≥40 30 20
0 1 1

L,R: Real numeric

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

84

Index

Selects cross sections of R using a list of index arrays L.

 ⎕IO←1
 V←2 2.3 ¯5 999 .01
 3⌷V
¯5
 (⊂3 4)⌷V
¯5 999

L: Scalar or vector of nonnegative integers of depth no greater than two.

R: Any array.

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

85

Index of

The position of the first occurrence in L of each item in R.

 7 8 9 7⍳8 7 6 7 9
2 1 5 1 3

L: Vector

Implicit arguments: ⎕IO, ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

86

Index with Axis

Selects cross sections of R using a list of index arrays L that corresponds to axes X.

 ⎕IO←1
 A←2 3 4⍴⍳24
 A
 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
 2⌷[1]A
13 14 15 16
17 18 19 20
21 22 23 24

L: Scalar or vector of nonnegative integers of depth no greater than two.

R: Any array.

X: Simple scalar or vector; nonnegative integers: X∊⍳⍴⍴R

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

87

Interval

R consecutive ascending integers beginning with ⎕IO.

 ⍳4
1 2 3 4

R: Simple scalar or 1-item vector; nonnegative integer less than 2*31

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

88

Laminate

For a fractional X: L and R joined to form a new axis of length 2.

 'ONE',[.5]'TWO'
ONE
TWO

X: Simple nonempty fractional scalar between ¯1+⎕IO and ⎕IO+(⍴⍴L)⌈⍴⍴R

Implicit argument: ⎕IO

See also Catenate with Axis for integral values of X.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

89

Less Than

A 1 if L is less than R; a 0 otherwise.

 20 30 40

L,R: Real numeric

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

90

Less Than or Equal to

A 1 if L is less than or equal to R; a 0 otherwise.

 20 30 40≤40 30 20
1 1 0

L,R: Real numeric

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

91

Logarithm

The base L logarithm of R.

 5 10⍟125 100
3 2

L,R: Numeric; nonzero

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

92

Magnitude

Distance between 0 and R.

 |6 ¯5 3J4
6 5 5

R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

93

Match

A 1 if L and R are the same in structure and data; a 0 otherwise.

 'YES NO'≡'YES','NO'
0
 'YES NO'≡'YES ','NO'
1

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

94

Matrix Divide

The solution of a system of linear equations of a vector L and a nonsingular matrix R, or, if R has more rows

than columns, a least squares approximation.

 1 4⌹2 2⍴1 0 0 2
1 2

L,R: Simple numeric arrays of rank 2 or less

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

95

Matrix Inverse

The inverse of a nonsingular matrix.

 ⌹2 2⍴1 0 0 2
1 0
0 0.5

R: Simple numeric array of rank 2 or less

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

96

Maximum

The larger of L and R.

 4 0.5⌈1 6
4 6

L,R: Real

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

97

Member

A Boolean array Z that has the same shape as L. An item of Z is 1 if the corresponding item of L can be found

anywhere in R. An item of Z is 0 otherwise.

 8 7 6 7 9∊7 8 9 7
1 1 0 1 1

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

98

Minimum

The smaller of L and R.

 0.4 6⌊1 0.5
0.4 0.5

L,R: Real

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

99

Multiply

The product of L and R.

 0 1×3 4
0 4

L,R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

100

Nand

A 1 if either L or R is 0; 0 if both L and R are 1.

 0 0 1 1⍲1 0 1 0
1 1 0 1

L,R: Boolean

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

101

Natural Logarithm

The logarithm of R to the base e.

 ⍟1 2
0 0.6931471806

R: Numeric; nonzero

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

102

Negative

Negative R if R is positive; positive R if R is negative.

 -¯5 1
5 ¯1

R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

103

Nor

A 1 if both L and R are 0; a 0 otherwise.

 0 0 1 1⍱1 0 1 0
0 1 0 0

L,R: Boolean

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

104

Not

A 1 for each item of R that is 0; a 0 for each item of R that is 1.

 ~1 0
0 1

R: Boolean

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

105

Not Equal

A 1 if L is not equal to R; a 0 otherwise.

 20 30 40≠40 30 20
1 0 1

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

106

Or

A 1 if either L or R is 1; 0 if both L and R are 0.

 0 0 1 1∨1 0 1 0
1 0 1 1

L,R: Boolean

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

107

Partition

Partitions R into an array of vectors, with break points wherever corresponding items of L increase. Where L=0

the corresponding items of R are omitted.

)LOAD 1 DISPLAY
 DISPLAY 1 1 2⊂'ABC'
┌→─────────┐
│ ┌→─┐ ┌→┐ │
│ │AB│ │C│ │
│ └──┘ └─┘ │
└∊─────────┘
 DISPLAY (SAVES≠' ')⊂SAVES←' A STITCH IN TIME'
┌→─────────────────────────┐
│ ┌→┐ ┌→─────┐ ┌→─┐ ┌→───┐ │
│ │A│ │STITCH│ │IN│ │TIME│ │
│ └─┘ └──────┘ └──┘ └────┘ │
└∊─────────────────────────┘
 M←⍕3 3⍴1 10 3.142 2 100 6.283 3 1000 9.425
 DISPLAY M
┌→───────────┐
↓1 10 3.142│
│2 100 6.283│
│3 1000 9.425│
└────────────┘
 DISPLAY (~^⌿' '=M)⊂M
┌→───────────────────┐
↓ ┌→┐ ┌→───┐ ┌→────┐ │
│ │1│ │ 10│ │3.142│ │
│ └─┘ └────┘ └─────┘ │
│ ┌→┐ ┌→───┐ ┌→────┐ │
│ │2│ │ 100│ │6.283│ │
│ └─┘ └────┘ └─────┘ │
│ ┌→┐ ┌→───┐ ┌→────┐ │
│ │3│ │1000│ │9.425│ │
│ └─┘ └────┘ └─────┘ │
└∊───────────────────┘

L: Simple scalar or vector of nonnegative integers.

R: Nonscalar.

When L=0 the corresponding item does not appear in the result.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

108

Partition with Axis

Partitions R into an array of vectors specified by L along axis X.

)LOAD 1 DISPLAY
 DISPLAY N←4 3⍴⍳12
┌→───────┐
↓ 1 2 3│
│ 4 5 6│
│ 7 8 9│
│10 11 12│
└~───────┘
 DISPLAY 1 0 1 1⊂[1]N
┌→─────────────────────┐
↓ ┌→┐ ┌→┐ ┌→┐ │
│ │1│ │2│ │3│ │
│ └~┘ └~┘ └~┘ │
│ ┌→───┐ ┌→───┐ ┌→───┐ │
│ │7 10│ │8 11│ │9 12│ │
│ └~───┘ └~───┘ └~───┘ │
└∊─────────────────────┘

L: Simple scalar or vector of nonnegative integers.

R: Nonscalar.

X: Simple scalar or one item vector.

Implicit argument: ⎕IO

When L=0 the corresponding item does not appear in the result.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

109

Pick

An item of R as specified by the path indices L.

 R←'ONE' 'TWO'
 2 1⊃R
T

L: Integer scalar or vector whose depth is 2 or less.

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

110

Pi Times

The product of pi and R.

 ○1
3.141592654

R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

111

Power

L raised to the Rth power.

 2 10*4 ¯2
16 0.01

Fractional values are also supported, yielding roots. When ÷R is an even integer there are two real roots. Since

APL2 supports complex numbers, there are always multiple possible roots. The result given is the one with the

smallest nonnegative angle in the complex plane. (This rule ensures that a positive real root will be returned if

there is one.)

 16 * ÷1 2 3 4
16 4 2.5198421 2
 2.5198421 * 3
16
 16*.75 ⍝ 4th root cubed
8

L,R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

112

Ravel

A vector consisting of the items of R taken in row-major order.

 R←2 2⍴'ABCD'
 ,R
ABCD
 ⍴,R
4

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

113

Ravel with Axis

An array whose contiguous subarrays are R, but structured by either combining axes (if X is integer) or forming

a new axis of length 1 (if X is a fraction).

 ,[2 3]2 2 2⍴⍳8
1 2 3 4
5 6 7 8
 ,[1.1]10 15
10
15

X: Simple scalar fraction, simple scalar, vector of nonnegative integers, or empty

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

114

Reciprocal

1 divided by R.

 ÷5 .2
0.2 5

R: Numeric; nonzero

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

115

Reshape

The items of R in an array of shape L.

 R←3 4⍴⍳12
 2 6⍴R
1 2 3 4 5 6
7 8 9 10 11 12

L: Simple scalar or vector; nonnegative integers

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

116

Residue

For a real and positive L: the remainder of R divided by L.

 0 8|9 15
9 7

L,R: Numeric

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

117

Reverse

An array with the items of R reversed along the last axis.

 R←3 3⍴'ABCDEFGHI'
 ⌽R
CBA
FED
IHG

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

118

Reverse with Axis

An array with items of R reversed along the Xth axis.

 R←3 3⍴'ABCDEFGHI'
 ⌽[1]R
GHI
DEF
ABC

X: Scalar or 1-item vector; nonnegative integer

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

119

Roll

A random integer from ⍳R.

 ⎕RL←1144108930
 ?10 10 10 10
3 1 7 7

R: Positive integer

Implicit arguments: ⎕IO, ⎕RL

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

120

Rotate

An array with items of R rotated |L positions along the last axis. The sign of L determines the direction of

rotation.

 R←3 4⍴⍳12
 2 1 ¯1⌽R
 3 4 1 2
 6 7 8 5
12 9 10 11

L: Simple integer

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

121

Rotate with Axis

An array with items of R rotated |L positions along the Xth axis. The sign of L determines the direction of

rotation.

 R←3 4⍴⍳12
 0 1 ¯1 ¯2 ⌽[1]R
1 6 11 8
5 10 3 12
9 2 7 4

L: Simple integer

X: Nonempty simple scalar; nonnegative integer

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

122

Shape

The length of each axis of R.

 R←3 4⍴⍳12
 ⍴R
3 4

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

123

Subtract

L minus R.

 8 ¯3-6 ¯5
2 2

L,R: Numeric

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

124

Take

For a positive scalar L: the first L items of R.

For a negative scalar L: the last L items of R.

 2↑1 2 3 4
1 2
 ¯2↑1 2 3 4
3 4

L: Simple scalar or vector; integer

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

125

Take with Axis

For a positive scalar L: the first L items of the Xth axis of R.

For a negative scalar L: the last L items of the Xth axis of R.

(That is, if X is 1, L rows are taken from R; if X is 2, L columns are taken from R.)

 H←2 4⍴'ABCDEFGH'
 2↑[2]H
AB
EF

L: Simple scalar or vector; integer

R: Nonscalar array

X: Simple scalar or vector; nonnegative integers

Implicit argument: ⎕IO

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

126

Transpose

If L selects all axes of R, produces an array similar to R, but with the axes permuted according to L.

If L includes repetitions of axes, produces a diagonal cross section of R.

 2 1 3⍉2 2 2⍴⍳8
1 2
5 6
3 4
7 8

L: Simple scalar or vector; nonnegative integer

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

127

Transpose (reversed axes)

An array similar to R, but with the order of the axes of R reversed.

 R←2 3⍴'ABCDEF'
 ⍉R
AD
BE
CF

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

128

Without

The items in L that do not occur in R.

 'DIET'~'TEARS'
DI

L: Scalar or vector

Implicit argument: ⎕CT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

129

Primitive Operators

In this section we use the following notation:

LO left operand of the operator

RO right operand of the operator

X axis along which the operator is applied

L left argument of the derived function

R right argument of the derived function

Syntax Name

LO/R Compress

LO/[X]R Compress with Axis

L LO¨ R Each, Deriving Dyadic

LO¨ R Each, Deriving Monadic

LO\R Expand

LO\[X]R Expand with Axis

L LO.RO R Inner Product

L ∘.RO R Outer Product

LO/R Reduce

L LO/R Reduce N-wise

L LO/[X]R Reduce N-wise with Axis

LO/[X]R Reduce with Axis

LO/R Replicate

LO/[X]R Replicate with Axis

LO\R Scan

LO\[X]R Scan with Axis

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

130

Compress

Selects subarrays along the last axis under the control of the vector LO. This is a special case of Replicate,

where LO is Boolean.

