

APL2 Programming: IBM

Language Reference

 SH21-1061-01

APL2 Programming: IBM

Language Reference

 SH21-1061-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page x.

| Second Edition (February 1994)

| This edition replaces and makes obsolete the previous edition, SH21-1061-0. The technical changes for this edition are summarized
| under “Summary of Changes,” and are indicated by a vertical bar to the left of a change.

| This edition applies to:

| � Release 2 of APL2/370 Version 2, Program Number 5688-228
| � Release 2 of APL2/6000 Version 1, Program Number 5765-012
| � Release 2 of APL2/PC Version 1, Program Numbers 5604-260 (EMEA) and 5799-PGG (USA)
| � Release 1 of APL2 for Sun Solaris Version 1, Program Number 5648-065
| � Release 1 of APL2/2 Advanced, Version 1.0, Part Number 89G1697
| � Release 1 of APL2/2 Entry, Version 1.0, Part Number 89G1556

and to any subsequent releases until otherwise indicated in new editions or technical newsletters.

Changes are made periodically to this publication; before using this publication in connection with the operation of IBM systems,
consult the latest edition of the applicable IBM system bibliography for current information on this product.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your locality. If you
request publications from the address given below, your order will be delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed, comments may be addressed
to IBM Corporation, Department J58, P. O. Box 49023, San Jose, California, U.S.A. 95161-9023. IBM may use or distribute what-
ever information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1984, 1994. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . x
Programming Interface Information . x
Trademarks . x

About This Book . xi
Who Should Read This Book . xi

| APL2 Publications . xi
Conventions Used in This Book . xii

| Summary of Changes . xiv
| Products . xiv

Chapter 1. APL2 in Action . 1
Interaction . 1
Workspaces . 2
Sample Use of APL2 . 2

Chapter 2. Arrays . 5
Structure . 5

Rank . 5
Shape . 6
Depth . 8

Data . 10
Numeric Data . 10
Character Data . 13

Construction of Arrays . 14
Vector Notation . 14
Using Functions to Create Arrays . 15

Display of Arrays . 17
Simple Scalars and Vectors . 17
Simple Matrixes and Other Multidimensional Arrays 17
Nested Arrays . 19

Chapter 3. Syntax and Expressions . 20
Summary of Syntax and Evaluation of Expressions 20
APL2 Syntax . 22

Functions . 23
Operators . 24
Names . 24
Syntactic Construction Symbols . 27
Expressions . 27
Defined Functions and Operators . 31
System Functions and System Variables . 31

Evaluating Expressions . 32
Expressions with More Than One Function and No Operators 32
Determining Function Valence . 33
Name and Symbol Binding . 33

| Multiple Expressions in a Line . 36
Parentheses . 36
Specification of Variables . 39

 Copyright IBM Corp. 1984, 1994 iii

Conditions for Axis Specification . 45

Chapter 4. General Information . 46
Type and Prototype . 46
Fill Item . 47
Empty Arrays . 48

Prototypes of Empty Arrays . 49
Empty Arrays and Nesting . 50

Scalar and Nonscalar Functions . 51
Monadic Scalar Function . 53
Dyadic Scalar Function . 54

Fill Functions . 56
Fill Function for Primitive Scalar Functions . 56
Fill Functions for Primitive Nonscalar Functions 57

System Effects on Evaluation . 57
Size Limitations . 57
Precision . 58
Comparison Tolerance . 58
System Tolerance . 59

Errors and Interrupts in Immediate Execution . 59
Shared Variables . 60

Chapter 5. Primitive Functions and Operators 62
APL2 Expressions Used in the Descriptions 63
Meta Notation Used in Descriptions . 64
Multivalued Functions . 64

+ Add . 65
� Binomial . 66
����� Boolean Functions . 68
[] Bracket Index . 70
,Catenate . 74
,[] Catenate with Axis . 77
� Ceiling . 79
○ Circle Functions . 80

Circular Functions . 82
Hyperbolic Functions . 83
Pythagorean Functions . 83
Complex Number Functions . 84

/ Compress (from Slash) . 85
/[] 	[] Compress with Axis (from Slash) . 86
+ Conjugate . 88

 Deal . 89
⊤ Decode . 90
� Depth . 91

 Direction . 93
� Disclose . 94
�[] Disclose with Axis . 96
÷ Divide . 100
↓ Drop . 101
↓[] Drop with Axis . 105
¨ Each (Dyadic) . 107
¨ Each (Monadic) . 109
� Enclose . 111
�[] Enclose with Axis . 113

iv APL2 Programming: Language Reference

� Encode . 116
ε Enlist . 118
� Execute . 120
� Expand (from Backslash) . 122
�[] �[]Expand with Axis (from Backslash) . 124
* Exponential . 127
� Factorial . 128
� Find . 129
↑ First . 131
� Floor . 133
� Format (Default) . 135
� Format by Example . 139
� Format by Specification . 143
� Grade Down . 147
� Grade Down (with Collating Sequence) . 149
� Grade Up . 153
� Grade Up (with Collating Sequence) . 155
� Index . 160
ι Index Of . 162
�[] Index with Axis . 163
� Inner Product (from Array Product) . 165
ι Interval . 168
,[] Laminate . 169
� Logarithm . 171
 Magnitude . 172
� Match . 173
! Matrix Divide . 174
! Matrix Inverse . 177
� Maximum . 180
ε Member . 181
� Minimum . 182

 Multiply . 183
� Natural Logarithm . 184
| Negative . 185

| "� Outer Product (from Array Product) . 186
� Partition . 188
�[] Partition with Axis . 192
○ Pi Times . 194
� Pick . 195
* Power . 201
, Ravel . 202
,[] Ravel with Axis . 204
÷ Reciprocal . 208
/ Reduce (from Slash) . 209
/ Reduce N-Wise (from Slash) . 213
/[] 	[] Reduce N-Wise with Axis (from Slash) 215
/[] 	[] Reduce with Axis (from Slash) . 217
<≯=≮>≠ Relational Functions . 219
/ Replicate (from Slash) . 220
/[] 	[] Replicate with Axis (from Slash) . 222
ρ Reshape . 225
 Residue . 227
' (Reverse . 228
'[] ([] Reverse with Axis . 229

 Contents v

 Roll . 231
' Rotate . 232
'[] Rotate with Axis . 235
� Scan (from Backslash) . 239
�[] �[] Scan with Axis (from Backslash) . 240
ρ Shape . 241
| Subtract . 243
↑ Take . 244
↑[] Take with Axis . 247
) Transpose (General) . 251
) Transpose (Reversed Axes) . 256
� Without . 258

Chapter 6. System Functions and Variables 259
- Evaluated Input/Output . 262
. Character Input/Output . 265
-AF Atomic Function . 268
-AI Account Information . 269
-AT Attributes . 270
-AV Atomic Vector . 273
-CR Character Representation . 274
-CT Comparison Tolerance . 275
-DL Delay . 277
-EA Execute Alternate . 278
-EC Execute Controlled . 280
-EM Event Message . 281

| -ES Event Simulate (with either Error Message or Event Type) 282
| -ES Event Simulate (with both Error Message and Event Type) 285

-ET Event Type . 287
-EX Expunge . 289
-FC Format Control . 291
-FX Fix (No Execution Properties) . 292
-FX Fix (with Execution Properties) . 294
-IO Index Origin . 297
-L Left Argument . 298
-LC Line Counter . 300
-LX Latent Expression . 302
-NA Name Association (Inquire) . 304
-NA Name Association (Set) . 305
-NC Name Class . 309
-NL Name List (by Alphabet and Class) . 311
-NL Name List (by Class) . 313
-NLT National Language Translation . 314
-PP Printing Precision . 315
-PR Prompt Replacement . 316
-PW Printing Width . 318
-R Right Argument . 319
-RL Random Link . 322
-SVC Shared Variable Control (Inquire) . 323
-SVC Shared Variable Control (Set) . 324
-SVE Shared Variable Event . 326
-SVO Shared Variable Offer (Inquire) . 328
-SVO Shared Variable Offer (Set) . 329
-SVQ Shared Variable Query . 331

vi APL2 Programming: Language Reference

-SVR Shared Variable Retraction . 332
-SVS Shared Variable State . 334
-TC Terminal Control Characters . 335
-TF Transfer Form . 336
-TS Time Stamp . 340
-TZ Time Zone . 341

| -UCS Universal Character Set . 342
-UL User Load . 343
-WA Workspace Available . 344

Chapter 7. Defined Functions and Operators 345
Structure . 346

Header . 347
Body . 348
Time Stamp . 349

Definition Contents . 349
Branching . 349
Structuring Ambi-valent Functions . 352
Event Handling . 352
Use of Local Names . 353

Execution . 353
Suspension of Execution . 354
Calling Sequence . 354
State Indicator . 355
Execution Properties . 360

Debug Controls . 361
Trace Control . 361
Stop Control . 362

| Chapter 8. Shared Variables . 364
| Shared Variable Concepts . 364
| APL2 Shared Variable System Functions and System Variable 364
| Characteristics of Shared Variables . 365
| Communication Procedure . 366
| Degree of Coupling . 366
| Synchronization of Asynchronous Processors . 367
| Symmetry of the Access Control Mechanism 368
| Access Control Vector . 369
| Access State Vector . 370
| Effect of Access Control and Access State on Communications 371
| Signaling of Shared Variable Events . 373

Chapter 9. The APL2 Editors . 375
Editor Features . 376

Characters Permitted within Statements . 378
Named System Editor . 380
Named APL Editor (APL/370 Only) . 382

Guidelines for Writing a Processor 11 Editor 382
Editor 1 (The Line Editor) . 383

Line Numbers . 384
Editor 1 Commands . 384
Immediate Execution with Editor 1 . 393
System Services and Editor 1 . 394

Editor 2 (Full-Screen Editor) . 394

 Contents vii

Information Line . 395
Line Numbers . 396
Editor 2 Commands . 396
Editing Multiple Objects . 411
Immediate Execution in Editor 2 . 412

Chapter 10. System Commands . 413
Storing and Retrieving Objects and Workspaces 414

| Common Command Parameters—Library, Workspace 416
System Services and Information . 416
Using the Active Workspace . 416

Common Parameters—First, Last . 416
|)CHECK—Diagnostic Information . 418

)CLEAR—Activate a Clear Workspace . 420
)CONTINUE—Save Active Workspace and End Session 422
)COPY—Copy Objects into the Active Workspace 423
)DROP—Remove a Workspace from a Library 426
)EDITOR—Query or Select Editor to be Used 427
)ERASE—Delete Objects from the Active Workspace 428
)FNS—List Indicated Objects in the Active Workspace 431
)HOST—Execute a Host System Command . 432
)IN—Read a Transfer File into the Active Workspace 433
)LIB—List Workspace Names in a Library . 434
)LOAD—Bring a Workspace from a Library into the Active Workspace 436
)MORE—List Additional Diagnostic Information 438
)NMS—List Names in the Active Workspace . 439
)OFF—End APL2 Session . 440
)OPS—List Indicated Objects in the Active Workspace 441
)OUT—Write Objects to a Transfer File . 442
)PBS—Query or Set the Printable Backspace Character (APL2/370 Only) . . 444
)PCOPY—Copy Objects into the Active Workspace with Protection 446
)PIN—Read a Transfer File into the Active Workspace with Protection 447
)QUOTA—List Workspace, Library, and Shared Variable Quotas (APL2/370

Only) . 448
)RESET—Clear the State Indicator . 449
)SAVE—Save the Active Workspace in a Library 451
)SI—Display the State Indicator . 453
)SIC—Clear the State Indicator . 454

|)SINL—Display the State Indicator with Name List 456
|)SIS—Display the State Indicator with Statements 457

)SYMBOLS—Query or Modify the Symbol Table Size 458
)VARS—List Indicated Objects in the Active Workspace 459
)WSID—Query or Assign the Active Workspace Identifier 460

| Chapter 11. Interpreter Messages . 461
Interrupts and Errors in APL2 Expressions . 461
Interrupts and Errors in Defined Functions or Operators 462
Errors in System Commands . 462
Messages . 462

Appendix A. The APL2 Character Set . 470
APL2 Special Characters . 471

Explanation of Characters . 480

viii APL2 Programming: Language Reference

Appendix B. APL2 Transfer Files and Extended Transfer Formats 484
Reading and Writing Transfer Files . 484
Moving Transfer Files from One System to Another 484
Internal Formats of Transfer Files . 485

| Appendix C. System Limitations for APL2 . 489

Bibliography . 490
APL2 Publications . 490
Other Books You Might Need . 490

| APL2 Keycaps and Decals . 490

Index . 491

 Contents ix

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights or other legally protectible rights may be used instead of the
IBM product, program, or service. Evaluation and verification of operation in con-
junction with other products, programs, or services, except those expressly desig-
nated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Corporation,
IBM Director of Licensing, 208 Harbor Drive, Stamford, Connecticut, United States
06904.

Programming Interface Information

This reference is intended to help programmers code APL2 applications. This ref-
erence documents General-Use Programming Interface and Associated Guidance
Information provided by APL2.

General-use programming interfaces allow the customer to write programs that
obtain the services of APL2.

 Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

| The following terms, denoted by a double asterisk (**) in this publication, are trade-
| marks of other companies:

| Solaris Sun Microsystems, Inc.
| Sun Sun Microsystems, Inc.

| AIX
APL2

| APL2/6000
AIX/6000

IBM
| OS/2
| System/370
| System/390

x  Copyright IBM Corp. 1984, 1994

About This Book

| This book defines the IBM* APL2* nested array version of the APL language as
| supported on OS/2*, Sun** Solaris**, AIX/6000*, DOS, VM/CMS, and MVS/TSO.
| Deviations from the language, as defined in this book, are documented in the sepa-
| rate user's guides.

APL2 is used in such diverse applications as commercial data processing, system
design, scientific computation, modeling, and the teaching of mathematics and
other subjects. It has been particularly useful in database applications, where its
computational power and communication facilities combine to enhance the produc-
tivity of both application programmers and other users.

| For more information about APL2 and its history, see the APL2 Programming: An

| Introduction to APL2.

Who Should Read This Book

| This book can be used by all APL2 users, though some chapters do assume that
| the user has some familiarity with APL or APL2.

| APL2 Publications

| Figure 1 lists the books in the APL2 library. This table shows the books and how
| they can help you with specific tasks.

| Figure 1 (Page 1 of 2). APL2 Publications

| Information| Book| Publication Number

| General product| APL2 Fact Sheet| GH21-1090

| Warranty| APL2/370 Application Environment Licensed

| Program Specifications

| APL2/370 Licensed Program Specifications

| APL2 for AIX/6000 Licensed Program Specifica-

| tions

| APL2 for Sun Solaris Licensed Program Specifica-

| tions

|
| GH21-1063
| GH21-1070
|
| GC23-3058
|
| GC26-3359

| Introductory language
| material
| APL2 Programming: An Introduction to APL2| SH21-1073

| Common reference
| material
| APL2 Programming: Language Reference

| APL2 Reference Summary

| SH21-1061
| SX26-3999

 Copyright IBM Corp. 1984, 1994 xi

| Figure 1 (Page 2 of 2). APL2 Publications

| Information| Book| Publication Number

| System interface| APL2/370 Programming: System Services Refer-

| ence

| APL2/370 Programming: Using the Supplied Rou-

| tines

| APL2/370 Programming: Processor Interface Ref-

| erence

| APL2 for OS/2: User's Guide

| APL2 for Sun Solaris: User's Guide

| APL2 for AIX/6000: User's Guide

| APL2 GRAPHPAK: User's Guide and Reference

| APL2 Programming: Using Structured Query Lan-

| guage

| APL2 Migration Guide

|
| SH21-1056
|
| SH21-1054
|
| SH21-1058
| SH21-1091
| SH21-1092
| SC23-3051
| SH21-1074
|
| SH21-1057
| SH21-1069

| Mainframe system pro-
| gramming
| APL2/370 Installation and Customization under

| CMS

| APL2/370 Installation and Customization under

| TSO

| APL2/370 Messages and Codes

| APL2/370 Diagnosis Guide

|
| SH21-1062
|
| SH21-1055
| SH21-1059
| LY27-9601

| For the titles and order numbers of other related publications, see the
| “Bibliography” on page 490.

Conventions Used in This Book

As you use this publication, be aware of the following:

� Alphabetic APL2 characters are printed in capital italic letters.

� The symbol ⇔ or ←→ is used to mean “is equivalent to.” It is not an APL2
operation. The equal sign (=) is used to mean the APL2 equal function.

� In illustrations of syntax, the following arbitrary names are used:

 L Left argument
 R Right argument
 F Function
 LO Left operand
 RO Right operand
 MOP Monadic operator
 DOP Dyadic operator

� Unless explicitly stated, the default APL2 environment is assumed. The index
origin (-IO) is 1; the printing precision (-PP) is 10; and the print width (-PW)
is 79.

| � In examples, user input is indented six spaces to simulate the APL2 six-blank
| prompt.

� To conserve space and make it easier to contrast examples, the examples are
presented in two or three columns whenever possible. Read the first column of
examples first, and then the second and third.

| � The term workstation refers to all platforms where APL2 is implemented except
| those based on System/370* and System/390* architecture.

xii APL2 Programming: Language Reference

| � APL2 implemented on System/370-based and System/390-based architecture
| is referred to as APL2/370.

 About This Book xiii

| Summary of Changes

| Products
| APL2/2, Version 1 Release 1
| APL2 for Sun Solaris, Version 1 Release 1
| APL2/6000*, Version 1 Release 2
| APL2/370, Version 2 Release 2
| APL2/PC, Version 1 Release 2

| Date of Publication: January 1994

| Form of Publication: Revision, SH21-1061-01

| Document Changes
| � Added references to the workstation products
| � Updated information on the display of characters
| � Added mention of distinguished names
| � Added diamond information
| � Updated selective specification information
| � Updated figure and list of axis specification conditions
| � Updated precision section
| � Added system tolerances for the workstations
| � Updated binomial section
| � Updated compress (from slash) section
| � Updated compress with axis (from slash) section
| � Updated drop example
| � Updated matrix inverse example
| � Corrected binomial identity value in reduce (from slash)
| � Updated reverse example
| � Updated table of system functions and variables
| � Updated -AV section
| � Updated event type codes
| � Updated -EX syntax information
| � Updated -LX examples
| � Updated -NA examples
| � Updated -SVC example
| � Added posting rules to -SVC
| � Updated -SVO (inquire) example
| � Updated -SVO (set) examples
| � Updated -SVR example
| � Added -UCS universal character set
| � Added shared variables chapter
| � Updated information for APL2 editors
| � Updated table of APL2 system commands
| � Added)CHECK
| � Updated)DROP information
| � Updated)LOAD examples
| � Updated character set figures
| � Added table listing ASCII, EBCDIC, Unicode, and symbol equivalents
| � Updated system limitations appendix

xiv  Copyright IBM Corp. 1984, 1994

Chapter 1. APL2 in Action

APL2 structures data into arrays. These data can include a mix of characters and
numbers. By means of the specification arrow (←), an array can be associated with
a name and the resulting variable can then be used in place of the array in compu-
tations.

Whereas arrays contain data, functions manipulate the structure of arrays or
perform calculations on their data. Every primitive function name is a symbol. For
example, ÷ is the name of the primitive function divide. Operators apply to func-
tions or arrays, and produce functions called derived functions. Every primitive

operator name is a symbol. For example, ¨ is the name of the primitive operator
each.

You can write your own programs or subroutines (called defined functions and
defined operators), tailoring APL2 to the specific needs of your application. You
name defined functions and operators when you define them, using one or more
alphanumeric characters.

Collectively, functions and operators are known as operations.

System functions and system variables provide information about, and permit inter-
action with, the APL2 system. Each system function and system variable is repres-
ented by a distinguished name that begins with the quad symbol (-).

Arrays, functions, and operators are the objects of APL2.

APL2 also provides a facility for using system services and other program products
through auxiliary processors. These services are accessed through shared vari-

ables and can be under the control of an APL2 defined function. A shared variable,
the interface between processors, is used to pass information between them. Any
variable can be offered as a shared variable. “Shared Variables” on page 60

| describes the system functions and variables used for sharing, and Chapter 8,
| “Shared Variables” on page 364 contains additional details on sharing. The APL2
| auxiliary processors available are detailed in the workstation user's guides and
| APL2/370 Programming: System Services Reference.

 Interaction

During an APL2 session, you enter expressions for evaluation, run programs
(defined functions and operators), enter system commands, and define functions
and operators.

The form of your interaction with APL2 is a dialog. You make an entry, APL2 proc-
esses the entry and returns a response. Most of the time the cursor waits in the
seventh column for input. Displayed output usually begins in the first column.
Throughout this manual, examples follow this convention (unless otherwise noted),
as shown in Figure 2.

 Copyright IBM Corp. 1984, 1994 1

4+5 8 3 2 Input
9 12 7 6 Output

Figure 2. Input and Output of APL2 Expressions

The visual distinction between input and output is useful when you study the results
of your APL2 work.

Except when you use one of the APL2 editors to define a function or operator, your
dialog takes place in immediate execution (or calculator) mode. In definition mode,
you use one of the APL2 editors to enter programs built of APL2 statements.
These programs can be stored for later execution.

 Workspaces

The common organizational unit of the APL2 system is the workspace. Part of
each workspace is set aside to serve the internal workings of the system, and the
remainder is used, as required, to store programs and pieces of (transient and per-
manent) information. When in use, a workspace is called active.

Only one workspace is active at a time. A copy of an inactive workspace can be
made active, or selected information can be copied from one or more inactive work-
spaces into the active workspace. Inactive workspaces are stored in libraries.

System commands provide information about and manage data for workspaces and
libraries. They are entered separately rather than as part of APL2 expressions.
System commands begin with a right parenthesis.

Chapter 10, “System Commands” on page 413 contains more information about
workspaces and how to manipulate them.

Sample Use of APL2

The annotated examples shown in Figure 3 and Figure 4 on page 4 illustrate
aspects of APL2 that are described in the remainder of this publication. The com-
ments to the right of the APL2 expressions name the operation or facility being
demonstrated and the page number of its description. Comments and page refer-
ences refer to the first use of the operation or facility, not to each occurrence.

These examples assume that a shoe distributor has some basic inventory
questions. Figure 3 answers questions about the quantities of shoes in stock.
Figure 4 on page 4 answers questions concerning the cost of the shoes.

To simplify the example, only a few styles of shoes for men, women, and children
are used; namely, oxfords, loafers, sneakers, sandals, and pumps. However, the
expressions shown are applicable to larger quantities of data; for instance, styles
can be kept by style number. Also, the examples show expressions only in imme-
diate execution mode. In practice, most of the expressions would be incorporated
into more generalized defined functions. For larger volumes of data, input and file
read/write functions can be used.

2 APL2 Programming: Language Reference

Figure 3. Expressions for Maintaining and Reporting Inventory Quantities

APL2 Expression Comment

For each group (men, women, children), enter the number of shoes of
different styles in stock:

MEN←45 75 15
WOMEN←35 75 15 45 95
CHILDREN←35 0 55 15

Specification of variables (39) and use of
arrays (5).

Determine the total number of men's shoes:

 +/MEN
135

Slash (/) operator (209) with the add (+)
function (65) as operand.

Determine totals for each group:

+/¨ MEN WOMEN CHILDREN
135 265 105

Vector notation (14) and each (¨) oper-
ator (107) with derived function summa-
tion (+/) as operand.

Determine the total number of shoes in stock:

+/εMEN WOMEN CHILDREN
505

Enlist (ε) function (118).

Represent stock as a single variable:

STOCK←MEN WOMEN CHILDREN
 STOCK
45 75 15 35 75 15 45 95 35 0 55 15
 +/¨STOCK
135 265 105
 +/εSTOCK
505

Nested array (8) and its display (19).

Display the inventory information as a table:

 �[1]STOCK
45 35 35
75 75 0
15 15 55
 0 45 15
 0 95 0

Disclose with axis (�[]) function (96),
which fills with zeros where data was not
provided.

Describe what the numbers represent:

STYLES←JOXFORDSJ JLOAFERSJ JSNEAKERSJ
 STYLES←STYLES,JSANDALSJ JPUMPSJ

GROUPS←JMENSJ JWOMENSJ JCHILDRENSJ

Catenate (,) function (74) and character
data (13).

Add row and column headings to the table:

 (J J,GROUPS),[1]STYLES,�[1]STOCK
MENS WOMENS CHILDRENS

OXFORDS 45 35 35
LOAFERS 75 75 0
SNEAKERS 15 15 55
SANDALS 0 45 15
PUMPS 0 95 0

Catenate with axis (,[]) function (77)
and intermixed character and numeric
data.

 Chapter 1. APL2 in Action 3

Figure 4. Expressions for Maintaining and Reporting Inventory Costs

APL2 Expression Comment

Maintain costs for each style in each group:

COSTS←(39 19 29) (35 15 29 18 45)
COSTS←COSTS,�25 16 21 12�5

 COSTS
 39 19 29 35 15 29 18 45 25 16 21 12�5

Parentheses (36) and Enclose (�) func-
tion (111).

Note that the example demonstrates the
use of enclose to catenate a single
nested item to a nested vector. It is nec-
essary here because the line width of the
figure is not large enough to accommo-
date the entire specification of COSTS on
one line.

What is the cost of men's loafers?

 1 2�COSTS
 19

Pick (�) function (195).

Change the cost of men's loafers:

 (1 2�COSTS)←20
 COSTS
 39 20 29 35 15 29 18 45 25 16 21 12�5

Selective specification (40).

Determine retail costs if markups from wholesale costs for men's,
women's, and children's shoes are 60, 70, and 80 percent, respectively.

PRICES←COSTS
1+�6 �7 �8
 ,[ι0]PRICES
 62�4 32 46�4
 59�5 25�5 49�3 30�6 76�5
 45 28�8 37�8 22�5

Multiply (
) function (183), application of
scalar function (51), and ravel with axis
(202) to display the prices for each group
on a separate line.

Identify the stock investment for each group:

 GROUPS,¨COSTS+�
¨STOCK
 MENS 3690 WOMENS 7870 CHILDRENS 2217�5

Array product (�) operator (165) with
functions add and multiply as operands.

Determine the resulting net profit (total sales value minus total cost) for
each line in stock:

 NET←STOCK
PRICES|COSTS
 ,[ι0]NET
 1053 900 261
 857�5 787�5 304�5 567 2992�5
 700 0 924 150

Subtract (|) function (243).

Determine the net profit by group and the total net profit:

 +/¨NET
2214 5509 1774
 +/+/¨NET
9497

Identify the group and style that has the largest net profit:

 GROUP_STYLES←,(GROUPS,¨J J)"�,STYLES
 (,�NET=�/εNET)/GROUP_STYLES
 WOMENS PUMPS

Array product operator (deriving outer
product) (186) and ravel (,) function
(202).

Maximum (�) function (180) as operand
to slash operator, slash operator (deriving
replicate (220), equal (=) function (219),
and disclose (�) function (94).

4 APL2 Programming: Language Reference

 Chapter 2. Arrays

APL2 manipulates collections of numbers, characters, or both as single objects.
These collections are called arrays. Arrays have two properties: structure and data.

| The following sections:

| � Explain and illustrate the structural properties
| � Describe the types of data items
| � Explain the construction of arrays
| � Detail the display of arrays

 Structure

APL2 arrays are ordered rectangular collections of data items. There are three
measures of an array's structure:

 � Rank
 � Shape
 � Depth

 Rank
An array can have zero or more dimensions or axes. The number of axes that an
array has is called its rank. Arrays can be called one-dimensional, two-
dimensional, three-dimensional, and so forth, according to their rank. Figure 5
summarizes array structure by rank and gives sample arrays of various ranks. As
the figure shows, arrays of rank 0, 1, and 2 have special names. Any array with a
rank of two or greater is sometimes called a multidimensional array.

Axes: The last axis of an array of rank 2 or greater is called the column axis. The
next-to-last axis of an array of rank 2 or greater is called the row axis. There are
no established terms for the axes of arrays of rank 3 or more, although sometimes
the first axis of a three-dimensional array is called a page or a plane.

Figure 5. Summary of Array Structures

Rank

Name

of Array

Description

of Array

Example

0 Scalar One item arranged along
no axes.

4

1 Vector Zero or more items
arranged along one axis.

12 6 N 5

2 Matrix Zero or more items
arranged along two axes.

6 8 3 1
4 A 5 9
W X Y Z

3 or
more (as
many as
the
system
limit)

no

special

name

Zero or more items
arranged along n axes.

9 2 3
G 7 Q

5 8 1
4 5 T

 Copyright IBM Corp. 1984, 1994 5

 Shape
Each axis of an array contains zero or more items. The vector containing the
number of items along each axis is called the shape vector of the array. For
example, the shape vector of a 3-row by 4-column matrix M is 3 4. The typical
way of expressing this is to say that the shape of M is 3 4.

The first item of the shape vector is the length or size of the first axis, the second
item of the shape vector is the length of the second axis, and so forth. The number
of items in an array is the product of the lengths of the axes. Thus, a 3-row,
4-column matrix contains 12 items (3
4). And a two-page, two-row, three-column
array also contains 12 items (2
2
3). Figure 5 on page 5 shows examples of
these two arrays.

The shape function (ρ), discussed on page 241, can be used to find the shape and
rank of an array.

Empty Arrays: If the length along one or more axes is 0, the array is empty and
the number of items in the array is 0. An empty array has a rank of 1 or greater,
because a scalar has no axes and therefore cannot have an axis of length 0.
Chapter 4, “General Information” on page 46 describes the effects of applying
operations to empty arrays and Chapter 7, “Defined Functions and Operators” on
page 345 explains further uses of empty arrays.

 Rectangularity
All APL2 arrays are rectangular—even scalars and vectors. Rectangularity in APL2
arrays means that the position of an item along any axis is independent of its posi-
tion along the other axes. Thus, in a matrix, for example, every row has the same
length.

An item in an array is located by naming its position along each axis. For example,
in the 3 by 4 matrix MAT, shown below, each item is located by naming first its
position along the rows and then its position along the columns. In the example,
the positions appear as subscripts on each item of MAT.

| A1,1 B1,2 C1,3 D1,4
E2,1 F2,2 G2,3 H2,4
I3,1 J3,2 K3,3 L3,4

Positional notation of an item in an array is called the index of the item. The index
consists of an ordered set of integers, each of which describes the position of the
item along the corresponding axis. An index composed of subscripts {2,4}, for
example, locates the item in the second row, fourth column of a matrix. (In the
matrix MAT, this is the item H.)

In APL2, the index of an item can be denoted with square brackets surrounding the
index value. Semicolons separate the positions along each axis. For example, the
item H in the matrix MAT is selected by index as MAT[2;4]. (Bracket index is
fully described in “[] Bracket Index” on page 70.)

6 APL2 Programming: Language Reference

Row-Major Order: Selecting items from an array in row-major order means
selecting them row by row and from left to right within the row. For example, the
ravel function (,) makes any array a vector by selecting its items in row-major
order and structuring them as a vector.

M←3 4ρ32 14 6 21 8 b7 12 3 b9 42 27 18
 M
32 14 6 21
 8 b7 12 3
b9 42 27 18

 ,M
32 14 6 21 8 b7 12 3 b9 42 27 18

 Subarrays
An array with each of its items contained in another array is a subarray of that
array. For example, the matrix A is a subarray of the matrix B. The shaded items
of B are found in A, and no item of A is not in B.

If the subarray includes all items along one or more axes of an array, it is a contig-

uous subarray of that array. For example, the shaded portion of the 3 by 5 array
shown on the left below is a contiguous column subarray because it contains all the
row positions. The shaded portion of the array on the right is a contiguous row
subarray.

In the 3 by 2 by 4 array on the left below, the shaded portion is a contiguous page
subarray because it includes all row and column positions. In the 3 by 2 by 4 array
on the right, the shaded portion is a contiguous row subarray because it includes all
page and column positions.

 Chapter 2. Arrays 7

The concept of contiguous subarrays is important in understanding the application
of such functions as take, drop, grade up, and reverse. For example, take (↑)
yields the intersection of contiguous subarrays selected along each axis of the right
argument. The left argument defines the number of subarrays to select along each
axis.

| M← 3 5ρ ι15
| M
| 1 2 3 4 5
| 6 7 8 9 10
| 11 12 13 14 15

| 2 3↑M
| 1 2 3
| 6 7 8

Note: M could have been made up of characters or other arrays. However, the
result would still be the first three columns of the first two rows of M.

 Depth
An item of an array is itself an array. If every item in the array is a simple scalar (a
single number or a single character), the array is called a simple array. If one or
more items in the array is not a simple scalar, the array is called a nested array. In
the examples below, for instance, the vector S on the left is a simple vector with
three items, each of which is a single number. The vector T on the right is a three-
item vector with two vector items and one item (4) that is a simple scalar.

In the nested vector example, the first item of T is the vector 2 3 7, the second
item of T is the scalar 4, and the third item of T is the vector 8 1 3 2. The
illustration below shows each vector item of T enclosed within a box. The outer
box represents the vector T in its entirety.

Simple Vector Nested Vector

S←2 3 7
 S
2 3 7

T←(2 3 7) 4 (8 1 3 2)
 T
 2 3 7 4 8 1 3 2

┌───────────────────────┐
│ ┌──────┐ ┌───────┐ │
│ │2 3 7 │ 4 │8 1 3 2│ │
│ └──────┘ └───────┘ │
└───────────────────────┘

The degree of nesting of an array is called depth. A simple scalar has a depth of
0. The simple vector S has a depth of 1. This means that all its items are simple
scalars, that is, either single numbers or single characters. The depth of T is 2. A
depth of 2 means that at least one of its items has a depth of 1.

8 APL2 Programming: Language Reference

The following indicates the depths an array can have and gives the meaning of
each depth:

Depth Meaning

0 Simple scalar.

1 Simple, nonscalar array (vector, matrix, or n-dimensional array) con-
taining only simple scalars as items.

2 Array that contains at least one array of depth 1. It contains no items
with depths greater than 1.

n Array that contains, as an item, at least one array of depth n-1. For
example, an array of depth 6 contains at least one array of depth 5. It
may contain other arrays of lesser depth as well.

The depth function (�) (discussed in “� Depth” on page 91) shows the depth of an
array.

The matrix M, below, shows the use of nested arrays to add headings to a table
and to substitute JNONEJ for items whose value is 0. The matrix has five rows
and three columns. Each item in the first row is a character vector, and each item
in the first column is a character vector. NONE in the last row, last column, is
also a character vector. The depth of M is 2.

 M
FOOD CALORIES PROTEIN
MILK 160 9
APPLE 60 1
BREAD 75 2
JELLY 50 NONE

Picture of an Array's Structure
Functions that illustrate the structure of an array are contained in the DISPLAY
workspace, one of the workspaces located in a public library and distributed with

| the APL2 Program Product. This workspace is described in the appropriate work-
| station user's guide or in APL2/370 Programming: Using the Supplied Routines for
| CMS and TSO.

The result of the functions is a series of boxes that surround the array and its
items. To illustrate the array's structure, a simple scalar is shown as its value. The
top and left borders of the box display symbols that indicate the rank of the array.
If no symbol appears in either the top or left border, the array is a scalar. Informa-
tion in the lower border indicates either the data type of the array or that the array
is nested. The symbols are defined below:

Symbol Meaning

→ Vector (at least)
↓ Matrix or multidimensional array
(or ' Empty array along this axis
� Numeric array
+ Mixed character and numeric data in array
no symbol Character data
ε Nested array
b Scalar blank (also appears under a simple scalar character when the

array contains a nonscalar array)

 Chapter 2. Arrays 9

When a path is traced from outside the display to an item, the number of lines
crossed is the depth of the item.

The examples below show the use of DISPLAY. The first example shows a
nested array of depth 2, and the second example shows a nested array of depth 3.