 1 0 0 1 1/'PLEAT'
PAT

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

131

Compress with Axis

Selects subarrays along the last axis under the control of the vector LO. This is a special case of Replicate with

Axis, where LO is Boolean.

 1 0 1/[1]3 2⍴⍳6
1 2
5 6

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

132

Each, Deriving Dyadic

The result of function LO applied between corresponding pairs of items of L and R.

 1 2 3,¨4 5 6
 1 4 2 5 3 6

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

133

Each, Deriving Monadic

The result of function LO applied to each item of R.

 ⍴¨'TOM' 'DICK'
 3 4

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

134

Expand

Expansion of the last axis of R under control of Boolean vector L.

 A←1 0 1 0 0 1
 A\1 2 3
1 0 2 0 0 3
 A\'ABC'
A B C

See also Scan, the same operator symbol with a function as an operand.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

135

Expand with Axis

Expansion of the Xth axis of R under control of Boolean vector L.

 1 0 1\[1]2 3⍴⍳6
1 2 3
0 0 0
4 5 6

Note: Expand along the first axis can also be represented using the ⍀ symbol.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

136

Inner Product

The result of the LO reduction of each row of L, against each column of R, in all combinations with function

RO.

 R←2 3⍴⍳6
 L←2 2⍴10×⍳4
 L+.×R
 90 120 150
190 260 330

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

137

Outer Product

Result of function RO applied between pairs of items, one from L and one from R, in all combinations.

 (⍳4)∘.×⍳5
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

138

Reduce

The result of the expression produced by inserting function LO between adjacent pairs of items along the last

axis of R.

 +/1 2 3 4 5
15

If the last axis of R is empty, LO is not applied. Instead the identity function related to it is applied to the

prototype of R. Only primitive functions have known identity functions, so use of a defined function as LO with

an empty right argument generates DOMAIN ERROR. In general the identity function produces a value which

could be used as an argument to the original function so that its result would be the same as its other argument.

Thus the identity functions for addition and subtraction produce 0, while the identity functions for

multiplication and division produce 1.

The identity functions for Minimum and Maximum are of special interest, since they return the largest positive

value and most negative value that can be represented in the machine. These can be used in many contexts as if

they were infinity. Note that the identity for Minimum must be positive, and that for Maximum must be

negative, to satisfy the definition of an identity.

See also Reduce N-wise, a variant which produces a dyadic derived function, and Replicate, the same operator

symbol with an array as an operand.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

139

Reduce N-wise

Same as Reduce, except L specifies the number of items along the last axis of R to be considered in each

application of the derived function LO/ to the subarrays along the last axis.

 2+/⍳6
3 5 7 9 11
 2=/'HELLO'
0 0 1 0

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

140

Reduce N-wise with Axis

Same as Reduce with axis, except L defines the number of items along the Xth axis to be considered in each

application of the function to the subarrays along the Xth axis.

 3+/[1]4 3⍴⍳12
12 15 18
21 24 27

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

141

Reduce with Axis

Result of the expression produced by inserting function LO between adjacent pairs of items along the Xth axis

of R.

 +/[1]3 4⍴⍳12
15 18 21 24

Note: Reduce along the first axis can also be represented using the ⌿ symbol.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

142

Replicate

Repetition of each subarray along the last axis as specified by array operand L.

 1 2 3 4/'ABCD'
ABBCCCDDDD

See also Reduce, the same operator symbol with a function as an operand.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

143

Replicate with Axis

Repetition of each subarray along the Xth axis as specified by array operand L.

 T←3 2⍴⍳6
 2 ¯1 0 1/[1]T
1 2
1 2
0 0
5 6

Note: Replicate along the first axis can also be represented using the ⌿ symbol.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

144

Scan

The Ith item along the last axis is determined by the LO reduction of I↑[⍴⍴R]R.

 +\1 2 3 4 5
1 3 6 10 15

See also Expand, the same operator symbol with an array as an operand.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

145

Scan with Axis

The Ith item along the Xth axis is determined by the LO reduction of I↑[X]R.

 +\[1]2 3⍴⍳6
1 2 3
5 7 9

Note: Scan along the first axis can also be represented using the ⍀ symbol.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

146

System Functions

Syntax Description and Example

Z←⎕AF R Atomic Function

Z←L ⎕AT R Attributes

Z←⎕CR R Character Representation

Z←⎕DL R Delay

Z←L ⎕EA R Execute Alternate

Z←⎕EC R Execute Controlled

Z←⎕ES R Event Simulation (standard error message)

Z←L ⎕ES R Event Simulation (tailored error message)

Z←⎕EX R Expunge

Z←⎕FX R Fix

Z←L ⎕FX R Fix (with execution properties)

Z←⎕NA R Name Association (Inquire)

Z←L ⎕NA R Name Association (Define)

Z←⎕NC R Name Class

Z←⎕NL R Name List (default)

Z←L ⎕NL R Name List (qualified)

Z←⎕SVC R Shared Variable Control (Inquire)

Z←L ⎕SVC R Shared Variable Control (Set)

Z←⎕SVO R Shared Variable Offer (Inquire)

Z←L ⎕SVO R Shared Variable Offer (Offer)

Z←⎕SVQ R Shared Variable Query

Z←⎕SVR R Shared Variable Retraction

Z←⎕SVS R Shared Variable State

Z←L ⎕TF R Transfer Form

Z←⎕UCS R Universal Character Set

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

147

Atomic Function

Z←⎕AF R

⎕AF converts integers to characters and characters to integers.

Note: ⎕AF depends on internal representations. Refer to ⎕UCS for system-independent mapping.

 ⎕AF 'A⍳B'
65 236 66
 ⎕AF 65 236 66
A⍳B

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

148

Attributes

Z←L ⎕AT R

⎕AT returns an attribute vector for each object name specified in R. L specifies the type of attributes to be

returned. The values of L and their meanings are:

1 Valence-integer vector (explicit result, function valence, operator valence)

2 Fix time-integer vector (year, month, day, hour, minute, second, millisecond)

3 Execution properties-Boolean vector (nondisplayable, nonsuspendable, ignore attention, reflect domain

error)

4 Size of a variable-integer vector (full CDR size, data CDR size)

)LOAD 1 EXAMPLES
SAVED 1993-12-17 09.28.00 (GMT-7)
 ⎕NC 3 4⍴'HOW AND TYPE'
2 4 3

This had nothing to do with ⎕AT directly, but just told us that HOW is a variable, AND is an operator, and TYPE

is a function.

 1 ⎕AT 3 4⍴'HOW AND TYPE'
1 0 0
1 2 2
1 1 0

All three of them have a result. The variable has no valence; the operator is dyadic, producing a dyadic

function; and the function is monadic, with no operator valence.

 2 ⎕AT 3 4⍴'HOW AND TYPE'
 0 0 0 0 0 0 0
1991 6 29 8 0 0 244
1991 6 29 8 0 0 244
 3 ⎕AT 3 4⍴'HOW AND TYPE'
0 0 0 0
0 0 0 0
0 0 0 0
 4 ⎕AT 3 4⍴'HOW AND TYPE'
8224 8190
 0 0
 0 0

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

149

Character Representation

Z←⎕CR R

⎕CR provides a character matrix representation of the defined function or defined operator named in R.

An empty matrix is returned for system functions, and for locked user programs or external objects.

)LOAD 1 UTILITY
SAVED 1993-12-17 09.30.46 (GMT-7)
 ⎕CR 'MAT'
A←MAT B
⍝ A is a matrix containing all items of B.
A←,[⍳1+⍴⍴B](1 1,⍴B)⍴B

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

150

Delay

Z←⎕DL R

⎕DL halts processing for about R seconds and returns the actual length of the pause.

 ⎕DL 3
3.01

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

151

Execute Alternate

Z←L ⎕EA R

⎕EA executes R. If R fails or is interrupted, L is executed.

 ∇Z←L DIV R
[1] Z←'⌊/⍳0' ⎕EA(⍕L),'÷',⍕R
[2] ∇
 2 DIV 4
0.5
 1 DIV 1
1
 0 DIV 0
1
 1 DIV 0
1.797693135E308

In case you are wondering, ⌊/⍳0 produces the largest representable number. Note that the Divide primitive

would have done this:

 0÷0
1
 1÷0
DOMAIN ERROR
 1÷0
 ^^

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

152

Execute Controlled

Z←⎕EC R

⎕EC executes the APL2 expression represented by R. The result is a 3-item vector containing:

1. Return code

0 Error (2+'A')

1 Expression with a result that would display (2+3)

2 Expression with a result that would not display (A←2+3)

3 Expression with no explicit result (F X where F has no result)

4 Branch to a line (→3)

5 Branch escape(→)

2. ⎕ET
3. Result of expression or ⎕EM

Example:

 ⎕EC '2+2'
 1 0 0 4
 ⎕EC 'X←2+2'
 2 0 0 4
 ⎕EC 'X→2+2'
 0 2 2 SYNTAX ERROR
 X→2+2
 ^
 ⎕EC '→2+2'
 4 0 0 4

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

153

Event Simulation

Z←⎕ES R Monadic - standard error message

Z←L ⎕ES R Dyadic - tailored error message

The monadic form of ⎕ES simulates an event and produces an error report for the event based on the value of R.

 If R is empty or 0 0, no error is signaled.

 If R is a pair of integers, it is assigned to ⎕ET, and if it is a standard error code, the associated message is

used in ⎕EM.

 If R is a character vector, ⎕ET is set to 0 1, and R is used as the message in ⎕EM.

The dyadic form does the same thing, but uses L as the error message and R as the ⎕ET code.

⎕ES 0 0 resets the values of ⎕ET and ⎕EM to their defaults.

 ∇CALL Where
[1] 'Not numeric' ⎕ES(0≠↑0⍴Where)/5 4
[2] ⎕ES(1≠⍴,Where)/5 3
[3] ⎕ES(6≠⌊10⍟Where)/'Not a 7-digit number'
[4] 'OK'
[5] ∇
 CALL 'HOME'
Not numeric
 CALL 'HOME'
 ^
 CALL 123 4567
LENGTH ERROR
 CALL 123 4567
 ^
 CALL 123456
Not a 7-digit number
 CALL 123456
 ^
 CALL 1234567
OK

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

154

Expunge

Z←⎕EX R

⎕EX erases object R from the workspace. Returns a 1 if the name is available for use; otherwise, returns a 0.

 X∆←1
 ⎕EX 'X∆'
1
 ⎕EX 'X∆'
1
 ⎕EX 'X$'
0

Note that ⎕EX doesn't care whether the name is currently in use, but it does return 0 for something that is an

invalid name.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

155

Fix

Z←⎕FX R Monadic - no execution properties

Z←L ⎕FX R Dyadic - with execution properties

⎕FX establishes in the active workspace the defined function or operator whose character representation is in R,

either as a matrix or a vector of vectors.

If the operation succeeds, the name of the program is returned as the explicit result. If R is not a valid function

or operator definition, a scalar integer is returned indicating the (origin dependent) row or item of R where the

problem was detected.

For the dyadic form, execution properties are specified by Boolean vector L. When the monadic form is used,

the execution properties are defaulted to 0 0 0 0.

The items of L and their corresponding execution properties are:

[1] No display

[2] No suspension

[3] Ignore attention

[4] Nonresource error becomes DOMAIN ERROR

A 1 in an item of L turns the corresponding execution property on; a 0 turns the corresponding execution

property off.

 ⎕FX 'Z←L PLUS R' 'Z←L+R'
PLUS
 3 PLUS 4
7
 ⎕CR 'PLUS'
Z←L PLUS R
Z←L+R
 1 0 0 0 ⎕FX ⎕CR 'PLUS'
PLUS
 3 PLUS 4
7
 ⎕CR 'PLUS'
 ⍴⎕CR 'PLUS'
0 0
 ⍴⎕CR '+'
0 0

Now no one can see how amazingly simple that function is, just as they can't see how the primitive function

works.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

156

Name Association

Z←⎕NA R Monadic - Inquire

Z←L ⎕NA R Dyadic - Define

The dyadic form of ⎕NA associates names R with external objects that are accessed through an associated

processor. L is a 2-item integer vector as follows:

[1] Array passed to the processor

[2] Associated processor number

The monadic form queries the association of objects named in R. It returns the left arguments previously passed

to dyadic ⎕NA when the association was established, or 0 0 if the name does not represent an external object.

For more information about associated processors, see the User's Guide.

 ⎕NA 'FILE'
0 0
 3 11 ⎕NA 'FILE'
1
 ⎕NA 'FILE'
3 11

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

157

Name Class

Z←⎕NC R

⎕NC returns the name class of each object named in R. The meaning of the returned values are:

¯1 Invalid

0 Unused but valid

1 Label

2 Variable

3 Function

4 Operator

)LOAD 1 EXAMPLES
SAVED 1993-12-17 09.28.00 (GMT-7)
 ⎕NC 3 4⍴'HOW AND WHEN'
2 4 0

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

158

Name List

Z←⎕NL R Monadic - default

Z←L ⎕NL R Dyadic - qualified

⎕NL returns a matrix containing names of user-defined objects (labels, variables, functions, and/or operators) in

the active workspace whose current name class is a member of R. External objects are also included if an

association to them is active.

The dyadic form adds additional control by restricting the returned list to names whose first character is in L.

)LOAD 1 EXAMPLES
SAVED 1993-12-17 09.28.00 (GMT-7)
 ⎕NL 2 ⍝ List variables
ABSTRACT
CHANGE_ACTIVITY
COIBM
DCS
DESCRIBE
GPAPL2
GPDESC
HOW
TIMER
 ⍴⎕NL 2
9 15
 ⍴⎕NL 4 ⍝ How many operators?
18 7
 'CDE' ⎕NL 4
COMMUTE
CR
EL
ELSE
ER

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

159

Shared Variable Control

Z←⎕SVC R Monadic - Inquire

Z←L ⎕SVC R Dyadic - Set

The dyadic form of ⎕SVC sets the Access Control Vector (ACV) for shared variables named in R to values in

Boolean vector L, and returns the effective control, which is an OR of the control specified in L and the control

imposed by the share partner. The ACV is a 4-bit vector indicating:

1 0 0 0 My sets to the shared variable are controlled.

0 1 0 0 My partner's sets to the shared variable are controlled.

0 0 1 0 My references of the shared variable are controlled.

0 0 0 1 My partner's references of the shared variable are controlled.

The monadic form of ⎕SVC returns the access control vectors (ACVs) currently effective control on the

variables named in R.

 100 ⎕SVO 'CMD'
1
 ⎕SVO 'CMD'
2
 ⎕SVC 'CMD'
0 0 0 1
 1 0 1 0 ⎕SVC 'CMD'
1 0 1 1

When AP 100 matched the offer, it set the ACV to control its own references, so that it could reliably accept

each command passed to it.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

160

Shared Variable Offer

Z←⎕SVO R Monadic - Inquire

Z←L ⎕SVO R Dyadic - Offer

The dyadic form of ⎕SVO offers to share variables named in R with processors named in L, and returns the

degree of coupling:

0 The name cannot be offered as a shared variable.

1 An offer has been made, but not yet accepted by the partner.

2 The variable is shared with the specified partner.

Note: Most processors are running asynchronously with the interpreter, so the normal response to an initial

offer is 1. The functions SVOFFER and SVOPAIR in the UTILITY workspace are strongly recommended,

since they ensure that offers are accepted.

The monadic form of ⎕SVO checks the current state of a prior offer, returning one of the values listed above. (0

is returned if the variable has not been offered.)

If the dyadic form is used with a variable that was previously offered, and if the processor number matches the

previous offer, then the function behaves like the monadic form.

 100 ⎕SVO 'CMD'
1
 ⎕SVO 'CMD'
2
 100 ⎕SVO 'CMD'
2
 101 ⎕SVO 'CMD'
0

The third ⎕SVO was treated as if it was a query, but the fourth one responded that an offer could not be made

since that name had already been offered to a different processor.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

161

Shared Variable Query

Z←⎕SVQ R

If R is an empty vector, ⎕SVQ returns a numeric vector of processors making share offers to you. If R contains

one or more integers, the result is a matrix of names of variables being offered by the processors listed in R.

Session A Session B

 ↑⎕AI ⍝ Who am I?
1001

 ↑⎕AI
1002

 1002 ⎕SVO 'TALK'
1

 ⎕SVQ ⍳0
1001
 ⎕SVQ 1001
TALK

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

162

Shared Variable Retraction

Z←⎕SVR R

⎕SVR requests retraction of the shared variable or variables named in R and returns their prior degree of

coupling. For the meanings of the degree of coupling values, see Shared Variable Offer.

 100 ⎕SVO 'CMD'
1
 ⎕SVR 'CMD'
2

Between the time that the offer was made and the time it was retracted, AP 100 had matched the offer, thus

explaining the response of 2.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

163

Shared Variable State

Z←⎕SVS R

⎕SVS returns the Access State Vector (ASV) of each variable named in R. The ASV is a 4-item Boolean vector

containing one of the following three combinations of values:

1 0 1 0 You have set a value that your partner has not yet referenced.

0 1 0 1 Your partner has set a value that you have not yet referenced.

0 0 1 1 Both partners have seen the current value, or no value has been set since the variable was

shared.

 1234 ⎕SVO 'TEST'
1
 TEST←'HELLO'
 ⎕SVS 'TEST'
1 0 1 0

In this case no one matched the share offer, so the (missing) partner will never reference the value.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

164

Transfer Form

Z←L ⎕TF R

If R is a valid APL name, ⎕TF returns the transfer form as specified in L of the variable or displayable defined

functions or defined operators named in R. 2 ⎕TF also supports associations to external objects.

If R is a valid transfer form, of the type specified in L, the object is established in the active workspace, and its

name is returned.

L must be either 1 for migration form or 2 for extended form. Migration form is intended for compatibility with

systems without the data extensions in APL2. It does not support external objects, mixed or nested arrays, or

complex numbers.

 NUMS←3 8 2
 MIX←'APL' 2
 2 ⎕TF 'NUMS'
NUMS←3 8 2
 2 ⎕TF 'MIX'
MIX←('APL')(2)
 1 ⎕TF 'NUMS'
NNUMS 1 3 3 8 2
 1 ⎕TF 'MIX'
)CLEAR
CLEAR WS
 2 ⎕TF 'NUMS←3 8 2'
NUMS
 NUMS
3 8 2

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

165

Universal Character Set

Z←⎕UCS R

⎕UCS converts integers to characters and characters to integers using the ISO 10646 standard, which includes

the Unicode subset. ⎕UCS supports the 2-byte Unicode character set.

For character arguments, ⎕UCS returns a numeric result containing the Unicode code points for the characters.

For extended characters not in the 2-byte Unicode character set, it returns the numeric values stored in the

characters, unchanged.

For numeric arguments, ⎕UCS returns a character result based on the Unicode code points in the argument. If

the Unicode character represented by a code point is not in the APL2 character set, it returns an extended

character with the value from the argument, unchanged.

 ⎕UCS 'A⍳B'
65 9075 66
 ⎕UCS 65 9075 66
A⍳B

Contrast this with ⎕AF, which returns system-dependent results. For ASCII-based systems,

 ⎕AF 'A⍳B'
65 236 66

For EBCDIC-based systems,

 ⎕AF 'A⍳B'
193 178 194

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

166

System Variables

Syntax Description and Example

⎕AI Account Information

⎕AV Atomic Vector

⎕CT←X Comparison Tolerance

⎕EM Event Message

⎕ET Event Type

⎕FC←X Format Control

⎕IO←X Index Origin

⎕LC Line Counter

⎕LX←X Latent Expression

⎕NLT National Language Translation

⎕PP←X Printing Precision

⎕PR←X Prompt Replacement

⎕PW←X Printing Width

⎕RL←X Random Link

⎕SVE←X
X←⎕SVE

Shared Variable Event

⎕TC Terminal Control

⎕TS Time Stamp

⎕TZ←X Time Zone

⎕UL User Load

⎕WA Workspace Available

X←⎕
⎕←X

Evaluated Input/Output

⍞←X
X←⍞

Character Input/Output

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

167

Account Information

⎕AI

The meanings of the ⎕AI items are:

[1] Account number (also shared variable processor ID)

[2] Compute time

[3] Connect time

[4] Keying time

Times are in milliseconds.

 ⎕AI
1001 70870 30097000 30026130

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

168

Atomic Vector

⎕AV

The 256 possible single-byte characters, sorted in sequence.

 16 16⍴⎕AV
 !"#$%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_
`abcdefghijklmno
pqrstuvwxyz{|}~•
ÇüéâäàåçêëèïîìÄÅ
⎕⍞⌹ôöòûù⊤ÖÜø£⊥₧⌶
áíóúñÑªº¿⌈¬½∪¡⍕⍎
░▒▓│┤⍟∆∇→╣║╗╝←⌊┐
└┴┬├─┼↑↓╚╔╩╦╠═╬≡
⍸⍷∵⌷⍂⌻⊢⊣⋄┘┌█▄¦Ì▀
⍺ß⊂⊃⍝⍲⍴⍱⌽⊖○∨⍳⍉∊∩
⌿⍀≥≤≠×÷⍙∘⍵⍫⍋⍒¯¨

The character set represented by ⎕AV is system-dependent. On workstation systems, ⎕AV contains the APL2

ASCII characters, as defined by IBM code page 910. On mainframe systems, ⎕AV contains the APL2 EBCDIC

characters, as defined by IBM code page 293.

Note that the first 32 positions of the ASCII character set contain control characters, so the first two lines of the

above display are shown here as blanks. Use of the characters in those positions may cause side effects such as

unexpected line breaks.

In addition to being different across systems, quite a number of the characters in the APL2 code pages are

different from those defined by various national language code pages. For system-independent mapping of

characters, or to use characters not in ⎕AV, see the ⎕UCS system function, which uses Unicode code points.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

169

Comparison Tolerance

⎕CT←X

A value used by some primitive functions to determine whether two numbers can be considered equal; the

default is 1E¯13.

 2=2.00000000000001
1
 ⎕CT←0
 2=2.00000000000001
0

Note: No number is within ⎕CT of 0.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

170

Event Message

⎕EM

Text of the error message associated with the first (i.e. current) line of the state indicator.

 ⎕EM
 ⍴⎕EM
3 0
 2+'A'
DOMAIN ERROR
 2+'A'
 ^^
 ⎕EM
DOMAIN ERROR
 2+'A'
 ^^
 ⍴⎕EM
3 12
 →0
 ⍴⎕EM
3 0

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

171

Event Type

⎕ET

A 2-integer code that indicates the type of error associated with the first line of the state indicator. Event type

codes fall into several major classes. The codes and their meanings are summarized by each major class in the

following lists.

Note: ⎕ET is also set by the ⎕ES system function. In this case its values may be application defined.

Defaults:

0 0 No error

0 1 Unclassified event

Resource Errors:

1 1 INTERRUPT

1 2 SYSTEM ERROR

1 3 WS FULL

1 4 SYSTEM LIMIT - symbol table

1 5 SYSTEM LIMIT - interface unavailable

1 6 SYSTEM LIMIT - interface quota

1 7 SYSTEM LIMIT - interface capacity

1 8 SYSTEM LIMIT - array rank

1 9 SYSTEM LIMIT - array size

1 10 SYSTEM LIMIT - array or internal function depth

1 11 SYSTEM LIMIT - prompt length

1 12 SYSTEM LIMIT - value unrepresentable

1 13 SYSTEM LIMIT - implementation restriction

Syntax Error:

2 1 Required operand or right argument omitted

2 2 Ill-formed line

2 3 Name class

2 4 Invalid operation in context

2 5 Compatibility setting prohibits this syntax

Value Error:

3 1 Name with no value

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

172

3 2 Function with no result

Implicit Argument Errors:

4 1 ⎕PP ERROR

4 2 ⎕IO ERROR

4 3 ⎕CT ERROR

4 4 ⎕FC ERROR

4 5 ⎕RL ERROR

4 7 ⎕PR ERROR

Explicit Argument Errors:

5 1 VALENCE ERROR

5 2 RANK ERROR

5 3 LENGTH ERROR

5 4 DOMAIN ERROR

5 5 INDEX ERROR

5 6 AXIS ERROR

)CLEAR
CLEAR WS
 ⎕ET
0 0
 2+'A'
DOMAIN ERROR
 2+'A'
 ^^
 ⎕ET
5 4

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

173

Format Control

⎕FC←X

Characters used for the Format function (L⍕X). See Format by Example and Format by Specification. The

meanings of the ⎕FC items are:

[1] Decimal character

[2] Thousands indicator

[3] Fill for blanks

[4] Fill for overflow

[5] Print-as-blank

[6] Negative indicator

Starting with a default ⎕FC:

 ⎕FC
.,*0_¯
 ' $888,888.00'⍕1234.5
 $**1,234.50

Now let's use the European convention for comma and period, and change the fill character.