DISPLAY 1 2 JMOREJ (3 JAJ) (2 2ρι4) JBJ
�→|||||||||||||||||||||||||�
 �→|||� �→||� �→||�
 1 2 MORE 3 A ↓1 2 B
 J||||J J+||J 3 4 |
 J�||J
Jε|||||||||||||||||||||||||J

DISPLAY 1 2 JMOREJ (3 JORJ) (2 2ρι4) JBJ
�→||||||||||||||||||||||||||||||�
 �→|||� �→|||||||� �→||�
 1 2 MORE �→|� ↓1 2 B
 J||||J 3 OR 3 4 |
 J||J J�||J
 Jε|||||||J
Jε||||||||||||||||||||||||||||||J

 Data

Data enters the active workspace by:

� Explicit entry at the display device
� Execution of APL2 functions and operators

| � External functions
| � Names associated with files

� Use of shared variables, system variables, system functions, and system com-
mands

An array can be composed of numbers or characters or a mixture of numbers and
characters. This section describes the characteristics and display of each type of
data.

 Numeric Data
All numbers are entered and displayed in decimal representation (base-10).
Numbers smaller or larger than the system limit cannot be used. (For the system
limits, see Appendix C, “System Limitations for APL2” on page 489.)

Numeric data is complex—both real and nonreal numbers. Complex numbers are
numbers of the form a+bi, where i is the square root of b1. A number is real if b is
0. A number is nonreal if b is not 0.

 Real Numbers
Real numbers have the following attributes:

Attribute Meaning

Boolean Zero or one
Integer Nonfractional numbers, including zero and one
Rational Fractional numbers and integers

10 APL2 Programming: Language Reference

The irrational numbers pi (π) and e are available through the functions pi times (see
“○ Pi Times” on page 194) and exponential (see “* Exponential” on page 127) as
rational approximations to the extent of the numeric precision of the system. Other
irrational numbers, such as the square root of 2, are also available as approxi-
mations through the application of certain computational functions.

Real numbers can be entered and displayed in either conventional form (including a
decimal point, if appropriate) or scaled form. In conventional form, the number
twenty-five, for example, is represented as 25 and the number four and three-
tenths is represented as 4�3. In scaled form, the number one million is repres-
ented as 1E6.

Scaled Form: The scaled form of a number, which is also sometimes called the
exponential or scientific form, consists of three consecutive parts:

1. An integer or decimal fraction called the mantissa or multiplier.

2. The letter E, which can be read “times 10 to the power....”

3. An integer called the scale, which must not include a decimal point. The scale
specifies the power of 10 by which the mantissa is multiplied.

For example:

Negative Numbers: Negative numbers are represented by an overbar (b) imme-
diately preceding the number. In scaled form, the multiplier and the scale may both
be negative. For example:

Note that the overbar (b) used to start a negative numeric constant differs from the
bar (|) that denotes the subtract and negative functions.

 2�4578E6
2457800

 5�278912467E11
 5�278912467E11

 b253
b253

 b5�1575Eb3
 b0�0051575

 Complex Numbers
Complex number constants can be represented in three forms, the last two of
which are polar notations:

1. Real and imaginary part separated by the letter J and no spaces. The number
is real if the imaginary part is 0.

2. Magnitude and angle in degrees separated by the letter D and no spaces. The
number is real if the angle is an integral multiple of 180.

3. Magnitude and angle in radians separated by the letter R and no spaces. The
number is real if the angle is an integral multiple of pi (π).

 Chapter 2. Arrays 11

APL2 displays complex numbers in J notation, even though they can be entered in
any of the three forms. Defined functions FMTPR and FMTPD in the workspace
MATHFNS distributed with APL2 are available to display complex numbers in R
and D notation, respectively.

A nonreal number that has no real part is called an imaginary number. The imagi-
nary number i (the square root of b1) can be written as:

0J1
1D90
1R1�5707963267948965

Either or both parts of a complex number constant can be specified in scaled form.
For example, 1�2E5Jb4Eb4 is the same as 120000Jb�0004, and
8E3D1E2 is the same as 8000D100.

Display of Numbers: Numbers can be entered in any of the forms discussed
above. The default display of numbers is governed by the printing precision (-PP,
see “-PP Printing Precision” on page 315); possibly by the nature of other items in
the same array column (see “Display of Arrays” on page 17); and for numbers with
absolute values between 0 and 1, by the relationship of leading fractional zeros to
the number of significant digits.

The format by specification (�) function, discussed on page 143, can be used to
specify the form in which a numeric array is displayed.

Leading and Trailing Zeros: Leading zeros to the left of a decimal point and
trailing zeros to the right of a decimal point are not displayed. A single zero before
a decimal point is not considered a leading zero.

Display Precision: The system variable -PP (printing precision) controls the pre-
cision with which numbers are displayed. The default value is 10 digits.

The precision with which numbers are stored internally is always the maximum that
the implementation permits. When -PP is set to its maximum, all available preci-
sion is displayed.

 �5
0�5

 �50000
0�5

 000�2
0�2

 0004
4

 4�560000
4�56

 00�0123000
0�0123

 2�718
2�718

 3�141592653589793
 3�141592654

12 APL2 Programming: Language Reference

Display in Scaled Form: A number is displayed in scaled form when:

� The number of leading fractional zeros is greater than 5.

� The number of digits in the integer portion of a number exceeds -PP.
However, if the number is stored internally as an integer ((4 -AT N)[2] is
less than 8), -PP is ignored and the number is not displayed in scaled form.

In scaled form, except for 0, the absolute value of the mantissa is greater than or
equal to 1 but less than 10. In scaled form, 0 is represented as 0E0.

Display of Complex Numbers: Nonreal numbers are displayed in J notation
regardless of the notation in which they are entered. Although real numbers can be
entered in complex notation, they are always displayed in conventional form. For
example:

In J notation, the real or imaginary part is not displayed if it is less than the other
by more than -PP orders of magnitude (unless -PP is at its maximum). For
example:

 456789
456789
 -PP←4
 456789
456789
 456789�0
4�568E5

 -PP←10
 �0000005678
 5�678Eb7

 467�34589E9
4�6734589E11

 b456�179345Eb9
 b4�56179345Eb7

 2J0
2

 2J3
 2J3

 2J3E45
0J3E45

 3E45J2
 3E45

 Character Data
Character constants are created by entering a character from the keyboard within a
pair of single quotation marks. These surrounding quotation marks are not dis-
played on output. Their purpose is to identify an item as character data. For
example:

The leftmost example shows a single character, even though three-print positions
are necessary to create it. Likewise, � in the last example is one character, even
though an overstrike combination (c, backspace,) is required to create it on
some display devices.

Appendix A, “The APL2 Character Set” on page 470, discusses the APL2 char-
acter set.

 JAJ
A

 JTIMEJ
TIME

 J�δ○J
�δ○

 Chapter 2. Arrays 13

The single quotation mark character itself must be entered as a pair of single quo-
tation marks (without an intervening space) in a character constant:

 JJJJ
J

 JCANJJTJ
 CANJT

Display of Characters
Characters are displayed exactly as they are entered, but without the surrounding
quotation marks and without double internal quotation marks. Blanks within quota-
tion marks are retained, and each blank is an item.

| Note: Some characters are control characters and can cause unpredictable results
| when displayed on certain devices.

| Note: Characters that are not in -AV cannot be displayed on most devices and
| are shown as the omega (ω) character. For example:

| -AF 257
| ω

 J3+4J
3+4

 JONE TWO THREEJ
 ONE TWO THREE

Construction of Arrays

Creating scalars and vectors of two or more items requires entry of only the data
that make up the items. Creating matrixes, arrays of higher rank, and zero- and
one-item vectors requires the use of functions.

 Vector Notation
The juxtaposition of two or more arrays in an expression results in a vector whose
items are the arrays. Representing a vector in this manner is called vector

notation. Each of the following simple vectors is created by juxtaposing simple
scalars:

Simple Vector: For a simple vector, either blanks or parentheses must separate
the items, unless a character item is adjacent to a numeric item or a name.
Although permitted, more than one consecutive blank or set of parentheses is
redundant. The following numeric vectors are equivalent:

1 2 ←→ 1(2) ←→ (1)2 ←→ (1)(2) ←→ 1 2

The following mixed vectors are equivalent.

2 JXJ 8 ←→ 2JXJ8 ←→ 2(JXJ)8 ←→ (2(JXJ)(8))

Characters in a vector consisting only of characters can be listed within one set of
single quotation marks:

JFACEJ ←→ (JFJ JAJ JCJ JEJ)

3 4 5 6
3 4 5 6

2 6 JDJ 4 JWJ
2 6 D 4 W

JFJ JAJ JCJ JEJ
FACE

 X←6
2 3 X 36

2 3 6 36

14 APL2 Programming: Language Reference

Note: When quotation marks surround each character, a space must separate the
characters.

Without the space, the inner quotation marks are interpreted as a quotation mark
character rather than as a character delimiter.

Nested Vector: Forming a nested vector with vector notation requires grouping
the items of the vector and separating the groups by parentheses or quotation
marks—or the names used must represent nonsimple scalars. Each of the fol-
lowing expressions yields a three-item nested vector:

(1 2 3)(4 5 6)(7 8)
 1 2 3 4 5 6 7 8

JREDJ JWHITEJ JBLUEJ
 RED WHITE BLUE

(9 7 4)JBOXJ(7 JFJ 9 JGJ)
 9 7 4 BOX 7 F 9 G

(JUPJ JUPJ)JANDJ JAWAYJ
 UP UP AND AWAY

V←3 5 6
JOJ V JXJ

 O 3 5 6 X

The fourth example has a nested first item–the vector UP UP. The last example
is nested because the name V represents a vector. (See “Parentheses” on
page 36 for more information about the use of parentheses in expressions.)

Vector notation cannot be used to construct a zero-item or one-item nested vector
because no juxtaposition takes place, and parentheses or quotation marks, if used,
do not both group and separate. You can construct a zero-item array by using
reshape (ρ) or one-item nested array by using the function enclose (�), as dis-
cussed in the next section.

JFJ JAJ JCJ JEJ
FACE

 JFJJAJJCJJEJ
 FJAJCJE

Using Functions to Create Arrays
To create multidimensional arrays or to create vectors of zero or one item, you can
use a function. Methods of creating them include:

� Reshaping another array
 � Joining arrays
� Selecting from an array
� Using table operations

 Chapter 2. Arrays 15

The following examples illustrate array creation using some of the functions
described in Chapter 5, “Primitive Functions and Operators” on page 62.

Reshaping Another Array

2 3ρ2 6 1 5 8 7
2 6 1
5 8 7

3 2 4ρJABCDEFGHIJKLMNOPQRSTUVWXJ
ABCD
EFGH

IJKL
MNOP

QRST
UVWX

Joining Arrays

2 4 6,[�5]8 10 12
2 4 6
8 10 12

 JABCDJ,[1�1]JWXYZJ
AW
BX
CY
DZ

Selecting from an Array

 V←JABCDEFJ
 V[2 2ρι4]
AB
CD

Using Table Operations

1 2 3 4 5"�
1 2 3 4 5
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

Although each of these examples shows the creation of a simple multidimensional
array, the functions apply in the same way when the data items are not single
numbers or characters. For example:

2 3ρJONEJ JTWOJ
 ONE TWO ONE
 TWO ONE TWO

16 APL2 Programming: Language Reference

You can apply the function enclose (�), page 111, to create a scalar from an array
that is not a scalar. Using a nested scalar may be necessary in the construction of
certain arrays. Compare:

In the example on the left, JAPL2J is a simple four-item vector. In the example
on the right, �JAPL2J is a scalar array. The results of the 2 4 reshape of these
arguments are quite different.

 2 4ρJAPL2J
APL2
APL2

 2 4ρ�JAPL2J
 APL2 APL2 APL2 APL2
 APL2 APL2 APL2 APL2

Display of Arrays

“Display of Numbers” on page 12 and “Display of Characters” on page 14 discuss
the default display of numeric and character items. This section discusses the
default display of arrays. It assumes that the printing width of the display device is
wide enough to accommodate each line of data to be displayed. -PW (printing
width), page 318, discusses the display of lines wider than the printing width.

Simple Scalars and Vectors
Simple scalars and vectors are displayed in a single line. If an item in a simple
vector is a number, it is separated from adjacent items by one blank. Simple char-
acters are not separated from other simple characters. For example:

If the single line is wider than the printing width (-PW), the line is continued on the
next physical line and is indented six spaces.

4 6 23 7
4 6 23 7

0 J*J 3 4 J"J JAJ 9
0 * 3 4 "A 9

Simple Matrixes and Other Multidimensional Arrays
The displays of simple arrays are not indented. A simple matrix is displayed in a
rectangular plane. All items in a given column of a simple matrix are displayed in
the same format, but the columns themselves can have different formats and dif-
ferent widths.

If a column in a simple matrix contains a number, that column is separated from
adjacent columns by at least one blank. For example:

2 5ρJ*J J-J JδJ 123 45 J○J JcJ 6 7 8
*- δ 123 45
○c 6 7 8

 Chapter 2. Arrays 17

Simple multidimensional arrays are displayed in rectangular planes. Planes of a
three-dimensional array are displayed with an intervening blank line. For higher
dimensional arrays, each successive plane is separated by an additional line. For
example:

2 2 2 3ρ1 2 3 4 5 6
1 2 3
4 5 6

One line separates the planes
1 2 3
4 5 6

Two lines separate successive planes

1 2 3
4 5 6

1 2 3
4 5 6

If a column in a simple multidimensional array contains a number, that column is
separated from adjacent columns in all planes by one blank. All items in corre-
sponding columns of the planes are displayed in the same format.

Simple matrixes and other multidimensional arrays containing numbers that require
scaled form are displayed with all items in a column in the same format.

 -PP←4
2 2ρ23 �0056 34566�0 �00000056

2�300E1 5�6Eb3
3�457E4 5�6Eb7

Decimal points, the E in scaled notation, and the J for complex numbers align in
columns. The columns are formatted independently. For example:

2 4ρ1 12�3 345 6J7 �1 �12 1J2 16J6
1 12�3 345 6J7
0�1 0�12 1J2 16J6

Some simple arrays containing nonreal numbers may be displayed in a form not
suitable for input. The separator J in each column is aligned at the possible cost
of separating paired real and imaginary parts, as in the first three columns of the
matrix shown below.

4 4ρ0 1 2J3 4J5�6 7�8J9
0 1 2 J3 4J5�6
7�8J9 0 1 2J3
4 J5�6 7�8J9 0 1
2 J3 4 J5�6 7�8J9 0

18 APL2 Programming: Language Reference

 Nested Arrays
The displays of nested arrays (and nested items within an array) are indented one
space, and they also include a trailing blank. In each of the examples below, the
first display shows the array as it is displayed. In the second display, a caret indi-
cates each displayed blank.

(1 2 3) (4 5) 6 (7 8 9 10)
 1 2 3 4 5 6 7 8 9 10

�1�2�3��4�5��6��7�8�9�10�

Character vectors and scalar items in a column that contains numeric items are
right-justified.

4 2ρJONEJ JTWOJ 1111 22 b4 5 7J
J

Character scalars or vectors in a column that contains no numbers are left-justified:

 ONE TWO
 1111 22
 b4 5
 7

 ��ONE�TWO�
 �1111��22�
 ���b4���5�
 ����7���
�

3 3ρJONEJ 1111 22 JTWOJ b4 5 JTHREEJ 7 J
J

Other nested arrays are presented in a display that contains embedded blanks
according to the structures of the adjacent items. The number of embedded blanks
is one fewer for character items than for other items.

 ONE 1111 22
 TWO b4 5
 THREE 7

 �ONE���1111�22�
 �TWO�����b4��5�
 �THREE����7��
�

3 2ρ1 2 3,(�4 5 6),7,��8 9

The default format function (page 135) yields a simple character array whose
appearance may be the same as the display of its argument. (If they are different,
it is because of -PW.)

You can use the functions in the DISPLAY workspace distributed with APL2 (as
discussed in “Picture of an Array's Structure” on page 9) to illustrate an arrays
structure.

 1 2
 3 4 5 6
 7 8 9

 �1������2�
 �3��4�5�6�
 �7���8�9��

 Chapter 2. Arrays 19

Chapter 3. Syntax and Expressions

The rules for combining arrays with functions and functions with operators define
| the syntax of APL2. This chapter contains:

| � A summary of syntax and the evaluation of expressions.
| � The details of APL2 syntax
| � The syntactical evaluation of expressions

Summary of Syntax and Evaluation of Expressions

| The following figures summarize the rules discussed in this chapter.

NAMES

Names for variables and for defined functions and operators are character
strings, consisting of one or more of the following:

First character A...Z, a...z, g or δ
Other characters Same as first character plus 0���9, b, and _

Names cannot begin with Sδ or Tδ, which are reserved for stop control and
trace control.

Names for system functions and system variables are called distinguished

names. Except for beginning with a -, they follow the same rules as other
names.

For more information, see “Names” on page 24.

EVALUATION OF EXPRESSIONS

All functions execute according to their position within an expression. The right-
most function whose arguments are available is evaluated first.

For more information, see “Evaluating Expressions” on page 32.

20  Copyright IBM Corp. 1984, 1994

NAME AND SYMBOL BINDING

Binding strengths of arguments, operands, and syntactic construction symbols
supplement the function evaluation rule. Binding defines how names and
symbols group for evaluation.

The hierarchy of binding strengths in descending order is:

Binding Strength What Is Bound

Brackets Brackets to what is on their left

Specification left Left arrow to what is on its left

Right operand Dyadic operator to its right operand

Vector Array to an array

Left operand Operator to its left operand

Left argument Function to its left argument

Right argument Function to its right argument

Specification right Left arrow to what is on its right

For binding, the branch arrow behaves as a monadic function. Brackets and
monadic operators have no binding strength on the right.

For more information, see “Name and Symbol Binding” on page 33.

PARENTHESES

Parentheses are used for grouping and for changing the default binding. They
are correct if properly paired, and if the content within evaluates to an array, a
function, or an operator.

Parentheses are redundant when:

� They group a single name (primitive or constructed).
� They group an expression already within parentheses.
� In an array expression, they:

– Do not both group and separate.
– Group the right argument of a function.
– Group the vector left argument (written in vector notation) of an

expression.
� In a function expression, they:

– Group the left operand of an operator.
– Group the function expression, and a left parenthesis does not separate

two arrays.

For more information, see “Parentheses” on page 36.

 Chapter 3. Syntax and Expressions 21

VECTOR NOTATION

A vector can be created by juxtaposing two or more arrays in an expression.
The items of a vector are arrays. If all items are simple scalars, the vector is
simple. If at least one item is not a simple scalar, the vector is nested. For
example, the three-item vector 5 JHJ 3 is simple, and the three-item vector
(2 5 1) 5 (2 8) is nested.

For more information, see “Vector Notation” on page 14.

SPACES

Spaces or parentheses are needed to separate constructed names if not sepa-
rating them produces a different name. Spaces or parentheses are also
needed to separate constructed names from other symbols, if not separating
them produces an invalid name. For example, 3 F 4 requires spaces
because 3F is an invalid name and F4 is a different name.

Spaces are not needed to separate primitive operations from their arguments or
operands, or to separate a primitive operation from a defined operation. Redun-
dant spaces are permitted.

For more information, see “Syntactically Valid Expressions” on page 28.

VALENCE

All functions are ambi-valent (can be monadic or dyadic), and the definition
used in any instance is determined only by context.

Operators are not ambi-valent. A given operator is either monadic or dyadic,
determined by definition, not context.

For more information, see “Determining Function Valence” on page 33.

 APL2 Syntax

The discussion on APL2 syntax covers:

 � Arrays
� Functions and their relationship to their arguments
� Operators and their relationship to their operands

22 APL2 Programming: Language Reference

 Functions
Functions apply to arrays and produce arrays as a result. The arguments of func-
tions are the arrays that functions manipulate. A function may have one or two
arguments. If the function is a defined function, it can have no arguments or can
be defined to take either one or two arguments. The number of arguments that a
function takes is called its valence. The following terms can be used to describe
the valence of a function:

Term Valence

Niladic Function No arguments
Monadic Function One argument
Dyadic Function Two arguments

A function that can take either one or two arguments is ambi-valent. For example:

If a function is monadic, the function name is placed to the left of the argument, as
in the following examples for the shape (ρ), depth (�), and factorial (�) functions:

ρ3 5 7 9
 �JONEJ JTWOJ
 �5

If a function is dyadic, the function name is placed between the arguments, as in
the following examples for the divide (÷), pick (�), and rotate (') functions:

 4÷5
3�JREDJ JWHITEJ JANDJ JBLUEJ

 1'JSPINJ

 |16 22
b16 b22

 20|16 22
 4 b2

 Axis Specification
Some primitive functions can be applied along an indicated axis of an argument
array. This application is called axis specification. The indicated axis is enclosed
in brackets and appears to the immediate right of the function symbol. The fol-
lowing examples of axis specification use the 3-row, 4-column matrix M:

 M←3 4ρι12
 M
1 2 3 4
5 6 7 8
9 10 11 12

To append another row:

M,[1]13 14 15 16
1 2 3 4
5 6 7 8
 9 10 11 12
13 14 15 16

 Chapter 3. Syntax and Expressions 23

To add .3 to the items in the first row, .2 to the items in the second row, and .1 to
the items in the third row:

�3 �2 �1+[1]M
1�3 2�3 3�3 4�3
5�2 6�2 7�2 8�2
9�1 10�1 11�1 12�1

See also “Conditions for Axis Specification” on page 45.

 Operators
Operators take functions or arrays as operands and produce functions (derived
functions) as a result. An operator can be monadic or dyadic; that is, it can take
one or two operands. Operators are never ambi-valent, but their derived functions
are.

If an operator is monadic, the operator name is placed to the right of the operand,
as in the following examples for the slash (/) and each (¨) operators:

 +/
 ρ¨

If an operator is dyadic, the operator name is placed between the operands, as in
the following example for the array product (�) operator:

 +�

 "�

In this context, the jot symbol (") is treated syntactically as a function.

The derived function resulting from applying an operator can be monadic or dyadic.
Its valence does not depend on the valence of the operator from which it is derived.
For example, slash is a monadic operator. The derived function summation is
monadic, and the derived function n-wise summation is dyadic:

Summation +/1 2 3 4
n-wise summation 2+/1 2 3 4

The operators / and � can be applied along an indicated axis. The indicated axis
is enclosed in brackets and appears to the immediate right of the operator. For
example, for the 3-row, 4-column matrix M shown on page 23:

1 0 2/[1]M
1 2 3 4
9 10 11 12
9 10 11 12

1 0 2 1/[2]M
 1 3 3 4
 5 7 7 8
9 11 11 12

 Names
Names are symbolic representations of APL2 objects—arrays, functions, and oper-
ators. Some names are always associated with the same object. These are called
primitive names. Other names may be associated with different objects at different
times. These are called constructed names. The rules for writing expressions,
detailed later in this section, explain how to combine names.

24 APL2 Programming: Language Reference

| Names beginning with the character - are called distinguished names and are
| assigned fixed meanings. For more information about distinguished names, see
| Chapter 6, “System Functions and Variables” on page 259.

 Primitive Names
Primitive names are those that are defined as part of the definition of APL2. A
given primitive name is always associated with the same object. The primitive
names in APL2 are numbers, characters, and the primitive function and operator
symbols. For example, each of the names listed below is a single primitive name,
even though the last two occupy more than one print position.

Name Meaning

' (function name for rotate and reverse

¨ operator name for each

24�5 number

JRJ character

| Note that APL2 also includes special syntactic symbols that are not names. These

| are " J [] () ← → ; : h. Their uses are discussed in “Expressions” on
page 27.

 Constructed Names
There are two types of constructed names:

� Names for arrays, defined functions, defined operators, and labels
� Distinguished names (prefixed by -) for system functions and system variables

Constructed names receive values by being associated with APL2 objects. Using a
valid name that is not associated with an object results in a VALUE ERROR.

Rules for Constructed Names
Names are constructed of one or more characters with the following constraints:

� Initial (or only) character is from the set:

 ABC���XYZδ

 abc���xyzg

� Remaining characters (if any) are from the set:

 ABC���XYZδ

 abc���xyzg

 0123456789_b

| � Certain compatibility settings in APL2/370 permit, or default to, the use of
underbarred uppercase letters instead of lowercase letters. For more informa-
tion see APL2/370 Programming: System Services Reference.

� The combinations Sδ and Tδ cannot be used as the first two characters of a
name. They are reserved for stop control and trace control, respectively.

 Chapter 3. Syntax and Expressions 25

Any name constructed according to these rules is valid. The following examples
show some valid and invalid names:

Valid Names

M
STOCK
AVERAGE
LOW_BID
REGION2
R2D2

Invalid Names

SET UP Contains a space
3PRIME Begins with a number
bABCDE Begins with an overbar

Associating Names with Objects: A constructed name has no value (it is not
associated with a defined function, a defined operator, an array, or a label) until
some action is taken to specify the association.

Names become associated with arrays through the use of the specification arrow
(←), through parameter substitution when a defined function or operator is invoked,
or through the use of dyadic -NA. A variable is a constructed name that is associ-
ated with an array.

Labels are used in defined functions or operators to identify the target of branching.
A label is associated with the line number in the body of a defined function or oper-
ation in which it appears.

Defined functions and operators are associated with user names as an implicit
result of the -FX function, or through the use of dyadic -NA. Functions may also
be associated with user names through parameter substitution in a defined oper-
ator. Editors, system commands, and facilities outside the language can also asso-
ciate names with objects.

 Distinguished Names
Distinguished names are character strings reserved for fixed uses in the language.
Distinguished names follow the rules for names except that they begin with the
character - (quad). Distinguished names associated with arrays are called system

variables; those associated with functions are called system functions. System var-
iables and system functions help manage the active workspace and APL2 facilities
and environment; for example, -IO (index origin) and -PP (print precision).

Although any distinguished name constructed according to the rules for names is
valid, only a few are associated with objects. Specifying a distinguished name that
does not represent a system function or system variable generates a SYNTAX
ERROR.

26 APL2 Programming: Language Reference

Syntactic Construction Symbols
The syntactic construction symbols and their uses are listed below. The roles
these symbols play in the evaluation of expressions are discussed later in the
chapter.

Brackets []
Positioned to the right of an array name, indicate indexing; to the right of a
function or operator name, indicate axis specification.

Branch or escape arrow →
Followed by an expression, indicates the next line, if any, in a defined func-
tion or operator to be executed. Alone, clears the state indicator of a sus-
pended operation and its entire calling sequence. (Branching is fully
discussed in “Branching” on page 349.)

Jot "
Acts as a placeholder for the left operand of outer product.

Parentheses ()
Used for grouping; expressions within parentheses are evaluated first.

Quotation mark J
Delimits a character string.

Semicolon ;
Within brackets, separates the indexes along each axis. In the header of a
defined operation, separates list of local names from each other and from
operation syntax.

| Diamond

| Separates multiple expressions that appear in a single line.

Specification or assignment arrow ←
Associates a name with an array, or modifies the values of selected posi-
tions in an array already associated with a name.

 Expressions
An expression consists of primitive and/or constructed names and possibly one or
more syntactic construction symbols. For example:

 5÷7
LIST←JPETERJ JPAULJ JMARYJ
+/[1]3 2ρ8 9 3 2 5 7

When an expression containing a function or a derived function and its argument(s)
is evaluated, the result is an array. Such expressions—and array primitives— are
called array expressions. For example:

An expression containing only a function or derived function and no arguments is
called a function expression, and an expression containing only an operator and no
operands is called an operator expression. Function and operator expressions can
be evaluated only in the context of an array expression. Although valid, they gen-

 15
15

 ι10
1 2 3 4 5 6 7 8 9 10

 4ρ2
2 2 2 2

/2 7 5
 70

 Chapter 3. Syntax and Expressions 27

erate a SYNTAX ERROR if entered independently. (Note that niladic functions
are treated syntactically like arrays, not functions.)

 Statements
A statement is an executable unit of work. It is made up of three parts, as shown
below. Any of the three parts can be omitted but, if included, they must appear in
the order shown below.

| label : expressions h comment

where:

: (colon) Separates a label from the rest of the line.

| expressions Can be:

| � No expression
| � One expression
| � More than one expression separated by diamonds (k)

h (comment) Separates the expressions from explanatory informa-
tion. Any spaces between the end of the expression and the h
are retained.

For example:

TEST:→(X<0)/L1 hCHECK FOR NEGATIVE X

TRY:

hFUNCTION REPLACES 0JS WITH J|J

4+9
7

| A←1 B←2

Syntactically Valid Expressions
The rules for writing syntactically valid expressions are few. They concern vector
notation, placement of operations, syntactic construction symbols, and spaces. An
expression written following these rules does not generate a SYNTAX ERROR,
although it can generate some other error. The quick reference section at the front
of this manual summarizes the rules.

Vector Notation: You can create a vector by writing its array items separated by
spaces, parentheses, and/or quotation marks. (See also “Vector Notation” on
page 14.)

Placement of Operations: The following rules apply:

� A dyadic function or operator name is written between its arguments or oper-
ands.

� A monadic function name is written to the left of its argument.

� A monadic operator name is written to the right of its operand.

28 APL2 Programming: Language Reference

Syntactic Construction Symbols: The following rules apply to the use of syn-
tactic construction symbols.

� Parentheses, quotation marks, and brackets must be matched.

Examples - Valid:
(A B C)[2]
(A≠B)�[1]MAT
JDONJJTJ

Examples - Invalid:
(K<N/TRT Missing right parenthesis
JCANJTJ Missing single quotation mark

� Parentheses are permitted around array, function, and operator expressions.
They must not split a name or group functions or operators.

Examples - Valid:
(4|7)÷6
(�/)C

Examples - Invalid:
Q|(�÷)R Splits derived function
NA(ME) Is not the same as NAME
A(ιι)B Groups functions
,(¨/)1 2 3 Groups operators

(See also “Parentheses” on page 36.)

� The expression to the right of a specification arrow must be an array. The
syntactic object to the left of the specification arrow can be the name of an
array, or a name not associated with an object, a list of names, or an
expression that selects positions from an existing named array.

Examples:
D←ι10
M[2;3]←4
(J K)←3 4
(2�X)←�JNEWJ

(See also “Specification of Variables” on page 39.)

� A branch arrow either must be the leftmost symbol or must be to the immediate
right of a label. Any expression to the right of the branch must be an array
expression.

Examples:
 →(M>0)/POSITIVE
 L:→(M>0)/POSITIVE
 →

� Semicolons are allowed only within brackets.

Example - Valid:
MAT[1 4;5 2 6]

Example - Invalid:
JTOTAL J;345 Semicolon is not within brackets

� Semicolons are used in the headers of defined operations but the header is not
an APL expression.

 Chapter 3. Syntax and Expressions 29

� A colon is allowed only following a name (a label) that is the leftmost name on
the line.

Example:
POSITIVE:Z←�M

Spaces: Spaces are needed to separate constructed names from other symbols if
not separating them produces an invalid name.

Examples - Valid:

3 FNι5
3� FNι5

Examples - Invalid:

3FNι5
3�FNι5

Spaces are not needed to separate primitive operations from their arguments or
operands, or from a defined operation.

D�T ←→ D � T ←→ D� T ←→ D � T

Note that a space is also needed to maintain the meaning of adjacent constructed
names if they are not enclosed in parentheses. However, no SYNTAX ERROR is
generated if the space is omitted. For instance, AB CD is not the same as ABCD,
nor is JINJ JOUTJ the same as JINJJOUTJ. But:

AB CD ←→ (AB)(CD) ←→ (AB)CD ←→ AB(CD)

JINJ JOUTJ ←→ (JINJ)(JOUTJ) ←→ (JINJ)JOUTJ

Redundant Spaces and Parentheses: Redundant spaces and parentheses are
permitted and, in fact, are often employed to make an expression more readable.
Redundant spaces do not change the meaning of an expression and they produce
no errors.

Examples:

4 | b9 ←→ 4|b9

8 1 4 3(+DOP÷)9 2 4 2 ←→ 8 1 4 3+DOP÷9 2 4 2

(See also “Redundant Parentheses” on page 37.)

30 APL2 Programming: Language Reference

Defined Functions and Operators
The syntax of defined functions and operators is illustrated below, using the fol-
lowing arbitrarily chosen names:

 Z Result name
 F Function name

L Left argument name
R Right argument name
MOP Monadic operator name
DOP Dyadic operator name
LO Left operand name
RO Right operand name

Forms 1 and 2 are defined functions syntactically equivalent to primitive functions.
They can be substituted wherever a primitive function is used. Forms 3 through 6
are operators syntactically equivalent to primitive operators. Note that these forms
show the arguments of the derived functions.

All syntactic rules apply to defined functions and defined operators with explicit
results in the same way that they apply to primitive operations. For example, in the
following expression the dyadic function COMPOUND is placed between its argu-
ments. The array result of COMPOUND is the right argument of the monadic func-
tion ROUND.

YEAREND←ROUND �12 COMPOUND 10000

A niladic defined function with explicit result (form 7) behaves syntactically as a
variable and can be used in the same way as a variable except that it cannot be
used to the immediate left of a specification arrow. For example:

 cZ←PI
[1] Z←○1c

PI
3*2 h AREA OF A CIRCLE WITH RADIUS 3

Forms 8 through 14 do not include an explicit result. They constitute valueless

expressions. Defined operations without explicit results must be the leftmost opera-
tion in the expression and cannot be enclosed in parentheses.

Forms with Explicit Result Forms without Explicit Result

 1. Z←F R
 2. Z←L F R
 3. Z←(LO MOP) R
 4. Z←L (LO MOP) R
 5. Z←(LO DOP RO) R
 6. Z←L (LO DOP RO) R
 7. Z←F

 8. F R
 9. L F R
10. (LO MOP) R
11. L (LO MOP) R
12. (LO DOP RO) R
13. L (LO DOP RO) R
14. F

System Functions and System Variables
System functions behave syntactically like primitive functions, and system variables
behave syntactically like variables.

 Chapter 3. Syntax and Expressions 31

 Evaluating Expressions

Expressions can be syntactically correct, yet fail to evaluate. Syntactically correct
APL2 expressions can give unexpected results or can generate errors other than
SYNTAX ERROR. For example:

� VALUE ERROR is given if a constructed name that has not been associated
with an object is used.

� LENGTH ERROR or RANK ERROR is given if the arguments are not
conformable.

� DOMAIN ERROR is given if the function is not defined for the type of argu-
ment entered.

Error messages are described in Chapter 11, “Interpreter Messages” on page 461.

Expressions with More Than One Function and No Operators
When an expression contains only one function and its argument(s), a syntactically
correct expression is evaluated in only one way. The function, if any, is applied to
its argument(s) to yield the result. However, when an expression is written con-
taining more than one function, a rule is needed to determine which is to be evalu-
ated first. For instance, is multiplication or addition applied first in the following
expression:

2
3+4

The evaluation of this expression—and others that contain more than one function
and no operators— follows the basic APL2 evaluation rule:

All functions execute according to their position in an expression.

The rightmost function whose arguments are available is evaluated

first.

This rule is often called the right-to-left rule. Because of the right-to-left rule, addi-
tion in the expression 2
3+4 is executed first and then multiplication:

 2
3+4
14

If 2
3 were parenthesized, the expression within parentheses would be the left
argument of +. It must be evaluated first; then its value would be available as the
left argument of +:

 (2
3)+4
10

This explains the rule that the rightmost function whose arguments are available is
evaluated first.