 ⎕FC←',.=0_¯'
 ' $888,888.00'⍕1234.5
 $==1.234,50

Finally, here is something we can do about overflows:

 ' 5550'⍕2 1⍴123 45678
DOMAIN ERROR
 ' 5550'⍕2 1⍴123 45678
 ^ ^
 ⎕FC←',.=*_¯'
 ' 5550'⍕2 1⍴123 45678
 123

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

174

Index Origin

⎕IO←X

Index of the first item of a non-empty vector.

 ⎕IO ⍝ The default
1
 'ABCD'[0]
INDEX ERROR
 'ABCD'[0]
 ^
 'ABCD'[2]
B
 ⎕IO←0
 'ABCD'[2]
C
 ⎕IO←2
 'ABCD'[2]
⎕IO ERROR
 'ABCD'[2]
 ^

Only 0 or 1 are valid values.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

175

Line Counter

⎕LC

Line numbers of defined functions or operators that are in execution or halted; the most recently activated line

number is first.

)SI
LOG[6]
CMD[7]
CMVC_VIEW[4]
DIALOG1[9]
CANSWER[21]
*
AP124[9]
DIALOG1[33]
CANSWER[21]
*
 ⎕LC
6 7 4 9 21 9 33 21

Note that immediate execution levels, marked with * in the)SI list above, are not included in the ⎕LC vector.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

176

Latent Expression

⎕LX←X

⎕LX is an APL2 statement to be executed automatically by the Execute function (⍎) when the workspace is

loaded. The default is '', which in effect means to do nothing, and prompt for input.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

177

National Language Translation

⎕NLT

National language in which system messages are displayed and system commands can be entered.

Note: ⎕NLT is not fully implemented on the workstation APL2 systems. The variable cannot be set to effect,

and always reports the name of the file currently in use for messages. The -nlt invocation option can be used

to specify the name of the message file.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

178

Printing Precision

⎕PP←X

The number of significant digits displayed for numbers.

 ⎕PP ⍝ The default
10
 ○1 ⍝ Value of pi
3.141592654
 ⎕PP←4
 ○1
3.142

Note that values are automatically rounded to the precision.

 ⎕PP←15
 ○1
3.14159265358979
 ⎕PP←20
 ○1
3.141592653589793

The maximum supported value is 16; any larger values are treated as if that had been specified.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

179

Prompt Replacement

⎕PR←X

A character that replaces the prompt string during character (⍞) input.

 ∇Z←NAME
[1] ⍞←'Enter your name: '
[2] Z←⍞∇
 ⎕PR ⍝ Default is blank
 NAME
Enter your name: Bob
 Bob
 ⎕PR←'*'
 NAME
Enter your name: Bob
*****************Bob
 ⎕PR←''
 NAME
Enter your name: Bob
Enter your name: Bob

Note that in the last case ⎕PR was set to an empty vector, indicating no replacement, rather than the default

single blank.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

180

Printing Width

⎕PW←X

The maximum number of characters per line of output.

 ⎕PW ⍝ The default
79
 79⍴'123456789-'
123456789-123456789-123456789-123456789-123456789-123456789-123456789-123456789
 ⎕PW←30 ⍝ The minimum
 79⍴'123456789-'
123456789-123456789-123456789-
 123456789-123456789-1234
 56789-123456789-12345678
 9

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

181

Random Link

⎕RL←X

Base number for computing random numbers.

 ⎕RL ⍝ Initial CLEAR WS value
16807
 ?6 ⍝ Roll a die
1
 ?6
5
 ⎕RL
1622650073
 ⎕RL←16807 ⍝ Restore default
 ?6 6 ⍝ Roll 2 dice
1 5

Valid values are positive integer scalars less than ¯1+2*31.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

182

Shared Variable Event

⎕SVE←X
X←⎕SVE

On assignment: Specifies the amount of time in seconds to be used in a wait for a shared variable event and

starts the timer.

On use: Suspends execution until the specified number of seconds has elapsed or a shared variable event occurs.

When an event occurs, returns the time remaining in the timer. Will return immediately if an unhandled event

has already occurred. Completion of reference clears any record of events to that point.

 ∇SERVE[⎕]
[0] Z←Name SERVE Value
[1] ⍝ Assigns "Value" to "Name",
[2] ⍝ then waits up to 30 seconds
[3] ⍝ for any partner request.
[4] ⍝ Returns length of time waited.
[5] ⍝
[6] ⎕SVE←0 ⍝ Reset previous signals
[7] Z←⎕SVE ⍝ Finishes immediately
[8] ⍎Name,'←Value'
[9] ⎕SVE←30 ⍝ Maximum wait
[10] Z←30-⎕SVE

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

183

Terminal Control

⎕TC

Terminal control characters. The items of ⎕TC are:

[1] Backspace

[2] New line (or Carriage Return)

[3] Line feed

Note that ¯2↑⎕TC is the normal PC convention for end of record in files.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

184

Time Stamp

⎕TS

Current system date and time. The items of ⎕TS are:

[1] Year

[2] Month

[3] Day

[4] Hour

[5] Minute

[6] Second

[7] Millisecond

All values are integers.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

185

Time Zone

⎕TZ←X

Offset in hours between local time and Greenwich Mean Time; the values are negative for locations west of

GMT.

 ⎕TZ
¯7
 3 11 ⎕NA 'GETENV'
1
 GETENV ⊂'TZ'
 pst8pdt

A simple form of TZ is being used here, that assumes normal US rules for the beginning and end of daylight

savings time. The result of ⎕TZ was ¯7 rather than ¯8 because daylight savings time was in effect.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

186

User Load

⎕UL

Number of users.

 ⎕UL
1

On PC systems, you always get 1, since they are single user systems. On Unix and mainframe systems, you will

get the number of users logged on to the operating system.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

187

Workspace Available

⎕WA

Number of available (unused) bytes in the active workspace.

CLEAR WS
 ⎕WA
2090096
 2×1024*2
2097152

Note that the default for the -ws invocation option is 4M, which really means 4×1024*2. The amount actually

available is always somewhat less than that, because of internal tables.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

188

Evaluated Input/Output

X←⎕
⎕←X

On assignment, displays the value and starts a new line in the session input/output stream.

On reference, displays ⎕: to prompt for input, evaluates the expression entered in response, and uses that result

as the value of ⎕.

 ∇Z←QUAD
[1] ⎕←'First message'
[2] ⎕←'Second message'
[3] Z←⎕∇
 QUAD
First message
Second message
⎕:
 2+2
4

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

189

Character Input/Output

⍞←X
X←⍞

On assignment, displays the value and leaves the cursor on the same line. (Note that ⎕TC characters may be

imbedded in the value. They will be honored if so, and can cause a single vector to be displayed on multiple

lines, or the cursor to be positioned somewhere other than the last character.)

On reference, obtains raw input from the keyboard (or AP 101 stack). Frequently such input follows a ⍞ output

request. In this case the output prompt data on the same line occupies space in the result of ⍞, but has been

converted as specified by ⎕PR.

 ∇Z←QQUAD
[1] ⍞←'First '
[2] ⍞←'Second '
[3] Z←⍞∇
 QQUAD
First Second 2+2
 2+2

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

190

System Commands

System command keywords can be entered in any combination of uppercase and lowercase letters.

Braces { }, brackets [], elipses ..., and the | symbol are used here as metasyntax, indicating lists of

options, optional data, repeated fields, and alternatives respectively. They should never appear in the system

commands you actually enter.

The following symbols are used, in lower case, throughout the list of system commands. They should be

replaced by usage-specific values as indicated:

Symbol Definition

ext file extension

file file name

libno A positive integer, 1 to 32767, associated with an APLnnnnn library definition.

name Any valid APL name

path
Any valid operating system directory specification, such as C:\MY\FOLDER or

/u/userid/folder.

wsname 1 to 64 alphanumeric characters, the first alphabetic.

The following list shows the syntax of each system command, and provides a brief comment on its usage. Full

details are provided in APL2 Programming: Language Reference.

)CHECK WS [OFF|ON|ALL|SLOP]
)CHECK TRACE {OFF|SERVICE|STMT|EXEC|SYNT|FREE|NS}
)CHECK DUMP

Obtain diagnostic information.

The)CHECK WS commands control internal validation of the workspace.

The)CHECK TRACE commands control tracing of internal interpreter events.

)CHECK DUMP causes an immediate SYSTEM ERROR.

Note: The)CHECK commands can create large amounts of output and significantly degrade

performance. They are best used under the direction of your IBM support personnel.
)CLEAR

Clear the active workspace.
)CONTINUE

Save the active workspace as CONTINUE and end the APL2 session.
)COPY {'[path\]file.ext' | [libno] wsname} [name|(name) ...]

Copy all or specified objects into the active workspace from a saved workspace.

If name is enclosed in parentheses, it must be a simple character scalar, vector, or matrix. Its rows are

interpreted as APL names, and these objects are copied instead of the array itself.
)DROP {'[path\]file.ext' | [libno] wsname}

Delete a workspace file or transfer file.
)EDITOR [1 | editorname [-u]]

Query the active editor, or select an editor. Editor 1 is the line editor.
)ERASE name|(name) [name|(name) ...]

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

191

Delete objects from the active workspace.

If name is enclosed in parentheses, it must be a simple character scalar, vector, or matrix. Its rows are

interpreted as APL names, and these objects are erased instead of the array itself.
)FNS [[name | name-name] ...]

List names of defined functions in the active workspace.
)HOST [command]

Query the name of the operating system, or issue an operating system command from the APL2 session.
)IN {'[path\]file.ext' | [libno] wsname} [name ...]

Read objects from a transfer file into the active workspace.
)LIB ['path' | libno] [[name | name-name] ...]

List workspace names in a library or directory.
)LOAD {'[path\]file.ext' | [libno] wsname}

Bring a workspace from a library into the active workspace.
)NMS [[name | name-name] ...]

List names in the active workspace. See also)FNS,)OPS, and)VARS.
)OFF

End the APL2 session.
)OPS [[name | name-name] ...]

List names of defined operators in the active workspace.
)OUT {'[path\]file.ext' | [libno] wsname} [name ...]

Write objects to a transfer file. (Replaces any existing fileid.)
)PCOPY {'[path\]file.ext' | [libno] wsname} [name|(name) ...]

Copy objects into the active workspace without replacing existing objects.

If name is enclosed in parentheses, it must be a simple character scalar, vector, or matrix. Its rows are

interpreted as APL names, and these objects are copied instead of the array itself.
)PIN {'[path\]file.ext' | [libno] wsname} [name ...]

Read objects from a transfer file into the active workspace without replacing existing objects.
)RESET [number]

Clear all or a portion of the state indicator - same as)SIC.
)SAVE ['[path\]file.ext' | [libno] wsname]

Save the active workspace.
)SI [number]

Display all or part of the state indicator.
)SIC [number]

Clear all or the specified number of levels of the state indicator.
)SINL [number]

Display the state indicator and the local variables at each level.
)SIS [number]

Display the state indicator and the current statement at each level.
)SYMBOLS [number]

Query or modify the symbol table size.
)VARS [[name | name-name] ...]

List the names of user variables in the active workspace.
)WSID ['[path\]file.ext' | [libno] wsname]

Query or assign the workspace identifier.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

192

Defined Functions and Operators

Many problems can be solved by merely entering APL2 expressions in immediate execution mode. However,

when a series of expressions needs to be entered repeatedly in different situations, when a general solution can

be applied to several similar problems, or when expressions should be executed based on certain conditions, you

may prefer to define an operation (a function or operator) to hold the necessary code.

A defined function or operator is fixed or established in the active workspace in one of the following ways:

 Created or modified using an editor (see the APL2 User's Guide)

 Created or replaced using ⎕FX or ⎕TF

 Copied, using)COPY or)PCOPY

 Retrieved from a transfer file using)IN or)PIN

(System Commands shows the syntax of the four commands in the last two points above.)

When a defined function or operator is invoked, the statements in it are executed. The syntax and order of

evaluation when invoking defined functions and operators is the same as for primitive functions and operators.

The definition of a function or operator begins with a header line followed by one or more APL statement lines,

each of which is in the same format used when entering an APL expression directly. Here is an example of a

defined function which rounds a number to a specified number of decimal places. If no number of places is

given, 2 is assumed.

Z←Y ROUND X
⍝ Round value X to Y decimal places
⍝ Default Y to 2 if not specified
→(0≠⎕NC 'Y')/RN
Y←2 ⍝ Default for Y
RN:Z←(10*-Y)×⌊.5+X×10*Y

Let's try it out:

 4 ROUND ○1 ⍝ Pi to 4 digits
3.1416
 ROUND ○1
3.14

Although we wrote this thinking about rounding one number, it also works for an array of any shape, rank, or

depth,

 ROUND 3 7.286
3 7.29
 ROUND 2 2⍴(⍳4)÷7
0.14 0.29
0.43 0.57
 ROUND (1 (2 3 (4 5)))÷7
 0.14 0.29 0.43 0.57 0.71

Details of defined functions and operators are covered in the following sections:

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

193

 Operation Header

 Branching

 Execution

 Debug Controls

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

194

Operation Header

The operation header is the first line of a defined operation. The header establishes the syntax for the defined

operation, including:

 Name of the operation

 Valence of the operation, and in the case of defined operators, also the valence of the derived function

 Parameter names

 Nature of the result - explicit or not explicit

 Local names

These topics are covered in the following sections:

 Nature of the result

 Defined Function Valence

 Defined Operator Valence

 Local Names

The name of the operation and its parameter names are discussed with function and operator valences.

Nature of the result

If the operation has (or may have) an explicit result, the first thing shown on the header line is a name by which

the result will be referred to within the operation, followed by a specification arrow. Although this follows the

form of an APL specification statement, no result value is assigned by the header itself. A result is returned only

if some statement within the operation is evaluated and causes a value to be assigned to the result. Note that the

name of the result is local to the operation. (See Local Names.)

Defined Function Valence

A defined function can have two, one, or no arguments. The name of the function is shown with parameters on

either side where arguments are permitted. Thus (ignoring the optional result) there are three valid forms:

 la name ra
 name ra
 name

The la and ra fields indicate whether a left argument or right argument respectively can be provided to the

function. The values shown on the header line are parameter names which are local to the operation. (See Local

Names.) These are ordinary array names within the function, and their values can be modified if desired.

Changes to the values do not affect the data values used by the caller when invoking the function.

If two arguments are shown in a defined function, the function is ambi-valent, which means that it can be

invoked with either one or two arguments. The function definition should check for the possibility that it was

called with only a right argument. If not, a VALUE ERROR will occur when the function tries to use the missing

argument.

Defined Operator Valence

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

195

A defined operator can have two or one operands, and its derived function can have two or one arguments.

These valences are shown by listing operand parameters inside a pair of parentheses, with argument parameters

outside the parentheses.

Since an operator must always have at least one operand, there will always be either two or three names inside

the parentheses. Since the left operand is required, the first name will always be a parameter (operand) name,

and the second will always be the name of the operator.

The derived function must always take at least one argument, so there will always be a parameter to the right of

the closing parenthesis. Here are the valid formats (excluding the optional result):

 (lo mop) ra
 la (lo mop) ra
 (lo dop ro) ra
 la (lo dop ro) ra

The la and ra fields are the arguments to the derived function, and follow the same rules as was described for

those fields under Defined Function Valence.

The lo and ro fields contain operand parameter names which are local to the operation. (See Local Names.)

These names can be (in fact must be) used exactly as the operands used in invoking the operator would be used.

If a function is passed as an operand, then the parameter must be used as a function of the proper valence. It

cannot be inspected as if it were a variable. Note that ⎕NC can be used within the operator definition to

determine whether a function or array was passed. This is permitted even if a constant or a primitive or derived

function was passed, cases that ⎕NC treats as invalid when specified directly.

 ⎕CR 'TEST'
Z←(LEFT TEST RIGHT)X
Z←(⎕NC 'LEFT')(⎕NC 'RIGHT')
 +TEST×3
3 3
 4 TEST×3
2 3
 +/TEST 7 3
3 2
 ⎕NC '+'
¯1
 ⎕NC '+/'
¯1
 ⎕NC '7'
¯1

If an operand is an array, its value can be modified by assignment within the defined operator. If it is a function,

its definition can be replaced using ⎕FX or ⎕TF. Either way, changes to the operand within the operator do not

affect the function or array used by the caller when invoking the operator.

Local Names

The argument, operand, and result parameters have value only within the context of the defined operation.

When execution of the operation is completed, the parameter names are no longer associated with the values

they had during execution. Thus, they are called local names because their values are local to (exist only during

execution of) the defined operation.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

196

In addition to parameter names, you can declare other constructed names to be local to the operation. These can

be names that hold intermediate values, set system variables especially for the operation, or are otherwise not

needed after the operation has been executed.

Such names are identified by listing them on the header line after the valence and parameter definition,

separated from it and from each other by semicolons. Note that system variables can also be listed as local

names. This allows them to be set within the operation without affecting the value they have outside of it.

Statement labels (used for branch targets) are also local names. They do not need to be listed in the header.

Local names are not completely private to the operation which defines them as local. Localizing a name really

only separates it temporarily from any value it had before the operation was invoked. If one defined function

localizes a name and assigns it a new value, then calls a second function, the second function will see the local

value.

 ⎕CR'SAY_V'
SAY_V
'V contains' V
 V←3
 SAY_V
 V contains 3
 ⎕CR'TEST'
TEST;V
V←2.9
SAY_V
 TEST
 V contains 2.9
 SAY_V
 V contains 3

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

197

Branching and Labels

A branch expression explicitly determines the next line of a defined function or operator to be executed. It

consists of a branch arrow (→) and an expression:

 →expression

The expression must evaluate to a number, or to a vector of zero or more numbers. The numbers refer to lines in

your program (function or operator). But you should never "hard code" references to a specific line, since it is

very likely that at some later time you or someone else may modify the program in a way that causes lines to be

added or removed. Instead you should always use labels on the lines you need to refer to, and then use those

labels as if they were numeric variables in your branch expressions. Labels are local names, even though they

are not listed in the program header. Here is an example of a function which uses a branch label:

Z←Y ROUND X
⍝ Round value X to Y decimal places
⍝ Default Y to 2 if not specified
→(0≠⎕NC 'Y')/RN
Y←2 ⍝ Default for Y
RN:Z←(10*-Y)×⌊.5+X×10*Y

Right now, RN evaluates as 5 (since the header counts as line 0), but if you added or deleted a comment earlier

in the function that would change.

Note: The behavior of the statement using RN is explained in Branching Example.

The possible branch actions depend on the value of the branch expression:

If the Branch Expression is... Then the Next Action Is...

Line number n within the program Line n of the program is evaluated.

0 or any other line number

not within the program

The program ends, and evaluation of the expression that

invoked it is resumed.

Empty vector Next sequential expression (either the next expression to the

right of a diamond in the same line, or else the next line, if

there is one, of the program).

Vector of numbers The first number determines the branch action.

For further details, see:

 Conditional Branch

 Branch to Escape

 Branch in a Line with Diamonds

 Looping Is Rarely Needed

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

198

Branching is also used in immediate execution to resume execution of a suspended immediate execution

statement, defined function, or defined operator. This use of branching is discussed in Resume or Restart

Execution.

Explanation of Branching Example

Z←Y ROUND X
⍝ Round value X to Y decimal places
⍝ Default Y to 2 if not specified
→(0≠⎕NC 'Y')/RN
Y←2 ⍝ Default for Y
RN:Z←(10*-Y)×⌊.5+X×10*Y

This function contains the branch statement:

→(0≠⎕NC 'Y')/RN

which APL2 evaluates as follows:

 ⎕NC 'Y' will return 2 if a value has been associated with parameter Y; or 0 if no value has been

associated with it. This is a test for whether the optional left argument was provided.

 0≠ will convert this to 0 if there is a left argument, or 1 if there is none.

 1/RN will return 1 copy of the value 5, and the branch will be taken; while 0/RN will return an empty

result, so evaluation will continue with the next sequential statement.

See Conditional Branch for more general discussion and guidance.

Conditional Branch

When a branch expression takes different values depending on relationships or conditions, the branch is called a

conditional branch. It is constructed by using → with relational and selection operations.

The statement →(0≠⎕NC 'Y')/RN is a conditional branch statement because its value may be RN or the

empty vector, depending on the value of the relationship in parentheses.

Conditions for branch expressions evaluate to 0 or 1. The relational functions (< ≤ = ≥ > ≠) are often

used to express simple conditions.

Below are three frequently used conditional branch expressions. In each case, the condition evaluates to 0 or 1.

Form Description

→(condition)/0 Exit from the function or operator if the condition is true.

Continue with the next sequential expression if the condition is false.

→(condition...)/label... Begin evaluation at the labeled line if the condition is true.

Continue with the next sequential expression if the condition is false.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

199

Form Description

Any number of conditional expressions can be used as long as there are the same

number of labels. If more than one condition is true, the first true one applies.

→label×condition Begin evaluation at the labeled line if the condition is true.

Exit from the function or operator if the condition is false.

Note: Compression is the most commonly used operation in constructing branch expressions. It works equally

well for a one- or several-way branch. It is not origin dependent. Reshape or Take could also be used, but are

seen much less frequently.

Branch to Escape

A branch arrow with no expression on the right causes the defined operation to immediately terminate. The

function or operator ends without providing a result, as do all functions or operators in its calling chain. The

expression which invoked the first function or operator in the chain is also aborted, and the system prompts for

user input. See ⎕EC for an exception.

Note that, unlike the)SIC command, this does not clear all levels of the execution stack. If a program is

suspended, and a new statement is entered which invokes a function, leading ultimately to a → without an

expression, the system state will return to the point at which the statement was entered, and the originally

suspended program will remain on the execution stack.

Branch in a Line with Diamonds

When a branch expression is one of several expressions separated by diamonds, evaluation continues with the

expression to the right of the branch expression if the branch is not taken. This can be useful for if constructs:

→(~condition)/1+⎕LC ⋄ expression

or until constructs:

expression ⋄ →(~condition)/⎕LC

Looping Is Rarely Needed

Many programmers who come to APL2 after using other languages structure their function and operator

definitions with the equivalent of DO loops, working with data an item at a time. This approach should be

avoided:

 Looping forces APL2 to interpret each expression in the loop each time it is evaluated. This makes your

APL programs run much more slowly than they should.

 Looping forces you to maintain control variables, and provide logic that increments them and checks for

loop termination. APL already has all that logic built in, and it is almost certainly more efficient and

more trouble free than any you could provide.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

200

APL2's array processing and operators help you avoid most looping.

 Scalar functions are entirely data-driven. They allow computations to be performed where the data itself

controls the limits of the operation. You can do arithmetic on entire collections of numbers in a single

operation. Because so many of APL2's functions are independent of data structure, it is also true in many

cases that defined functions, even those written to handle one data item at a time, will automatically

extend to handle arbitrary arrays.

 Structural functions allow you to rearrange arrays in a wide variety of ways. You can easily reshape an

array to an equivalent one with a different number of rows or axes, so that you can apply operations to

particular groupings of data. You can reverse items, transpose axes, rotate individual rows or columns

by varying amounts, and much more.

 The Axis operator, described as a with axis variant of the primitive functions and operators to which it

applies, allows you to apply operations along particular axes.

 The Reduce and Scan operators allow you to apply arbitrary functions between data items in the array.

 The Boolean arrays produced by comparisons, together with the complete set of Boolean functions and

the Replicate and Expand operators, allow you to focus on the subset of the data which satisfies any

arbitrarily complex set of conditions.

 The Each operator (see Each, Deriving Monadic and Each, Deriving Dyadic) is, in a practical sense, the

equivalent of a DO loop, except that the loop limits are implicit in the data.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

201

Execution

When the name of a defined operation appears in an expression, its context is evaluated following the same

evaluation rules that apply to primitive operations. The execution of the operation is controlled by its definition

and its execution properties.