32 APL2 Programming: Language Reference

Determining Function Valence
All functions are syntactically ambi-valent. They can take one or two arguments.
The context in which a function appears determines whether the monadic or dyadic
definition is used. If the object to its left is an array, the function is dyadic. If the
object to its left is a function or operator or derived function expression, it is
monadic. For example, ι in the following expression is monadic (the interval func-
tion) because the name to its left is a function name:

 10
ι10
10 20 30 40 50 60 70 80 90 100

In the next expression, however, ι is dyadic (the function index of) because the
name to its left is an array:

8 9 7ι5 9 6 8
4 2 4 1

Even when the same name is used both monadically and dyadically in an
expression, its meaning is unambiguous. For example:

9 4 6ιι6
4 4 4 2 4 3

The rightmost ι is monadic because the name to its left is a function. The next ι
is dyadic because the name to its left is an array. Its right argument is the array
ι6.

If a right parenthesis) is to the left of a function, the subexpression within paren-
theses must be evaluated before you can determine whether the function is
monadic or dyadic.

Function with Only Either a Monadic or Dyadic Definition: Some functions
have only a monadic definition, for example, execute (�). Some functions have
only a dyadic definition, for example, the relational functions. If these functions are
entered with the wrong number of arguments, a VALENCE ERROR is generated,
not a SYNTAX ERROR. It is always syntactically correct to write a function with
one or two arguments.

Name and Symbol Binding
The right-to-left rule is the fundamental evaluation rule of APL2. However, it does
not cover all situations, such as when an array is written in vector notation or when
an expression contains operators and syntactic construction symbols. To cover all
situations, a rule of binding strengths supplements the right-to-left rule. Binding
defines how names and symbols group for evaluation. Given three names (or
symbols), binding strength determines if the center one is associated with the name
(or symbol) on the left or the right.

 Chapter 3. Syntax and Expressions 33

The hierarchy of binding strengths is listed below in descending order.

Binding Strength What Is Bound

Brackets Brackets to what is on their left
Specification left Left arrow to what is on its left
Right operand Dyadic operator to its right operand
Vector Array to an array
Left operand Operator to its left operand
Left argument Function to its left argument
Right argument Function to its right argument
Specification right Left arrow to what is on its right

For binding, the branch arrow behaves as a monadic function. Brackets and
monadic operators have no binding strength on the right. Parentheses, discussed
on page 36, change the default binding.

 Brackets
Brackets indicate indexing if the object to their left is an array; brackets indicate
axis specification if the object to their left is a function or operator.

Brackets have the highest binding strength. If an expression contains brackets, the
brackets bind first to the object on their left before any other binding occurs. For
example, the following expression is a three-item vector whose first item is A[1],
whose second item is B[2], and whose third item is C[3]:

 A←JHATJ
B←4 8 10
C←JWJ 2 JXJ 7

A[1] B[2] C[3]
H 8 X

In contrast, the following expression is a three-item vector whose first item is A,
whose second item is B, and whose third item is C[2]:

A B C[2]
 HAT 4 8 10 2

Note: The expression 7 6 9[2] generates a RANK ERROR because the
brackets bind to the 9 only. To select the second item of a vector, use paren-
theses:

(A B C)[2]
 4 8 10

(7 6 9)[2]
6

Finally, in the following expression the brackets bind to the / to produce a new
monadic operator, which binds to + as its operand:

 D←3 2ρι6
 +/[1]D
9 12

34 APL2 Programming: Language Reference

Specification—Left and Right
The specification arrow binds to the name or the expression naming array positions
on its left. That is, A B←C ←→ A C. The expression A B←C has the side
effect of assigning to the name B the value of C. For example:

A←2 3 4
 B←8
 C←JNEWJ

 A B←C
 2 3 4 NEW

 B
NEW

 A[3]←JcJ
 A
2 3 c

The entire expression to the right of the specification arrow is an array. That is, the
expression is evaluated before the assignment is made. Therefore, specification
right has the least binding strength.

Right Operand and Left Operand
The right operand of a dyadic operator is the function or array to its immediate
right.

(Note: No primitive dyadic operators take an array right operand.)

For example, the function expression +�
/ is a reduction by a +�
 inner product
because the
 binds as right operand to the array product operator (�), and not as
left operand to the slash operator (/). The + binds as left operand to the dot; then
the resulting product binds to the slash as its left operand.

+�
/ ←→ (+�
)/ not +�(
/)

There is no binding between operators. In the expression ,¨/, catenate binds as
left operand to the each operator, and then the derived function ,¨ binds as left
operand to the slash operator.

,¨/ ←→ (,¨)/

Vector Written with Vector Notation
When two arrays are written next to each other in vector notation, there is a binding
between them. This binding is called vector binding.

Vector binding is stronger than the binding of a function to its arguments. Thus, the
expression 2 3+4 5 yields a two-item vector 6 8, not the three-item vector 2
7 5. Parentheses can be used to override the default binding. So 2 (3+4) 5,
for instance, yields the vector 2 7 5.

Vector binding is also stronger than the left operand of an operator. Thus, the
expression 2 1 3/ (which yields the derived function replicate) replicates the
subarrays of its argument 2, 1, and 3 times, respectively. It does not form a three-

 Chapter 3. Syntax and Expressions 35

item vector whose first two items are 2 1 and whose last item is formed by the
3-replication of the argument of 3/.

2 1 3/A ←→ (2 1 3)/A not 2 1 (3/A)

Vector binding is not stronger than right operand binding. This is important for
defined dyadic operators, which may take an array right operand (none of the primi-
tive dyadic operators takes an array right operand). For example, if DOP is a
defined dyadic operator and LO is a function:

LO DOP A B ←→ (LO DOP A) B not LO DOP (A B)

Left Argument and Right Argument
Stating that left argument binding is stronger than right argument binding is another
way of stating that the evaluation of the expression begins with the rightmost func-
tion whose arguments are available.

For example, in the following expression, 3 is bound as the left argument of +
rather than as the right argument of
.

2
3+4

| Multiple Expressions in a Line
| The diamond separator allows multiple APL expressions to appear in a single line.
| The expressions are processed from left to right. For example:

| A←B k B←B+1

| First A is assigned the value of B, then B is assigned the value of B plus 1.

 Parentheses
Parentheses are used for grouping and changing the default binding. They can be
used anywhere as long as they are properly paired and what is inside the pair eval-
uates to an array, a function, or an operator. An expression within parentheses or
one that validly can be put within parentheses is called a subexpression. Valid

| subexpressions always return explicit results. If an expression that returns no
| result is parenthesized, a VALUE ERROR occurs.

36 APL2 Programming: Language Reference

To evaluate an expression containing parentheses, evaluate the subexpression
within the parentheses, substitute for the parenthesized expression the value it
produces, remove the parentheses, and continue the evaluation of the expression.
For example:

 (9|4)÷25 Evaluate (9|4)
(5)÷25 Remove the parentheses
5÷25 Continue the evaluation

 0�2 Result

If an expression within parentheses contains an expression within parentheses, the
rightmost function whose arguments are available is the first evaluated. For
example:

 ((6<10)�6≮0)/JDIGITJ Evaluate 6≮0
 ((6<10)�1)/JDIGITJ Evaluate (6<10)

((1)�1)/JDIGITJ Remove inner parentheses
 (1�1)/JDIGITJ Evaluate (1�1)
 (1)/JDIGITJ Remove parentheses

1/JDIGITJ Continue the evaluation
 DIGIT Result

 Redundant Parentheses
Some parentheses that are correct can be removed from an expression without
affecting the result of the expression, because they do not change either the
binding of the names or the syntactic construction symbols of the expression.
These are called redundant parentheses.

Parentheses surrounding a primitive or constructed name, a character string
(enclosed in quotation marks), or an already parenthesized expression are always
redundant. For example:

2(+)3 ←→ 2+3 Primitive function name
A+(�)
B ←→ A+�
B Primitive operator name
(2)+1 ←→ 2+1 Primitive array name
(A)←3 ←→ A←3 Constructed array name

(JABCJ) ←→ JABCJ Character string
((2|3))+1 ←→ (2|3)+1 Parenthesized expression

Redundant parentheses may be added to or removed from expressions freely
without changing the value of the expression. Additional guidelines for removing
parentheses are given below.

Vector Expressions in Parentheses: In expressions of arrays, parentheses that
do not separate and group are redundant.

Examples—Redundant Parentheses:

2 (3) 4 ←→ 2 3 4 These separate but do not group.

(2 3 4) ←→ 2 3 4 These group but do not separate.

 Chapter 3. Syntax and Expressions 37

Examples—Nonredundant Parentheses:

JHJ (2 2ρι4) is not the same as JHJ 2 2ρι4 (which is an error).
The parentheses separate.

2 (3 4) is not the same as 2 3 4. The parentheses group and separate
to create a two-item nested vector. (See also “Vector Notation” on page 14.)

Array Expressions in Parentheses: Parentheses in an expression alter the
default binding of arguments to functions. For instance, to subtract 3 from 8 and
then divide the result by 4:

 (8|3)÷4
1�25

Enclosing 8|3 in parentheses causes 3 and | to be bound even though the left
argument binding of ÷ is stronger than the right argument binding of |.

Parentheses in array expressions are redundant if they group the right argument of
a function, a vector left argument of a function, or brackets to the array immediately
to their left. For example:

8|(3÷4) ←→ 8|3÷4 Groups right argument
(2 3)
4 ←→ 2 3
4 Groups vector left argument
A B (C[2]) ←→ A B C[2] Groups brackets to array on their left

Function Expressions with Parentheses: Parentheses in an expression alter the
default binding of operands to operators. For instance, to express an outer product
where the function applied is an inner product:

"�(+�
)

Enclosing +�
 in parentheses causes + to be bound to the dot on its right even
though the right operand binding of the leftmost dot is stronger.

Parentheses in function expressions are redundant if they group the left operand of
an operator or if the left parentheses does not separate two arrays. For example:

 (+�
)/ ←→ +�
/ Groups left operand
A(+�
)B ←→ A+�
B Groups function expression

Operator Expressions with Parentheses: In any syntactically valid operator
expression, parentheses are redundant. For example:

+(�)
 ←→ +�
 Surrounds operator name

38 APL2 Programming: Language Reference

Specification of Variables
Specification or assignment is one way that an array associates with a name. For
example:

The explicit result of specification is the array on the right. This result does not
produce a display but is available for further computation. To see the value of the
variable, enter its name. The name, once specified or set, represents the array and
can be used in place of the data in APL2 expressions.

 100,B←ι10
100 1 2 3 4 5 6 7 8 9 10

An attempt to assign a value to a function, operator, or primitive name generates a
SYNTAX ERROR.

When an expression containing a variable is evaluated, the value of the variable is
substituted for the name before the function or operator is executed. For example,
with A as specified above:

2�A Substitute the value of A
TWO

2�JONEJ JTWOJ Evaluate the expression
TWO

 A←JONEJ JTWOJ
 A
 ONE TWO

 B←ι10
 B

1 2 3 4 5 6 7 8 9 10

Using a Variable
Use of a variable name without a specification arrow to its immediate right is a
reference or use of the variable.

 D←7
 D
7

 C←ι5
 C
1 2 3 4 5

 D
2
14
 D
7

 'C
5 4 3 2 1

 C
1 2 3 4 5

Respecifying a Variable
When the variable name appears to the immediate left of the specification arrow, a
new value is assigned to it:

 D←7
 D
7

 C←ι5
 C
1 2 3 4 5

 D←D
2
 D
14

 C←'C
 C
5 4 3 2 1

 Chapter 3. Syntax and Expressions 39

 Multiple Specification
Several variables can be assigned on one line; for example, the expression below
initializes each of the variables E, F, G, and H with the value of 1.

 E←F←G←H←1
 E
1
 F
1
 G
1
 H
1

 Vector Specification
Several variables can be given values from items of a vector.

(A B C)←2 3 4
 A
2
 B
3

If a scalar is on the right, the item in the scalar is assigned to each name.

 (A B)←0
 A
0
 B
0

(A B)←�4 5 6
 A
4 5 6
 ρB
3

| The list of names must be variables or names with no value. On some platforms,
| shared variables, system variables, or external variables are not permitted in the
| list.

 Selective Specification
| Note: The information in this section is based on the APL2 language definition.
| Deviations exist on some platforms and are documented in the separate user's
| guides.

| Any expression that selects values from an array can be written on the left of an
| assignment arrow to mean replacement of those values. Such replacement is
| called a selective specification.

Selective specification replaces selected items of an array. In selective specifica-
tion, an array expression using one of the functions listed in Figure 6 on page 41
appears to the left of the specification arrow. The items in the positions selected by
the array expression are replaced by the items to the right of the specification
arrow.

40 APL2 Programming: Language Reference

Monadic Functions

(εR)←N Enlist
(↑R)←N First
(,R)←N Ravel
(,[X]R)←N Ravel with axis
('R)←N or ((R)←N Reverse
('[X]R)←N or (([X]R)←N Reverse with axis
()R)←N Transpose (reversed axes)

Dyadic Functions

R[L]←N Bracket indexing
(L↓R)←N Drop
(L↓[X]R)←N Drop with axis
(L�R)←N Index
(L�[X]R)←N Index with axis
(L�R)←N Pick
(LρR)←N Reshape
(L'R)←N or (L(R)←N Rotate
(L'[X]R)←N or (L([X]R)←N Rotate with axis
(L↑R)←N Take
(L↑[X]R)←N Take with axis
(L)R)←N Transpose (general)

Derived Functions

(LO�R)←N or (LO�R)←N Expand
(LO�[X]R)←N or (LO�[X]R)←N Expand wit axis
(LO/R)←N or (LO	R)←N Replicate
(LO/[X]R)←N or (LO	[X]R)←N Replicate with axis
(LO¨ R)←N Each (monadic)
(L LO¨ R)←N Each (dyadic)

Notes:

1. R is the name of the array being selectively specified.
2. N is the array of new items for R.
3. X is a scalar or vector indication of axes in R.
4. L and LO are simple integer arrays.
5. Parentheses are necessary for all functions but bracket indexing.
6. For pick (�), only one item may be selectively specified at a time.

Figure 6. Selective Specification Functions

Selective specification is used to replace whole arrays or subsets of arrays. When
a whole array is replaced, the structure of the replaced array is not relevant. When
a subset of an array is replaced, the shape of the replaced array does not change
but the structure of the items replaced is not relevant.

 Chapter 3. Syntax and Expressions 41

In ordinary cases, selective specification can be understood if you understand how
the selection expression works when it is not on the left of an assignment. For
example:

V← 10 20 30 40
 (2↑V)←100 200
 V
100 200 30 40

The function take does not select the first two items of V; instead, it selects the
locations of the first two items of V. This resulting vector of locations is considered
a simple vector even if the items at those locations are deeply nested. The data on
the right of the assignment then replaces data at those locations.

As with ordinary specification, the explicit result of a selective assignment is the
array on the right that does not produce a display but is available for further compu-
tation.

More complicated cases can be tricky because the selection does not operate on
the values in an array but rather on the positions of values.

Any selection expression begins by identifying an array whose value will be modi-
fied. Initially, the whole array is subject to replacement. Functions in the selection
expression serve to limit the part of the array that is actually modified:

1. The rightmost name in the expression, ignoring brackets used for indexing, is
the name whose value is set or altered. Call it the assigned name. The whole
array named is subject to modification.

If no function appears in the selection expression, then the value on the right of
the left arrow becomes the value of the assigned name and selective specifica-

tion degenerates into ordinary specification:

 A←JABCDJ
(A)←10 20 30

 A
10 20 30

Thus, in some sense, specification is a special case of selective specification.

If any functions appear in the selection expression, then the name being
assigned must have a value.

2. Pick with an empty left argument is the only function that returns the whole
array to which it is applied. Thus, pick with an empty left argument as the only
function in a selection expression causes the whole array associated with the
assigned name to be replaced.

 A←JABCDJ
((ι0)�A)←10 20 30

 A
10 20 30

This is equivalent to a specification except that the assigned name must have a
value.

3. First selects the whole array that is the first item of its right argument.

 A←JABCDJ
(↑A)←10 20 30

42 APL2 Programming: Language Reference

 A
10 20 30 BCD

4. Pick selects the whole array that is at the end of a specified path through its
right argument.

 A←JABCDJ
(2�A)←10 20 30

 A
A 10 20 30 CD

5. Any selection function other than first or pick selects a subset of an array.

A←(2 3)(2 3 4 5)(10 20)
 (3↑2�A)←JABCJ
 A
 2 3 ABC 5 10 20

B←(2 3)(2 3 4 5)(10 20)
 (εB)←0
 B

0 0 0 0 0 0 0 0

Once the selection expression has been evaluated, the following rules govern the
replacement of values. Apply the first rule that holds:

1. If the left is a whole array, the right array replaces it.

2. If the right is a scalar (or an array with empty shape when ones are removed),
then the right is paired with each item from the left and these rules are applied
recursively.

3. If the left and the right have the same shape (when ones in the shapes are
ignored), then corresponding items from the left and from the right are paired
and these rules apply recursively.

While any expression following the above rules is a legal assignment, not all are
currently supported. The following restrictions apply:

1. The result of the select expression must be simple. Given that the structure of
the items selected is ignored, the only way the result of the selection
expression can be nested is if some function that increases depth is applied
(for example, enclose, partition, or some operator expressions) and this struc-
ture is not removed (for example, by enlist).

2. Disclose is not supported.

| For additional restrictions, see the appropriate workstation user's guide.

 Chapter 3. Syntax and Expressions 43

Various selections and replacements are shown below for the matrix M. The exam-
ples assume that each selective specification expression uses the original specifica-
tion of M.

The last example in the left column demonstrates the application of several func-
tions in selective specification. The positions replaced were the first four taken in
row-major order after M was transposed (its rows and columns interchanged).
These are the characters AEIB, which are then replaced with the ○*÷-, respec-
tively.

The last example in the right column shows that scalars being selectively assigned
to a nonscalar array of locations are replicated as necessary.

The value of the variable being altered by a selective specification cannot be
replaced to effect before the specification is complete.

 A←ι10
 ((A←2)↑A)←0
 A
0 0 3 4 5 6 7 8 9 10

If B is a shared variable, then

| ((B=J J)/B)←J*J

is an error because the leftmost mention of B is a reference of the shared variable
and causes B to receive a new value.

For each function that permits selective specification, the description in Chapter 5,
“Primitive Functions and Operators” on page 62 shows examples of the function
applied in selective specification.

 M←3 4ρJABCDEFGHIJKLJ
 M
ABCD
EFGH
IJKL

 M[2;3]←J-J
 M
ABCD
EF-H
IJKL

 M[1;2 4]←Jc○J
 M
 AcC○
 EFGH
 IJKL

 (2 1↑M)←J(!J
 M
(BCD
!FGH
IJKL

 (,M)←ι12
 M
 1 2 3 4
 5 6 7 8

9 10 11 12
 (4↑,)M)←J○*÷-J
 M
○-CD
*FGH
÷JKL

M[1 3;1 4]←J*J
 M
 BC
 EFGH
 JK

44 APL2 Programming: Language Reference

Conditions for Axis Specification

Functions

+ Add
� And
� Binomial
○ Circular
� Disclose
÷ Divide
↓ Drop
� Enclose
= Equal
> Greater than
≮ Greater than or equal
< Less than
≯ Less than or equal
� Logarithm
� Maximum
� Minimum

 Multiply
� Nand
� Nor
≠ Not equal
� Or

| � Partition
* Power
 Residue
, Ravel, Catenate, Laminate
' or (Reverse, Rotate

| � Index
| Subtract
↑ Take
Operators
� or � Backslash
/ or 	 Slash

Figure 7. Functions and Operators That Allow Axis Specification

For axis specification, writing brackets next to a function or operator is always syn-
tactically correct, but evaluation of the related function succeeds only when the fol-
lowing specific conditions are true:

� The bracket expression contains no semicolons
| � The data in brackets is the proper type
| � The data in brackets is the proper rank

� The function or operator is one of those shown in Figure 7
| � The data in brackets is within the range defined by the function or operator

Otherwise, an AXIS ERROR occurs.

 Chapter 3. Syntax and Expressions 45

 Chapter 4. General Information

The topics discussed in this chapter pertain to functions, operators, variables, and
commands in general. They are discussed here because they affect the entire
system and not just a single function or variable.

The descriptions of the APL2 functions, operators, variables, and commands
require an understanding of the following topics:

| � Types and prototypes
 � Fill items
 � Empty arrays

| � Scalar and nonscalar functions
 � Fill functions
� System effects on evaluation

| � Errors and interrupts in immediate execution
 � Shared variables

Type and Prototype

| Note: The information in this section is based on the APL2 language definition.
| Deviations exist on some platforms and are documented in the separate user's
| guides.

The type of array yields a zero for each number in the array and a blank for each
character. The type of array has the same structure as the array. Type can be
determined by the expression:

Type ⇔ ↑0ρ�R

In this expression:

� makes R into a scalar that contains R.

0ρ turns the scalar into an empty vector.

↑ selects the first item.

The prototype of an array is defined as the type of its first item:

Prototype ⇔ ↑0ρ�↑R

For example, for the three-item vector R:

R←(2 3ρ1 JAJ 2 3 JBJ JCJ) JWORDJ (9 10 11)

 R
 1 A 2 WORD 9 10 11
 3 B C

46  Copyright IBM Corp. 1984, 1994

Type Prototype

 DISPLAY ↑0ρ�R
�→|||||||||||||||||||||||�
 �→||||� �→|||� �→||||�
 ↓0 0 0 0 0
 0 J||||J J�||||J
 J+||||J
Jε|||||||||||||||||||||||J

DISPLAY ↑0ρ�↑R
 �→||||�
 ↓0 0
 0
 J+||||J

 Fill Item

| Note: The information in this section is based on the APL2 language definition.
| Deviations exist on some platforms and are documented in the separate user's
| guides.

The prototype of an argument is used as a fill item when the operations take,
expand, replicate, and disclose apply to certain arguments, as described below:

� Take (L↑R), page 244, and take with axis (L↑[X]R), page 247, use a fill item
when the left argument specifies more items than the right argument contains.
This application is called an overtake.

� Expand (L�R or L�R), page 122, and expand with axis (L�[X]R or
L�[X]R), page 124, use a fill item to fill the expanded structure.

� Replicate (L/R or L	R), page 220, and replicate with axis (L/[X]R or
L	[X]R), page 222, insert L[I] fill items to correspond to a negative Ith
item in the left argument.

� Disclose (�), page 94, and disclose with axis (�[X]R), page 96, expand
smaller items to the structure of the largest item in the array by padding with
the fill item.

As an example, take the following assignment and display of a four-item nested
vector N:

N←((2 3)(4 5(6 7)))(8 9 10)11 12
 ρN
4
 �N
4
 DISPLAY N
�→|||||||||||||||||||||||||||||||||||||||�
 �→||||||||||||||||||||� �→|||||�
 �→||� �→||||||||||� 8 9 10 11 12
 2 3 �→||� J�|||||J
 J�||J 4 5 6 7
 J�||J
 Jε||||||||||J
 Jε||||||||||||||||||||J
Jε|||||||||||||||||||||||||||||||||||||||J

 Chapter 4. General Information 47

Note how the prototype fills the result on an overtake of the nested vector N:

 Z←5↑N
 DISPLAY Z
�→|||�
 �→||||||||||||||||||||� �→|||||� �→||||||||||||||||||||�
 �→||� �→||||||||||� 8 9 10 11 12 �→||� �→||||||||||�
 2 3 �→||� J�|||||J 0 0 �→||�
 J�||J 4 5 6 7 J�||J 0 0 0 0
 J�||J J�||J
 Jε||||||||||J Jε||||||||||J
 Jε||||||||||||||||||||J Jε||||||||||||||||||||J
Jε|||J

Prototypes are used to complete the definitions of functions and make them work in
expected ways even at limiting cases. For example, the use of the prototype as
the fill item causes the following to be true after application of take, expand, repli-
cate, and disclose:

� Simple arguments give simple results.

� All numeric arguments give all numeric results.

� All character arguments give all character results.

� Uniformly nested arrays (each of whose items have the same structure) give
uniformly nested results.

 Empty Arrays

An array is empty when the length of one or more of its axes is 0. There is no
empty scalar, but empty arrays may be of any other rank. Empty arrays have type
and prototype. Figure 8 illustrates four empty arrays and explains how they are
created.

Uses of Empty Arrays: The following are common uses of an empty array:

� As right argument of the branch arrow (→) to resume execution of an
expression in immediate execution (page 59) or within a defined function or
defined operator to continue evaluation with the next line (page 349).

� As left argument of reshape (ρ) to create a scalar from an array (page 225).

� In variable specification to initialize a variable.

� As the value for a trace or stop control vector (Tδname and Sδname) to turn
off the trace or stop (pages 361 and 362).

48 APL2 Programming: Language Reference

Figure 8. Creating Simple Empty Arrays

 MTN1←ι0 Simple, empty numeric vector.
 MTN1
 Empty vector displays as blank line.
 ρMTN1 Shape of array shows that it
0 is a vector of length 0.
 DISPLAY MTN1 Picture display shows the vector.
�(�
 0
J�J

 MTN2←2 0ρ5 Simple empty 2-row numeric matrix.
 MTN2
 Displays as two blank lines.
 ρMTN2 Shape of matrix is 2 0.
2 0
 DISPLAY MTN2 Picture display shows the matrix.
�(�
↓0
 0
J�J

 MTC1←JJ Empty character vector.
 MTC1
 Vector displays as a blank line.
 ρMTC1 Shape is 0 for the empty vector.
0
 DISPLAY MTC1 Picture display shows the vector.
�(�

J|J

 MTC2←0 4ρJJ Simple empty 4-column character
 MTC2 matrix does not display as blank
 ρMTC2 line(s) because its row-axis has length 0.
0 4
 DISPLAY MTC2 Picture display shows the matrix.
�→|||�
'
J||||J

Prototypes of Empty Arrays
As does any other array, an empty array has a depth and a prototype. The proto-
type of an empty array T is ↑T.

See “Fill Functions” on page 56 for a discussion of the use of the prototype when
an empty array is the argument of a primitive function.

 ↑ι0
0
 ↑2 0ρ0
0

�2 0ρ�2 3 4
 2

↑2 0ρ�2 3 4
0 0 0

 Chapter 4. General Information 49

Empty Arrays and Nesting
A nested array may have empty arrays among its items. The following expression,
for instance, creates a four-item nested vector of depth 2 that contains an empty
array as its second item:

VEC←JAGNESJ (ι0) JHERBJ 10
 VEC
 AGNES HERB 10
 ρVEC
4
 �VEC
2
 DISPLAY VEC
�→||||||||||||||||||||||�
 �→||||� �(� �→|||�
 AGNES 0 HERB 10
 J|||||J J�J J||||J
Jε||||||||||||||||||||||J

Note: The DISPLAY function shows the prototype of empty arrays or items.

A nested array can contain only empty items, yet not be an empty array. Its proto-
type, however, is empty.

In contrast, the following is an empty nested array. It is nested because its proto-
type is not a simple scalar (either 0 or J J).

T←0 2ρ�0 0
 ρT
0 2
 DISPLAY T
�→||||||||||||�
' �→||� �→||�
 0 0 0 0
 J�||J J�||J
Jε||||||||||||J
 �T
2
 ↑T
0 0

Nested empty arrays are important because they allow expressions to work at the
limit. For example:

� 5ρ�2ρX is a five-item vector of two-item vectors.

� Nρ�2ρX is an N-item vector of two-item vectors. This is true even when N is
0. That is, 0ρ�2ρX is an empty vector that has a two-item prototype.

50 APL2 Programming: Language Reference

Scalar and Nonscalar Functions

According to the way they manipulate data, the primitive functions are either scalar

or nonscalar.

Scalar functions include most computational functions. Figure 9 lists the scalar
functions and Figure 10 on page 52 lists the nonscalar functions.

Formally, a function is a scalar function if indexing distributes over it. The primitive
scalar functions have the additional property that "pick" (�) distributes over them.
This property is called pervasive.

F is monadic scalar if:

(F R)[I] ←→ F R[I]

F is dyadic scalar if:

(L F R)[I] ←→ L[I] F R[I] (scalar extension ignored)

Figure 9. Primitive Scalar Functions (All dyadic forms may take an axis.)

Monadic Scalar

Function

Symbol

Dyadic Scalar

Conjugate + Add

Negative | Subtract

Direction
 Multiply

Reciprocal ÷ Divide

Magnitude Residue

Floor � Minimum

Ceiling � Maximum

Exponential * Power

Natural Log � Logarithm

Pi Times ○ Circular

Factorial � Binomial

Not � {Nonscalar Function}

Roll
 {Nonscalar Function}

� And

� Or

� Nand

� Nor

< Less

≯ Not Greater

= Equal

≮ Not Less

> Greater

≠ Not Equal

 Chapter 4. General Information 51

where indexing is taken as indexing an arbitrary rank array.

F is monadic pervasive if:

(I�F R) ←→ F I�R

F is dyadic pervasive if:

(I�L F R) ←→ (I�L) F (I�R) (scalar extension ignored)

Figure 10. Primitive Nonscalar Functions (Brackets indicate that an axis specifica-

tion is optional.)

Monadic

Nonscalar

Function

Symbol

Dyadic

Nonscalar

Shape ρ Reshape

Ravel [] , Catenate, Laminate []

Reverse [] ' (Rotate []

Transpose) Transpose

Enclose [] � Partition []

Disclose [] � Pick

↓ Drop []

First ↑ Take []

{Scalar Function} � Without

Interval ι Index of

Enlist ε Member

Grade Up � Grade Up

Grade Down � Grade Down

{Scalar Function}
 Deal

� Find

� Encode

⊤ Decode

Matrix Inverse ! Matrix Divide

Depth � Match

Execute �

Format � Format

[;] Indexing

� Index []

Conformability of Arguments
Permissible arguments for a particular dyadic function are determined by their
structure and data and by their relationship to one another. Arguments are said to
conform when they are compatible according to the requirements of the function.

Each scalar function applies to its argument(s) in a similar way and follows the
conformability rules described below. These rules are not repeated in the
descriptions of the scalar functions.

52 APL2 Programming: Language Reference

For nonscalar functions, the conformability rules and the way arguments relate
follow no set pattern. The function descriptions explain these in detail.

Monadic Scalar Function
Monadic scalar functions are defined on a simple scalar argument, then extended
to other arguments, according to the following rules:

If the argument is a simple scalar, apply the function.

 �3�6
4

If the argument is not empty, apply the function independently to each simple scalar
in its argument.

The result has a structure (rank, shape, and depth) identical to that of its argument.

If the argument is empty, apply the related fill function to ↑R (the prototype of the
argument). Fill functions are discussed on page 56.

The following example illustrates the application of a monadic scalar function to a
nested array.

D←(2 8 6)(2 2ρ3 7 1)
 DISPLAY D
�→||||||||||||||�
 �→||||� �→||�
 2 8 6 ↓3 7
 J�||||J 1 3
 J�||J
Jε||||||||||||||J
 T←|D
 DISPLAY T
�→|||||||||||||||||||�
 �→|||||||� �→||||�
 b2 b8 b6 ↓b3 b7
 J�|||||||J b1 b3
 J�||||J
Jε|||||||||||||||||||J

�3 6 9
6 720 362880

That is:
(�3) (�6) (�9)

6 720 362880

 ÷2 3ρι6
 1 0�5 0�3333333333
0�25 0�2 0�1666666667

 Chapter 4. General Information 53

Dyadic Scalar Function
Dyadic scalar functions are defined on simple arguments, then extended to other
arguments, according to the following rules.

Scalar Conformability Rules
If both arguments are simple scalars, apply the function.

 2+3
5

If one or both arguments are empty arrays, apply the related fill function to ↑L
and/or ↑R (the prototype of the empty array). Fill functions are discussed in the
next section, page 56.

If arguments have the same shape, apply the function to corresponding items. The
result has the same shape as the arguments.

 bbbbbb (1)
 bbbb bb (2)
 bb bb bb (3)
5 6 7+10 20 30
5 6 7+10 20 30

15 26 37

That is:
(5+10) (6+20) (7+30)
15 26 37

If one argument is a scalar or a one-item vector, pair the scalar or one-item vector
with each item. The result has the same shape as the nonscalar argument.

 bbbbb
 bbb

 b
1+2 3 4
1+2 3 4

3 4 5

That is, the scalar extends to each item:
(1+2) (1+3) (1+4)
3 4 5

This extension is called scalar extension. (Scalar extension when the nonscalar
argument is empty is discussed on page 57.)

When a dyadic scalar function is applied to nested arguments, the items are paired
by the above rules. Then the rules are applied again to the resulting subex-
pressions. The shape of the result is the shape of the nonscalar argument. The
structure of the result depends on the structure of the items.

In Figure 11 on page 55, both arguments are vectors of length 3. The left argu-
ment is composed of a scalar and two vector items. The right argument is com-
posed of a nested vector, a scalar, and a vector item.

54 APL2 Programming: Language Reference

 bbbbbbbbbbbbbbbbbbbb (1)
 bbbbbbbbbbbbbbbb bbbbbb (2)
 bbbbbbbbb bbbbbb bbbbbb (3)

Z←2 (3 4) (5 6 7)+((8 9) 10) 11 (12 13 14)

 DISPLAY Z
�→||||||||||||||||||||||||||||||||||�
 �→|||||||||||� �→||||� �→|||||||�
 �→||||� 14 15 17 19 21
 10 11 12 J�||||J J�|||||||J
 J�||||J
 Jε|||||||||||J
Jε||||||||||||||||||||||||||||||||||J

That is:
1�Z ⇔ 2+(8 9) 10 Pair the scalar with each item.

⇔ (2+8 9) (2+10) Again, pair the scalar with
⇔ ((2+8) (2+9)) (2+10) each item.
⇔ (10 11) 12

2�Z ⇔ 3 4+11 Pair the scalar with each item.
⇔ (3+11) (4+11)
⇔ 14 15

3�Z ⇔ 5 6 7+12 13 14 Pair corresponding items.
⇔ (5+12) (6+13) (7+14)
⇔ 17 19 21

Figure 11. Application of a Dyadic Scalar Function to Nested Arguments

Axis Specification with Scalar Dyadic Functions
An axis can be specified with each scalar dyadic function, as:

Z←L F[X] R

For example:

The axis indication X must be a simple scalar or vector selection of axes, not
containing repetitions, such that:

(ρ,X) ←→ (ρρL)�ρρR
�/Xει(ρρL)�ρρR

L←1 10 100
 R←3 4ρι12
 L
[1]R

1 2 3 4
50 60 70 80

900 1000 1100 1200

S←1 10 100 1000
 S
[2]R

1 20 300 4000
5 60 700 8000
9 100 1100 12000

 Chapter 4. General Information 55

The arguments are conformable if:

(ρL) ←→ (ρR)[X] or (ρR) ←→ (ρL)[X]
when X�X[�X] (i.e., X is in ascending order)

The shape of the result is the shape of the array with greater rank.

 K←2 3ρ�1
ι6
 K
0�1 0�2 0�3
0�4 0�5 0�6

J←2 3 4ρι24

 J+[1 2]K
1�1 2�1 3�1 4�1
5�2 6�2 7�2 8�2
 9�3 10�3 11�3 12�3

13�4 14�4 15�4 16�4
17�5 18�5 19�5 20�5
21�6 22�6 23�6 24�6

The order in which the axes appear does not affect the result. For the above
example, for instance, J+[1 2]K ←→ J+[2 1]K.

 Fill Functions

When a primitive scalar function is presented with empty arguments or when a
function derived from the operators each (¨) or array product (�) is presented with
empty arguments, the function is not executed. Instead a related fill function, if
defined, is executed with arguments ↑L and/or ↑R (the prototypes of the empty
arguments).

Fill Function for Primitive Scalar Functions
All primitive monadic and dyadic scalar functions have the same fill function as
described below.