Each statement in the definition is executed in sequence or as directed by branching statements. If the function

has been defined with an explicit result, the last specification of the result parameter name is returned as the

result of executing the operation. This result is then available for further evaluation of the expression in which

the defined operation appears.

 Calling Sequence

 Suspension of Execution

 State Indicator

 Execution Properties

Calling Sequence

If a statement in a defined operation contains the name of a defined function or operator, that operation is called

and flow of control passes to it. While the called operation is executing, the calling operation is said to be

pendent, waiting to complete execution. If the called function or operator, in turn, calls another, it is pendent

along with the original calling operation.

As each operation (or immediate execution expression) is invoked, it is placed in the execution stack. When

execution of an operation or expression completes, it is removed from the execution stack.

The number of levels of called functions or operators is not limited except by the space available within the

workspace. Pendent operations take up space in the execution stack; a sequence of called and calling operations

may create a WS FULL condition if there is a large number of them or if any of them requires a sizable work

area for calculation.

A function that calls itself is recursive. Local copies of the function behave as separate functions in the

execution stack. Names localized by the function may have different values for each level on the stack.

Suspension of Execution

A defined operation becomes pendent if it calls another one. This is not the same thing as being suspended.

Execution of a defined operation may be suspended in either of two ways:

 By an attention

 By an interrupt or an error

Using the Signals menu of the APL2 session manager, you can suspend execution of a defined operation (or an

expression) by signaling:

Attention
to suspend execution at the end of the current statement being executed. (Unless an operation with the

ignore attention property is active or pendent.)

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

202

Interrupt
to cause the system to behave as though an error were encountered.

If an error is encountered in a statement during execution of the defined operation, or if an interrupt is signaled,

execution of the operation is suspended immediately and a message and the suspended operation are displayed.

For example:

 ⎕CR 'F'
Z←F X
Z←10÷X
 F 0
DOMAIN ERROR
F[1] Z←10÷X
 ^ ^

As with other errors, ⎕EM and ⎕ET are set, and ⎕EA or ⎕EC can be used to recover from the error.

State Indicator

The state indicator is a term applied to a number of user views of the content of the execution stack. The views

are presented in the calling sequence of defined operations, beginning with the most recently invoked, and may

include:

 The names of the defined functions and operators

 The names which were localized when each operation was invoked

 The currently uncompleted statement for each operation level

 The line numbers within the operation definition for those statements

 Current scan and evaluation positions within those statements

Statements entered as input, rather than taken from defined operations, show an asterisk rather than operation

name and line number.

If Editor 1 is in use, operations that are in definition mode may also be shown.

The ⎕LC system function provides limited information about the state indicator. More complete information is

available using the system commands)SI,)SIS and)SINL:

 ⎕CR 'F'
Z←F X
Z←10÷X
 F 0
DOMAIN ERROR
F[1] Z←10÷X
 ^ ^
)SI
F[1]
*
)SIS
F[1] Z←10÷X
 ^ ^
* F 0
 ^
)SINL
F[1] Z X
*

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

203

While an operation is suspended, local names are available for inspection. However, any global values

associated with those names are hidden or shadowed.

Statements remain in the state indicator until they have been cleared. If a workspace that has items in the state

indicator is saved, the state indicator is also saved. There are several ways, listed below, to clear the state

indicator. The one you use depends on what you are trying to accomplish and the situation that caused

statements to be put in the state indicator.

 Escape
)SIC
 Resume or Restart Execution

 Caution on Reinvoking Suspended Operations

No matter what technique is used to modify the state indicator, ⎕EM and ⎕ET are always set to values

appropriate to the statement at the top of the state indicator.

Escape

Escape (→), a branch arrow with no expression to its right, abandons further attempts to execute the suspended

function and the calling sequence that led to its being invoked. Escape clears the state indicator down to and

including the next *. For example:

)SI
F[1]
*
 →
)SI

You can then correct the error and restart the function.

 ∇F[1] 'Z←''Cannot divide by 0''' ⎕EA 'Z←10÷X'∇
 F 0
Cannot divide by 0

Because only one calling sequence was in the state indicator, a single → cleared it. This is not the case in the

following example:

)SI
D[1]
*
B[2]
*
 →
)SI
B[2]
*
 →
)SI

)SIC

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

204

The system command)SIC clears the state indicator entirely.)SIC n clears n lines from the display of the

state indicator.

)SI
D[1]
*
B[2]
*
)SIC 1
*
B[2]
*
)SIC
)SI

Note:)RESET is a synonym for)SIC.

Resume or Restart Execution

You may be able to modify variables or defined operations in the workspace and resume execution from the

point at which it was halted by entering →⍳0.

 A←1
 N+2×A
VALUE ERROR
 N+2×A
 ^^
 A←0
 N←3
 →⍳0
5

Note that the new value of A was not used. APL2 had already computed 2×A and was waiting to do the

addition. The →⍳0 resumed at that point, in mid statement.

Alternatively, for an error within a defined operation, you can correct the line in error by editing the operation,

and then enter →⎕LC to direct the system to start over for the current line. Of course this is only one possibility;

you could use any valid form of the branch expression.

 ⎕CR 'F'
Z←F X
Z←10÷X
 F 0
DOMAIN ERROR
F[1] Z←10÷X
 ^ ^
 ∇F[1] Z←'⌊/⍳0' ⎕EA '10÷X'∇
SI WARNING
 →1
1.797693135E308

The expression ⌊/⍳0 produces the largest representable number.

The message SI WARNING is displayed when editing affects a line of an operation appearing in the state

indicator (if you edit the line or delete or insert lines before it).

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

205

Do Not Resume Execution by Invoking the Operation Again

If you correct the error in the operation and then invoke the operation again, the state indicator is not cleared.

After the operation has executed, the earlier uncorrected version remains in the state indicator.

 ⎕CR 'F'
∇Z←F X
[1]Z←10÷X∇
 F 0
DOMAIN ERROR
F[1] Z←10÷X
 ^ ^
 ∇F[1] Z←'⌊/⍳0' ⎕EA '10÷X'∇
SI WARNING
 F 0
1.797693135E308
)SIS
F[1] Z←'⌊/⍳0' ⎕EA '10÷X'
 ^ ^
* F 0
 ^

If you decide not to resume the current operation, use → or)SIC to clear the state indicator before invoking the

operation a second time.

Note: This also applies to expressions entered directly from the keyboard.

Execution Properties

A defined operation has four execution properties, which can be set independently with dyadic ⎕FX, or all set

on at the same time using ⍫ to open or close function definition mode. The following describes the execution

effect of setting each property.

1 0 0 0 The defined function or operator may not be displayed or edited using the APL2 editors; may

not be extracted using ⎕CR (Character Representation) or ⎕TF (Transfer Form); and may not be

traced.

0 1 0 0 The defined function or operator is not suspended by an error or an interrupt. Instead the

defined operation is terminated and the signal is raised in the environment from which it was

called. See Suspension of Execution for additional information.

0 0 1 0 The defined function or operator ignores attentions and stop control settings during its

execution.

0 0 0 1 The defined function or operator converts any error other than a resource error into a DOMAIN
ERROR. (INTERRUPT, SYSTEM ERROR, WS FULL, and SYSTEM LIMIT are classified as

resource errors.)

The execution properties of a called function or operator during an execution sequence are determined by "or-

ing" its properties with those of the calling function or operator. For example, suppose function F has the

nonsuspendable property (0 1 0 0) and function G has the error conversion property (0 0 0 1). If F calls

G, both the nonsuspendable property and the error conversion property are imposed on G (0 1 0 1). Because

execution properties are inherited by called functions and operators, if a locked function calls an unlocked

function, the unlocked function behaves as though it were locked.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

206

The execution properties of a defined operation can be inspected by using ⎕AT (Attributes). Execution

properties can be changed only by using ⎕FX, and only if the operation can be displayed. Note that the

definition of ⎕CR is such that, for displayable operations, the properties can be set as follows:

 properties ⎕FX ⎕CR 'program'
program

The default function or operator definition provided by the APL2 editors has none of these properties.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

207

Debug Controls

APL2 includes two facilities for analyzing the behavior of defined functions and operators:

 Trace Control

 Stop Control

Trace Control

A trace is an automatic display of information generated by the execution of each selected line of a defined

function or operator. If a trace request is in effect for a statement, the following information is displayed

whenever the statement is executed:

 Function or operator name

 Line number in brackets

 Final array value (or branch) produced by that statement

Trace on a line containing multiple expressions separated by diamonds causes trace output for each expression

evaluated.

The trace control for a defined operation is designated by prefixing T∆ to its name. For example, a trace may be

set on lines 1, 3, and 6 of a defined operation RS by entering:

 T∆RS←1 3 6

A trace may be set on all lines by entering:

 T∆RS←⍳n
where n is at least as great as the number of lines in the operation.

A trace is turned off by setting the trace control to ⍳0.

Global names beginning with T∆ may not be used for any purpose other than trace control.

Trace controls can be both set and referenced. A reference to a trace control vector returns only valid line

numbers (in increasing order) upon which a trace has been set.

Trace settings are ignored if the "nondisplayable" execution property is set.

Stop Control

A defined operation can be made to stop during execution. If a stop request is in effect for a statement,

processing stops just before the statement is to be executed, and the following information is displayed:

 Operation name

 Line number in brackets

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

208

Execution may be resumed by entering a branch statement.

The stop control for a defined operation is designated by prefixing S∆ to its name. For example, a stop may be

set on lines 1, 3, and 6 of a defined operation RS by entering:

 S∆RS←1 3 6

A stop may be set on all lines by entering:

 S∆RS←⍳n
where n is at least as great as the number of lines in the operation.

A stop is turned off by setting the stop control to ⍳0.

Global names beginning with S∆ may not be used for any purpose other than stop control.

Stop controls may be both set and referenced. A reference to a stop control vector returns only valid line

numbers (in increasing order) upon which a stop has been set.

Stop control settings are ignored if the execution property "ignore weak attention" is set.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

209

Error Reports and Error Codes

 Interrupts and Errors in APL2 Expressions

 Interpreter Messages

 Interpreter Event Codes

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

210

Interrupts and Errors in APL2 Expressions

Interrupts and errors in expressions typically result in three lines of output:

 A brief event description

 The expression that was interrupted or is in error

 Two carets pointing to tokens within the expression

Here is an example of an incorrect APL expression being entered, and the output that results:

 2÷'X' Expression as entered
DOMAIN ERROR Event description
 2÷'X' Expression in error
 ^^ Carets pointing to the expression

The left caret indicates how far APL2 interpreted the statement from right to left. The right caret indicates

where the error was detected or the interrupt occurred. In the above example, APL2 interpreted the entire

expression. The error was detected by the Divide primitive because its right argument was not numeric.

Sometimes only one caret is seen because the point where the error was detected and the point to which APL2

had interpreted the expression are the same.

The error message can be retrieved using ⎕EM (event message). Further information on the category of error can

be obtained using ⎕ET (event type).

When an error or interrupt occurs while a defined function or defined operator is running, APL2 displays an

error message similar to that shown above for statements entered by the user. The difference is that the name of

the operation and the line number precede the display of the statement in error.

Here is an example of an interrupt signaled by the user, because the function seemed to be taking too long. The

reason for the problem was that the function was waiting for a value to be set in shared variable CTL.

 GETLOCK 'DBASE' Function started
INTERRUPT Event description
GETLOCK[7] Z←CTL Statement where event occurred
 ^ 2 pointers on top of each other

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

211

Interpreter Messages

The following messages are listed alphabetically by event description. An information panel is available for

each of them. See Interrupts and Errors in APL2 Expressions for a general discussion of interpreter message

format and content.

 ⎕xx ERROR (implicit errors)
 AXIS ERROR
 CLEAR WS
 DEFN ERROR
 DOMAIN ERROR
 IMPROPER LIBRARY REFERENCE
 INCORRECT COMMAND
 INDEX ERROR
 INTERRUPT
 LENGTH ERROR
 LIBRARY I/O ERROR
 NOT COPIED
 NOT ERASED
 NOT FOUND
 NOT SAVED, THIS WS IS wsid
 NOT SAVED, LIBRARY FULL
 RANK ERROR
 SI WARNING
 SYNTAX ERROR
 SYSTEM ERROR
 SYSTEM LIMIT
 VALENCE ERROR
 VALUE ERROR
 WS FULL
 WS INVALID
 WS TOO LARGE

Implicit Errors

This section covers a group of messages of the form

 ⎕xx ERROR

The first token in each message is the name of an APL2 system variable. It may be any one of the following:

⎕CT ERROR ⎕ET ←→ 4 3

A primitive function that uses ⎕CT as an implicit argument was called when ⎕CT had an inappropriate value or

no value. ⎕CT is an implicit argument of monadic ⌈ and ⌊; and of dyadic < ≤ = ≥ > ≠ ≡ | ∊ ⍳ ~ and ⍷.