When the prototypes of the empty arguments are simple scalars, return a zero pro-
totype. A ramification of this rule is that empty character arrays can be arguments
to scalar functions whose range is numeric. The result has numeric type, as shown
in the following examples:

 W←(ι0)�ι0
 DISPLAY W
�(�
 0
J�J

 X←JJ÷JJ
 DISPLAY X
 �(�
 0
 J�J

56 APL2 Programming: Language Reference

When prototypes of the empty arguments are not simple scalars, apply the fill func-
tion to each item recursively until simple scalars are reached.

S←÷0 2ρ�1 2 3
 DISPLAY S
�→||||||||||||||||�
' �→||||� �→||||�
 0 0 0 0 0 0
 J�||||J J�||||J
Jε||||||||||||||||J

When one argument is a scalar and the other is empty, apply the fill function
between the item of the scalar and the prototype of the empty argument.

That is:

Z←Sρ�(↑L) fill fn (↑R)

where S is the shape of the empty argument.

For example:

 Z←2+0ρ�0 0
 ρZ
0
 DISPLAY Z
�(||||||�
 �→||�
 0 0
 J�||J
Jε||||||J

Fill Functions for Primitive Nonscalar Functions
Fill functions for primitive nonscalar functions are applied when the functions
derived from the operators Each (¨) and Array product (�) are presented with
empty arguments. The use of Each is discussed on pages 107 and 109. For more
information on Array product, see pages 165 and 186. Figure 20 on page 110
shows the fill function related to each function for which a fill function exists.

System Effects on Evaluation

The evaluation of expressions is affected by the limitations of the system.

 Size Limitations
Appendix C, “System Limitations for APL2” on page 489 lists size limitations of
APL2, such as the smallest and largest representable numbers and the maximum
rank and depth of an array.

 Chapter 4. General Information 57

 Precision
| Calculations are carried out to 16 or 18 places depending on the hardware;
| however, use of certain primitives causes increased precision in calculation. The

number of significant digits displayed depends on the setting of -PP (printing preci-
| sion). For more information about -PP, see “-PP Printing Precision” on
| page 315.

Examples in this manual are shown with the default printing precision of 10, unless
noted otherwise.

 Comparison Tolerance
When comparing numbers that differ by only a very small amount, the limitations of
the system can affect the results of the relational functions and the results of a few
other functions that compare arguments to determine the result. (Figure 12 lists
the affected functions.) To control these limitations, APL2 provides a comparison

tolerance that is used to determine whether two numbers are considered equal.

Comparison tolerance, whose default value is 1Eb13, can be set with the system
variable -CT, page 275. It is used to compute a relative fuzz as follows:

 RFUZZ←-CT
(A)� B

Then, if RFUZZ is greater than or equal to A|B, A and B are reported equal.
For example:

 A←1�0000000000000001
 B←1�0000000000000009
 A=B
1

 A←1�00000001
 B←1�00000009
 A=B
 0

Figure 12. Functions Affected by Comparison Tolerance.

Comparison tolerance is an implicit argument of the following functions:

All relational functions, page 219
Ceiling (�R), page 79
Equal (L=R), page 219
Find (L�R), page 129
Floor (�R), page 133
Greater than (L>R), page 219
Greater than or equal (L≮R), page 219
Index of (LιR), page 162
Less than (L<R), page219
Less than or equal (L≯R), page219
Match (�), page 173
Member (LεR), page 181
Not equal (L≠R), page 219
Residue (L R), page 227

58 APL2 Programming: Language Reference

 System Tolerance
When a nonreal number is close to being a real number, a noninteger is close to
being an integer, or a non-Boolean number is close to being Boolean, system toler-

ance or system fuzz defines how close the number must be before it is treated as
an integer, a real number, or a Boolean number.

In contrast to comparison tolerance, which is used to determine a relative fuzz,
system tolerance is an absolute fuzz.

Real: A nonreal number is treated as real if the greater of the absolute values of
the imaginary part and the tangent of the angle is less than approximately 1Eb13

| for APL2/370 and 5Eb15 for the workstation systems.

Integer: A number R is treated as an integer if it satisfies the condition above for
being treated as real (or is real) and the difference between the real part of R and

| some integer is less than approximately 1Eb13
1� R for APL2/370 and
| 5Eb15
1� R for the workstation systems.

Boolean: A non-Boolean number is treated as Boolean if the distance between it
| and 0 or 1 on the complex plane is less than approximately 1Eb13 for APL2/370
| and 5Eb15 for the workstation systems.

System tolerance is fixed for the system and cannot be specified.

Errors and Interrupts in Immediate Execution

If either an expression in immediate execution generates an error or you have sig-
naled an interrupt, execution of the expression is suspended and a message is dis-
played:

 T+4
VALUE ERROR+
 T+4
 ��

The first line of the message indicates the cause of the suspension. The second
line repeats the expression as entered. And the third line contains two carets. The
left caret indicates how far execution of the expression progressed before the sus-
pension occurred. The right caret indicates the likely point of the error. (On occa-
sion, the two carets overlap so that only one is displayed.)

(“Suspension of Execution” on page 354 further discusses suspension of exe-
cution.)

The state indicator (page 355) shows that the expression is suspended. The
asterisk indicates a suspended immediate execution expression. (If a defined func-
tion or operator is suspended, its name and line number are shown in the state
indicator.)

)SIS
* T+4
 ��

 Chapter 4. General Information 59

Expressions should be cleared from the state indicator. Clearing the state indicator
is fully discussed in “Clearing the State Indicator” on page 357. The example
below shows that the state indicator is cleared by correcting the error that caused
the interruption and resuming execution. T is assigned a value and then exe-
cution of the expression is resumed by →ι0:

 T←3
 →ι0
7
)SIS

If the state indicator shows several errors and you do not want to resume exe-
cution, you can use:

� Escape (→) for each suspension to be removed from the state indicator
�)RESET n to remove n lines from the state indicator
�)RESET to clear the state indicator entirely.

In the following example, for instance, the state indicator contains three suspended
immediate execution expressions. The)RESET command is used to clear the
state indicator without resumption of execution of any of them.

)SIS
* 1 2 3+2 3ρι6
 � �
* ι2�2
 �
* 4÷0
 ��
)RESET
)SIS

Keeping the state indicator clear is good practice. This makes it easier to use the
state indicator in diagnosing problems in defined functions and operators; it can
even prevent a WS FULL condition caused by large suspensions awaiting resol-
ution.

 Shared Variables

Shared variables are the means by which two processors can communicate with
each other. A processor can be an auxiliary processor, which provides system ser-

| vices, or another APL2 session.

Any user-named variable can be a shared variable. System variables (which are
actually shared with the APL2 system) cannot be shared with other processors.
When the term variable is used in this chapter, it means only user-named variables.

The APL2 Program Products include auxiliary processors, which communicate with
an APL2 user through shared variables. Auxiliary processors are programs that

| perform services for APL2 users, such as writing to a data file. See Chapter 8,
| “Shared Variables” on page 364 for a full discussion of shared variable concepts.
| The workstation user's guides contain descriptions of the auxiliary processors dis-
| tributed with the specific workstation platform. See APL2/370 Programming:

60 APL2 Programming: Language Reference

| System Services Reference for detailed descriptions of each of the auxiliary
| processors distributed with APL2/370.

Degree of Coupling: Variables used to pass data between processors are shared

by the two processor partners. Degree of coupling describes the share status and
is the explicit result of -SVO and -SVR. Figure 13 describes the meaning of
coupling degrees for each system function.

Figure 13. Degree of Coupling Returned from System Functions

 Offer Inquire Retract

 L -SVO R -SVO R -SVR R

 0 Offer
failed—APL2
refused your offer.

The variable is not a
shared variable. Either no
offer was made or the offer
failed.

The variable was not a
shared variable. Either no
offer was made or the offer
failed.

 1 Offer is
pending—your
offer has not yet
been matched by
your partner.

Offer is pending. Your
partner has not matched
your offer.

Or, your partner has
retracted the variable or
APL2 has retracted the var-
iable as a result of an error
condition.

The variable was waiting to
be matched or it was already
retracted by your partner.

 2 The offered vari-
able is fully
coupled.

The variable is fully
coupled.

The variable was fully
coupled.

 Chapter 4. General Information 61

Chapter 5. Primitive Functions and Operators

This chapter describes all primitive functions and operators alphabetically. The
operators are described in the context of their derived functions. Each description
of a function or operator consists of a summary and several detailed sections.

Figure 14 shows a sample page. The callouts in the figure are explained imme-
diately following the figure.

Yields a vector of integers (a permutation of
that puts the subarrays along the

first axis of in descending order.

Simple nonscalar numeric array

Simple vector, nonnegative integers

Implicit argument:

To Sort the Array: is sorted in descending order if it is indexed by the result
of grade down: .

Identical Subarrays:

in ascending order of their occurrence in . In other words, their order in
relation to one another is unchanged.

The indices of any set of identical subarrays in occur in

Grade Down

3 4

5

7

8

9

1

2

6

Figure 14. Sample Page of Primitive Functions and Operators

1. The operation symbol

2. Operation symbol and name as they appear in the table of contents

3. Each primitive has a subset of the following operation syntax:

L Left argument
R Right argument
LO Left operand
RO Right operand

 Z Result
 X Axis

62  Copyright IBM Corp. 1984, 1994

4. Summary definition of the operation

5. Properties of the argument(s) or operand(s), the result, and axis. Properties

are listed on an exception-basis. The most general property is always

assumed, and only limitations are listed. For example, “R: Numeric” means
arrays of any rank, depth, or count (empty or nonempty) that contain real
and/or nonreal numbers.

6. Implicit argument. Those system variables, such as -IO (index origin) and
-CT (comparison tolerance), that affect the result of the function.

7. Shape and rank of the result. Whenever possible, an expression for deter-
mining these characteristics of the result is given. Otherwise, the characteristic
is listed as “data-dependent.”

8. Detailed description of the function, including such topics as:

� Conformability, if the function is not a scalar function

� Behavior with various arguments, including nested arrays and edge cases
(scalar arguments for functions whose primary definition is based on
nonscalar arrays and empty arrays)

� Identities, showing the relationship of the operation to other operations.

9. Examples. When the specification of the arguments is not shown, the values of
the arguments are shown along with their shape and depth, or the argument is
illustrated with DISPLAY.

Most examples are shown with the default printing precision (-PP) of 10 and in
origin 1 (-IO). If an example changes either the printing precision or the
origin, the specification of the appropriate system variable is shown, and the
next example returns -IO or -PP to its default.

APL2 Expressions Used in the Descriptions
APL2 expressions are used in the descriptions to add precision and conciseness to
the text. The following expressions are commonly used:

Expression Meaning

ρA Shape of A
ρρA Rank of A
�A Depth of A
b1↑ρA The last axis (columns) of A
b1↓ρA All but the last axis of A
1↑ρA The first axis of A
1↓ρA All but the first axis of A
b1↑1,ρA 1 if A is a scalar; the last axis of A otherwise
ιρA The integers 1 through ρA
0�b1+ρρA A rank of one less than the rank of A. If A is a scalar or a vector,

the rank is 0.

 Chapter 5. Primitive Functions and Operators 63

Meta Notation Used in Descriptions
| ←→ or ⇔ The expressions on each side evaluate to the same array.

 Multivalued Functions
When a function mathematically has more than one value, APL2 chooses a prin-
cipal value. For example, the cube root of a negative number in APL2 is the one
with the smallest nonnegative angle in the complex plane.

64 APL2 Programming: Language Reference

 + Add

 + Add

Z←L+R Adds R to L.

L, R, and Z: Numeric

Scalar Function

Add is the arithmetic addition function.

 �4+6
6�4

 1J2+3J4
 4J6

b5+b�3 6 3J4
b5�3 1 b2J4

0 �3 b8+0 b�3 8
0 0 0

 Chapter 5. Primitive Functions and Operators 65

 � Binomial

 � Binomial

Z←L�R For nonnegative integer arguments, yields the number of distinct
combinations of R things taken L at a time.

In the following table, <0 means that L, R, or R|L is a negative integer and
≮0 means that L, R, or R|L is a nonnegative integer. The corresponding
definition is used.

Case Definition

| L R R|L
| ≮0 ≮0 ≮0 Return (!R)÷(!L)
!R|L
| ≮0 ≮0 <0 Return 0
| ≮0 <0 ≮0 (Case cannot occur.)
| ≮0 <0 <0 Return (b1*L)
L!L|R+1
| <0 ≮0 ≮0 Return 0
| <0 ≮0 <0 (Case cannot occur.)
| <0 <0 ≮0 Return (b1*R|L)
(|R+1)!(| L+1)
| <0 <0 <0 Return 0

Scalar Function

Although the domain of factorial excludes negative integers, the domain of the
binomial does not. Any implied division by zero in the numerator �R is usually
accompanied by corresponding division by zero in the denominator. The binomial
function, therefore, extends to all numbers, except in the case where R is a nega-
tive integer and L is not an integer.

 A←b6+ι11
 A "�!A

1 b4 6 b4 1 0 0 0 0 0 0
 0 1 b3 3 b1 0 0 0 0 0 0
 0 0 1 b2 1 0 0 0 0 0 0
 0 0 0 1 b1 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 0
 1 1 1 1 1 1 1 1 1 1 1
 b5 b4 b3 b2 b1 0 1 2 3 4 5
 15 10 6 3 1 0 0 1 3 6 10
 b35 b20 b10 b4 b1 0 0 0 1 4 10
 70 35 15 5 1 0 0 0 0 1 5
b126 b56 b21 b6 b1 0 0 0 0 0 1

 2�5
10

 2�3J2
 1J5

2 3 4�6 18 24
15 816 10626

3��05 2�5 b3�6
0�0154375 0�3125 b15�456

66 APL2 Programming: Language Reference

 � Binomial

Binomial Expansion: The coefficients of the binomial expansion (X+1)*R can
be determined by this expression:

(0,ιR)�R

For example, the coefficients of (X+1)*3 are:

0 1 2 3�3
1 3 3 1

Relationship to Beta Function: Binomial is related to the Beta Function as
follows:

(β)(L,R) ←→ ÷R
(L|1)�L+R|1

 Chapter 5. Primitive Functions and Operators 67

 ����� Boolean Functions

 ����� Boolean Functions

Z←�R Not

Z←L�R And

Z←L�R Or

Z←L�R Nand

Z←L�R Nor

L, R, and Z: Boolean

Scalar Functions

The monadic Boolean function Not changes its argument either from 0 to 1 or from
1 to 0.

The following tables define the dyadic Boolean functions.

Relational Functions as Boolean Functions: The relational functions (< ≯ =
≮ > ≠) (see “<≯=≮>≠ Relational Functions” on page 219), when applied to
Boolean arguments, produce only Boolean results. For example, L≠R is the
exclusive-or of L and R, and L≯R is material implication.

Figure 15 shows all possible Boolean results for L fn R and the functions that
produce them, where L and R are specified to produce all possible combinations of
0 and 1.

 �0
1

 �1
 0

And

� 0 1
| | | |
0 0 0
1 0 1

Or

� 0 1
| | | |
0 0 1
1 1 1

Nand

� 0 1
| | | |
0 1 1
1 1 0

Nor

� 0 1
| | | |
0 1 0
1 0 0

68 APL2 Programming: Language Reference

 ����� Boolean Functions

Figure 15. Boolean Functions

L←0 0 1 1
R←0 1 0 1

Name Syntax Result

0 � R 0 0 0 0

And L � R 0 0 0 1

Greater than L > R 0 0 1 0

 L 0 0 1 1

Less than L < R 0 1 0 0

 R 0 1 0 1

Not equal L ≠ R 0 1 1 0

Or L � R 0 1 1 1

Nor L � R 1 0 0 0

Equal L = R 1 0 0 1

Not � R 1 0 1 0

Greater than or equal L ≮ R 1 0 1 1

Not � L 1 1 0 0

Less than or equal L ≯ R 1 1 0 1

Nand L � R 1 1 1 0

1 � R 1 1 1 1

 Chapter 5. Primitive Functions and Operators 69

 [] Bracket Index

[] Bracket Index

Z←A[I] Selects subarrays from A according to the index arrays I. Within
I, semicolons separate arrays that define positions along each axis.

I: Simple nonnegative integer array
A: Nonscalar array

Implicit argument: -IO

ρZ ←→ Catenated shapes of the index arrays
ρρZ ←→ Sum of the ranks of the index arrays

In form, bracket index is similar to subscript notation. An index array defines the
positions to be selected along each axis.

For example, if A is a matrix, the item Aij is that item which is in the ith row and jth
column of A. In APL2, the bracket index of the item in Ith row and Jth column is
denoted by A[I;J].

When a Vector Is Indexed: If A is a vector, I is a single index array and
IειρA.

 -IO←1
JCURTAILJ[1 2 4]

CUT

 -IO←0
JCURTAILJ[0 1 3]

 CUT

 -IO←1
A←23 9 6�3 8 b3 7

 Z←A[3]
 Z
6�3
 ρZ
(empty)

Z←A[2 5 1]
 Z
9 b3 23
 ρZ
3

B←2 3ρ1 4 3 2 6 5
 B

1 4 3
2 6 5

 ρB
 2 3

 Q←A[B]
 Q
 23 8 6�3

9 7 b3

 ρQ
 2 3

70 APL2 Programming: Language Reference

 [] Bracket Index

When a Matrix Is Indexed: If A is a matrix, then two arrays of indexes can be
given, separated by a semicolon: [I;J] and Iει1↑ρA and Jειb1↑ρA. The
index arrays I and J reference the rows and columns of A, respectively.

The array of items selected represents the Jth items of the Ith rows. For
example, A[1 2;1 3] selects A[1;1], A[1;3], A[2;1], A[2;3] , not
just A[1;1], A[2;3].

Eliding Index Arrays: Index arrays may be elided to indicate all indexes for the
corresponding axes. If all indexes are elided, the result is A.

Repetitions of Index Values: Index values can be repeated. The indicated item
is selected repeatedly.

 C←JABCDEFGHIJKLMNOPQRJ
 C←3 6ρC
 C
ABCDEF
GHIJKL
MNOPQR
 J←C[2;3]
 J
I
 ρJ
(empty)

P←C[1;3 1 4]
 P
CAD
 ρP
3

M←C[1 2;1 3]
 M
 AC
 GI
 ρM
 2 2

N←C[1 3;2 3ρ6 1 3 4 5 2]
 N
 FAC
 DEB

 RMO
 PQN
 ρN

2 2 3

D←3 4ρC[1 2;]
 D
ABCD
EFGH
IJKL

 D[;1]
 AEI
 D[3;]
 IJKL

H←2 4ρ3 4 1 2 2 3 4 1
 H
3 4 1 2
2 3 4 1
 JEMITJ[H]
ITEM
MITE

JNABJ[3 2 1 2 1 2]
 BANANA

 Chapter 5. Primitive Functions and Operators 71

 [] Bracket Index

When a Higher-Rank Array Is Indexed: The pattern of representing index arrays
established for matrixes is the same for arrays of higher rank. There must be
b1+ρρA semicolons, and an index array for any axis may be elided.

When a Nested Array Is Indexed: Bracket index does not affect the depth of any
selected item. With bracket index, only an item in the outermost structure can be
selected.

V←JHJ JHIJ (JHIMJ JHISJ)
 Z←V[1]
 Z
H
 �Z
0
 ρρZ
0
 E←V[2]
 E
 HI
 �E
2
 S←V[3]
 S
 HIM HIS
 �S
3
 ρρS
0

Selective Specification: Bracket index can be used for selective specification:

U←2 3 4ρ(,C),JSTUVWXJ
 U
ABCD
EFGH
IJKL

MNOP
QRST
UVWX
 U[1;2;4]
H

U[2;1;1 3 4]
MOP

 U[;2;4]
 HT

U[1;1 3;2 4]
 BD
 JL
 U[1;;3]
 CGK
 U[2;1;]
 MNOP
 U[;3;]
 IJKL
 UVWX

For the V shown above:

 ρV
3
 �V
3
 V[3]←JHJ
 V
 H HI H
 �V
2

 W←2 3ρJABCDEFJ
W[1;1 3]←8 9

 W
8 B 9
D E F

B←3 4 5
 B[]←9
 B
9 9 9

72 APL2 Programming: Language Reference

 [] Bracket Index

Note: Bracket index does not follow the syntax of a dyadic function and is not in
the function domain of operators.

 Chapter 5. Primitive Functions and Operators 73

 , Catenate

 ,Catenate

Z←L,R Joins L and R. If L and R are nonscalar arrays, L and R are
joined along the last axis. If L and R are scalars, Z is a two-item
vector.

b1↑ρZ ←→ Case dependent; see below.
 ρρZ ←→ ,�/(ρρL),(ρρR),1

Catenate and Vector Notation: The result of catenate applied to simple scalars
or vectors is the same as a simple vector created by vector notation:

Note: For vector notation A B C ←→ (�A),(�B),�C; vector notation and
catenate cannot be used interchangeably. Compare:

Z←2 4 6,1 3 5
 Z
2 4 6 1 3 5
 ρZ
6

Z←JABCJ,1 2 3 4
 Z
ABC 1 2 3 4
 ρZ
7

 K←2 3ρι6
 K

1 2 3
4 5 6

Q←2 2ρ7 8 9 10
 Q
 7 8
 9 10

 H←K,Q
 H

1 2 3 7 8
4 5 6 9 10

 M←2,3
 M
2 3
 N←2 3
 M�N
1

X←9 8 7,6 5 4
 X
9 8 7 6 5 4

Q←9 8 7 6 5 4
 X�Q
 1

 E←JTOJ, JKENJ
 E
TOKEN
 ρE
5
 �E
1

 F←JTOJ JKENJ
 F
 TO KEN
 ρF
 2
 �F
 2

74 APL2 Programming: Language Reference

 , Catenate

Conformability: The arguments are conformable for catenate in one of three
ways:

� They have the same rank.
� At least one argument is a scalar.
� They differ in rank by 1.

The last two cases involve reshaping the argument of smaller rank so the argu-
ments have the same rank. After this extension, the shape of the result is
described as follows:

(ρZ) ←→ (b1↓ρL),(b1↑ρL)+(b1↑ρR)

Arguments Have the Same Rank: Vectors can be of any length. For matrixes
and higher order arrays, the lengths of all axes but the last must be the same:
(b1↓ρL) ←→ b1↓ρR.

 A←3 4ρJBLUESHOEFOOTJ
A h ρA is 3 4

BLUE
SHOE
FOOT

 B←3 5ρJBERRYLACESSTOOLJ
B h ρB is 3 5

BERRY
LACES
STOOL

 Z←A,B
Z h ρZ is 3 9

BLUEBERRY
SHOELACES
FOOTSTOOL

C←2 1ρJTHOMASJ JWILLIAMJ
 �C
2

D←2 1ρ(JAQUINASJ JMOREJ)(JOCKHAMJ JSHAKESPEAREJ)
 �D
3
 C,D
 THOMAS AQUINAS MORE
 WILLIAM OCKHAM SHAKESPEARE
 �C,D
3

 Chapter 5. Primitive Functions and Operators 75

 , Catenate

If the two arguments are different types of empty arrays, the type of the result is the
type of R.

 J←JJ,ι0
 ↑J
0
 K←(ι0),JJ
 ↑K
(Prototype is a character blank)

One Argument Is a Scalar: The scalar argument is reshaped with a last axis of
length 1 to match the nonscalar argument. If L, for instance, is the scalar argu-
ment, it is reshaped as follows: L←((b1↓ρR),1)ρL.

The Arguments Differ in Rank by 1: The lengths of all axes but the last of the
array with greater rank must be the same as the array with smaller rank. If L is the
argument with greater rank, (b1↓ρL) ←→ ρR.

The argument of smaller rank is augmented to conform with the argument of
greater rank by including a last axis of length 1. If, for instance, L is the argument
of smaller rank, it is reshaped as follows: L←((ρL),1)ρL.

 JSJ,2 4ρJPRIGTRAYJ
SPRIG
STRAY

(2 2 3ρι12),J*J
1 2 3 *
4 5 6 *

7 8 9 *
10 11 12 *

 U←JSATJ
 U
SAT
 V←JTEAMMAZERAILJ
 V
TEAM
MAZE
RAIL
 U,V
STEAM
AMAZE
TRAIL

W←J1: J J2: J
Y←,[ι0]JLOG ONJ JLOG OFFJ

 G←W,Y
 G

1: LOG ON
2: LOG OFF

 ρG
 2 2
 �G
 2

76 APL2 Programming: Language Reference

 ,[] Catenate with Axis

,[] Catenate with Axis

Z←L,[X]R Joins L and R along the axis indicated by X.

Z: Nonscalar
X: Simple scalar or one item vector, integer: Xει(ρρL)�ρρR

Implicit argument: -IO

ρZ ←→ Case dependent; see below.
ρρZ ←→ (ρρL)�ρρR

Catenate with axis is similar to catenate except that the arrays are joined along the
indicated axis instead of along the last axis.

Catenate with axis is not defined if both arguments are scalars. If both arguments
are vectors or if one is a vector and one is a scalar, catenate with axis is equivalent
to catenate.

Conformability: The conformability requirements for catenate with axis are similar
to those for catenate. After scalar extension, the shape of the result is described
by the following formula:

(ρZ)[X] ←→ (ρL)[X]+(ρR)[X]

One Argument Is a Scalar: The scalar argument is reshaped to have the same
shape as the nonscalar argument except that the Xth axis has length 1.

 A←3 4ρJBATHBEATBINDJ
 A
BATH
BEAT
BIND

 A,[1]JXJ
BATH
BEAT
BIND
XXXX

 0,[1]2 5ρι10
0 0 0 0 0
1 2 3 4 5
6 7 8 9 10

 Chapter 5. Primitive Functions and Operators 77

 ,[] Catenate with Axis

Arguments Have the Same Rank: Except for the Xth axis, the lengths of all axes
must be the same. Then (ρZ)[X] ←→ (ρL)[X]+(ρR)[X].

The Arguments Differ in Rank by 1: Except for the Xth axis of the array of
greater rank, the lengths of all axes must be the same as the lengths of the axes of
the array of lesser rank.

The argument with the lower rank is augmented to conform with the higher rank
argument by including an Xth axis of length 1.

 A
BATH
BEAT
BIND
 B←2 4ρJZOOMZEROJ
 B
ZOOM
ZERO
 A,[1]B
BATH
BEAT
BIND
ZOOM
ZERO

C←2 2 3ρι12
D←2 3 3ρ|ι18

 C,[2]D
1 2 3
4 5 6

b1 b2 b3
b4 b5 b6
b7 b8 b9

7 8 9
10 11 12

b10 b11 b12
b13 b14 b15
b16 b17 b18

 H←JwordsJ
 H
words
 K←2 5ρJSTRAWBERRYJ
 K
STRAW
BERRY
 H,[1]K
words
STRAW
BERRY

 Q←3 5ρι15
S←3 3 5ρ|ι45

 Z←Q,[1]S
 ρZ

4 3 5

 Z←Q,[2]S
 ρZ

3 4 5

78 APL2 Programming: Language Reference

 � Ceiling

 � Ceiling

Z←�R For real numbers, yields the smallest integer that is not
less than R (within the comparison tolerance).

For complex numbers, depends on the relationship of the real
and imaginary parts of R.

R and Z: Numeric

Implicit argument: -CT

Scalar Function

Ceiling is defined in terms of floor:

�R ←→ |�|R

(For the determination of the result based on the relationship of the real and imagi-
nary parts of R, see page 133).

Figure 16 illustrates the ceiling of a complex number. Any number within the rec-
tangle has point B as its ceiling.

 �2�3
3

 �1�5J2�5
 1J3

�b2�7 3 �5
b2 3 1

�1J2 1�2J2�5 b1�2Jb2�5
1J2 1J3 b1Jb2

Figure 16. The Shape of the Complex Ceiling Area

The rectangle of sides square root of 2 by square root of .5 is oriented so that the
center of one long side is coincident with a lattice point B, and with the ends of the
opposite long side coincident with the lattice points below and to the left of B. The
points within the rectangle all have B as ceiling. The two edges of the rectangle
associated with B as ceiling are the top one, on which B lies, and the one to the
right, as shown by the darker lines in the figure.

 Chapter 5. Primitive Functions and Operators 79

 ○ Circle Functions

○ Circle Functions

Z←L○R L determines which of a family of circular, hyperbolic, Pythagorean,
and complex number functions to apply to R.

L: Integer such that b12≯L and L≯12
R and Z: Numeric

Scalar Function

Figure 17 lists left arguments and names the functions they generate. Figure 18
on page 81 provides formulas for the functions b8≯L and L≯8 for complex R.

Figure 17. Circular, Hyperbolic, Pythagorean, and Complex Number Functions

 L L ○ R L L ○ R

 0 (1|R*2)*�5
b1 Arcsin R 1 Sine R
b2 Arccos R 2 Cosine R
b3 Arctan R 3 Tangent R
b4 (b1+R*2)*�5 4 (1+R*2)*�5
b5 Arcsinh R 5 Sinh R
b6 Arccosh R 6 Cosh R
b7 Arctanh R 7 Tanh R
b8 |(8○R) 8 |(b1|R*2)*�5 for R≮0

(b1|R*2)*�5 for R<0
b9 R 9 Real R
b10 +R 10 R
b11 0J1
R 11 Imaginary R
b12 *0J1
R 12 Phase R

80 APL2 Programming: Language Reference

 ○ Circle Functions

In the descriptions of the circle functions on nonreal
values, the following functions on real numbers are assumed:

SIN X ←→ 1○X
COS X ←→ 2○X
SINH X ←→ 5○X
COSH X ←→ 6○X
TANH X ←→ 7○X

The following variables are also assumed:
 I←0J1
 R←X+0J1
Y
 PI←○1

In the following formulas, redundant parentheses are
used for clarity.
 0○R ←→ (1|R*2)*�5

 1○R ←→ SINZ R
←→ ((SIN X)
(COSH Y))+I
(COS X)
(SINH Y)

b1○R ←→ ASINZ R
←→ |I
ASINHZ (I
R)

 2○R ←→ COSZ R
←→ ((COS X)
(COSH Y))|I
(SIN X)
(SINH Y)

b2○R ←→ ACOSZ R
←→ (�5
PI)|ASINZ R

 3○R ←→ TANZ R
←→ ((SIN X)+I
(COS X)
(TANH Y))÷(COS X)|I
(SIN X)
(TANH Y)

b3○R ←→ ATANZ R
←→ |I
ATANHZ (I
R)

 4○R ←→ (1+R*2)*�5

b4○R ←→ (b1+R*2)*�5 for X≮0
or for b1<X and X<0 and Y=0

 ←→ |(b1+R*2)*�5 otherwise

 5○R ←→ SINHZ R
←→ |I
SINZ (I
R)

b5○R ←→ ASINHZ R
←→ |I
ASINZ (I
R)

 6○R ←→ COSHZ R
←→ COSZ I
R

b6○R ←→ ACOSHZ R
 ←→ �(R+b4○R)

 7○R ←→ TANHZ R
←→ |I
TANZ (I
R)

b7○R ←→ ATANHZ R
←→ |I
ATANZ (I
R)

 8○R ←→ (b1|R*2)*�5 for X>0 and Y>0
 or X=0 and Y>1
 or X<0 and Y≮0

 ←→ |(b1|R*2)*�5 otherwise

b8○R ←→ |8○R

Figure 18. Formulas for Circular, Hyperbolic, and Pythagorean Functions Applied to Complex Arguments

 Chapter 5. Primitive Functions and Operators 81

 ○ Circle Functions

 Circular Functions
The circular functions sine, cosine, and tangent (1○R, 2○R, and 3○R) require a
right argument expressed in radians.

The last example in the right column is the cotangent of 2 radians.

Degrees can be converted to radians with the expression:

RADIANS←○DEGREES÷180

Inverses of Circular Functions: The inverses of the circular functions arcsine,
arccosine, and arctangent (b1○R, b2○R, and b3○R) yield their result in radians.

Radians can be converted to degrees with the expression:

DEGREES←180
RADIANS÷○1

Because sine, cosine, and tangent are cyclic, their inverses are many-valued. The
principal values for real R are chosen in the following intervals:

 1○1�570796327
1

 2○1
 0�5403023059

 3○2
b2�185039863

 ÷3○2
 b0�4576575544

 1○○30÷180
0�5

 2○○45÷180
 0�7071067812

 b1○1
1�570796327

 b2○�54032023059
 0�9999786982

 (b1○�5)
180÷○1
30

 (b3○1)
180÷○1
 45

Arcsin Z←b1○R (Z)≯○0�5
Arccos Z←b2○R (Z≮0)�(Z≯○1)
Arctan Z←b3○R (Z)≯○0�5

82 APL2 Programming: Language Reference

 ○ Circle Functions

 Hyperbolic Functions
The hyperbolic functions sinh and cosh (5○R and 6○R) are the odd and even
components of the exponential function; that is, 5○R is odd, 6○R is even, and the
sum (5○R)+6○R approximates *R. Consequently:

e e

e e

The definition of the hyperbolic tangent function tanh (7○R) is analogous to that of
the tangent, that is:

7○R ←→ (5○R)÷6○R

Inverse Hyperbolic Functions: Arcsinh, arccosh, and arctanh are provided by left
arguments b5, b6, and b7, respectively.

 b5○1�175201194
1

 b6○1�543080635
 1

 Pythagorean Functions
The Pythagorean functions 0○R, 4○R, and b4○R, defined in Figure 17 on
page 80, for nonnegative real R are related to the properties of a right triangle as
indicated in Figure 19. They can also be defined as follows:

 0○R ⇔ 2○b1○R or 1○b2○R

 4○R ⇔ 6○b5○R

b4○R ⇔ 5○b6○R

A

B

C

D

E

Figure 19. Pythagorean Functions with Real Argument

The principal values for the Pythagorean functions for real R are chosen in the
interval R≮0.

 Chapter 5. Primitive Functions and Operators 83

 ○ Circle Functions

Complex Number Functions
The complex number functions (Lεb12 b11 b10 b9 b8 and Lε8 9 10
11 12) are defined in Figure 17 on page 80.

The formulas given for b8○R and 8○R in Figure 17 apply only to complex
numbers with positive real and imaginary parts (the first quadrant). The phase of
the result for other arguments is adjusted for proper placement of the cuts of the
complex function.

The following identities apply:

b8○R ←→ |8○R
R ←→ b10 b11 +�○ 9 11 "�○ R
R ←→ b9 b12
�○ 10 12 "�○ R

9 10 11 12○3J4
3 5 4 0�927295218

 b12○ ○1
 b1

 8 b8○0J1
0 0

 8 b8○2
 0Jb2�236067977 0J2�236067977

84 APL2 Programming: Language Reference

 / Compress (from Slash)

/ Compress (from Slash)

| Z←LO/R Selects subarrays along the last axis under the
control of the vector LO.

| LO: Simple scalar or vector, Boolean
Z: Nonscalar array

b1↓ρZ ←→ b1↓ρR
 ρρZ ←→ ρρR

| This is a special case of replicate (see “/ Replicate (from Slash)” on page 220).

Compress is often used to create a conditional branch expression, where LO is the
condition (such as X≮0) and R represents a statement number—for example,
→(X≮0)/END.

Selective Specification: Compress can be used for selective specification:

 M←3 2ρι6
 M
1 2
3 4
5 6

 (1 0/M)←JABCJ
 M
A 2
B 4
C 6

1 1 0 0 1/JSTRAYJ
STY

 Q←3 4ρι12
 Q

1 2 3 4
5 6 7 8
9 10 11 12

1 0 1 0/Q
 1 3
 5 7
 9 11

 Chapter 5. Primitive Functions and Operators 85

 /[] 	[] Compress with Axis (from Slash)

/[] 	[] Compress with Axis (from Slash)

| Z←LO/[X]R Selects subarrays along the X axis under the control of the
vector LO.

| LO: Simple scalar or vector, Boolean
Z: Nonscalar array

b1↓ρZ ←→ b1↓ρR
 ρρZ ←→ ρρR

| This is a special case of replicate with axis (see “/[] 	[] Replicate with Axis
| (from Slash)” on page 222).

N←3 2 4ρJHIGHLOW HOT COLD UP DOWNJ
 N
HIGH
LOW

HOT
COLD

UP
DOWN

 1 0/[2]N
HIGH

HOT

UP
1 0 1/[1]N

HIGH
LOW

UP
DOWN

Applied to First Axis: The symbol 	 is an alternate symbol for /.

86 APL2 Programming: Language Reference

 /[] 	[] Compress with Axis (from Slash)

Selective Specification: Compress with axis can be used for selective specifica-
tion:

 M←3 2ρι6
 M
1 2
3 4
5 6

 T←2 2ρJABCDJ
(1 0 1/[1]M)←T

 M
A B
3 4
C D

 Chapter 5. Primitive Functions and Operators 87

 + Conjugate

 + Conjugate

Z←+R Z is R with its imaginary part negated.

R and Z: Numeric

Scalar Function

For real R, conjugate returns its argument unchanged.

 +b4
b4

 +1J2
 1Jb2

+4 2�3 b3 b�7
4 2�3 b3 b0�7

 1J2
+1J2
 5

88 APL2 Programming: Language Reference

 Deal

 Deal

Z←L
R Selects L integers at random from the population ιR without
replacement.

L and R: Simple scalar or one-item vector, nonnegative integer
Z: Simple vector, integer in set ιR

Implicit arguments: -IO and -RL
ρZ ←→ ,L
ρρZ ←→ ,1

The value of L must be between 0 and R, inclusive. Items are selected without
replacement.

If L=R, Z is a random permutation of the integers ιR.

The result depends on the value of -RL. A side effect of deal is to change the
value of -RL (random link).

Both examples below show the value of -RL prior to execution of the function. To
duplicate these results, specify -RL to be this value.

 -IO←1
 -RL
1474833169
 5
10
5 1 2 4 6

 -RL
197493099
 10
10
4 6 3 1 2 10 5 7 9 8

 -IO←0
 -RL
 1474833169
 5
10
4 0 1 3 5

 -RL
 197493099
 10
10
3 5 2 0 1 9 4 6 8 7

 Chapter 5. Primitive Functions and Operators 89

 ⊤ Decode

 ⊤ Decode

Z←L⊤R Yields the values of array R evaluated in a number system with
radices L.

L, R, and Z: Simple numeric array

 ρZ ←→ (b1↓ρL),1↓ρR
ρρZ ←→ (0�b1+ρρL)+(0�b1+ρρR)

Polynomial Evaluation: In its simplest form (with scalar L and vector R), decode
determines the value of a polynomial evaluated at L. R defines the coefficients of
the polynomial arranged in descending order of powers on the powers of L. For
example, the expression 3⊤1 2 1 evaluates the polynomial x	+2x+1 at 3.

Base Value: If each item of R is a nonnegative integer less than L, decode
determines the base-10 equivalent of a number stated in base-L. The digits of the
base-L number are stated as the items of R. Sometimes, therefore, decode is
referred to as the base value function. For example, the following expression
determines the base-10 equivalent of 1111-base 2.

2⊤1 1 1 1
15

General Decode: Decode is defined in terms of the inner product for any valid
| nonscalar L and R after extension of length 1 axes.

L ⊤ R ←→ ((ρL)↑'1,
�'1↓[ρρL]L) +�
 R

Conformability: Scalar arguments are treated as one-item vectors.
Conformability requires that b1↑ρL ←→ 1↑ρR. If either the first axis of R or the
last axis of L is 1, it is extended (by replication of the item) as necessary to match
the length of the other argument.

The example in the second column shows an evaluation in a mixed radix system.
It determines the number of seconds in 2 hours, 23 minutes, and 12 seconds.

3⊤1 2 1
16

1J1⊤1 2 3 4
 5J9

L←2 1ρ2 10
 L
 2
10

R←3 2ρ1 4 0 3 1 2
 R
1 4
0 3
1 2

 L⊤R
 5 24
101 432

24 60 60⊤2 23 12
 8592

90 APL2 Programming: Language Reference

 � Depth

 � Depth

Z←�R Reports levels of nesting: 0 for a simple scalar; for other arrays, 1
plus the depth of the item with the maximum depth.

Z: Simple scalar, nonnegative integers

 ρZ ←→ Empty
ρρZ ←→ ,0

For a nonempty array, depth shows the degree of nesting:

Depth is 0 when R is a simple scalar.

Depth is 1 when R is a simple, nonscalar array. R contains only simple scalars
as items.

Depth is n when R contains, as an item, at least one array of depth n-1. It may
contain other arrays of lesser depths as well.

 �5
0

 �JAJ
 0

 �2 2ρι4
1

�3 2 4 5ρι120
 1

B←JJIMJ JALJ JEVJ
 ρB
3
 �B
2
 �¨B
1 1 1

C←JABJ 1 2 3
 ρC
 4
 �C
 2
 �¨C

1 0 0 0

D←JONEJ JTWOJ (JBUCKLEJ (JMYJ JSHOEJ))
 ρD
3
 DISPLAY D
 �→|||||||||||||||||||||||||||||||�
 �→||��→||��→|||||||||||||||||||�
 ONE TWO �→|||||��→|||||||||�
 J|||JJ|||J BUCKLE �→|��→|||�
 J||||||J MY SHOE
 J||JJ||||J
 Jε|||||||||J
 Jε|||||||||||||||||||J
 Jε|||||||||||||||||||||||||||||||J

 Chapter 5. Primitive Functions and Operators 91

 � Depth

For empty R, the depth is ��↑R.

 �D
4

 �¨¨D
0 0 0 0 0 0 1 2

 �¨D
1 1 3

 �ι0
1
 ↑ι0
0
 �JJ
1
 ↑JJ

H←0ρ�1 2 3
 ρH
 0
 �H
 2
 ↑H
0 0 0

(blank character)

Q←0ρ15(�1 2 3)
 ρQ
0
 �Q
1
 ↑Q
0

S←0ρ�(1 2 3(3 4))5 6
 ρS
 0
 �S
 4
 ↑S

0 0 0 0 0 0 0

92 APL2 Programming: Language Reference

 Direction

 Direction

Z←
R Yields the number of magnitude 1 with the same phase as R for
nonzero R. If R is 0, Z is 0.

R and Z: Numeric

Scalar Function

Formally for all R: Z←R÷|R

For real R,
R is often called signum and yields the following values:

R
negative
zero
positive

 Z
b1
 0
 1

b5
b1

3J4
 0�6J0�8

b4 0 4
b1 0 1

0J1 0Jb1
 0J1 0Jb1

 Chapter 5. Primitive Functions and Operators 93

 � Disclose

 � Disclose

Z←�R Structures the items of R into an array, whose rightmost axes come
from the axes of the items of R.

 (ρZ) ←→ (ρR),↑�/(ρ¨(,R),�↑R)��ι0
(ρρZ) ←→ (ρρR)+↑�/ρ¨ρ¨(,R),�↑R

All items of R must be scalars and/or arrays of the same rank. It is not necessary
that nonscalar items have the same shape.

In the identities for rank and shape, the �↑R takes care of the empty case.

Shapes of Items the Same: If all items of R have the same shape, the last
ρρ↑R axes of the result are filled with the items of R.

V←(2 3 4) (5 6)
 �V
2 3 4
5 6 0

In the following example, the last axis (the rank of the first item of R is 1) is filled
with the items of R, taken in row-major order.

R←2 3ρ(ι4)JABCDJ J****J(5 6 7 8)JEFGHJ JδδδδJ
 R
 1 2 3 4 ABCD ****
 5 6 7 8 EFGH δδδδ

 ρR
2 3
 �R
2

 Z←�R
 Z
1 2 3 4
A B C D
* * * *

5 6 7 8
E F G H
δ δ δ δ

 ρZ
2 3 4
 �Z
1

94 APL2 Programming: Language Reference

 � Disclose

Shapes of Items Differ: If items of R are scalar or have different shapes, each is
padded to a shape that represents the greatest length along each axis of all items
of R; that is, the shape of each item is padded to ↑�/(,ρ¨R)��ι0.

Each item's corresponding fill item is used for its new positions.

E←(2 4ρι8) 9 (3 2ρJABCDEFJ)
 E
 1 2 3 4 9 AB
 5 6 7 8 CD
 EF

 N←�E
 N
1 2 3 4
5 6 7 8
0 0 0 0

9 0 0 0
0 0 0 0
0 0 0 0

A B
C D
E F

 ρN
3 3 4
 �N
1

Because of this padding, using disclose on a vector of vectors is a convenient way
to create a simple matrix without needing to know how many columns to specify.
For example:

D←JWHEELJ JOFJ JFORTUNEJ
 V←�D
 V
WHEEL
OF
FORTUNE

 ρV
3 7
 �V
1

Relationship to Disclose with Axis: After padding and ignoring scalar extension,
disclose is related to disclose with axis as follows:

�R ←→ �[(ρρR)+ιρρ↑R]R

Relationship to Enclose: Disclose is the left inverse of enclose:

R ←→ ��R

 Chapter 5. Primitive Functions and Operators 95

 �[] Disclose with Axis

�[] Disclose with Axis

Z←�[X]R Structures the items of R into an array. X defines the axes of Z,
into which items of R are structured.

X: Simple scalar or vector, nonnegative integers

Implicit argument: -IO

(ρZ)[,X] ←→ ↑�/(ρ¨(,R),�↑R)��ι0
 ρρZ ←→ (ρρR)+�/ερ¨ρ¨(,R),�↑R

All items of R must be scalars and/or arrays of the same rank. It is not necessary
that nonscalar items have the same shape.

X specifies the axes of the result that are filled with the disclosed items of R. The
number of items in X must be �/ερ¨ρ¨R. The values of X must be contained
in ι(ρρR)+�/ερ¨ρ¨R.

H←JABCDJ (1 2 3 4) JWXYZJ

The shape of the nonscalar items of R and the shape of R itself map as indicated
by X to form the shape of the result. The diagram below shows the mapping of
axes for �[1 3]R, where R is a three-item vector whose items are matrixes of
shape 2 4.

Shape of

items

Indicates axes of Z to receive corresponding shape.

 Z←�[1]H
 Z
A 1 W
B 2 X
C 3 Y
D 4 Z
 ρZ
4 3
 �Z
1

 W←�[2]H
 W
A B C D
1 2 3 4
W X Y Z

 ρW
 3 4
 �W
 1

96 APL2 Programming: Language Reference

 �[] Disclose with Axis

The following examples show disclose with axis for various axes applied to the
three-item vector of matrixes described below.

Z←2 4ρJPAJ JMAJ JWEJ JBYJ JITJ JUPJ JONJ JHIJ
R←(2 4ρι8) (2 4ρJABCDEFGHJ) (Z)

 DISPLAY R
�→|||�
 �→||||||� �→|||� �→||||||||||||||||||||�
 ↓1 2 3 4 ↓ABCD ↓ �→|� �→|� �→|� �→|�
 5 6 7 8 EFGH PA MA WE BY
 J�||||||J J||||J J||J J||J J||J J||J
 �→|� �→|� �→|� �→|�
 IT UP ON HI
 J||J J||J J||J J||J
 Jε||||||||||||||||||||J
Jε|||J

 B←�[1 2]R
 ρB
2 4 3

 B
 1 A PA
 2 B MA
 3 C WE
 4 D BY

 5 E IT
 6 F UP
 7 G ON
 8 H HI

 �B
2

 Y←�[1 3]R
 ρY
2 3 4

 Y
 1 2 3 4
 A B C D
 PA MA WE BY

 5 6 7 8
 E F G H
 IT UP ON HI

 V←�[2 3]R
 ρV
 3 2 4

 V
1 2 3 4
5 6 7 8

A B C D
E F G H

PA MA WE BY
IT UP ON HI

 Chapter 5. Primitive Functions and Operators 97

 �[] Disclose with Axis

Order of Axes: The order in which the axes are listed in X affects the shape of
the result.

Shapes of Items Differ: If items of R are scalar or have different shapes, each is
padded to a shape that represents the greatest length along each axis of all items
in R; that is, after padding the shape of each item is ↑�/(,ρ¨R)��ι0.

Each item's corresponding fill item is used for its new positions.

 Q←(ι3) JJUMPJ
 N←�[1]Q
 N
1 J
2 U
3 M
0 P

 E←(ι5) JJUMPJ
 J←�[1]E

 J
1 J
2 U
3 M
4 P
5

 N←�[2 1]R
 N
 1 A PA
 5 E IT

 2 B MA
 6 F UP

 3 C WE
 7 G ON

 4 D BY
 8 H HI

 M←�[3 1]R
 M
 1 5
 A E
PA IT

 2 6
 B F
MA UP

 3 7
 C G
WE ON

 4 8
 D H
BY HI

 P←�[3 2]R
 P
 1 5
 2 6
 3 7
 4 8

 A E
 B F
 C G
 D H

 PA IT
 MA UP
 WE ON
 BY HI

98 APL2 Programming: Language Reference

 �[] Disclose with Axis

S←(2 6ρJABCDEFGHIJKLJ) (3 4ρι12)
 S
 ABCDEF 1 2 3 4
 GHIJKL 5 6 7 8

9 10 11 12
 ρS
 2
 ρ¨S
 2 6 3 4
 �/(ρ¨S)��ι0
 3 6
 D←�[2 3]S
 ρD
 2 3 6
 D
A B C D E F
G H I J K L
(2 rows of blanks)
1 2 3 4 0 0
5 6 7 8 0 0
 9 10 11 12 0 0

Empty Axis Needed: If all items of R are scalars, X must be empty.

T←�¨JONEJ JFOURJ JTHREEJ
 �¨T
2 2 2
 �[ι0]T
 ONE FOUR THREE

Relationship to Enclose with Axis: Disclose with axis is the left inverse of
enclose with axis:

R ←→ �[X]�[X]R

 Chapter 5. Primitive Functions and Operators 99

 ÷ Divide

 ÷ Divide

Z←L÷R Divides L by R.

L, R, and Z: Numeric

Scalar Function

Divide is the arithmetic division function.

If R is 0, L must also be 0. The expression 0÷0 is defined in APL2 to be 1.

 3÷2
1�5

 0J12÷4
 0J3

9 4 7 10÷�25
36 16 28 40

�3 5 1÷0J1 b2 1
0Jb0�3 b2�5 1

 0÷5
0
 0÷0
1

 5÷0
 DOMAIN ERROR
 5÷0
 ��

100 APL2 Programming: Language Reference

 ↓ Drop

 ↓ Drop

Z←L↓R Removes subarrays from the beginning or end of the Ith axis of R,
according to whether L[I] is positive or negative.

L: Simple scalar or vector, integer
Z: Nonscalar array

 ρZ ←→ 0�(ρR)| L
ρρZ ←→ (ρ,L)�ρρR

Specifying the Amount to Drop: If L is a scalar, it is treated as a one-item
vector; if R is a scalar, it is treated as an array of shape (ρL)ρ1. Then:

For L[I]>0, drop removes L[I] subarrays from the beginning of the Ith
axis of R.

For L[I]<0, drop removes L[I] subarrays from the end of the Ith axis of
R.

For L[I]=0, no subarrays are removed from the Ith axis.

Nonscalar Right Argument: For nonscalar R, L must have the same number of
items as R has rank: (ρ,L) = ρρR.

 A←3 5ρJSTRIPERODEPLANTJ
 B←JSTOREFIRSTMIGHTHATERJ
 B←JSHEETTHEREMETROERASEJ

B←3 4 5ρB,JBREADOTHERANVILEVADEJ

3↓12 31 45 10 57
10 57

b3↓12 31 45 10 57
 12 31

| A
| STRIP
| ERODE
| PLANT
| 1 2↓A
| ODE
| ANT

| B
| STORE
| FIRST
| MIGHT
| HATER

| SHEET
| THERE
| METRO
| ERASE

| BREAD
| OTHER
| ANVIL
| EVADE

| C←b1 2 b2

| (means drop the

| last plane and

| first two rows

| and last two

| columns from the

| remaining planes)

| C↓B
| MIG
| HAT

| MET
| ERA

 Chapter 5. Primitive Functions and Operators 101

 ↓ Drop

The number of subarrays dropped does not affect the rank of the result.

K←3 2 4ρJABCDEFGHJ,(ι8),JabcdefghJ

Dropping None: If L[I] is zero, no subarrays are removed from the Ith axis.

Overdrop: If L[I] equals or exceeds the length of the Ith axis, the resulting
shape has an Ith axis whose length is zero.

Scalar Right Argument: For scalar R, L may have any length. The length of ,L
determines the rank of the result.

 K
A B C D
E F G H

1 2 3 4
5 6 7 8

a b c d
e f g h

Z←2 1 3↓K
 Z
 h
 ρZ
1 1 1

 0↓JINTACTJ
INTACT

0 2↓3 5ρι15
3 4 5

 8 9 10
13 14 15

W←5↓23 41 73 26
 ρW
0

 H←2 3ρJABCDEFJ
 Y←3 1↓H
 ρY
0 2
 M←2 3↓H
 ρM
0 0

 J←0↓4
 J
4
 ρJ
1

K←0 0 0↓4
 K
4
 ρK
1 1 1

102 APL2 Programming: Language Reference

 ↓ Drop

Effect on Depth: Drop does not affect the depth of any selected item. The depth
of the result is less than or equal to the depth of the argument, except when the
right argument is a simple scalar.

D←JAJ JANJ(JANTJ JANTEJ)
 D
 A AN ANT ANTE
 ρD
3
 �D
3

 S←b1↓D
 S
 A AN
 �S
2
 T←b2↓D
 T
A
 ρT
1
 �T
1

 Chapter 5. Primitive Functions and Operators 103

 ↓ Drop

Selective Specification: Drop can be used for selective specification:

 U←JABCDEJ
 (2↓U)←ι3
 U
AB 1 2 3

 V←3 4ρJABCDEFGHIJKLJ
 V
 ABCD
 EFGH
 IJKL

(1 b1↓V)←2 3ρι6
 V
A B C D
1 2 3 H
4 5 6 L

104 APL2 Programming: Language Reference

 ↓[] Drop with Axis

↓[] Drop with Axis

Z←L↓[X]R Removes subarrays from the beginning or end of the X[I]th
axis of R, according to whether L[I] is positive or negative.

L: Simple scalar or vector, integer
R and Z: Nonscalar array
X: Simple scalar or vector; nonnegative integers: XειρρR; or empty

Implicit argument: -IO

(ρZ)[,X] ←→ 0�(ρR)[,X]| L
 ρρZ ←→ ρρR

Drop with axis is similar to drop except that subarrays are removed only from the
axes indicated by X. The shape along axes not selected by X remains unchanged.

Drop with Axis Compared with Drop: The following identity states the relation-
ship between drop and drop with axis:

L↓R ←→ L↓[ιρρR]R

Permitted Axes: Multiple axes indicated by X need not be in ascending order;
however, no axis may be repeated. L[I] defines the number of subarrays to
drop from the X[I]th axis.

Q←3 2 4ρJABCDEFGHJ,(ι8),JabcdefghJ

 A←3 4ρJFOLDBEATRODEJ
 A
FOLD
BEAT
RODE

 1↓[1]A
BEAT
RODE

 1 0↓A
 BEAT
 RODE

 1↓[2]A
OLD
EAT
ODE

 0 1↓A
 OLD
 EAT
 ODE

 Q
A B C D
E F G H

1 2 3 4
5 6 7 8

a b c d
e f g h

1 b1↓[2 3]Q
E F G

5 6 7

e f g

1 b1↓[3 2]Q
B C D

2 3 4

b c d

 Chapter 5. Primitive Functions and Operators 105

 ↓[] Drop with Axis

Effect on Depth: Drop with axis does not affect the depth of any selected item.
The depth of the result is less than or equal to the depth of the argument.

T←JWJ JWEJ(JWEEJ JWEEDJ)JBJ JBEJ(JBEEJ JBEEPJ)

Selective Specification: Drop with axis can be used for selective specification:

 V←3 4ρJABCDEFGHIJKLJ
 V
ABCD
EFGH
IJKL
 (1↓[1]V)←2 4ρι8
 V
A B C D
1 2 3 4
5 6 7 8

 U←2 3ρT

 U
 W WE WEE WEED
 B BE BEE BEEP
 �U
3

 Q←1↓[1]U
 �Q
3
 Q
 B BE BEE BEEP
 ρQ
1 3

 M←b1↓[2]U
 �M
 2
 M
 W WE
 B BE
 ρM
 2 2
 N←b2↓[2]U
 �N
 1
 N
 W
 B
 ρN
 2 1

106 APL2 Programming: Language Reference

 ¨ Each (Dyadic)

¨ Each (Dyadic)

Z←L LO¨ R Applies the function LO between corresponding pairs of items
of L and R.

LO: Dyadic function

ρZ ←→ ρR or ρL
ρρZ ←→ ρρR or ρρL

Conformability of Arguments: Either L and R must have the same shape, or
one may be a scalar or one-item vector. A scalar or a one-item vector argument is
applied against each item.

If R is not empty:

I�Z ←→ (I�L) LO I�R

for every scalar I for which I�L and I�R are defined.

Each and a Scalar Argument: The conformability for each means that if one
argument is a scalar and the other is not, each pairs its operand (LO) with the item
inside the scalar and each item of the nonscalar argument. This fact can be used
to pair any array (A) with each item of another array (B) by enclosing A.

 (�A)F¨B

applies F with A as the left argument and each item of B, in turn, as the right
argument.

2ρ¨3 4 5
3 3 4 4 5 5

(�2 3)ρ¨4 6
4 4 4 6 6 6
4 4 4 6 6 6

Each and Primitive Dyadic Scalar Functions: Applied to the primitive dyadic
scalar functions, the operator each has no effect; that is:

L LO¨ R ←→ L LO R

The primitive scalar functions are listed in Figure 9 on page 51.

Each Substitutes for Looping: Each has an effect similar to the DO loop in other
programming languages. It can be used to eliminate most looping in APL2 func-
tions. For an example, see “¨ Each (Monadic)” on page 109.

Z←4 6ρ¨JMEJ JYOUJ
 Z
 MEME YOUYOU
 ρZ
2
 ρ¨Z
 4 6
 �Z
2

 JSETJ,¨JHESJ
SH EE TS

 Chapter 5. Primitive Functions and Operators 107

 ¨ Each (Dyadic)

Empty Argument: If L or R is empty, the function LO is not applied. Instead, a
related function called the fill function of LO is applied.

Either L or R or both can be empty. If one argument is not empty, it must be a
scalar item and the first (↑) of that scalar is presented to the fill function as an
argument. An empty argument is presented to the fill function as ↑L or ↑R (the
prototype). That is, if either L or R or both are empty:

For Z←L LO¨ R, Z is Sρ�(↑L) FF (↑R).

Where:

S is the shape of the empty argument.

FF is the fill function of LO.

For example:

Z←5↑¨0ρ�0 0 0
 ρZ
0
 ρ↑Z
5

Figure 20 on page 110 gives all the fill functions for the primitive functions and
defined operations.

Some functions derived by inner product or reduction may not have fill functions.
An attempt to apply such a function to each item of an empty array generates a
DOMAIN ERROR.

108 APL2 Programming: Language Reference

 ¨ Each (Monadic)

¨ Each (Monadic)

Z←LO¨R Applies the function LO to each item of R.

LO: Monadic function

 ρZ ←→ ρR
ρρZ ←→ ρρR

If R is not empty:

I�Z ←→ LO I�R

For every scalar I for which I�R is defined.

Each and Primitive Monadic Scalar Functions: Applied to the primitive monadic
scalar functions, the operator each has no effect; that is:

LO¨ R ←→ LO R

The primitive scalar functions are listed in Figure 9 on page 51.

Each Substitutes for Looping: Each has an effect similar to the DO loop in other
programming languages. It can be used to eliminate most looping in APL2 func-
tions. For example, the loop shown below applies the function F to each item of a
vector V and accumulates the results in a vector. This loop can be replaced with
an application of the operator each:
...
Z←0ρV
L1:→(0=ρV)/L1X
Z←Z,�F↑V
V←1↓V
→L1
L1X:
...
The above loop can be replaced by:
Z←F¨ V

 Z←ρ¨JTOMJ JDICKJ
 Z
 3 4
 ρZ
2
 �Z
2

W←ι¨1 2 3 4
 W

1 1 2 1 2 3 1 2 3 4
 ρW
 4
 �W
 2

 Chapter 5. Primitive Functions and Operators 109

 ¨ Each (Monadic)

Empty Argument: If R is empty, the function LO is not applied. Instead, a
related function called the fill function of LO is applied with argument ↑R (the proto-
type of R). This result is used as a prototype of the empty array of ρR .

The identity is:

LO¨R ←→ (ρR)ρ� fill fn ↑R

where:

LO Is any function for which a fill function is defined
fill fn Is its related fill function

DISPLAY !¨0ρ�2 3ρ0
�(||||||�
 �→||�
 ↓0 0
 0 0
 0 0
 J�||J
Jε||||||J

| Figure 20 gives expressions that are the fill functions. All defined fill functions are
| given below. Remember that the prototypes of the arguments of the function
| become the arguments of the fill function. The result of the fill function becomes
| the prototype of the result of the application of the function or derived function.

Scalar Functions Z←(R)≠(L)

Matrix Inverse Z←)R

Matrix Divide Z←((1↓ρR),1↓ρL)ρ0

Other Primitive Functions The function itself

Defined Operations Z←R (the identity function)

Figure 20. Fill Functions

A function derived by each or outer product has the same fill function as its
operand, if the operand has a fill function.

Some functions derived by inner product or reduction may not have fill functions.
An attempt to apply such a function to each item of an empty array generates a
DOMAIN ERROR.

110 APL2 Programming: Language Reference

 � Enclose

 � Enclose

Z←�R Creates a scalar array whose only item is R.

Z: Scalar array

 ρZ ←→ ι0
ρρZ ←→ ,0

If R is a simple scalar, �R is R. If R is not a simple scalar, the depth of �R is
1+�R.

Compared to Vector Notation: For A, B, and C:

(A B C) ←→ ((�A),(�B),(�C))

D←JONJ JUPJ JBYJ
 ρD
3
 �D
2

A←2 3 4ρι24
 A
1 2 3 4
5 6 7 8

 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24
 ρA
2 3 4
 ρρA
3
 �A
1

 Z←�A
 Z

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

 ρZ
 (empty)
 ρρZ
 0
 �Z
 2

 Chapter 5. Primitive Functions and Operators 111

 � Enclose

Enclose is used to create a scalar whose only item is R. This scalar can replace a
scalar subarray selected by indexing. It is also subject to scalar extension as an
argument of a scalar function or of an each-derived function.

Enclose and ravel can be used to create a nested one-item vector:

W←,�15 0 29
 W
 15 0 29
 ρW
1

Ravel and enclose can be used to create a scalar containing a one-item vector.

 Y←�,5
 ρρY
0
 �Y
2

Relationship to Disclose: Disclose is the left inverse of enclose:

R ←→ ��R

S←15 0 29
 ρS
3
 �S
1
 S[2]←JNONEJ
RANK ERROR
 S[2]←JNONEJ
 � �
 S[2]←�JNONEJ
 S
 15 NONE 29
 ρS
3
 �S
2

T←3 5+�0 1
 T
 3 4 5 6
 ρT
 2

 Q←JLOUISJ JCROIXJ
 Z←(�JST� J),¨Q
 Z

ST� LOUIS ST� CROIX

112 APL2 Programming: Language Reference

 �[] Enclose with Axis

�[] Enclose with Axis

Z←�[X]R Yields an array whose items are the contiguous subarrays along
the set of axes indicated by X. That is, the set of axes indicated
by X is enclosed.

X: Simple scalar or vector, nonnegative integer.

If X is nonempty, XειρρR.

Implicit argument: -IO

 ρZ ←→ (ρR)[(ιρρR)�X] ρ↑Z ←→ (ρR)[,X] ρρZ ←→
(ρρR)|ρ,X

 A←2 3ρι6
 A
1 2 3
4 5 6

 Z←�[1]A
 Z
 1 4 2 5 3 6
 ρZ
3
 ρ¨Z
2 2 2
 �Z
2

 Y←�[2]A
 Y
 1 2 3 4 5 6
 ρY
2
 ρ¨Y
 3 3
 �Y
2

 B←3 4ρJPINEODORDATAJ
 B
 PINE
 ODOR
 DATA
 X←�[1]B
 X

POD IDA NET ERA
 ρX
 4
 ρ¨X
 3 3 3 3
 �X
 2

 W←�[2]B
 W

PINE ODOR DATA
 ρW
 3
 ρ¨W

4 4 4
 �W
 2

 Chapter 5. Primitive Functions and Operators 113

 �[] Enclose with Axis

Empty Axis: An empty axis has no effect on R if R is a simple array. If R is
nested, an empty axis increases the depth of R by enclosing each item without
affecting its shape: �[ι0]R ←→ �¨R.

 C←2 3ρι6
 V←�[ι0]C
 V
1 2 3
4 5 6
 ρV
2 3
 �V
1

Q←2 3ρJCATJ JDOGJ JFOXJ JCOWJ JBATJ JYAKJ
 Q
 CAT DOG FOX
 COW BAT YAK
 ρQ
2 3
 �Q
2
 H←�[ι0]Q
 H
CAT DOG FOX
COW BAT YAK

 ρH
2 3
 �H
3

Order of Axes: The order in which the axes are listed in X affects the shape of
each item of Z.

S←2 3 4ρJLESSSOMENONEMOREMANYMOSTJ
 S
LESS
SOME
NONE

MORE
MANY
MOST

 P←�[2 3]S
 P
 LESS MORE
 SOME MANY
 NONE MOST
 ρP
2
 ρ¨P
 3 4 3 4

114 APL2 Programming: Language Reference

 �[] Enclose with Axis

 �P
2

 Q←�[3 2]S
 Q
 LSN MMM
 EOO OAO
 SMN RNS
 SEE EYT
 ρQ
2
 ρ¨Q
 4 3 4 3
 �Q
2

If all the axes of R are included in X, then:

�(�X))R ←→ �[X]R

If X is ιρρR, then:

�R ←→ �[X]R

Relationship to Disclose with Axis: Disclose with axis is the left inverse of
enclose with axis:

R ←→ �[X] �[X] R

 T←2 3ρι24
 T
1 2 3 4
5 6 7 8

 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24
 ρT
2 3 4

J←�[1 2 3]T
 J
 1 2 3 4
 5 6 7 8

9 10 11 12

 13 14 15 16
 17 18 19 20
 21 22 23 24
 �J
2

�[1 3 2]T
1 5 9

 2 6 10
 3 7 11
 4 8 12

13 17 21
14 18 22
15 19 23
16 20 24

(�[1 3 2]T)��(� 1 3 2))T
 1

 Chapter 5. Primitive Functions and Operators 115

 � Encode

 � Encode

Z←L�R Yields the representation of R in the number system whose radices
are L.

L, R, and Z: Simple numeric array

 ρZ ←→ (ρL),ρR
ρρZ ←→ (ρρL)+ρρR

Representation of a Base-10 Number: For radices L having positive integer
items, encode has an inverse relationship to decode, as follows:

L⊤(L�R) ←→ (
/L) R

Thus, encode can be used to determine the representation of the base-10 number
in a number system whose radices are defined by the vector L.

The example in the second column is a mixed radix encoding of the number of
hours, minutes, and seconds in 8592 seconds.

For L<10, 10⊤L�R displays the base-L representation of R as a single number.

The number of digits present for the encoding of R depends on the shape of L. If
L has greater shape than needed, the result has leading 0's. If L has less shape
than needed, the result is an incomplete representation.

For a single-base encoding, the expression �1+L�(R)+R=0 can be used to
determine how many items L should contain for a complete representation of the
scalar R.

 ((�1+2�135)ρ2)�135
1 0 0 0 0 1 1 1

2 2 2 2�15
1 1 1 1

24 60 60�8592
2 23 12

2 2 2 2�15
1 1 1 1

10⊤2 2 2 2�15
 1111

2 2 2 2 2�15
0 1 1 1 1

2 2 2�15
1 1 1

116 APL2 Programming: Language Reference

 � Encode

No simple expression exists for predetermining the number of places in the result
for a mixed-radix encoding. However, if 1↑L is zero, the first item of the result
captures any overflow if L is not long enough for a complete representation of R.

General Encode: The basic definition of L�R concerns a vector L and a scalar R
and yields a result with the shape of L. Encode is defined formally in terms of the
function residue () but with -CT←0, as shown in the defined function ENCODE
below:

c Z←L ENCODE R;I;-CT
[1] -CT←0
[2] Z←0
L
[3] I←ρL
[4] GO:→(I=0)/0
[5] Z[I]←L[I] R
[6] →(L[I]=0)/0
[7] R←(R|Z[I])÷L[I]
[8] I←I|1
[9] →GO
 c

For arguments of other ranks:

Z← �[1] (�[1]L) "�ENCODE R

24 60 60�162507
21 8 27

0 24 60 60�162507
1 21 8 27

10 10 10�215 345 7
2 3 0
1 4 0
5 5 7

L←4 2ρ8 2
 L
 8 2
 8 2
 8 2
 8 2
 L�15
 0 1
 0 1
 1 1
 7 1

 Chapter 5. Primitive Functions and Operators 117

 ε Enlist

 ε Enlist

Z←εR Creates a simple vector whose items are the simple scalars in R.

Z: Simple vector

ρZ ←→ Number of simple scalars in R
ρρZ ←→ ,1

The result of enlist is always a simple vector.

C←JALEJ JBEERJ JSTOUTJ
 Z←εC
 Z
ALEBEERSTOUT
 ρZ
12
 �Z
1

The example below shows how enlist selects items from a nested array to form a
simple vector.

H←(2 2ρι4)(2 2ρ(5 6(2 2ρ7 8 9 10)11))JABCDJ
 DISPLAY H
�→|||||||||||||||||||||||||||�
 �→||� �→||||||||||� �→|||�
 ↓1 2 ↓ 5 6 ABCD
 3 4 J||||J
 J�||J �→|||�
 ↓7 8 11
 9 10
 J�|||J
 Jε||||||||||J
Jε|||||||||||||||||||||||||||J

 εH
1 2 3 4 5 6 7 8 9 10 11 ABCD
 ρεH
15
 �εH
1

118 APL2 Programming: Language Reference

 ε Enlist

Compared to Ravel: , Ravel, page 202, creates a vector from the items in R. If
R is simple, the results of enlist and ravel are equivalent:

,R ←→ εR

Selective Specification: Enlist can be used for selective specification.

A←(10 20 30) JABJ
 (εA)←ι5
 A
 1 2 3 4 5

 Chapter 5. Primitive Functions and Operators 119

 � Execute

 � Execute

Z←�R Evaluates the statement represented by the character vector R.

R: Simple character scalar or vector

ρZ ←→ Data dependent
ρρZ ←→ Data dependent

R is taken to represent a valid statement which is evaluated.

The last example in the right column shows that it takes three sets of quotation
marks to specify a character vector for execution.

Valueless Expression: If R is empty or represents a defined function or operator
without explicit result, �R has no value.

Conditional Execution: The statement R may be executed conditionally.

Error Message: If the statement R results in an error, the error message includes
lines showing the content of R and where the error occurred in R.