⎕CT must be a simple real scalar less than 1. It cannot be negative, but it can be zero, which indicates that all

comparisons must be exact.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

212

⎕FC ERROR ⎕ET ←→ 4 4

⎕FC had an inappropriate value or no value when dyadic Format (L⍕R) was called. Format by Example

(character left argument) depends on the first five items of ⎕FC. Format by Specification (numeric left

argument) depends on the first, fourth, and sixth items of ⎕FC.

⎕FC must be a simple character vector. Only its first six characters are significant. If shorter than six, defaults

are used for the unspecified characters. The defaults and meanings of the six positions, in order, are:

[1] . Character for decimal point

[2] , Character for thousands indicator

[3] * Fill for blanks with pattern code 8

[4] 0 Fill for DOMAIN ERROR overflows

[5] _ Pattern code character to be replaced by blank

[6] ¯ Indicator for a negative number

⎕IO ERROR ⎕ET ←→ 4 2

An attempt was made to execute a primitive function that uses ⎕IO as an implicit argument when ⎕IO had an

inappropriate value or no value. ⎕IO is an implicit argument of bracket indexing; dyadic ⌷ ⊃ and ⍉; and the

monadic and dyadic forms of ⍒ ⍋ ⍳ and ?.

The only acceptable values for ⎕IO are 0 and 1.

⎕PP ERROR ⎕ET ←→ 4 1

An attempt was made to use monadic Format (⍕R) or to display an array when ⎕PP had an inappropriate value

or no value.

⎕PP must be a positive integer. Values larger than 16 are treated as if 16 had been specified.

⎕PR ERROR ⎕ET ←→ 4 7

An attempt was made to use the ⍞ system variable to create a character prompt immediately followed by a

request for character input. However, ⎕PR has no value or an inappropriate one.

⎕PR must be either an empty character vector or a single character.

⎕RL ERROR ⎕ET ←→ 4 5

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

213

The Roll or Deal primitive (monadic or dyadic ?) was called when ⎕RL had an inappropriate value or no value.

⎕RL must be a positive integer less than ¯1+2*31.

AXIS ERROR

AXIS ERROR ⎕ET ←→ 5 6

Bracket notation is being used to the right of a function or operator, and one of the following problems exists:

 The function or operator is not defined with an axis. This would include any defined function or

operator. It also includes primitive operators except for / or \; and non-scalar primitive functions unless

a with Axis form is explicitly defined for them. (See Scalar Functions and the Alphabetic List of

Functions.)

 The indicated axis is incompatible with the function or operator and the given arguments. This includes

cases where the axis is not a valid integer (except Catenate, which allows decimal values), is not an

element of ⍳⍴⍴array, or produces derived function arguments which are not compatible.

 The axis specification includes semicolons. Semicolons can be used inside brackets only when the

notation is used for indexing an array. The token to the left of the bracket notation is currently a function

or operator. It may be that it was intended to be an array.

CLEAR WS

CLEAR WS

The current active workspace was replaced with a clear workspace. This is an informational message, not an

error.

DEFN ERROR

DEFN ERROR

The ∇ or an editing command was misused:

 A syntactically incorrect ∇ or ⍫ command was entered to begin edit mode.

 An invalid character was used outside of a quoted string or comment.

 The object cannot be edited. For example, a numeric variable or a locked function.

 An invalid edit command was entered (inside brackets) while in function edit mode.

 The closing ∇ or ⍫ was entered to establish an invalid object.

 A ∇ or ⍫ was entered on an unnumbered line to close a definition.

 An attempt was made to name an object with a name already in use in the active workspace.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

214

DOMAIN ERROR

DOMAIN ERROR ⎕ET ←→ 5 4

This error is signaled in any of the following cases:

 The data type of an argument or operand is invalid for the primitive operation it is being given to. This

includes character data when only numeric data is allowed. It also includes unsupported types of

numeric values, such as decimal values when integers are required, values other than 0 or 1 for Boolean

operations, etc.

 The depth of an argument or operand is invalid for the primitive operation it is being given to. The

Depth primitive (monadic ≡) can be used to check the depth, or the DISPLAY function from the

workspace of the same name can be used to get a visual representation of the data.

 A calculation requires or produces data that is beyond the range of the system implementation but does

not fit any of the categories of SYSTEM LIMIT (this can occur with some mathematical functions).

 A nonresource error occurred in a defined function or operator whose fourth execution property is set to

convert nonresource errors to a DOMAIN ERROR. (See dyadic ⎕FX).

 A derived function from the slash operator or inner product was presented with an empty argument but

no identity function existed for the function operand.

IMPROPER LIBRARY REFERENCE

IMPROPER LIBRARY REFERENCE

An undefined library number was specified for any of the system commands which accept library numbers.

Library numbers are defined using environment variables or apl2.ini keyword definitions of the form

APLnnnnn. The notation nnnnn shown here must always be replaced by exactly 5 digits. Here is an example

of a definition for library 123:

APL00123=C:\MYSTUFF\LIB123

INCORRECT COMMAND

INCORRECT COMMAND

The APL2 system command entered is invalid or has invalid parameters. See System Commands for the names

and syntax of the supported commands.

INDEX ERROR

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

215

INDEX ERROR ⎕ET ←→ 5 5

An index specified for Bracket Indexing (R[I]), Index (I⌷R), or Pick (I⊃R) is outside the bounds of the array

(R as shown here). Depending on ⎕IO, those bounds are either 1 to n or 0 to n-1, where n is the length of the

array along the dimension being indexed.

INTERRUPT

INTERRUPT ⎕ET ←→ 1 1

An interrupt was signaled during processing, and execution is halted. Execution can be resumed with →⍳0 or

restarted by branching to a line number in the defined operation. If execution is not resumed or restarted, the

state indicator should be cleared using → or)SIC.

LENGTH ERROR

LENGTH ERROR ⎕ET ←→ 5 3

Two arguments to a function (or perhaps an argument and an operand of an operator) have lengths which are

incompatible with respect to an axis along which the values are being processed. A length of 1 is compatible

with any length by scalar extension.

Note that for the Expand operator (LO\R), the requirement is that the number of 1's in the operand must be

compatible with the length of the right argument axis along which it is being applied. Scalar extension applies

only if the operand is of length 1.

LIBRARY I/O ERROR

LIBRARY I/O ERROR

An access error is preventing successful completion of a system command that is attempting to read or write a

workspace or transfer file. The message usually arises while writing, and may indicate either a write-protected

device or an undefined directory path.

NOT COPIED

NOT COPIED: object-names

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

216

The listed objects were not copied for one of the following reasons:

 A)PCOPY was issued, and the objects already exist in the active workspace.

 The objects do not fit in the active workspace.

)IN finds objects which are not valid transfer forms. One possible reason is that an APL2 mainframe

transfer file contains underbarred letters, or was downloaded with EBCDIC/ASCII conversion.

)OUT could not write explicitly named objects because they do not exist in the active workspace.

)OUT could not write explicitly named objects because they are either system names or locked user

programs. (See the "no display" attribute of ⎕FX.)

NOT ERASED

NOT ERASED: object-names

The listed objects were not erased by the)ERASE command because the objects do not exist in the active

workspace.

NOT FOUND

NOT FOUND

One of the following problems was found:

 The workspace specified with a)COPY,)DROP or)LOAD command does not exist.

 The file specified by the)IN command cannot be found or is not a transfer file.

NOT SAVED, THIS WS IS wsid

NOT SAVED, THIS WS IS wsid

One of the following problems was found:

 The)SAVE system command was issued in a CLEAR WS with no specified workspace name. Reissue

the)SAVE command, and include the name under which you want the workspace to be saved.

 The workspace named in the)SAVE command exists in the library but is not the same as the name of

the active workspace. If you want to replace the saved workspace, issue the)WSID command first,

changing the name of the active workspace to match.

NOT SAVED, LIBRARY FULL

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

217

NOT SAVED, LIBRARY FULL

The disk to which you are attempting to save the workspace or transfer file is full, or so nearly full that there is

not enough room for the workspace. You can identify the disk involved as follows:

 If the)SAVE or)OUT command provided a path and file name in quotes, or if)SAVE provided no

name and)WSID displays a quoted name, then the drive is either the one explicitly listed at the

beginning of the path or the drive from which APL2 was started.

 If the)SAVE or)OUT command provided an unquoted workspace name, or if)SAVE provided no

name and)WSID displays an unquoted name, then the drive is defined by a library setting for

APLnnnnn where nnnnn is the library number provided on the command (extended to 5 digits) or

01001 if no library number is given. The library definition either lists the drive explicitly, or it is the

drive from which APL2 was started.

You may need to take one or more of the following actions to recover:

 Erase unneeded files on the drive that is full.

 Save the workspace on a different drive. See the comments above on how the drive is determined.

 If an older version of the workspace or transfer file already exists,)DROP it first, and then reissue the

)SAVE or)OUT.

Warning: Remember that it is possible to lose your workspace altogether if you do this. There might be

a power failure before you have a chance to save the new copy, or it might be that the new version is

enough larger that it won't fit even after dropping the old one.

 Try saving the workspace in a different format. In many cases transfer files created by)OUT take less

space than workspaces stored by)SAVE. In some cases the reverse is true.

 Don't forget that for reasonably small workspaces you could also save to a removable diskette. Even

very large workspaces can often be saved to diskettes by using)OUT and naming objects explicitly.

RANK ERROR

RANK ERROR ⎕ET ←→ 5 2

An array specified as an argument or operand has a rank that is incompatible with another argument or operand.

If the array is nested, the incompatibility may exist below the top level of structure.

SI WARNING

SI WARNING

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

218

A defined function or operator was altered while it was on the execution stack. There are two basic ways that

programs can be altered:

 If the function or operator was replaced by the)IN,)COPY or)PCOPY command; or by the ⎕FX or

⎕TF system function, the copy used for future calls is changed, but the copy already being executed is

left as it was. No SI WARNING is needed or produced.

Note: The EDIT workspace uses ⎕FX, so it behaves this way. This is also true at present if the object

was edited using ∇-edit when)EDITOR xxx is in effect, for example)EDITOR APLEDIT, but that

behavior may change in the future.

 If the function or operator was modified using Editor 1 or the session manager's object editor, the copy

already being executed is modified as well as the permanent copy. SI WARNING may or may not be

produced, depending on the nature of the changes. If the changes don't affect resumption of the

statement currently being executed they may be accepted without displaying the message.

When a program has been suspended there are two ways to get it going again. You may either resume it or

restart it.

resume

Begin executing exactly where the program was stopped. This is often in the middle of a line, and can be

done by entering →⍳0.

restart

Begin execution with some complete statement of the current function. This is done by entering →⎕LC to

restart at the beginning of the line that was being executed.

If changes are made to the copy on the stack, and those changes make it impossible to resume the statement

currently being executed, then any attempt later to do so will also result in SI WARNING at that point in time.

This can occur if:

 The function is suspended (stopped while it was executing) in mid-statement, and →⍳0 is used to resume

it.

 The function is pendent (has called another function which has not returned to it) and the function it

called then does return.

 The function is either suspended or pendent, and the update makes local names become global, or global

names become local. This may make it impossible to resume or restart the program at all.

SYNTAX ERROR

SYNTAX ERROR ⎕ET ←→ 2 n

The displayed APL2 expression is constructed improperly. The second item of ⎕ET provides information about

the type of problem diagnosed:

⎕ET Description

2 1 Required operand or right argument omitted

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

219

2 2 Ill-formed line, for example unmatched parentheses or brackets

2 3 Invalid name class, for example assigning a value to a constant or label

2 4 Invalid operation in context

SYSTEM ERROR

SYSTEM ERROR ⎕ET ←→ 1 2

A fault occurred in the internal operation of the APL2 system, or the active workspace was damaged. This can

be caused by a workspace file being partially overwritten, or by an improperly coded auxiliary processor or

Processor 11 external routine. But if none of those conditions are suspect, you should report the problem to IBM

as a possible error in the APL2 product.