 �J3 4
J
SYNTAX ERROR+
 3 4

 � �
 �J3 4
J
 �

 �Jι4J
1 2 3 4

 1+�Jι4J
2 3 4 5

 �JMATRIX←3 3ρι9J
 MATRIX
1 2 3
4 5 6
7 8 9

 �J195÷5
13J
3

 �JJJAGNESJJJ
 AGNES

 cF X
[1] Z←3
X
[2] c

 S←�JF 2J
VALUE ERROR+
 S←�JF 2J
 ��

 2
�JJ
 VALUE ERROR+
 2
�JJ
 �

 V←ι0
 �(0=ρV)/JJJEMPTYJJJ
EMPTY

 CTR←0
 �(1=CTR)/J124J

No value (i.e., not empty)

 CTR←1
 �(1=CTR)/J124J
 124

120 APL2 Programming: Language Reference

 � Execute

Execute with Branch Statements: Execute applies to a branch statement only if
the execute is the leftmost primitive in a statement and is applied without an oper-
ator. Here are two examples of illegal execute statements:

 L1←3

2+�J→L1J h NOT LEFTMOST PRIMITIVE
SYNTAX ERROR+
 →L1
 �

2+�J→L1J h NOT LEFTMOST PRIMITIVE
 ��

�¨J2+2J J→L1J h APPLIED WITH OPERATOR
DOMAIN ERROR
 →L1
 �

�¨J2+2J J→L1J h APPLIED WITH OPERATOR
 ��

 Chapter 5. Primitive Functions and Operators 121

 � Expand (from Backslash)

� Expand (from Backslash)

Z←LO�R Expands the last axis of R under the control of the Boolean vector
LO.

LO: Simple Boolean scalar or vector
Z: Nonscalar array

b1↓ρZ ←→ b1↓ρR
b1↑ρZ ←→ ρ,LO
 ρρZ ←→ ρρR

Positions in Z that correspond to ones in LO are filled with items of R. Positions in
Z that correspond to 0's in LO are filled with the fill item (↑0ρ�↑R).

When applied to multidimensional arrays, expand treats each subarray along the
last axis as a vector and expands it with a fill item appropriate for that subarray.
For example:

R←1 2 3 4 JAJ 4 JCJ 2 6
R←R, JXJ 7 JYJ 1 JDJ JEJ
R←5 4ρR,5 JFJ JGJ JHJ JIJ

 R
1 2 3 4
A 4 C 2
6 X 7 Y
1 D E 5
F G H I

1 0 0 1 1 0 1\R
1 0 0 2 3 0 4
A 4 C 2
6 0 0 X 7 0 Y
1 0 0 D E 0 5
F G H I

1 0 1 0 0 1�1 2 3
1 0 2 0 0 3

1 0 1 0 0 1�JABCJ
 A B C

H←(1 2) (3 4 5) 6
1 0 1 1 0�H

 1 2 0 0 3 4 5 6 0 0

K←1 (2 3) (4 5 6)
1 0 1 1 0�K

1 0 2 3 4 5 6 0

122 APL2 Programming: Language Reference

 � Expand (from Backslash)

Conformability: If b1↑ρR is not 1, it must be equal to +/LO. For scalar R or if
b1↑ρR is 1, the following extensions are applied before the function is evaluated:

� If R is a scalar, it is treated as a one-item vector.

� If b1↑ρR is 1, R is replicated along the last axis +/LO times.

Compared with Replicate: Expand is similar to replicate with negative LO. The
following identities also exist for Boolean LO:

LO�R ←→ (LO|LO=0)/R

LO�R ←→ (b1+2
LO)/R

Empty Arrays: If LO is empty, R must be a scalar or the shape along the last
axis (b1↑ρR) must be 0 or 1. If R is empty with a zero last axis, LO must
consist entirely of 0's. If R is empty with a nonzero last axis, +/,LO must be
b1↑ρR.

Selective Specification: Expand can be used for selective specification:

1 0 0�5
5 0 0

S←3 1ρ7 8 9
0 1 0�S

0 7 0
0 8 0
0 9 0

W←7 8 9
1 0 0 1 0 1�W

7 0 0 8 0 9

1 b2 1 b1 1/W
7 0 0 8 0 9

 Z←(ι0)�2 0ρ0
 ρZ
2 0

A←(ι0)�,[ι0]6 7 8
 ρA
 3 0

B←1 0 1�0 2ρ0
 B
 ρB
0 3

C←0 0 0�2 0ρ0
 ρC
 2 3
 C
0 0 0
0 0 0

 M←JABCJ
(1 0 1 0 1�M)←ι5

 M
1 3 5

 N←2 3ρι6
 N

1 2 3
4 5 6

 T←2 4ρJABCDEFGHJ
(1 0 1 1�N)←T

 N
 ACD
 EGH

 Chapter 5. Primitive Functions and Operators 123

 �[] �[] Expand with Axis (from Backslash)

�[] �[]Expand with Axis (from Backslash)

Z←LO�[X]R Expands the Xth axis of R under the control of the Boolean
vector LO.

LO: Simple Boolean scalar or vector
R and Z: Nonscalar array
X: Simple scalar or one-item vector, integer: XειρρR

Implicit Argument: -IO

(ρZ)[,X] ←→ ρ,LO
 ρρZ ←→ ρρR

Expand with axis is similar to expand, except that expansion occurs along the Xth
axis.

R←2 3 4ρι24
((,R)[1 3 14 16])←JACDEJ

 R
A 2 C 4
5 6 7 8

 9 10 11 12

13 D 15 E
17 18 19 20
21 22 23 24

1 1 0 1�[2]R
A 2 C 4
5 6 7 8

 0 0
 9 10 11 12

13 D 15 E
17 18 19 20
 0 0
21 22 23 24

F←2 2 2ρ�[2]8 2ρι16
 F
 1 2 3 4
 5 6 7 8

 9 10 11 12
 13 14 15 16

1 0 1�[2]F
 1 2 3 4
 0 0 0 0
 5 6 7 8

 9 10 11 12
 0 0 0 0
 13 14 15 16

124 APL2 Programming: Language Reference

 �[] �[] Expand with Axis (from Backslash)

G←2 2 2ρ1 (2 3) 4 (5 6) 7 (8 9) 10 (11 12)

Conformability: If (ρR)[X] is not 1, it must be equal to +/LO. For scalar R
or if (ρR)[X] is 1, the following extension is applied before the function is evalu-
ated:

If (ρR)[X] is 1, R is replicated along the Xth axis +/LO times.

Applied to First Axis: The symbol � is an alternate symbol for �[1].
However, if � is followed by an axis (�[X]), it is treated as �[X].

M←3 4ρJAJ JBJ 1 JCJ 2 3 4 5 6 7 8 9

 G
 1 2 3
 4 5 6

 7 8 9
 10 11 12

1 0 1�[2]G
 1 2 3
 0 0 0
 4 5 6

 7 8 9
 0 0 0
 10 11 12

T←2 1 3ρι6
 T
1 2 3

4 5 6

1 0 0 1�[2]T
1 2 3
0 0 0
0 0 0
1 2 3

4 5 6
0 0 0
0 0 0
4 5 6

 M
A B 1 C
2 3 4 5
6 7 8 9

1 0 0 1 1�M
A B 1 C
 0
 0
2 3 4 5
6 7 8 9

1 0 0 1 1�[1]M
A B 1 C

 0
 0

2 3 4 5
6 7 8 9

 Chapter 5. Primitive Functions and Operators 125

 �[] �[] Expand with Axis (from Backslash)

Selective Specification: Expand with axis (from backslash) can be used for
selective specification:

 M←3 2ρι6
 M
1 2
3 4
5 6
(1 1 0 0 1�[1]M)←5 2ρ|ι10

 M
b1 b2
b3 b4
b9 b10

126 APL2 Programming: Language Reference

 * Exponential

 * Exponential

Z←*R Determines the Rth power of the base of the natural logarithms e,
where e is approximately 2.7182818284590452.

R and Z: Numeric

Scalar Function

The exponential function is equivalent to e*R.

 *1
2�718281828

 *0J1
 0�5403023059J0�8414709848

 *0
1

 *○0J1
 b1

 Chapter 5. Primitive Functions and Operators 127

 � Factorial

 � Factorial

Z←�R For positive integer R, yields the product of all positive integers
through R.

For all numbers but negative integers, factorial yields the Gamma
function of R+1.

R: Numeric, except for negative integers
Z: Numeric

Scalar Function

Gamma Function: Factorial approximates the gamma function of (n+1):

 �4
24

 � 3J2
 b3�01154037J1�770168194

�1 2 3 4 5
1 2 6 24 120

 ��05 b�05
 0�9735042656 1�031453317

(n+1) = n (n) if n > 0

-x n-1
(n) = e X dx

0

128 APL2 Programming: Language Reference

 � Find

 � Find

Z←L�R Yields a Boolean array that maps to R. An item of Z is 1, where the
pattern L begins in the corresponding position of R. Otherwise, an
item of Z is 0.

Note: See the discussion of the)PBS command on page 444 for
alternate ways to enter this character.

Z: Simple Boolean array

Implicit argument: -CT

 ρZ ←→ ρR
ρρZ ←→ ρρR

Rank of L Smaller Than Rank of R: If L has smaller rank than R, the search is
performed along the last ρρL axes of R. That is, L is treated as being reshaped
as ((Dρ1),ρL)ρL, where D is the difference in ranks: (ρρR)|ρρL.

With H specified as above:

 JBAJ�H
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

 JABJ�JABABABABAJ
1 0 1 0 1 0 1 0 0

1 2 3�1 2 3 4 1 2 3
1 0 0 0 1 0 0

 H←4 5ρJABCABAJ
 H
ABCAB
AABCA
BAABC
ABAAB

 K←2 3ρJBCAABCJ
 K
 BCA
 ABC
 K�H

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 Chapter 5. Primitive Functions and Operators 129

 � Find

Rank of L Greater Than Rank of R: If L has larger rank than R, the pattern L
cannot be found in R and all items of Z are 0.

 Q←2 3ρJABCABBJ
 Q
ABC
ABB
 Q�JABCABBJ
0 0 0 0 0 0

Nested Arrays: The pattern being searched for is found only if an exact match in
structure and data (within comparison tolerance) exists:

S←JGOJ JONJ JGOJ JTOJ
 S
 GO ON GO TO
 ρS
4
 �S
2
 JGOJ JTOJ�S
0 0 1 0
 JGOTOJ�S
0 0 0 0

Deleting Multiple Blanks: � can be used to delete multiple blanks as follows:

 S←JAB DEFJ
 (�J J�S)/S
AB DEF

130 APL2 Programming: Language Reference

 ↑ First

 ↑ First

Z←↑R Selects the first item of R taken in row major order. If R is empty,
yields the prototype of R.

ρZ ←→ Depends on shape of the first item
ρρZ ←→ Depends on rank of the first item

Empty Argument: If R is empty, first yields the prototype of R; that is:

↑R ←→ ↑0ρ�↑R.

A←JDOJ JREJ JMEJ
 Z←↑A
 Z
DO
 �Z
1
 ρZ
2

 Y←JABCDEJ
 �Y
1
 W←↑Y
 W
A
 �W
0

B←(2 3) ((4 5 6) 7)
 �B
 3
 J←↑B
 J
 2 3
 �J
 1

 C←'B

 C
4 5 6 7 2 3

 S←↑C
 S

4 5 6 7
 ρS
 2
 �S
 2
 �C[1]
 3

 ↑ι0
0

 ↑JJ
 (a blank)

D←0 3ρ(2 3ρ0) 0
 ρD
0 3
 T←↑D
 T
0 0 0
0 0 0

H←0 2ρ(0 0) (0 0 0)
 H
 ρH
 0 2
 U←↑H
 U
 0 0

 Chapter 5. Primitive Functions and Operators 131

 ↑ First

Compared with Pick and Enclose: � Pick, page 195, selects any item from an
array:

↑R ←→ (�(ρρR)ρ1)�R (for nonempty R)

� Enclose, page 111, creates a nested scalar whose only item is the argument
array:

R ←→ ↑�R

Selective Specification: First can be used for selective specification:

K←JREDJ JWHITEJ JBLUEJ
 K
 RED WHITE BLUE
 ρK
3
 (↑K)←JYELLOWJ
 K
 YELLOW WHITE BLUE
 �K
2

132 APL2 Programming: Language Reference

 � Floor

 � Floor

Z←�R For real numbers, yields the largest integer that does not exceed R
(within the comparison tolerance).

For complex numbers, depends on the relationship of the real and
imaginary parts of R.

R and Z: numeric
Implicit Argument: -CT

Scalar Function

The magnitude of the difference of a number and its floor is always less than 1.
The examples below show floor applied to real R.

For complex R of the form A+0J1
B (where A and B are real), the result
depends on the relationship of the real (A) and imaginary parts (0J1
B) of R as
follows:

Figure 21 illustrates the floor of a complex number. Any number within the rec-
tangle has point B as its floor.

 �2�3
2

�b2�7 3 �5
b3 3 0

If Then Z Is

1>(A|�A)+B|�B (�A)+0J1
�B
1≯(A|�A)+(B|�B) and

(A|�A)≮B|�B
(1+�A)+0J1
�B

1≯(A|�A)+B|�B and

(A|�A)<B|�B
(�A)+0J1
1+�B

Figure 21. The Shape of the Complex Floor Area

The rectangle of sides 2*�5 by �5*�5 is oriented so that the center of one long
side is coincident with a lattice point B, and with the ends of the opposite long side
coincident with the lattice points above and to the right of B. The points within the
rectangle all have B as floor. The two edges of the rectangle associated with B as
floor are the bottom one, on which B lies, and the one to the left, as shown by the
darker lines in the figure.

 Chapter 5. Primitive Functions and Operators 133

 � Floor

The examples below show floor applied to nonreal R.

 �1�5J2�5
2J2

�1J2 1�2J2�5 b1�2Jb2�5
1J2 1J2 b1Jb3

134 APL2 Programming: Language Reference

 � Format (Default)

� Format (Default)

Z←�R Creates a simple character array whose appearance is the same as
the display of R (if -PW is set sufficiently wide.)

Z: Character array

Implicit argument: -PP

 ρZ ←→ See below
ρρZ ←→ ,1�ρρR if R is simple
ρρZ ←→ ,1; or ,2 if R is nested
(see below)

Z is a character array that includes the character representation of all data in R
plus all leading, intermediate, and interdimensional blanks in the display of R.

R←2 3ρJONEJ 1 1 JTWOJ 2 22

For additional information, see “Display of Numbers” on page 12, “Display of
Characters” on page 14, and “Display of Arrays” on page 17.

Printing Width: Numeric and character arrays are displayed differently when they
are too wide for the printing width, as shown below:

 -PW←30
T←34559898 449449449 13981 93891293

 T
34559898 449449449 13981
 93891293

 U←�T
 U
34559898 449449449 13981 93891
 293

 R
 ONE 1 1
 TWO 2 22

 Z←�R
 Z
 ONE 1 1
 TWO 2 22

 ρZ
2 10

To illustrate the format created by �, the display
below substitutes carets for blanks in Z.

�ONE�1��1�
�TWO�2�22�

 Chapter 5. Primitive Functions and Operators 135

 � Format (Default)

A numeric array may not be displayed to the allowed printing width because
numbers are not usually split for display. For the vector T, the number
93891293 is too large for the line so it is displayed on the second line. A char-
acter array, such as U, is displayed to the allowed printing width.

Because of this difference in the display of numeric and character arrays, the result
of �R may not appear to be the same as the display of R.

-PW and its effect on display are discussed on page 318.

Simple Character Array Argument: If R is a simple character array, Z and R
are the same. If R is a simple numeric array, b1↓ρZ ←→ b1↓ρR.

Nested Arrays: When R is a nested array, Z is a vector if all items of R at any
depth are scalars or vectors. Otherwise, Z is a matrix. Two examples are shown.

Example 1: All items of B are scalars or vectors and the result of �B is a vector.

B←(2 3 4) 5 (�7 8 (9 10 11))
 ρB
3
 �B
4
 C←�B
 ρC
27
 B
 2 3 4 5 7 8 9 10 11
 C
 2 3 4 5 7 8 9 10 11

The display below substitutes carets for the blanks in C:

�2�3�4��5���7�8��9�10�11���

M←J3 5 SIXJ
 M
3 5 SIX

 N←�M
 N
3 5 SIX

 N�M
1

 S←4
ι4
 S
4 8 12 16

 Y←�S
 Y
4 8 12 16

 S�Y
 0

 ρS
 4
 ρY
 9

136 APL2 Programming: Language Reference

 � Format (Default)

Example 2: One item of D is a rank-3 array. The result of �D, therefore, is a
matrix.

D←(1 2) (3 4 5) 6 (2 2 3ρ6+ι12)
 D
 1 2 3 4 5 6 7 8 9

10 11 12

13 14 15
16 17 18

 E←�D
 ρE
5 27

 E
 1 2 3 4 5 6 7 8 9

10 11 12

13 14 15
16 17 18

In the display below, carets are substituted for the blanks in E.

�1�2��3�4�5��6�����7��8��9�
������������������10�11�12�
���������������������������
������������������13�14�15�
������������������16�17�18�

Display Rules: The display that � creates follows certain rules. Generally, rows
and columns are formatted independently, and rectangular nesting and hierarchy
are displayed. Figure 22 on page 138 presents the rules formally.

� There is one column each of leading and trailing blanks.

� Character scalar and vector items in columns containing numeric scalars are
right-justified.

� Character scalar and vector items in columns not containing numeric scalars
are left-justified.

� Row and column spacing is determined by the context of adjacent items. The
spacing increases with the rank of the items. The number of embedded blanks
is one less for character items than for other items.

The definition of the default format function is applied recursively so that nested
items within a nested array appear with a leading and trailing blank.

 Chapter 5. Primitive Functions and Operators 137

 � Format (Default)

The formal rules listed below for default formatting of nested arrays use the
function NOTCHAR. NOTCHAR returns a 1 if R is not a simple character
array and a 0 otherwise:

c Z←NOTCHAR R
[1] Z←1
[2] →(1<�R)/0
[3] Z←J J��≠,↑0ρ�R
 c

For Z←�R, where R is a nested array:

� Z has single left and right blank pad spaces.

� Z has S intermediate blank spaces between horizontally adjacent items A
and B, where:

S←((ρρA)+NOTCHAR A)�(ρρB)+NOTCHAR B

� Z has LN intermediate blank lines between vertically adjacent items C and
D, where:

 LN←0�b1+(ρρC)�ρρD

� If the rank of R is three or more, Z can contain blank lines for the interdi-
mensional spacing.

Figure 22. Formal Rules for Default Formatting

Effect of Printing Precision: Because the result of default format has the appear-
ance of the displayed argument, the printing precision (-PP, page 315), influences
the result. For example:

 -PP←5
 H←÷3 6
 H
0�33333 0�16667
 I←�H
 I
0�33333 0�16667

 -PP←8
 H
0�33333333 0�16666667
 I
0�33333 0�16667

138 APL2 Programming: Language Reference

 � Format by Example

� Format by Example

Z←L�R Transforms R to a character array that is displayed according to
format model L. L includes control characters, which show where
digits can appear in the result, and decorators, such as $ + PAID,
which can accompany the display of a number.

L: Simple character vector
R: Simple real numeric array
Z: Simple character array

Implicit argument: -FC[ι5]

b1↓ρZ ←→ b1↓ρR
 ρρZ ←→ ,1�ρρR

The left argument L provides a model for each column of Z. It consists of one or
more fields. A field is a sequence of characters containing at least one digit and
bounded by either blanks or a special field boundary mark (the digit 6). The
spaces are significant and are retained as column dividers in Z. A sequence of
characters that does not contain a digit is considered a decoration. 5's define the
numeric pattern, except where special handling is desired.

In the following example, @, $, and EA are decorators; the dot defines the position
of the decimal point; and the blanks define spaces between items. The first field
(55@) defines the format of the first column and displays the positive numbers 0
through 99, following each number with the symbol @. The second field ($55�50
EA) defines the format of the second column and displays positive numbers in
dollars-and-cents format, following each amount with EA.

 L←J 55@ $55�50 EAJ
R←3 2ρ3 4�99 7 7�45 12 �5

 R
 3 4�99
 7 7�45
12 0�5

 Z←L�R
 Z
 3@ $ 4�99 EA
 7@ $ 7�45 EA
12@ $ �50 EA

 ρZ
3 15
 ρL
15

 Chapter 5. Primitive Functions and Operators 139

 � Format by Example

Conformability: For conformability, L must have either one field, which is then
applied to each column, or as many fields as R has columns. Each field of L then
applies to a corresponding column of R.

If L has b1↑ρR fields:

(b1↑ρZ) ←→ ρL

If L has one field:

(b1↑ρZ) ←→ (ρL)
b1↑ρR

Specifying the Left Argument: L can contain two kinds of characters:

1. Control characters—the character digits J1234567890J, the period (�),
and the comma (,) - that specify:

� Where numbers in R can appear in Z and the display pattern for the
numbers.

� Where decimals, controlled commas (thousands indicator), and floating
decorators in L appear in Z. (Note that the display generated by J�J and
J,J depends on the setting of -FC[1 2]).

2. Any character, including the space, that is not a control character is a
decorator. Decorators can be:

� Simple, always appearing in Z as they appear in L.

Simple decorators can be used to indicate the meaning of the number
being displayed:

EXPR←234�67 456�23 987�65 34�23
JTOTAL ORDER COST: $5,555�50J�+/EXPR

TOTAL ORDER COST: $1,712�78

It is a good idea to precede each field by one or more spaces to ensure
that at least one blank separates numbers.

� Controlled, appearing in Z according to the control characters in L.

� Floating, appearing next to a number in Z, according to the control charac-
ters in the pattern for the number.

Effect of Format Control: The format control system variable (-FC), page 291,
is an implicit argument of picture format:

� -FC[1] specifies the character for the decimal indicator. This character
prints wherever a J�J is specified in L. The default setting is J�J.

� -FC[2] specifies the character used as a decorator to mark thousands. This
character prints wherever a J,J is specified in L. The default setting is J,J.

� -FC[3] specifies the fill character whenever J8J is specified in L. The
default is J*J.

140 APL2 Programming: Language Reference

 � Format by Example

� -FC[4] can be J0J or an overflow character. For -FC[4] equal to J0J,
a DOMAIN ERROR is generated if L specifies a pattern that is too small for
the corresponding column of R. If -FC[4] is not J0J, its value is printed in
the field having an overflow. The default is J0J.

J 55�55J�345 �6789
DOMAIN ERROR

J 55�55J�345 �6789
 � �

 -FC[4]←J
J
J 55�55J�345 �6789

 �68

� -FC[5] specifies a “print-as-blank” character. It is used in L to specify that a
blank should separate the digits of a number. The default is J_J.

 J555_555_5555J�8324632190
832 463 2190

The print-as-blank character is useful to break up a long string of numbers such
as a charge card number or to print on a form that has vertical rules.

Effects of Left Argument: The effects of the control characters and decorators
are defined and illustrated in Figure 23. In the figure, the control character J5J,
the decorators J,J and J�J, and the control character J0J are presented first
because they are the most commonly used. The other digits are presented in
numeric order. All examples use the default format control -FC settings.

Figure 23 (Page 1 of 2). Picture Format Control Characters

n Effect Example

J5J
and
J�J
and
J,J

Perform normal formatting, observing
APL2 rules for removing leading and
trailing 0's. Display blanks for a value
of 0. (See “Display of Numbers” on
page 12.)

Fractional numbers are rounded to the
specified number of decimal places.

Print -FC[1] wherever a J�J
appears and -FC[2] wherever a
J,J appears.

Note: 5 alone does not allow display
of negative values. Use 1 and 2 to
control the display of signed numbers.

J 55�55J��10 1�1 1�01 10�019 �11
�1 1�1 1�01 10�02 �11

J 55�55J�2 2�2 0 2�22
 2 2�2 2�22

J0J Pad with 0's to the position of the 0. If
the value of the corresponding item of
R is 0, the position is filled with 0's.

J 055�50J��3 33�2 0 300
000�30 033�20 000�00 300�00

J1J Float the decorator against the number
only if the value is negative.

J |55�10J�b3�4 0 4�5 b2�12
 |3�40 �00 4�50 |2�12

J (55�10)J�b3�4 0 4�5 b2�12
(3�40) �00 4�50 (2�12)

 Chapter 5. Primitive Functions and Operators 141

 � Format by Example

Figure 23 (Page 2 of 2). Picture Format Control Characters

n Effect Example

J2J Float the decorator against the number
only if the value is positive.

J +552�50J�b4 40 b400
4�00 +40�00 400�00

J |551�20CRJ�b4 40 b400
 |4�00 40�00CR |400�00

J3J Float the decorator against the
number. 1 or 2 must also be used if
a number may be negative.

Note: If only one of the characters 1,
2, or 3 appears within a given pattern
in L, it applies to both right and left
floating decorators. If more than one
appears, each applies to its respective
side.

J $555�50J�3�1 32�23 324
$ 3�10 $ 32�23 $324�00

J $553�50J�3�1 32�23 324
 $3�10 $32�23 $324�00

J4J Counteract the effect of a 1, 2, or 3,
to prevent it from affecting the other
side of the decimal. Any decorator on
the same side of the decimal as the 4
displays as entered.

J |551�20CRJ�b1 10 b100
 |1�00 10�00CR |100�00

J |551�40CRJ�b1 10 b100
 |1�00CR 10�00CR |100�00CR

J6J The decorator to the right marks the
end of this field; treat it as though there
were a blank between the fields, but
display the decorator.

 J0006/06/06 06:06J�5↑-TS
1991/12/17 12:35

J7J The next nonnumeric character to the
right is the symbol to be used for
scaled form (E-format).

 J b1�7000Eb01J�b25�784 �0034
 b2�5784E 01 3�4000Eb03

J8J Fill empty portions of the field with the
character defined by -FC[3]. The
default character is *. This specifica-
tion is sometimes called check pro-

tection because it can be used to print
fill characters on checks.

 J 85555�50J�17�3 56�43
 ***17�30 ***56�43

 -FC[3]←J"J
 J 85555�50J�17�3 56�43
|"""17�30 """56�43

J |85555�10J�b17�3 56�43
|"""17�30 """56�43

J9J Pad with 0's to the position of the 9. If
the value of the corresponding item of
R is 0, the position is all blanks.

J 9995�59J�14�7 0 56�43
 0014�70 0056�43

J 9995�19|J�b17�3 0 56�43
 0017�30| 0056�43

142 APL2 Programming: Language Reference

 � Format by Specification

� Format by Specification

Z←L�R Transforms R to a character array that displays according to column
specifications L. Each pair of L corresponds to a column. The first
of the pair sets column width; the second sets display precision and
format – either conventional or scaled.

A single pair of integers extends the specification to all columns. A
single integer is interpreted as (0,L).

L: Simple integer vector
R: Array of depth 2 or less, whose items are simple

real scalars or simple character scalars or vectors
Z: Simple character array

Implicit argument: -FC[1 4 6]

b1↓ρZ ←→ b1↓ρR
 ρρZ ←→ 1�ρρR

L controls the column width (first integer of pair) and the precision and format of
the display of numbers in a column (second integer of pair). For example:

R←3 2ρ1 �468987 2 57�276 3 27963
 R
1 0�468987
2 57�276
3 27963

4 2 12 b5�R
1�00 4�6899Eb1
2�00 5�7276E1
3�00 2�7963E4

4 0 10 2�R
 1 �47
 2 57�28
 3 27963�00

Specifying the Integer Pair: The first integer of a pair specifies the width in Z of
the corresponding column of R.

The first integer can be either:

� 0 to specify that column width should be determined automatically by the
number of positions in the largest item in the corresponding column of R,
allowing a one-column space leading each column.

 Chapter 5. Primitive Functions and Operators 143

 � Format by Specification

� Positive to specify overall column width. It must be large enough to include:

– The sign (if necessary)
 – The digits

– The decimal indicator
– The number of positions specified for precision

Note: If you want Z to be displayed at the left margin, use 0 to get the
minimum readable format.

The second of the pair of integers specifies the precision and format of the display
of the numeric simple scalar items in R. It can be:

� Positive to specify the number of digits to be displayed after the decimal in the
corresponding column of R. Decimal positions not filled by digits of R are
padded with 0's.

If a number has more decimal positions than specified, the number is rounded
to the specified number of decimal positions.

� Zero to indicate integer formatting. No decimal point is used.

If a number of R is fractional, it is rounded to an integer.

� Negative to specify scaled form and the number of digits to be displayed in the
mantissa in the corresponding column of R.

A number that is displayed in scaled form can be displayed by � in conventional
form by appropriate specification of L. For example:

The character representation is an exact reflection of the numeric value to the
requested number of digits. In an implementation, not all numbers are represented
exactly.

Effect of -FC[1]: -FC[1] specifies the decimal position indicator to be
used. The default is the point (�).

Effect of -FC[4]: -FC[4] specifies an overflow character to be used if the
number being formatted exceeds the column width set by L.

 -FC[4]←J
J
 10 0�2*70

Note: The default for -FC[4] is J0J, which causes a DOMAIN ERROR to be
generated in overflow cases.

Effect of -FC[6]: -FC[6] specifies the negative number indicator to be
used. The default is JbJ.

 2*70
1�180591621E21

 22 0�2*70
 1180591620717411303424

144 APL2 Programming: Language Reference

 � Format by Specification

Conformability: L can have one of the following forms:

1. Pair of integers for each column of R, that is, (ρL) ←→ 2
b1↑ρR (as
shown in previous examples).

2. Single pair of integers, applying to all columns of R:

 S←3 2ρι6
 7 2�S
 1�00 2�00
 3�00 4�00
 5�00 6�00

3. Single integer, interpreted as the single pair (0,L) and applying to all columns
of R:

 3�S
 1�000 2�000
 3�000 4�000
 5�000 6�000

Alignment of Data: All columns are right-justified and numbers are aligned on the
decimal point. If a column of R contains character data only, the corresponding
column in Z is left-justified.

A←4 2ρJAMTJ JPERCENTJ 5 26�31 6 31�5 8 42�11
 A
AMT PERCENT
 5 26�31
 6 31�5
 8 42�11

3 0 9 2�A
AMT PERCENT
 5 26�31
 6 31�50
 8 42�11

 0�A
AMT PERCENT
 5 26
 6 32
 8 42

D←JITEMJ JPENSJ JBOOKSJ JPAPERJ,A
 D
ITEM AMT PERCENT
PENS 5 26�31
 BOOKS 6 31�5
 PAPER 8 42�11

 Chapter 5. Primitive Functions and Operators 145

 � Format by Specification

5 0 5 0 9 2�D
ITEM AMT PERCENT
PENS 5 26�31
BOOKS 6 31�50
PAPER 8 42�11

Nested Arrays: With format by specification, each item of R must be a simple
numeric scalar or simple character scalar or vector. Thus, R may have a depth no
greater than 2. The precision setting applies only to simple numeric scalars of R.

Use the each operator (¨) to extend precision and format display to vector items.

B←3 2ρ(1 2) (3 4 5) 6 7 (8 9) 10

 2�¨B
1�00 2�00 3�00 4�00 5�00

 6�00 7�00
 8�00 9�00 10�00

 2�1(2 3)
DOMAIN ERROR
 2�1(2 3)
 ��

146 APL2 Programming: Language Reference

 � Grade Down

� Grade Down

Z←�R Yields a vector of integers (a permutation of ι1↑ρR) that puts the
subarrays along the first axis of R in descending order.

R: Simple nonscalar numeric array
Z: Simple vector, nonnegative integers

Implicit argument: -IO

 ρZ ←→ 1↑ρR
ρρZ ←→ ,1

To Sort the Array: R is sorted in descending order if it is indexed by the result of
grade down: R[�R].

 -IO←1
A←23 11 13 31 12

 A[�A]
31 23 13 12 11

Identical Subarrays: The indexes of any set of identical subarrays in R occur in
Z in ascending order of their occurrence in R. In other words, their order in relation
to one another is unchanged.

�23 14 23 12 14
1 3 2 5 4

 -IO←1

�23 11 13 31 12
4 1 3 5 2

 -IO←0

�23 11 13 31 12
3 0 2 4 1

 Chapter 5. Primitive Functions and Operators 147

 � Grade Down

Rank of Right Argument Is Two or More: If R is not a vector, the subarrays are
ordered with the first position being the high-order position.

B←5 3ρ 4 16 37 2 9 26 5 11 63 3 18 45 5 11 54
 B
4 16 37
2 9 26
5 11 63
3 18 45
5 11 54

 �B
3 5 1 4 2

 B[�B;]
5 11 63
5 11 54
4 16 37
3 18 45
2 9 26

C←4 23 54 28 2 11 51 26
C←C,4 29 17 43 3 19 32 41
C←3 2 4ρC,4 23 54 28 1 25 31 16

 C
4 23 54 28
2 11 51 26

4 29 17 43
3 19 32 41

4 23 54 28
1 25 31 16

 �C
2 1 3

 C[�C;;]
4 29 17 43
3 19 32 41

4 23 54 28
2 11 51 26

4 23 54 28
1 25 31 16

148 APL2 Programming: Language Reference

 � Grade Down (with Collating Sequence)

� Grade Down (with Collating Sequence)

Z←L�R Yields a vector of integers (a permutation of ι1↑ρR) that puts the
subarrays along the first axis of R in descending order according to
the collating sequence L.

L: Simple nonempty nonscalar character array
R: Simple nonscalar character array
Z: Simple vector nonnegative integers

Implicit argument: -IO

 ρZ ←→ 1↑ρR
ρρZ ←→ ,1

Collation works by searching in L (in row-major order) for each item in R and then
attaching a significance to each according to where the item was first found.

The significance depends on both the location and the rank of L. The last axis of
L is the most significant for collating, and the first axis of L is the least significant.

 -IO←1
 A←5 4ρJDEADBADECEDEBEADDEEDJ
 A
DEAD
BADE
CEDE
BEAD
DEED

 JABCDEJ�A
5 1 3 4 2

 C←JFACE$J
 B←J@$&ABCDEFJ
 B�C
1 4 3 2 5
 C[B�C]
FECA$

 -IO←1
 JABCDEJ�JBEADJ
2 4 1 3

 -IO←0
 JABCDEJ�JBEADJ
1 3 0 2

 Chapter 5. Primitive Functions and Operators 149

 � Grade Down (with Collating Sequence)

In the following example, differences in spelling have higher significance than differ-
ences in case, and lowercase letters have more significance than their uppercase
counterparts.

 K←5 4ρJdealDealdeadDeadDEEDJ
 K
deal
Deal
dead
Dead
DEED

 H←2 12ρJabcdefghijklABCDEFGHIJKLJ
 H
abcdefghijkl
ABCDEFGHIJKL

 Z←H�K
 K[Z;]
DEED
Deal
deal
Dead
dead

A collating sequence is provided as the variable DCS in the EXAMPLES work-
space distributed with APL2.

DCS is discussed on page 156, and shown in Figure 24 on page 157.

 DCS�JAVENUEJ
2 5 4 3 6 1

 H←JYZOMMXAJ
 DCS�H
2 1 6 3 4 5 7

 H[DCS�H]
ZYXOMMA

Q←5 4ρJSENT ZAPDOWNALSOBOAJ
 Q
SENT
 ZAP
DOWN
ALSO
BOA

 DCS�Q
1 3 5 4 2

150 APL2 Programming: Language Reference

 � Grade Down (with Collating Sequence)

 Q[DCS�Q;]
SENT
DOWN
BOA
ALSO
 ZAP

 K
deal
Deal
dead
Dead
DEED

 DCS�K
5 1 2 3 4

 K[DCS�K;]
DEED
deal
Deal
dead
Dead

S←�JX1J JX10J JX2J JX21J JX3J JX9J JX11J Jx3J
 S
X1
X10
X2
X21
X3
X9
X11
x3

 DCS�S
4 7 2 8 6 5 3 1

 S[DCS�S;]
X21
X11
X10
x3
X9
X3
X2
X1

Identical Subarrays: The indexes of any set of identical subarrays in R occur in
Z in ascending order (according to collating sequence L) of their occurrence in R.
In other words, their order in relation to one another is unchanged.

 JABCDEJ�JDABBEDJ
5 1 6 3 4 2

 Chapter 5. Primitive Functions and Operators 151

 � Grade Down (with Collating Sequence)

Items Not in Collating Sequence: Items of R not found in L have collating
sequence as if they were found immediately past the end of L. They are assigned
indexes in ascending order of their occurrence in R.

 Q←JBLEATJ
 W←JABCDEJ�Q
 W
2 5 3 1 4
 Q[W]
LTEBA

152 APL2 Programming: Language Reference

 � Grade Up

� Grade Up

Z←�R Yields a vector of integers (a permutation of ι1↑ρR) that puts the
subarrays along the first axis of R in ascending order.

R: Simple nonscalar numeric array
Z: Simple vector nonnegative integers

Implicit argument: -IO

 ρZ ←→ 1↑ρR
ρρZ ←→ ,1

To Sort Right Argument: R is sorted in ascending order if it is indexed by the
result of grade up: R[�R].

 -IO←1
A←23 11 13 31 12

 A[�A]
11 12 13 23 31

Identical Subarrays: The indexes of any set of identical subarrays in R occur in
Z in ascending order of their occurrence in R. In other words, their order in relation
to one another is unchanged.

�23 14 23 12 14
4 2 5 1 3

 -IO←1
�23 11 13 31 12

2 5 3 1 4

 -IO←0
�23 11 13 31 12

1 4 2 0 3

 Chapter 5. Primitive Functions and Operators 153

 � Grade Up

Rank of R is Two or More: If R is not a vector, the subarrays are ordered with
the first position being the most significant position.

B←5 3ρ4 16 37 2 9 26 5 11 63 3 18 45 5 11 54
 B
4 16 37
2 9 26
5 11 63
3 18 45
5 11 54

 �B
2 4 1 5 3

 B[�B;]
2 9 26
3 18 45
4 16 37
5 11 54
5 11 63

C←4 23 54 28 2 11 51 26
C←C,4 29 17 43 3 19 32 41
C←3 2 4ρC,4 23 54 28 1 25 31 16

 C
4 23 54 28
2 11 51 26

4 29 17 43
3 19 32 41

4 23 54 28
1 25 31 16

 �C
3 1 2

 C[�C;;]
4 23 54 28
1 25 31 16

4 23 54 28
2 11 51 26

4 29 17 43
3 19 32 41

154 APL2 Programming: Language Reference

 � Grade Up (with Collating Sequence)

� Grade Up (with Collating Sequence)

Z←L�R Yields a vector of integers (a permutation of ι1↑ρR) that puts the
subarrays along the first axis of R in ascending order according to
the collating sequence L.

L: Simple nonempty nonscalar character array
R: Simple nonscalar character array
Z: Simple vector, nonnegative integers

Implicit argument: -IO

 ρZ ←→ 1↑ρR
ρρZ ←→ ,1

Collation works by searching in L (in row-major order) for each item in R and then
attaching a significance to each according to where it was first found.

The significance depends on both the location and rank of L. The last axis of L is
the most significant for collating, and the first axis of L is the least significant.

 -IO←1
 A←5 4ρJDEADBADECEDEBEADDEEDJ
 A
DEAD
BADE
CEDE
BEAD
DEED

 JABCDEJ�A
2 4 3 1 5

 Q←JFACE$J
 S←J@$&ABCDEFJ
 S�Q
5 2 3 4 1
 Q[S�Q]
$ACEF

 -IO←1
 JABCDEJ�JBEADJ
3 1 4 2

 -IO←0
 JABCDEJ�JBEADJ
2 0 3 1

 Chapter 5. Primitive Functions and Operators 155

 � Grade Up (with Collating Sequence)

In the following example, differences in spelling have higher significance than differ-
ences in case, and lowercase letters have more significance than uppercase letters.

 K←5 4ρJdealDealdeadDeadDEEDJ
 K
deal
Deal
dead
Dead
DEED

 H←2 12ρJabcdefghijklABCDEFGHIJKLJ
 H
abcdefghijkl
ABCDEFGHIJKL

 Z←H�K
 Z
3 4 1 2 5

 K[Z;]
dead
Dead
deal
Deal
DEED

A collating sequence is provided as the variable DCS in the EXAMPLES work-
space distributed with APL2.

DCS, which is shown in Figure 24 on page 157, sorts an alphanumeric array in the
following order:

 J A�aB�bC�cD�dE�eF�fG�gH�hI�iJ�jK�kL�lM�m
 O�oP�pQ�qR�rS�sT�tU�uV�vW�wX�xY yZ¡z0123456789J

As a result of the structure of DCS, numeric integer suffixes in rows of a matrix can
be sorted in numeric order.

DCS has a shape of 10 2 28. The first column of each row is a blank. Each
plane is a matrix of shape 2 28, where all nonprintable characters are blanks.

156 APL2 Programming: Language Reference

 � Grade Up (with Collating Sequence)

 ABCDEFGHIJKLMNOPQRSTUVWXYZ0
 �������������¢���������� ¡

 1
 abcdefghijklmnopqrstuvwxyz

 2

 3

 4

 5

 6

 7

 8

 9

Figure 24. Collating Sequence Array

 DCS�JAVENUEJ
1 3 6 4 5 2

 H←JLWLOIBYJ
 DCS�H
6 5 1 3 4 2 7

 H[DCS�H]
BILLOWY

K←5 4ρJSENT ZAPDOWNALSOBOA J
 K
SENT
 ZAP
DOWN
ALSO
BOA
 DCS�K
2 4 5 3 1

 K[DCS�K;]
 ZAP
ALSO
BOA
DOWN
SENT

 Chapter 5. Primitive Functions and Operators 157

 � Grade Up (with Collating Sequence)

 K←5 4ρJdealDealdeadDeadDEEDJ
 K
deal
Deal
dead
Dead
DEED
 DCS�K
4 3 2 1 5

 K[DCS�K;]
Dead
dead
Deal
deal
DEED

S←�JX1J JX10J JX2J JX21J JX3J JX9J JX11J Jx3J
 S
X1
X10
X2
X21
X3
X9
X11
x3
 DCS�S
1 3 5 6 8 2 7 4

 S[DCS�S;]
X1
X2
X3
X9
x3
X10
X11
X21

Identical Subarrays: The indexes of any set of identical subarrays in R occur in
Z in ascending order (according to collating sequence L) of their occurrence in R.
In other words, their order in relation to one another is unchanged.

 JABCDEJ�JDABBEDJ
2 3 4 1 6 5

158 APL2 Programming: Language Reference

 � Grade Up (with Collating Sequence)

Items Not in Collating Sequence: Any items of R not found in L have collating
sequence as if they were found immediately past the end of L. They are assigned
indexes in ascending order of their occurrence in R:

 W←JABCDEJ�JEXACTJ
 W
3 4 1 2 5
 JEXACTJ[W]
ACEXT

 Chapter 5. Primitive Functions and Operators 159

 � Index

 � Index

Z←L�R This function selects cross-sections of R using a list of index arrays
L.

Note: See the discussion of the)PBS command in “)PBS—Query
or Set the Printable Backspace Character (APL2/370 Only)” on
page 444 for alternate ways to enter this character.

L: Scalar or vector of nonnegative integers of depth no greater than 2
R: Any array
Z: An array cross-section of R

Implicit Argument: -IO

ρZ ←→ �,/ρ¨L
ρρZ ←→ ,+/ερ¨ρ¨L

Index is similar in function to bracket index. For example, to index a 3-dimensional
array A with page, row, and column index arrays I, J, and K:

I J K � A ←→ A[I;J;K]

The length of the left argument must be equal to the rank of the right argument.

ρ,L ←→ ρρR

Index, unlike bracket index, can be used to index a scalar with an empty left argu-
ment.

(ι0) � Scalar ←→ Scalar

When a Vector Is Indexed: If V is a vector, a single-item vector or scalar left
argument is required.

 -IO←1
V←2 2�3 b5 999 �01

 3�V
b5
 (�3 4)�V
b5 999

(�2 3ρ1 2 1 4 1 2)�V
2 2�3 2

999 2 2�3

160 APL2 Programming: Language Reference

 � Index

When a Matrix Is Indexed: If M is a matrix, a two-item vector left argument is
required.

 -IO←1
 M←3 4ρι12
 M
1 2 3 4
5 6 7 8
9 10 11 12
 3 1�M
9
 3(1 3)�M
9 11
 (2 3)4�M
8 12
 (2 3)(,4)�M
 8
12

ρ(1 2)(3 4ρ3)�M
2 3 4
 ρ(ι0)(ι0)�M
0 0

 Chapter 5. Primitive Functions and Operators 161

 ι Index of

ι Index Of

Z←LιR Yields the first occurrence in L of items in R.

L: Vector
Z: Nonnegative integers

Implicit arguments: -IO, -CT

 ρZ ←→ ρR
ρρZ ←→ ρρR

The following expression is equivalent to index of:

LιR ←→ -IO++/���R"��L

Item Not Found: If an item of R is not found in L, the corresponding item in Z is
-IO+ρL.

Item Recurs: If an item of R occurs several times in L, the corresponding item in
Z is the index of its first occurrence.

 -IO←1
8 4 2 7 3ι3 8 4

5 1 2

 JSPORTJιJTOPJ
5 3 2

 -IO←0
8 4 2 7 3ι3 8 4

4 0 1

 JSPORTJιJTOPJ
4 2 1

 -IO←1
A←(2 3) (ι0) JMEJ

 AιJMEJ (ι0)
 3 2

 -IO←1
8 9 5ι2 5 8

4 3 1

 JWIZARDJιJOZJ
 7 3

L←JOHJ JNOJ JIJ
 LιJNOJ JONJ
2 4

 JOHNOIJιJNOJ JONJ
6 6

6 7 4ι4 7 (ι0)
3 2 4

5 5 8 8 9ι8 9 5
3 5 1

 JBANANAJιJBANANAJ
1 2 3 2 3 2

162 APL2 Programming: Language Reference

 �[] Index with Axis

�[] Index with Axis

Z←L�[X]R This function selects cross-sections of R using a list of index
arrays L, which correspond to axes X.

Note: See the discussion of the)PBS command in
“)PBS—Query or Set the Printable Backspace Character
(APL2/370 Only)” on page 444 for alternate ways to enter
this character.

L: Scalar or vector of nonnegative integers of depth no greater than 2.
R: Any array.
X: Simple scalar or vector; nonnegative integers: XειρρR
Z: An array cross-section of R.

Implicit Argument: -IO

Index with axis is similar in function to bracket index with elided positions. For
example, to index a 3-dimensional array A with page and column index arrays I
and J and select all rows:

I J �[-IO+0 2] A ←→ A[I;;J]

The length of the left argument must be equal to the number of axes mentioned.

ρ,L ←→ ρ,X

 Chapter 5. Primitive Functions and Operators 163

 �[] Index with Axis

Index with axis compared with bracket index:

 -IO←1
A←2 3 4ρι24

 A
1 2 3 4
5 6 7 8
 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

 2�[1]A
13 14 15 16
17 18 19 20
21 22 23 24

 A[2;;]
13 14 15 16
17 18 19 20
21 22 23 24

(1 3)4�[2 3]A
 4 12
16 24

 A[;1 3;4]
 4 12
16 24

164 APL2 Programming: Language Reference

 � Inner Product (from Array Product)

� Inner Product (from Array Product)

Z←L LO�RO R Combines the subarrays along the last axis of L with subar-
rays along the first axis of R by applying an RO outer
product. An LO-reduction is then applied to each item of
that result.

LO: Dyadic function
RO: Dyadic function

 ρZ ←→ (b1↓ρL),1↓ρR
ρρZ ←→ ,0�b2+(ρρL)+ρρR

Formally, for nonscalar arguments, inner product is defined in origin 1 as:

LO/¨ (�[ρρL]L)"�RO �[1]R

For a scalar argument, the enclose with axis (�[]) in the above expression is
replaced by enclose.

The primary definition of inner product is in terms of matrix arguments. For
matrixes L and R and result Z:

Z[I;J] ←→ �LO/L[I;] RO R[;J]

Figure 25, for example, depicts the calculation of a +�
 inner product.

Figure 25. Calculation of an Inner Product

The +�
 inner product is the same function as the matrix product used in matrix
algebra.

 Chapter 5. Primitive Functions and Operators 165

 � Inner Product (from Array Product)

Informally, for matrix arguments, inner product is defined in terms of reduction and
outer product as:

LO/¨(rows of L) "�RO (columns of R .)

M←4 4ρ1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1
 M
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 M��=M
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

K←3 8ρJSATURDAY7/04/99 JULY 4 J
 K
SATURDAY
7/04/99
JULY 4

 K+�εJ0123456789J
0 5 1

(2 3ρι6)���3 4ρι12
1 2 3 4
4 4 4 4
 J←3 2ρι6
 J
1 2
3 4
5 6

 P←2 2ρ(�1
J)
 P
0�1 0�2
0�3 0�4

 J,�+P
 1�1 2�3 1�2 2�4
 3�1 4�3 3�2 4�4
 5�1 6�3 5�2 6�4

166 APL2 Programming: Language Reference

 � Inner Product (from Array Product)

 S←3 5ρJSANDYBETTYGRACEJ
 S
SANDY
BETTY
GRACE
 S��=JSANDYJ
1 0 0
 JSANDYJ��=)S
1 0 0

Empty Argument(s): If an empty argument is presented to the outer product
portion of the inner product calculation, the related fill function is applied as dis-
cussed in “"� Outer Product (from Array Product)” on page 186. If an empty argu-
ment is presented to the reduction portion of the inner product calculation, the
related identity function is applied as discussed in “Reduce (from Slash)”, on page
209.

Derived Functions of Special Interest: The following functions derived from the
inner product operator have wide application:

� Matrix product (+�
)
 � Count (+�ε)
� Outer product of vectors (requires simple array arguments) (,�RO)
� Match two lists (��=)

U←(0 2ρ0)+�
2 0ρ0
 ρU
0 0

Q←(2 0ρ0)+�
0 4ρ5
 Q

0 0 0 0
0 0 0 0

 ρQ
 2 4

 Chapter 5. Primitive Functions and Operators 167

 ι Interval

 ι Interval

Z←ιR Produces R consecutive ascending integers, beginning with -IO.

R: Simple scalar or one-item vector, nonnegative integer
Z: Simple vector, nonnegative integers

Implicit argument: -IO

ρZ ←→ ,R
ρρZ ←→ ,1

Zero Argument: The expression ι0 produces an empty vector and is a common
method of creating or indicating an empty vector.

 Z←ι0
 Z
(empty)
 ρZ
0

Arithmetic Progressions: Interval is used to create arithmetic progressions.

 -IO←0
 ι5
0 1 2 3 4
 10+ι5
10 11 12 13 14
 �1
10+ι5
1 1�1 1�2 1�3 1�4

 -IO←1
 ι6
1 2 3 4 5 6

 -IO←0
 ι6
0 1 2 3 4 5

168 APL2 Programming: Language Reference

 ,[] Laminate

 ,[] Laminate

Z←L,[X]R Joins L and R by forming a new axis of length 2, which is filled
with L and R.

Z: Nonscalar
X: Simple scalar fraction between b1+-IO and -IO+(ρρL)�ρρR

Implicit argument: -IO

ρZ ←→ Case dependent; see below.
ρρZ ←→ 1+(ρρL)�ρρR

X defines the position of the new axis: between two existing axes, before the first
or after the last, as follows:

X<-IO—creates a new first axis

X>-IO+(ρρL)�ρρR—creates a new last axis

For other X—creates a new axis between the �Xth and the �Xth axes.

If both arguments are scalars, L,[X]R ←→ L,R where X<-IO and
X>-IO|1.

 A←JFORJ
 B←JAXEJ

 Z←A,[�5]B
 Z
FOR
AXE
 ρZ
2 3
 �Z
1

H←(1 2) (3 4)
 K←JABJ JCDJ
 Y←H,[�5]K
 Y
 1 2 3 4
 AB CD
 ρY
 2 2
 �Y
 2

 W←A,[1�1]B
 W
FA
OX
RE
 ρW
3 2
 �W
1

 V←H,[1�1]K
 V
 1 2 AB
 3 4 CD
 ρV
 2 2
 �V
 2

 Chapter 5. Primitive Functions and Operators 169

 ,[] Laminate

Conformability: The arguments of laminate must have the same shape and rank
or one must be a scalar.

If one argument is a scalar, it is reshaped to match the nonscalar argument. After
scalar extension, the shape of the result is:

ρZ ←→ (2,ρL) [�X,ιρρL]

 Q←3 3ρJSTYHIMREDJ
 Q
STY
HIM
RED
 JAJ,[�1]Q
AAA
AAA
AAA

STY
HIM
RED

 JAJ,[1�1]Q
 AAA
 STY

 AAA
 HIM

 AAA
 RED
 JAJ,[2�1]Q
 AS
 AT
 AY

 AH
 AI
 AM

 AR
 AE
 AD

170 APL2 Programming: Language Reference

 � Logarithm

 � Logarithm

Z←L�R Determines the base L logarithm of R.

L and R: Numeric, nonzero
Z: Numeric

Scalar Function

Logarithm is defined in terms of the natural logarithm:

L�R ←→ (�R)÷�L

Because �1 is 0, this definition implies that if L is 1, R must also be 1.

 2�256
8

 2�0J2
 1J2�266180071

10�100 500 1000
2 2�698970004 3

 1�1
 1

 Chapter 5. Primitive Functions and Operators 171

 Magnitude

 Magnitude

Z← R Yields the distance between 0 and R.

R: Numeric
Z: Numeric, real

Scalar Function

For real R, R ←→ R�|R.

For complex R of the form A+0J1
B (where A and B are real):

 R ←→ (+/A B*2)*�5

For all R, R ←→ (R
+R)*�5.

 b4�2
4�2

 2Jb3
 3�605551275

 2 b2 �3 b�3
2 2 0�3 0�3

 0J1 2Jb2 4J3
1 2�828427125 5

172 APL2 Programming: Language Reference

 � Match

 � Match

Z←L�R Yields a 1 if the arguments are the same in structure and data, and
a 0 otherwise.

Note: See “)PBS—Query or Set the Printable Backspace Char-
acter (APL2/370 Only)” on page 444 for alternate ways to enter this
character.

Z: Boolean

Implicit argument: -CT

 ρZ ←→ ι0
ρρZ ←→ ,0

Empty Arrays: Empty arrays are the same if they have the same structure and
prototype.

JTOJ JMEJ�JTO MEJ
0

JTOJ JMEJ�JTOJ JMEJ
 1

1 2 3 4�1 2 3 4
1

1 2 3 4=1 2 3 4
1 1 1 1

 JJ�ι0
0

(0 2ρ0)�(0 2ρJ J)
0

 JJ�JJ
 1

(0 2ρ0)�(0 2ρ0)
 1

 Chapter 5. Primitive Functions and Operators 173

 ! Matrix Divide

! Matrix Divide

Z←L!R Yields the solution of a system of linear equations or other algebraic
or geometric results, according to the values and shapes of L and R.

L and R: Simple numeric array of rank 2 or less
Z: Simple numeric

 ρZ ←→ (1↓ρR),1↓ρL
ρρZ ←→ ,1�b2+(ρρL)+ρρR

Conformability: The definition of matrix divide assumes that L and R are
matrixes. If either L or R is a vector, it is treated as a one-column matrix. If either
L or R is a scalar, it is treated as a matrix of shape 1 1.

After these extensions, L and R must have the same number of nonzero rows.
L!R is executed only if all the following are true:

� L and R have the same number of rows
� The columns of R are linearly independent
� R does not have more columns than rows.

If Z←L!R is executable, Z is determined to minimize the value of the least squares
expression:

+/,(L|R+�
Z)*2

Various interpretations of the results for different arguments are discussed below.

Solving Systems of Linear Equations: If R is a nonsingular matrix and L is a
vector, Z is the solution of the system of linear equations expressed conventionally
as Ax=b, where A(R) represents the coefficients of variables in a system of linear
equations in several variables, and b(L) is a constant, and x(Z) is the unknown.

174 APL2 Programming: Language Reference

 ! Matrix Divide

If L is a matrix, Z is the solution of the system of linear equations for each column

of L. For either a vector or matrix L:

L ←→ R+�
Z

Geometrically, if R is a matrix and L is a vector, R+�
L!R is a point closest to
the point L in the space spanned by the column vectors of R. That is, R+�
L!R
is the projection of L on the space spanned by the columns of R.

Curve Fitting: The least squares approximation to a numeric function F can be
determined as follows. If X is a vector and Y←F X is executed,
P←'Y!X"�*0,ιD is the vector of the coefficients of the polynomial of degree D
(constant term last) which best fits the function F at points R.

For example, the sequence in Figure 26 computes and evaluates successively
close polynomial approximations to the gamma function where X⊤P evaluates
polynomial P at point X.

R←2 3ρ1 0 0 2
 R
1 0
0 2

L←2 2ρ1 2 4 8
 L
1 2
4 8

R←2 2ρ 0J1 0 0 2
 R
 0J1 0
 0 2

 1 4!R
 0Jb1 2

 1 4!R
1 2

 L!R
1 2
2 4

 L!R
 0Jb1 0Jb2
 2 4

 -PP←8
V←1 1�2 1�4 1�6 1�8 2

 L←�V
 L
1 1�1018025 1�2421693 1�4296246 1�6764908 2
 1�6⊤'L!V"�*0,ι2
1�434011
 1�6⊤'L!V"�*0,ι3
1�4289585
 1�6⊤'L!V"�*0,ι4
1�4295805
 1�6⊤'L!V"�*0,ι5
1�4296246

Figure 26. Polynomial Approximations of the Gamma Function

 Chapter 5. Primitive Functions and Operators 175

 ! Matrix Divide

Compared to Matrix Inverse: For all nonsingular matrixes, I!R ←→ !R, where
I is the (ρR) identity matrix.

Algorithm for Matrix Divide: Matrix divide (as well as matrix inverse) uses the
Lawson and Hanson Algorithm1, which is an extension of the Golub and Businger
Algorithm2, to handle undetermined cases.

1 C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (New Jersey: Prentice-Hall, 1974).
2 G.H. Golub and P. Businger, “Linearly Least Squares Solutions by Householder Transformations” Numerische Mathematik, Vol. 7,

(1965):pp. 269-276.

176 APL2 Programming: Language Reference

 ! Matrix Inverse

! Matrix Inverse

Z←!R Yields the inverse of a nonsingular matrix. Results for other
matrixes, vectors, and scalar R are discussed below.

R and Z: Simple numeric array of rank 2 or less

 ρZ ←→ 'ρR
ρρZ ←→ ρρR

The result of !R depends on the nature of R as follows:

R cannot have more columns than rows.

Nonsingular Matrix: If R is a nonsingular matrix, Z is the matrix inverse of R and:

I ←→ R+�
!R

where I is a ρR identity matrix:

(I ←→ (ι↑ρR)"�=ι↑ρR)

Note: Rounded off and poorly conditioned arguments can cause inaccurate
results.

R←3 3ρ1 0 0 0 2 0 2 0 4
 R
1 0 0
0 2 0
2 0 4

| Z←!R
| Z
| 1 0 0
| 0 0�5 0
| b0�5 0 0�25

 Z+�
R
1 0 0
0 1 0
0 0 1

If R is Then !R is
Nonsingular matrix Inverse of R
Matrix such that R has more
rows than columns

Pseudo-inverse of R, in the least
squares sense

 Chapter 5. Primitive Functions and Operators 177

 ! Matrix Inverse

 -PP←4

R←3 3ρ1 2 3 2 4 5 3 5 6
 R
1 2 3
2 4 5
3 5 6

 Z←!R
 Z
 1 b3 2�000E0
b3 3 b1�000E0
 2 b1 b1�604Eb16

 R+�
Z
 1�000E0 2�22Eb16 0�00E0
b8�882Eb16 1�00E0 2�22Eb16
b1�554Eb15 2�224Eb16 1�00E0

| Numbers that are smaller than 1Eb15 in the result array can be considered as
| approximating 0.

Matrix with More Rows Than Columns: If R is a matrix with more rows than
columns (>/ρR), Z is a pseudo-inverse of R that minimizes the expression:

+/(,I|R+�
Z)*2

where I is the (2ρ1↑ρR) identity matrix.

The matrix Z is a left inverse of R; that is, Z+�
R produces a (2ρb1↑ρR)
identity matrix.

R←4 3ρ1 0 0 0 2 0 2 0 2 0 1 4
 R
1 0 0
0 2 0
2 0 2
0 1 4

 -PP←5
 Z←!R
 Z
0�24706 0�094118 0�37647 b0�18824
0�047059 0�49412 b0�023529 0�011765
b0�058824 b0�11765 0�029412 0�23529

 Z+�
R
 1�0000E0 b5�5511Eb17 8�3267Eb17
b7�8063Eb18 1�0000E0 0�0000E0
 5�2042Eb18 b1�3878Eb17 1�0000E0

178 APL2 Programming: Language Reference

 ! Matrix Inverse

Vector: If R is a vector, Z is its image obtained by inversion in the unit circle (or
sphere).

 !3 4
0�12 0�16

Scalar: If R is a scalar, Z is ÷R.

 !3
0�3333333333

Compared to Matrix Divide: For all nonsingular matrixes, !R ←→ I!R, where
I is the (ρR) identity matrix.

Algorithm for Matrix Inverse: Matrix inverse (as well as matrix divide) uses the
Lawson and Hanson Algorithm3, which is an extension of the Golub and Businger
Algorithm4, to handle undetermined cases.

3 C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (New Jersey: Prentice-Hall, 1974).
4 G.H. Golub and P. Businger, “Linearly Least Squares Solutions by Householder Transformations” Numerische Mathematik, Vol. 7,

(1965):pp. 269-276.

 Chapter 5. Primitive Functions and Operators 179

 � Maximum

 � Maximum

Z←L�R Returns the larger of L and R.

L, R, and Z: Numeric, real

Scalar Function

 3�4
4

 b2�b3
 b2

5�4 5 7
5 5 7

3�3 0 b6�7�3�1 b4 b5
3�3 0 b5

180 APL2 Programming: Language Reference

 ε Member

 ε Member

Z←LεR Yields a Boolean array Z with the same shape as L. An item of Z is
1 if the corresponding item of L can be found anywhere in R. An
item of Z is 0 otherwise.

Z: Simple Boolean array

Implicit argument: -CT

 ρZ ←→ ρL
ρρZ ←→ ρρL

The Boolean array Z maps to L, following this identity:

Z ←→ �/L"��,R

Nested Arrays: An item of L is found in R only if an item in R matches that item
exactly in structure and data (within comparison tolerance):

B←JAHJ JHAJ JAHJ JNOJ

Empty Right Argument: If R is empty, Z is (ρL)ρ0.

8 9 7 3ει0
0 0 0 0

Mathematical Membership: The expression (�L)εR determines whether L as
a unit is contained in R.

 JBANANAJεJANJ
0 1 1 1 1 1

5 1 2ε6 5 4 1 9
1 1 0

A←2 3ρ8 3 5 8 4 8
 A

8 3 5
8 4 8

Aε1 8 9 3
1 1 0
1 0 1

 B
 AH HA AH NO
 ρB
4
 �B
2
 BεJAHJ
0 0 0 0
 Bε�JAHJ
1 0 1 0

C←(1 2) (ι0) (3 4)
 C
 1 2 3 4
 ρC
 3
 �C
 2

Cε(1 2) (3 5) (ι0)
1 1 0

 Chapter 5. Primitive Functions and Operators 181

 � Minimum

 � Minimum

Z←L�R Returns the smaller of L and R.

L, R and Z: Numeric, real

Scalar Function

 3�4
3

 b2�b3
 b3

5�4 5 7
4 5 5

3�3 0 b6�7�3�1 b4 b5
3�1 b4 b6�7

182 APL2 Programming: Language Reference

 Multiply

 Multiply

Z←L
R Multiplies L by R.

L, R, and Z: Numeric

Scalar Function

Multiply is the arithmetic multiplication function.

 3
4
12

 1J2
3J4
 b5J10

3
0 b2 5 �7
0 b6 15 2�1

1 b3 �8
1 �5 b�2
1 b1�5 b0�16

 Chapter 5. Primitive Functions and Operators 183

 � Natural Logarithm

� Natural Logarithm

Z←�R Determines the logarithm of R to the base of the natural logarithms
e, where e is approximately 2.7182818284590452.

R: Numeric, nonzero
Z: Numeric

Scalar Function

 �1
0

 �2�7182818284
 1

 �b1
0J3�141592654

 �0J1
 0J1�570796327

184 APL2 Programming: Language Reference

 | Negative

 | Negative

Z←|R Reverses the sign of R.

R and Z: Numeric

Scalar Function

If R is positive, Z is negative. If R is negative, Z is positive. If R is 0, Z is 0. For
complex numbers, the signs of both the real and imaginary parts are changed.

Subtract and negative are related as follows:

|R ←→ 0|R

 |5
b5

 |2J4
 b2Jb4

|3 b1 �6 7
b3 1 b0�6 b7

|0J1 b3J4 b2Jb1
0Jb1 3Jb4 2J1

 Chapter 5. Primitive Functions and Operators 185

 "� Outer Product (from Array Product)

| "� Outer Product (from Array Product)

Z←L "�RO R Applies the function RO between pairs of items, one from L
and one from R, in all combinations.

RO: Dyadic function
| LO: The left operand must be the jot symbol (")

 ρZ ←→ (ρL),ρR
ρρZ ←→ (ρρL)+ρρR

For any scalar I and J for which I�L and J�R is defined:

(I,¨J)�Z ←→ (I�L) RO J�R

This identity defines the way the familiar addition and multiplication tables of ele-
mentary arithmetic are built. The column and row headings are added to demon-
strate the operation.

 (ι10)"�
ι10

 1 2 3 4 5 6 7 8 9 10
||||||||||||||||||||||||||||||||||||
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100

Outer product can be used to construct such a table for any dyadic function.

 (ι4)"�+ι5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

 (ι4)"�=ι4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

10 20"�,1 2 3
 10 1 10 2 10 3
 20 1 20 2 20 3

 R←J----J JδδδδδJ
 3 4"�↑R
 --- δδδ
 ---- δδδδ

186 APL2 Programming: Language Reference

 "� Outer Product (from Array Product)

If L or R or both are matrixes or arrays of higher rank, each item in L is still
matched with each item of R.

 S←3 4ρJTHEYWANTRAINJ
 S
THEY
WANT
RAIN

 JATJ"�=S
0 0 0 0
0 1 0 0
0 1 0 0

1 0 0 0
0 0 0 1
0 0 0 0

Empty Argument(s): If either argument is empty, RO is not applied. Instead, the
related fill function is applied as described with “Each (dyadic)”, page 107. Fill
functions for the primitive functions are given in Figure 20 on page 110.

 Chapter 5. Primitive Functions and Operators 187

 � Partition

 � Partition

Z←L�R Partitions R into an array of vectors specified by L.

L: Simple scalar or vector of nonnegative integers
R: Nonscalar
Z: Array of vectors

| ρZ ←→ (b1↓ρR),+/2</0,L (after left scalar extended)
ρρZ ←→ ρρR
�Z ←→ 1+�R

This function partitions its right argument at break points specified by its left argu-
ment. The result is an array of vectors made up of non-overlapping contiguous
segments taken from vectors of the right argument along the last axis. The left
argument is a simple vector or scalar of nonnegative integers. New items are
created in the result whenever the corresponding item in L is greater than the pre-
vious item in L. If an item from L is 0 then the corresponding items from R are not
included in the result. The first items in the result are created when the first
nonzero in L is encountered.

The length of the left argument and the size of the last axis of the right argument
must match, unless the left argument is a scalar or one-item vector, in which case it
is extended. For empty arrays the prototype is ↑R.

For Boolean vector or scalar B:

B/R ←→ �,/B�R

For L containing no zeroes:

R ←→ �,/L�R

For any appropriate L and R:

(0≠L)/R ←→ �,/L�R

188 APL2 Programming: Language Reference

 � Partition

The following is an annotated set of examples.

Partition a string into substrings:

DISPLAY 1 1 2�JABCJ
 �→|||||||||�

 �→|� �→�
 AB C
 J||J J|J

 Jε|||||||||J

Partition and delete:

DISPLAY 1 0 1�JABCJ
 �→||||||||�

 �→� �→�
 A C
 J|J J|J

 Jε||||||||J

Lengths of the arguments must match:

DISPLAY 1 0 1�JABCDJ
 LENGTH ERROR

DISPLAY 1 0 1�JABCDJ
 � �

Partition a numeric vector into pieces:

DISPLAY 2 1 2�10 20 30
 �→|||||||||||||�

 �→||||� �→|�
 10 20 30
 J�||||J J�|J

 Jε|||||||||||||J

 Chapter 5. Primitive Functions and Operators 189

 � Partition

Partition adds a level of nesting:

OTB←JONEJ JTWOJ JBUCKLE MY SHOEJ
 DISPLAY OTB
 �→|||||||||||||||||||||||||||||�

 �→||� �→||� �→|||||||||||||�
 ONE TWO BUCKLE MY SHOE
 J|||J J|||J J||||||||||||||J

 Jε|||||||||||||||||||||||||||||J

DISPLAY 1 1 2�OTB
 �→|||||||||||||||||||||||||||||||||||||�

 �→||||||||||||� �→|||||||||||||||||�
 �→||� �→||� �→|||||||||||||�
 ONE TWO BUCKLE MY SHOE
 J|||J J|||J J||||||||||||||J
 Jε||||||||||||J Jε|||||||||||||||||J

 Jε|||||||||||||||||||||||||||||||||||||J

Examples with blank delimiters between words:

 X←J A STITCH IN TIME J
 DISPLAY X
 �→|||||||||||||||||||||�
 A STITCH IN TIME
 J||||||||||||||||||||||J

Partition and discard blank delimiters:

DISPLAY (J J≠X)�X
 �→|||||||||||||||||||||||||�

 �→� �→|||||� �→|� �→|||�
 A STITCH IN TIME
 J|J J||||||J J||J J||||J

 Jε|||||||||||||||||||||||||J

Keep delimiters on the ends:

DISPLAY (1+J J≠X)�X
 �→|||||||||||||||||||||||||||||||||||||�

 �→|� �→|� �→|||||||� �→||� �→||||||�
 A STITCH IN TIME
 J||J J||J J||||||||J J|||J J|||||||J

 Jε|||||||||||||||||||||||||||||||||||||J

Keep delimiters on the beginnings:

DISPLAY (1+�J J≠X)�X
 �→|||||||||||||||||||||||||||||||||||||�

 �→||� �→||||||� �→|||� �→||||� �→||�
 A STITCH IN TIME
 J|||J J|||||||J J||||J J|||||J J|||J

 Jε|||||||||||||||||||||||||||||||||||||J

190 APL2 Programming: Language Reference

 � Partition

Partition a matrix at blank columns:

M←3 12ρJ1 10 3�1422 100 6�2833 1000 9�425J
 DISPLAY M
 �→|||||||||||�
 ↓1 10 3�142
 2 100 6�283

 3 1000 9�425
 J||||||||||||J

DISPLAY (��	J J=M)�M
 �→|||||||||||||||||||�

↓ �→� �→|||� �→||||�
 1 10 3�142
 J|J J||||J J|||||J
 �→� �→|||� �→||||�
 2 100 6�283
 J|J J||||J J|||||J
 �→� �→|||� �→||||�
 3 1000 9�425
 J|J J||||J J|||||J

 Jε|||||||||||||||||||J

 Chapter 5. Primitive Functions and Operators 191

 �[] Partition with Axis

�[] Partition with Axis

Z←L�[X]R Partitions R into an array of vectors specified by L along axis
X.