SYSTEM LIMIT

SYSTEM LIMIT ⎕ET ←→ 1 n

The requested operation or action exceeds some implementation limit. See the implementation limits

documented in the APL2 User's Guide. Note that if the limit exceeded involves shared variables, you may be

able to avoid the restriction using parameters in the apl2svp.prm file.

VALENCE ERROR

VALENCE ERROR ⎕ET ←→ 5 1

An attempt has been made to specify a left argument for a monadic function, or to specify a single argument for

a dyadic function.

Note: Defined functions whose header shows a left argument are actually ambi-valent, rather than dyadic. This

means that the left argument is optional. Functions can be coded to allow for an omitted left argument by

checking its name class. For example:

 →(0=⎕NC leftarg)/NOLEFT ⍝ Go handle monadic call

If this check is not made, an omitted left argument will typically result in a VALUE ERROR during execution

rather than a VALENCE ERROR during function call. To avoid this, functions which must be called dyadically

should include a statement like this:

 ⎕ES (0=⎕NC leftarg)/5 1 ⍝ VALENCE ERROR if no left arg

VALUE ERROR

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

220

VALUE ERROR ⎕ET ←→ 3 n

There are two cases which you can distinguish by the value of ⎕ET:

⎕ET Description

3 1 The variable being referenced does not currently have a value.

3 2 An attempt was made to use the result of a function that does not return a result.

Note: VALUE ERROR may also occur while executing a defined function that expected two arguments but was

called with only a right argument. See VALENCE ERROR for suggestions on this.

WS FULL

WS FULL ⎕ET ←→ 1 3

An operation requires more workspace storage than is currently available. The workspace size is controlled by

the -ws invocation option, which defaults to 10 megabytes. Note that the workspace size limit is independent of

the amount of real storage on the computer, or even of the amount of available disk space you have.

If the workspace size exceeds the amount of available real storage, the operating system will swap parts of it, or

other things in real storage, to disk. This can cause dramatic losses in performance, but does not cause WS
FULL and is not under APL2's control.

If the amount that needs to be swapped exceeds the available space on the drive containing the swap file, the

system will go into emergency recovery mode, and may crash. This will still not cause WS FULL (though it is

likely to be much worse) and is not under APL2's control.

It is your responsibility to choose a workspace size which is large enough to avoid WS FULL but not so large

that it exceeds swap capabilities. For good performance you should choose a size significantly smaller than the

amount of real memory you have. Practical limits depend on how you have customized your system, and what

applications are sharing it with APL2.

Sometimes a trivial change in an APL algorithm can cause a massive change in storage requirements. For

example, a Boolean array can be stored eight elements per byte. Including a single non-Boolean value in the

array (a 2 or ¯1, for example) causes the entire array to take 32 times as much space as it did before.

Intermediate results may also require much more storage than the values ultimately saved. An outer product, for

example, may use a great deal of storage, even if it is immediately reduced to a much more manageable array.

WS INVALID

WS INVALID

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

221

The)LOAD or)COPY command was issued to access a file that is not a valid APL2 workspace. Possible causes

include:

 transfer from another system through an intermediary that performed ASCII or line-end conversion.

 a workspace that was saved by APL2 on a different operating system than you are currently running.

This includes workspaces written by APL2/PC on the same system, as well as workspaces written on

other types of systems by IBM APL2 products. Such workspaces can only be processed if they are read

as transfer files, i.e. written using)OUT and read using)IN.

 a file written or modified by something other than the APL2 interpreter.

WS TOO LARGE

WS TOO LARGE

The)LOAD or)COPY command was issued to access a file that is larger than the size currently allocated for

the APL2 workspace.

In order to access the file APL2 must be invoked with a workspace size great enough to contain the file. The -

ws invocation option can be used to set the workspace size.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

222

Interpreter Event Codes

The following system functions return codes which indicate whether they were successful, or what kinds of

problems they encountered:

⎕EC Execute Controlled

⎕EX Expunge

⎕FX Fix

⎕NA Name Association

⎕NC Name Class

⎕SVO Shared Variable Offer (Inquire)

See also ⎕ET - Event Type for a system variable containing event codes.

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

223

Glossary

argument

An argument is data that is being passed to a function. It may be a single item, a list of items, or an n-

dimensional array. Each item may be a number, a character, or a collection of subitems, and these kinds

of items may be mixed in an array.

dyadic

A function which accepts both a left and right argument, or an operator which requires both a left and

right operand.

function

A function accepts argument data and transforms it in some way to produce result data. It is possible in

APL for user functions to be niladic, i.e. to be passed no data explicitly, but most functions are either

monadic, requiring one array as a right argument; or ambi-valent, requiring a right argument array and

permitting a left argument array.

monadic

A function which accepts only a right argument, or an operator which accepts only a left operand.

operand

An Operand is a function, or occasionally data, that is being passed to an operator. The function may be

a primitive, system, or defined function.

operator

An operator accepts functions or occasionally data as operands and applies its operands in some way to

produce a derived function. For example, the Reduction operator can be given the Plus function as an

operand, to produce a derived function that will perform a summation over the items within its argument

data. An operator must be defined as either monadic, requiring one function or array as a left operand; or

dyadic, requiring both a left operand and a right operand. Either way, the derived functions they produce

can be monadic or ambi-valent, like other functions.

primitive

An APL term referring to functions and operators which are built in to the language, and are represented

by a special one-character symbol.

progression of integers

Most APL systems (including this one) provide an optimized format for storing arrays that are integral

progressions initially created using ⍳. These would include:

 A←⍳1000000
 B←5×⍳2000000
 C←¯8+⍳3000000
 D←¯4×9+⍳4000000
Altogether there are ten million items in those four arrays, yet they take about as much space as a dozen

or so fractional numbers in a single array! You never have to worry about things like this to make your

APL functions work correctly, but it's something to keep in mind when working with large arrays.

shared variable

The APL2 system provides facilities which makes it possible for two independent processes to cooperate

by sharing common data. ⎕SVC provides controls so that the processes can serialize their access to the

data using any of a number of protocols. The processes can be an APL session and an Auxiliary

Processor, or two APL sessions. Using APL2's cooperative processing facilities, the processes may be

running on different machines.

state indicator

During processing, APL2 must, of course, keep track of function calling sequences so that when one

function completes it can resume execution of its caller. The information required for this includes an

APL2 Language Summary SX26-3851-02

© Copyright IBM Corporation 1984, 2016

224

executable image of the function, the position within the function from which the call was made, and the

current values of any local variables. The accumulation of this information for all active calling levels is

the state of the system, and various parts of it can be queried using the ⎕LC function and the)SI,

)SINL, and)SIS system commands. The state can be partially or fully reset using → or the)SIC

system command.

system command

System commands are intended for communication between the user and the APL2 system. They cannot

be issued directly by an APL program, and use a syntax beginning with a right parenthesis which is

intentionally chosen to be invalid as an APL statement.

	Copyrights
	Contents
	Notices
	Programming Interface Information
	Trademarks

	We Would Like to Hear from You
	Introducing APL2
	APL - What Is It?
	Power, Relevance, and Simplicity
	A Short Example of the Use of APL
	The Characteristics of APL

	Getting Started in APL
	APL Is Interactive
	Who Typed What?
	Expressions
	The APL Character Set

	Fundamentals
	Names
	Numbers
	Functions
	Operators
	Terminology: Functions versus Operators

	Data
	Arrays
	Rank and Shape
	Variables and Constants
	Bracket Indexing
	Index Origin
	Adding More Structure to Arrays

	Assigning Values to Names
	Indexed Specification
	Vector Specification
	Selective Specification

	Order of Evaluation
	Parentheses
	Priority of Bracket Operations
	Priority of Specification
	Vector Notation and its Priority
	Operand Binding

	Errors

	Primitive Functions
	Alphabetic List of Functions
	Names and Valences of Primitive Function Symbols
	Scalar Functions
	Monadic
	Dyadic

	Structural Functions
	Monadic
	Dyadic

	Information Functions
	Monadic
	Dyadic

	Non-scalar transform Functions
	Monadic
	Dyadic

	Add
	And
	Binomial
	Bracket Index
	Catenate
	Catenate with Axis
	Ceiling
	Circle Functions
	Conjugate
	Deal
	Decode
	Depth
	Direction
	Disclose
	Disclose with Axis
	Divide
	Drop
	Drop with Axis
	Enclose
	Enclose with Axis
	Encode
	Enlist
	Equal
	Execute
	Exponential
	Factorial
	Find
	First
	Floor
	Format (default)
	Format by Example
	Format by Specification
	Grade Down
	Grade Down with Collating Sequence
	Grade Up
	Grade Up with Collating Sequence
	Greater Than
	Greater Than or Equal to
	Index
	Index of
	Index with Axis
	Interval
	Laminate
	Less Than
	Less Than or Equal to
	Logarithm
	Magnitude
	Match
	Matrix Divide
	Matrix Inverse
	Maximum
	Member
	Minimum
	Multiply
	Nand
	Natural Logarithm
	Negative
	Nor
	Not
	Not Equal
	Or
	Partition
	Partition with Axis
	Pick
	Pi Times
	Power
	Ravel
	Ravel with Axis
	Reciprocal
	Reshape
	Residue
	Reverse
	Reverse with Axis
	Roll
	Rotate
	Rotate with Axis
	Shape
	Subtract
	Take
	Take with Axis
	Transpose
	Transpose (reversed axes)
	Without

	Primitive Operators
	Compress
	Compress with Axis
	Each, Deriving Dyadic
	Each, Deriving Monadic
	Expand
	Expand with Axis
	Inner Product
	Outer Product
	Reduce
	Reduce N-wise
	Reduce N-wise with Axis
	Reduce with Axis
	Replicate
	Replicate with Axis
	Scan
	Scan with Axis

	System Functions
	Atomic Function
	Attributes
	Character Representation
	Delay
	Execute Alternate
	Execute Controlled
	Event Simulation
	Expunge
	Fix
	Name Association
	Name Class
	Name List
	Shared Variable Control
	Shared Variable Offer
	Shared Variable Query
	Shared Variable Retraction
	Shared Variable State
	Transfer Form
	Universal Character Set

	System Variables
	Account Information
	Atomic Vector
	Comparison Tolerance
	Event Message
	Event Type
	Format Control
	Index Origin
	Line Counter
	Latent Expression
	National Language Translation
	Printing Precision
	Prompt Replacement
	Printing Width
	Random Link
	Shared Variable Event
	Terminal Control
	Time Stamp
	Time Zone
	User Load
	Workspace Available
	Evaluated Input/Output
	Character Input/Output

	System Commands
	Defined Functions and Operators
	Operation Header
	Nature of the result
	Defined Function Valence
	Defined Operator Valence
	Local Names

	Branching and Labels
	Explanation of Branching Example
	Conditional Branch
	Branch to Escape
	Branch in a Line with Diamonds
	Looping Is Rarely Needed

	Execution
	Calling Sequence
	Suspension of Execution
	State Indicator
	Escape
)SIC
	Resume or Restart Execution
	Do Not Resume Execution by Invoking the Operation Again

	Execution Properties

	Debug Controls
	Trace Control
	Stop Control

	Error Reports and Error Codes
	Interrupts and Errors in APL2 Expressions
	Interpreter Messages
	Implicit Errors
	AXIS ERROR
	CLEAR WS
	DEFN ERROR
	DOMAIN ERROR
	IMPROPER LIBRARY REFERENCE
	INCORRECT COMMAND
	INDEX ERROR
	INTERRUPT
	LENGTH ERROR
	LIBRARY I/O ERROR
	NOT COPIED
	NOT ERASED
	NOT FOUND
	NOT SAVED, THIS WS IS wsid
	NOT SAVED, LIBRARY FULL
	RANK ERROR
	SI WARNING
	SYNTAX ERROR
	SYSTEM ERROR
	SYSTEM LIMIT
	VALENCE ERROR
	VALUE ERROR
	WS FULL
	WS INVALID
	WS TOO LARGE

	Interpreter Event Codes

	Glossary