L: Simple scalar or vector of nonnegative integers
R: Nonscalar
Z: Array of vectors
X: Simple scalar or one-item vector;

nonnegative integer: XειρρR

Implicit argument: -IO

X�ρZ ←→ +/2</0,L
ρρZ ←→ ρρR
 �Z ←→ 1+�R

Partition with axis is similar to partition except that the vectors are selected along
axis X. The shape of the result is the same as the shape of the right argument
except for axis X.

For Boolean vector or scalar B:

B/[X]R ←→ �[X],/[X]B�[X]R

For L containing no zeroes:

R ←→ �[X],/[X]L�[X]R

For any appropriate L and R:

(0≠L)/[X]R ←→ �[X],/[X]L�[X]R

192 APL2 Programming: Language Reference

 �[] Partition with Axis

Partition with axis for a high rank R is based on partition defined on a vector R as
follows:

L �[I] R ←→ �[I] (�L) �¨ �[I]R

DISPLAY N←4 3ρι12
 �→|||||||�

↓ 1 2 3
 4 5 6
 7 8 9
 10 11 12

 J�|||||||J

DISPLAY 1 0 1 1�[1]N
 �→|||||||||||||||||||||�

↓ �→� �→� �→�
 1 2 3
 J�J J�J J�J
 �→|||� �→|||� �→|||�
 7 10 8 11 9 12
 J�|||J J�|||J J�|||J

 Jε|||||||||||||||||||||J

 Chapter 5. Primitive Functions and Operators 193

 ○ Pi Times

○ Pi Times

Z←○R Multiplies any number by π (approximately
3�1415926535897933).

R and Z: Numeric

Scalar Function

| Note: The last expression in the right column calculates the area of a circle whose
| radius is 2.75 by using the formula πr2

 ○1
3�141592654

 ○b2
 b6�283185307

 ○3J2
9�424777961J6�283185307

 ○2�75*2
 23�75829444

194 APL2 Programming: Language Reference

 � Pick

 � Pick

Z←L�R Selects an item of R as specified by the path indexes L.

L: Scalar or vector whose depth is ≯2; integer or empty

Implicit argument: -IO

ρZ ←→ Depends on the shape of the selected item
ρρZ ←→ Depends on the rank of the selected item

Pick enables you to select any item at any depth from an array. The Nth item of L
specifies an index to one item at depth N in R. The depth at which the selection is
made depends on L, as explained in the following sections.

Scalar or One-Item Left Argument: If L is a scalar or one-item vector, the item
selected is from the outermost structure.

Example 2:

A←JSJ JSIJ (JSIRJ JSIREJ)
 �A
3

To select from the outermost structure of a matrix or higher rank array, L must be a
one-item vector or scalar whose only item is a vector. Each item of the vector in L
corresponds to an axis of R.

Example 1:

R←JFOURJ JTOJ JGOJ
 �R
2

 -IO←1
 Z←2�R
 Z
TO
 ρZ
2
 �Z
1

 -IO←0
 1�R
 TO

 -IO←1

 W←2�A
 W
SI
 ρW
2
 �W
1

 X←3�A
 X
 SIR SIRE
 ρX
 2
 �X
 2

 Chapter 5. Primitive Functions and Operators 195

 � Pick

C←2 2ρJONEJ JTWOJ JBUCKLEJ (JMYJ JSHOEJ)
 DISPLAY C
�→|||||||||||||||||||||||||�
↓ �→||� �→||�
 ONE TWO
 J|||J J|||J
 �→|||||� �→||||||||||||�
 BUCKLE �→|� �→|||�
 J||||||J MY SHOE
 J||J J||||J
 Jε||||||||||||J
Jε|||||||||||||||||||||||||J

D←C,[�5]2 2ρJTHREEJ JFOURJ JSHUTJ (JTHEJ JDOORJ)
 DISPLAY D
�→||||||||||||||||||||||||||�
↓↓ �→||� �→||�
|| ONE TWO
| J|||J J|||J
| �→|||||� �→||||||||||||�
| BUCKLE �→|� �→|||�
| J||||||J MY SHOE
| J||J J||||J
| Jε||||||||||||J
|
| �→||||� �→|||�
| THREE FOUR
| J|||||J J||||J
| �→|||� �→|||||||||||||�
| SHUT �→||� �→|||�
| J||||J THE DOOR
| J|||J J||||J
| Jε|||||||||||||J
JJε||||||||||||||||||||||||||J

 ρC
2 2

 �C
3

 Y←(�2 2)�C

 Y
 MY SHOE
 ρY
 2

 �Y
 2

 ρD
2 2 2

 �D
3

Q←(�2 1 2)�D
 Q
 FOUR

 ρQ
 4
 �Q
 1

196 APL2 Programming: Language Reference

 � Pick

Specifying the Left Argument: The shape of L can be no greater than the depth
of the item from which the selection is being made. Successive items of L pene-
trate deeper into the structure. For example:

Q←JFLYJ JPAPERJ

2 4�Q
▲ ▲
│ └────Selects JEJ from JPAPERJ
│
│
└────Selects JPAPERJ from JFLYJ JPAPERJ

If the right argument is a multidimensional array, the first item of L must be a
vector whose length is the rank of the right argument. For example:

S←2 3ρJABJ JCDJ JEFJ JGHJ JIJJ JKLJ
 S
 AB CD EF
 GH IJ KL

(1 3) 2�S
 ▲ ▲

│ └────(2)──Selects JFJ from JEFJ
└────────────(1 3)──Selects JEFJ (first row, third column) from S

If L is empty, selection is from R at depth 0. Therefore, all of R is selected:

L�R ←→ R

M←JBJ JBAJ (JBATJ JBATHJ)

 M
 B BA BAT BATH
 �M
3
 N←(ι0)�M
 N
 B BA BAT BATH
 �N
3

 A←(ι0)�0 2ρ0
 ρA
 0 2
 �A
 1

 Chapter 5. Primitive Functions and Operators 197

 � Pick

Some additional examples follow. Each uses the DISPLAY function to show the
structure of the array from which the selection is being made.

H←2 2ρJBUCKSJ JTWANGJ JLYMPHJ JFROZEJ
 DISPLAY H
�→||||||||||||||||�
↓ �→||||� �→||||�
 BUCKS TWANG
 J|||||J J|||||J
 �→||||� �→||||�
 LYMPH FROZE
 J|||||J J|||||J
Jε||||||||||||||||J
 �H
2

S←(2 1) 4�H
 S
P
 �S
0

G←JIJ JAMJ (JFORJ JAPL2J)
 DISPLAY G
 �→||||||||||||||||||||||||�
 �→|� �→|||||||||||||�
 I AM �→||� �→|||�
 | J||J FOR APL2
 J|||J J||||J
 Jε|||||||||||||J
Jε||||||||||||||||||||||||J
 �G
3

 T←3 2�G
 T
APL2
 ρT
4
 �T
1

3 2 1�G
A

198 APL2 Programming: Language Reference

 � Pick

E←2 3ρJCRYJ JVOXJ JKIDJ JJABJ (2 3ρι6) (JLEGJ JNTHJ)
 DISPLAY E
�→||||||||||||||||||||||||||||||�
↓ �→||� �→||� �→||�
 CRY VOX KID
 J|||J J|||J J|||J
 �→||� �→||||� �→||||||||||||�
 JAB ↓1 2 3 �→||� �→||�
 J|||J 4 5 6 LEG NTH
 J�||||J J|||J J|||J
 Jε||||||||||||J
Jε||||||||||||||||||||||||||||||J

(2 2) (2 3)�E
6
 ρE
2 3
 �E
3

U←(2 3) 2�E
 U
NTH
 �U
1

J←(2 3) 2 3�E
 J
 H
 �J
 0

 Chapter 5. Primitive Functions and Operators 199

 � Pick

K←JELMJ JTAXJ JSPYJ JJOBJ JWINJ
K←2 3ρK,(2 2ρJQUEJ JZiGJ JHaDJ JFoRJ)

 DISPLAY K
�→||||||||||||||||||||||||||||�
↓ �→||� �→||� �→||�
 ELM TAX SPY
 J|||J J|||J J|||J
 �→||� �→||� �→||||||||||||�
 JOB WIN ↓ �→||� �→||�
 J|||J J|||J QUE ZiG
 J|||J J|||J
 �→||� �→||�
 HaD FoR
 J|||J J|||J
 Jε||||||||||||J
Jε||||||||||||||||||||||||||||J
 ρK
2 3
 �K
3

Compared with First: ↑ First, page 131, selects the first item of R taken in row
major order:

↑R ←→ (�(ρρR)ρ1)�R (for nonempty R)

Selective Specification: Pick can be used for selective specification:

B←JPJ JPIJ (JPIEJ JPIERJ)
 (2�B)←JMYJ

 B
 P MY PIE PIER

 (2 1�B)←JTRJ
 B
 P TR Y PIE PIER

(3 2 1�B)←JTJ
 B
 P TR Y PIE TIER

P←(2 3)(1 2)�K
 P
Z�G
 �P
1

I←(2 3)(1 2) 3�K
 I
 G
 �I
 0

200 APL2 Programming: Language Reference

 * Power

 * Power

Z←L*R Raises the base L to the Rth power.

L, R and Z: Numeric

Scalar Function

Power is the algebraic exponentiation function. L and R may be any number;
however, if L is 0, R must be a nonnegative real number.

If R is a nonnegative integer, Z ←→
/RρL. This identity has two implications:
if R is 0, Z is 1; if R is 1, Z is L.

Power is generalized to nonpositive, noninteger, and nonreal numbers in order to
preserve the relation:

L*A+B ←→ (L*A)
L*B

Familiar consequences of this extension are that:

� L*|R is the reciprocal of L*R.

� L*÷R is the Rth root of L. In particular, the square root of L is L*÷2 or
L*�5. In cases where there are multiple roots, the result is the one with the
smallest nonnegative angle in the complex plane. The odd root of a nonreal
number is a nonreal number.

 4*3
64

2*0 1 2 3 4 5
1 2 4 8 16 32

 10*0
1

 10*1
 10

 5*b2
0�04

 16*÷2
 4

 b16*÷2
0J4

 125*÷3
 5

 b125*÷3
2�5J4�330127019

 0J2*3
 0Jb8

 Chapter 5. Primitive Functions and Operators 201

 , Ravel

 , Ravel

Z←,R Creates a vector from the items in R, taken
in row-major order.

Z: Vector

 ρZ ←→ ,
/ρR
ρρZ ←→ ,1

Ravel is related to reshape (ρ), page 225, as follows: ,R ←→ (
/ρR)ρR

Ensure Vector Argument: Ravel can be used to ensure that an argument is a
vector.

 A←3 3ρι9
 A
1 2 3
4 5 6
7 8 9
 Z←,A
 Z
1 2 3 4 5 6 7 8 9
 ρZ
9

B←2 2 4ρJBAD FOG GO SLOWJ
 B
 BAD
 FOG

 GO
 SLOW
 ρB
2 2 4

 M←,B
 M
BAD FOG GO SLOW

 ρM
 16

 C←4
 ρC
(empty)
 �C
0

 W←,C
 ρW
 1
 �W
 1

202 APL2 Programming: Language Reference

 , Ravel

Compared with Enlist: ε Enlist, page 118, creates a simple vector whose items
are the simple scalars in R. If all items of R are simple scalars, ,R ←→ εR.

Selective Specification: Ravel can be used for selective specification:

S←2 2ρ(1 2) (3 4) (5 6) (7 8)

 S
 1 2 3 4
 5 6 7 8
 �S
2

 (,S)←JABCDJ
 S
AB
CD
 ρS
2 2
 �S
1

 Chapter 5. Primitive Functions and Operators 203

 ,[] Ravel with Axis

,[] Ravel with Axis

Z←,[X]R Creates an array that contains the items of R
reshaped according to axes X: If X is a fraction,
a new axis of length 1 is formed; if X is an integer,
the X axes of R are combined.

X: Simple scalar fraction or simple scalar or vector of
nonnegative integers or empty

Implicit argument: -IO

ρZ ←→ Depends on the value of X
ρρZ ←→ Depends on the value of X

Ravel with axis has three cases, based on the value of X: fractional, integer, or
empty.

When X Is a Fraction: �X is at least one, but less than or equal to 1+ρρR. A
new axis of length 1 is created before the �Xth axis. The rank of the result is one
greater than the rank of R:

ρρZ ←→ 1+ρρR

The shape of the result is:

ρZ ←→ (1,ρR)[�X,ιρρR]
 Z ←→ (ρZ)ρR

 A←2 3ρJTENSIXJ
 A
TEN
SIX
 Z←,[�1]A
 Z
TEN
SIX
 ρZ
1 2 3
 Y←,[1�1]A
 Y
TEN

SIX
 ρY
2 1 3

 W←,[2�1]A
 W
 T
 E
 N

 S
 I
 X
 ρW
2 3 1

B←10 15 20
 V←,[1�1]B
 V
 10
 15
 20
 ρV
 3 1

204 APL2 Programming: Language Reference

 ,[] Ravel with Axis

When X Is an Integer: X must be a simple scalar or vector of nonnegative inte-
gers. If X is a scalar, Z is R.

If X is a vector, it must contain contiguous axes in ascending order of R. For
example, for a rank-3 array, X may be 1 2 or 2 3 or 1 2 3. The axes indicated by
X are combined to form a new array whose rank is 1+(ρρR)|ρ,X.

C←3 2 4ρι24
 C
1 2 3 4
5 6 7 8

 9 10 11 12
13 14 15 16

17 18 19 20
21 22 23 24

 P←,[2 3]C
 P
1 2 3 4 5 6 7 8
 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
 ρP
3 8

 J←,[1 2]C
 J
1 2 3 4
5 6 7 8
 9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
 ρJ
6 4

A←JANTJ JBOARJ JCATJ JDOGJ JELKJ JFOXJ JGNUJ
B←JHENJ JIBEXJ JJIRDJ JKITEJ JLAMBJ JMICEJ
C←JNENEJ JOXJ JPIGJ JQUAILJ JRATJ JSEALJ
D←4 3 2ρA,B,C,JTITIJ JVIPERJ JWOLFJ JYAKJ JZEBRAJ

 D
ANT BOAR CAT
 DOG ELK FOX

 GNU HEN IBEX
 JIRD KITE LAMB

 MICE NENE OX
 PIG QUAIL RAT

 SEAL TITI VIPER
 WOLF YAK ZEBRA

 Chapter 5. Primitive Functions and Operators 205

 ,[] Ravel with Axis

 ρD
4 2 3
 �D
2

 M←,[1 2]D
 M
ANT BOAR CAT
 DOG ELK FOX
 GNU HEN IBEX
 JIRD KITE LAMB
 MICE NENE OX
 PIG QUAIL RAT
 SEAL TITI VIPER
 WOLF YAK ZEBRA
 ρM
8 3
 �M
2

Ravel, page 202, is equivalent to ravel with axis when X includes all axes of R:
,R ←→ ,[ιρρR]R.

When X Is Empty: When X is empty, a new last axis (columns) of length 1 is
created. The rank of the result is one greater than the rank of R, and the shape of
the result is (ρR),1.

For vectors only:

,[ι0]R ←→ ,[1�1]R

Turning an Array into a Matrix: The following expression can be used to turn
any array R into a matrix:

,[ιρρR],[�5]R

 H←2 3ρι6
 N←,[ι0]H
 N
1
2
3

4
5
6

 �N
1

K←JPRUNEJ JPEARJ JFIGJ
 ρK
 3
 �K
 2
 I←,[ι0]K
 I
 PRUNE
 PEAR
 FIG
 ρI
 3 1
 �I
 2

206 APL2 Programming: Language Reference

 ,[] Ravel with Axis

For example:

Selective Specification: Ravel with axis can be used for selective specification.

Q←2 3 4ρι24
(,[2 3]Q)←2 12ρ|ι24

 Q
b1 b2 b3 b4
b5 b6 b7 b8
 b9 b10 b11 b12

b13 b14 b15 b16
b17 b18 b19 b20
b21 b22 b23 b24
 ρQ
2 3 4

E←3 2 5ρι30
 ,[ιρρE],[�5]E
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

G←JJIMJ JEDJ JMIKEJ
 ρG
 3
 F←,[ιρρG],[�5]G
 F

JIM ED MIKE
 ρF
 1 3

 Chapter 5. Primitive Functions and Operators 207

 ÷ Reciprocal

 ÷ Reciprocal

Z←÷R Divides 1 by R.

R and Z: Numeric, nonzero

Scalar Function

Reciprocal is the arithmetic reciprocal function:

÷R ←→ 1÷R

 ÷4
0�25

 ÷2J2
 0�25Jb0�25

÷1 �2 b3
1 5 b0�3333333333

 ÷0J1 0Jb1
 0Jb1 0J1

208 APL2 Programming: Language Reference

 / Reduce (from Slash)

/ Reduce (from Slash)

Z←LO/ R Has the effect of placing the function LO between
adjacent pairs of items along the last axis of R and
evaluating the resulting expression for each subarray.

LO: Dyadic function

 ρZ ←→ b1↓ρR
ρρZ ←→ 0�b1+ρρR

If R is the vector A B C, the LO-reduction is defined as follows:

LO/A B C ←→ � A LO B LO C

If LO is a scalar function, the reduction of a simple vector is a simple scalar. If the
right argument is nested, the depth of the result is the same as that of the right
argument.

If R is a matrix or array of higher rank, the subarrays along the last axis are treated
as vectors, and the function is applied between adjacent items along the last axis,
so that for a matrix R:

 Z[I]←LO/R[I;]

For a rank-3 array:

 Z[I;J]←LO/R[I;J;]

+/1 2 3 4 5
15

�/0 0 1 1 0
 1

Z←+/(1 2)(3 4)(5 6)
 Z
 9 12
 ρZ
(empty)
 �Z
2

W←,/JABJ JCDJ JEFJ
 W
 ABCDEF
 ρW
(empty)
 �W
 2

 Chapter 5. Primitive Functions and Operators 209

 / Reduce (from Slash)

Higher-rank arrays follow a similar pattern. In general for all nonscalars:

LO/R ←→ �LO/¨�[ρρR]R

R Is a Scalar or Its Last Axis Is One: If R is a scalar, Z is R. If the last axis of R
(b1↑ρR) is one, Z is (b1↓ρR)ρR. The function LO is not applied in either
case.

Empty R: If the last axis of R is 0, the function LO is not applied. Instead, a
related function called the identity function is applied with argument ↑R (prototype
of R). The result returned is (b1↓ρR)ρ�I, where I is the value produced by
the identity function for the function LO. Figure 27 on page 211 and Figure 28 on
page 212 show the identity function for each primitive function that has one.

The identity function related to a defined function cannot be specified, and an
attempt to reduce an empty argument with a defined function generates a
DOMAIN ERROR.

 M←3 4ρι12
 M
1 2 3 4
5 6 7 8
9 10 11 12
 +/M
10 26 42

 R←3 2ρJACEGIKJ,¨JBDFHJLJ
 R
 AB CD
 EF GH
 IJ KL
 Y←,/R
 ρY
 3
 �Y
 2

 =/15
15

N←4 1ρ2 4 6 8
 ÷/N
2 4 6 8

 +/ι0
0

/2 3 0ρ�0 0
 1 1 1 1 1 1
 1 1 1 1 1 1

210 APL2 Programming: Language Reference

 / Reduce (from Slash)

Dyadic Scalar Function Identities:: The identity function for each dyadic scalar
function is defined as:

 Z←SRρ�R+F/ι0

where R is the prototype of the right argument and SR is the shape of the result.

Note: In Figure 27, A is the array satisfying the identity and M is
7�2370055773322621E75.

Figure 27. Identity Items for Dyadic Scalar Functions

Function

F

Identity

F/ι0
Left/

Right

Identity

Restriction

Add + 0 L R
Subtract | 0 R
Multiply
 1 L R
Divide ÷ 1 R
Residue 0 L
Minimum � M L R
Maximum � |M L R
Power * 1 R
Logarithm � none
Circular ○ none
Binomial �| 1 L
And � 1 L R �/εAε0 1
Or � 0 L R �/εAε0 1
Less < 0 L �/εAε0 1
Not Greater ≯ 1 L �/εAε0 1
Equal = 1 L R �/εAε0 1
Not Less ≮ 1 R �/εAε0 1
Greater > 0 R �/εAε0 1
Not Equal ≠ 0 L R �/εAε0 1
Nand � none
Nor � none

 Chapter 5. Primitive Functions and Operators 211

 / Reduce (from Slash)

Dyadic Nonscalar Function Identities: In the definitions of the identity functions
in Figure 28, R is the prototype of the right argument and SR is the shape of the
result. A in the Identity Restriction column is the array satisfying the identity.

Figure 28. Identity Functions for Primitive Dyadic Nonscalar Functions

Function

F

Identity Function

Z←SRρ�����
Left/

Right

Identity

Restriction

Reshape ρ ρR L
Catenate , ((b1↓ρR),0)ρ�((b1↓ρR),0)ρR L R 1≯ρρA
Rotate ' (|1↓ρR)ρ0 L
Rotate ((1↓ρR)ρ0 L
Transpose) ιρρR L
Pick � ι0 L
Drop ↓ (ρρR)ρ0 L
Take ↑ ρR L
Without Matrix � ι0 R 1=ρρA
Divide ! (ι↑ρR)"�=ι↑ρR R 1≯ρρA

Derived Functions of Special Interest: The following reduction functions derived
from the slash operator have wide application:

 � Summation (∑) (+/)
� Alternating Sum (|/)

 � Product (π) (
/)
� Alternating product (÷/)

 � Smallest (�/)
 � Largest (�/)
� Boolean vector contains at least one 1 (�/)
� Boolean vector contains all 1s (�/)

The last two reductions are useful in determining the truth of various statements
about a simple vector R. For instance:

� Every item of R is positive: �/R>0
� Every item of R is odd: �/2 R
� At least one item of R is even: �/�2 R

212 APL2 Programming: Language Reference

 / Reduce N-Wise (from Slash)

/ Reduce N-Wise (from Slash)

Z←L LO/ R Similar to reduce, except that L defines the
number of items along the last axis to be
considered in each application of the function
to the subarrays along the last axis of R.

LO: Dyadic function
L: Simple scalar or one-item vector, integer

 ρZ ←→ (b1↓ρR),1+(b1↑ρR)| L
ρρZ ←→ ρρR

The absolute value of L may be no more than one plus the length of the last axis
of R:

 (L)≯1+b1↑ρR

L can be considered as a moving window for determining successive items of Z.

Positive Left Argument: If L is positive, the window starts at the left of the sub-
array along the last axis and moves right. At each item of R, the window stops and
the LO-reduction of the items in the window is taken.

To demonstrate, the examples below vary L for the vector R:

R←1 2 3 4 5 6

 6+/R
21

 5+/R
 15 20

 4+/R
10 14 18

 3+/R
6 9 12 15

 2+/R
3 5 7 9 11

 1+/R
1 2 3 4 5 6

 Chapter 5. Primitive Functions and Operators 213

 / Reduce N-Wise (from Slash)

Additional examples are shown below, including one with a nested right argument.

Negative Left Argument: If L is negative, the contents of the window are
reversed just before the reduction.

If LO is commutative (that is, A LO B ←→ B LO A), the sign of L does not
affect the result.

Zero Left Argument: If L is 0, the identity function of LO is applied instead. See
the discussion under “Reduce (from Slash)”, on page 209. The result is a
(ρR)+(ρρR)=ιρρR array of identity items for the primitive function LO. Iden-
tity items are listed in Figure 27 on page 211 and Figure 28 on page 212.

 0
/ι5
1 1 1 1 1 1

R may be empty only if L is 0.

Derived Functions of Special Interest: The following functions derived from
reduce n-wise have wide application:

� First difference (b2|/R)
� Yearly running total (12+/R)

2+/(1 2)(3 4)(5 6)
 4 6 8 10

 2,/JABCDEFJ
AB BC CD DE EF

 M←3 4ρι12
 M
1 2 3 4
5 6 7 8
9 10 11 12

 2+/M
3 5 7

11 13 15
19 21 23

 B←3 3ρJABCDEFGHIJ
 B
 ABC
 DEF
 GHI

 2,/B
 AB BC
 DE EF
 GH HI

b2|/1 4 9 16 25
3 5 7 9

2|/1 4 9 16 25
b3 b5 b7 b9

 b2,/JABCDEFJ
 BA CB DC ED FE

 2,/JABCDEFJ
 AB BC CD DE EF

 3
/ι6
6 24 60 120

 b3
/ι6
6 24 60 120

214 APL2 Programming: Language Reference

 /[] 	[] Reduce N-Wise with Axis (from Slash)

/[] 	[] Reduce N-Wise with Axis (from Slash)

Z←L LO/[X]R Similar to reduce with axis except that L defines
the number of items along the Xth axis to be
considered in each application of the function
to the subarrays along the Xth axis.

LO: Dyadic function
L: Simple scalar or one-item vector, integer
X: Simple scalar or one-item vector, integer: XειρρR

Implicit argument: -IO

(ρZ)[X] ←→ 1+(ρR)[,X]||L
 ρρZ ←→ ρρR

The absolute value of L can be no more than one plus the length of the Xth axis of
R:

(L)≯1+(ρR)[X]

L can be considered as a moving window for determining successive items of Z.

Positive Left Argument: If L is positive, the window starts at the front of the sub-
array along the Xth axis and moves backward. At each item of R, the window
stops, and the LO-reduction of the items in the window is taken.

To demonstrate, the examples below vary L for the matrix R:

 R←3 4ρι12
 R
1 2 3
4 5 6
7 8 9

10 11 12

 4+/[1]R
22 26 30

 2+/[1]R
5 7 9

11 13 15
17 19 21

 3+/[1]R
12 15 18
21 24 27

 1+/[1]R
1 2 3
4 5 6
7 8 9

10 11 12

 Chapter 5. Primitive Functions and Operators 215

 /[] 	[] Reduce N-Wise with Axis (from Slash)

The example below shows the application of n-wise reduce to a nested right argu-
ment.

C←3 2ρ(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)
 C
 1 2 3 4
 5 6 7 8
 9 10 11 12
 ρC
3 2

 2
/[1]C
 5 12 21 32
 45 60 77 96

Negative Left Argument: If L is negative, the contents of the window are
reversed just before the reduction is applied.

b2|/10 20 30 40
10 10 10

b2|/10 8 20 b3
b2 12 b23

If LO is commutative (that is, A LO B ←→ B LO A), the sign of L does not
affect the result.

Zero Left Argument: If L is 0, the identity function of LO is applied instead. See
the discussion under “Reduce (from Slash),” on page 209. Identity items are listed
in Figure 27 on page 211 and Figure 28 on page 212.

 0
/[1]R
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

R may be empty only if L is 0.

Derived Functions of Special Interest: The derived functions listed under reduce
n-wise (see “/ Reduce N-Wise (from Slash)” on page 213) apply to reduce n-wise
with axis.

216 APL2 Programming: Language Reference

 /[] 	[] Reduce with Axis (from Slash)

/[] 	[] Reduce with Axis (from Slash)

Z←LO/[X] R Similar to reduce, except that the function
LO is placed between adjacent pairs of
items along the Xth axis of R.

LO: Dyadic function
X: Simple scalar or one-item vector, integer: XειρρR.

Implicit argument: -IO

 ρZ ←→ (ρR)[(ιρρR)�X]
ρρZ ←→ 0�b1+ρρR

Reduce with axis is similar to reduce except that any axis, instead of only the last,
may be specified:

LO/[X]R ←→ �LO/¨�[X]R

and
LO/[ρρR]R ←→ LO/R

 M←3 4ρι12
 M
1 2 3 4
5 6 7 8
9 10 11 12
 +/[1]M
15 18 21 24

N←2 3 4ρι24
 N

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

 +/[1]N
14 16 18 20
22 24 26 28
30 32 34 36

 ,/[1]2 3ρι6
 1 4 2 5 3 6

 +/[2]N
15 18 21 24
51 54 57 60

 Chapter 5. Primitive Functions and Operators 217

 /[] 	[] Reduce with Axis (from Slash)

Applied to First Axis: The symbol 	 is an alternate symbol for /[1].
However, if 	 is followed by an axis ([X]), it is treated as /[X].

Xth Axis of R Has Length One: If the Xth axis of R (b1↑ρR) has length one, Z
is:

(ρR)[(ιρρR)�X]ρR

N←2 1 4ρ2
ι8
 ÷/[2]N
2 4 6 8
10 12 14 16

Empty R: If the Xth axis of R is 0 (0=b1↑ρR), the function LO is not applied.
Instead a related function called the identity function is applied with argument ↑R
(prototype of R). The result is:

(ρR)[ι(ρρR)�X]ρ�I

where I is the value returned from the identity function for the function LO.
Figure 27 on page 211 and Figure 28 on page 212 show the identity items for
each primitive function.

÷/[2]2 0 3ρ0
1 1 1
1 1 1

The identity function related to a defined function cannot be specified, and an
attempt to reduce an empty argument with a defined function generates a
DOMAIN ERROR.

Derived Functions of Special Interest: All the derived functions listed under
reduce (from slash) (see “/ Reduce (from Slash)” on page 209) apply to reduce
with axis.

/[1]M
45 120 231 384

	M
45 120 231 384

218 APL2 Programming: Language Reference

 <≯=≮>≠ Relational Functions

<≯=≮>≠ Relational Functions

Z←L<R Less than

Z←L≯R Less than or equal

Z←L=R Equal

Z←L≮R Greater than or equal

Z←L>R Greater than

Z←L≠R Not equal

L and R Numeric real for < ≯ ≮ >
Z: Boolean

Implicit Argument: -CT

Scalar Functions

Each relational function determines whether corresponding items of the arguments
satisfy the relationship. The result is 1 if the relationship for corresponding items is
true (within the comparison tolerance -CT), and 0 otherwise.

Like other scalar functions, the relational functions apply corresponding items of an
array throughout the entire structure. Scalar extension is performed as necessary
for conformability. The example below uses the defined function DISPLAY to
illustrate the result of a relational function.

 JTRIALJ=JTRAILJ
1 1 0 0 1

8 b2 6 b4 0<0
0 1 0 1 0

L←(JINJ JOUTJ) (9 5 6) (�2 2ρι4)
R←(JITJ JBUTJ) 6 (2 2ρ1 8 5 4)

 DISPLAY L=R
�→||||||||||||||||||||||||||||||||�
 �→|||||||||||��→||||��→|||||||||�
 �→||��→||||� 0 0 1 ↓�→||��→||�
 1 0 0 1 1 J�||||J ↓1 0 ↓0 0
 J�||JJ�||||J 0 0 0 0
 Jε|||||||||||J J�||JJ�||J
 �→||��→||�
 ↓0 0 ↓0 0
 0 0 0 1
 J�||JJ�||J
 Jε|||||||||J
Jε||||||||||||||||||||||||||||||||J

 Chapter 5. Primitive Functions and Operators 219

 / Replicate (from Slash)

/ Replicate (from Slash)

Z←LO/R Repeats each subarray along the last axis under the
control of the vector LO.

LO: Simple scalar or vector, integer
Z: Nonscalar array

b1↓ρZ ←→ b1↓ρR
 ρρZ ←→ ρρR

LO determines the pattern and type of replication of subarrays of R, as follows:

If LO[I] (an item of LO) is positive, the corresponding subarray of R is repli-
cated LO[I] times.

If LO[I] is zero, the corresponding subarray is dropped from the result. (If
�/LO=0, Z has a zero shape for the last axis.)

If L[I] is negative, the fill item of the corresponding subarray of R is repli-
cated L[I] fill items. The fill item is determined by the type of the first item
in the Ith subarray along the last axis.

Conformability: If b1↑ρR is not 1, it must be equal to +/LO≮0. For scalar LO
or R or if b1↑ρR is 1, the following extensions are applied before the replication is
evaluated:

� If LO is a scalar or one-item vector, it is extended to b1↑1,ρR.

� If R is a scalar, it is treated as a one-item vector.

� If b1↑ρR is 1, R is replicated along the last axis +/LO≮0 times.

1 2 3 4/JABCDJ
ABBCCCDDDD

1 2 b1 3 b2/6 7 8
6 7 7 0 8 8 8 0 0

R←3 2ρJAJ 8 7 6 5 4
 R
A 8
7 6
5 4

2 b1 1 b2/R
A A 8
7 7 0 6 0 0
5 5 0 4 0 0

0 2 0 1/JSOAPJ
 OOP

220 APL2 Programming: Language Reference

 / Replicate (from Slash)

If LO is not extended, b1↑ρZ is +/ LO.

Effect on Depth: Replicate does not change the depth of any item; however, the
depth of the result may be different from that of R if LO[I]=0 should eliminate a
nested item.

W←JIJ JIDJ (JIDEJ JIDEAJ)

 2/4 5
4 4 5 5

1 b2 3/6
6 0 0 6 6 6

 S←,[ι0]JTONJ
1 b2 2/S

T TT
O OO
N NN

 W
 I ID IDE IDEA
 �W
3

X←3 2 1/W
 X
 III ID ID IDE IDEA
 �X
3

P←1 2 0/W
 P

I ID ID
 �P
 2

 Chapter 5. Primitive Functions and Operators 221

 /[] 	[] Replicate with Axis (from Slash)

/[] 	[] Replicate with Axis (from Slash)

Z←LO/[X]R Repeats each subarray along the X axis
under the control of the vector LO.

LO: Simple scalar or vector, integer or empty
R and Z: Nonscalar array
X: Simple scalar or one-item vector, integer: XειρρR

Implicit Argument: -IO

(ρZ)[X]←→+/ LO
 ρρZ ←→ ρρR

Replicate with axis is similar to replicate, except that replication occurs along the
Xth axis.

Conformability: The shape of R along the Xth axis must be 1 or +/LO≮0. For
scalar LO and R with a shape of 1 along the Xth axis, the following extensions
are applied before the function is evaluated:

� If LO is a scalar or one-item vector, it is extended to (ρR)[X] items.

� If (ρR)[X] is 1, R is replicated along the Xth axis +/LO≮0 times.

R←3 2 4ρι24
 R
1 2 3 4
5 6 7 8

 9 10 11 12
13 14 15 16

17 18 19 20
21 22 23 24

2 b1 1/[2]R
1 2 3 4
1 2 3 4
0 0 0 0
5 6 7 8

9 10 11 12
9 10 11 12
0 0 0 0

13 14 15 16

17 18 19 20
17 18 19 20
0 0 0 0

21 22 23 24

222 APL2 Programming: Language Reference

 /[] 	[] Replicate with Axis (from Slash)

If LO is not extended, (ρZ)[X] is +/ LO times.

The symbol 	 is an alternative symbol for /[1]. However, if 	 is followed by an
axis ([X]), it is treated as /[X].

S←3 2 4ρι24
 2/[2]S
1 2 3 4
1 2 3 4
5 6 7 8
5 6 7 8

 9 10 11 12
 9 10 11 12
13 14 15 16
13 14 15 16

17 18 19 20
17 18 19 20
21 22 23 24
21 22 23 24

T←3 1 4ρJABCDEFGHIJKLJ
 T
 ABCD

 EFGH

 IJKL
 ρT
3 1 4

 b1 1/[2]T

 ABCD

 EFGH

 IJKL

 ρb1 1/[2]T
3 2 4

 M←3 4ρι12
 M
1 2 3 4
5 6 7 8
9 10 11 12

1 0 2 b1	M
1 2 3 4
9 10 11 12
9 10 11 12
0 0 0 0

1 0 2 b1/[1]M
 1 2 3 4
9 10 11 12
9 10 11 12

 0 0 0 0

 Chapter 5. Primitive Functions and Operators 223

 /[] 	[] Replicate with Axis (from Slash)

Effect on Nested Arrays: Replicate with axis does not change the depth of any
item; however, the depth of the result may be different from that of R if LO[I]=0
eliminates a nested item.

D←2 2 2ρJHEJ JMEJ JWEJ JUSJ JIJ JAJ JOJ JEJ
 D
 HE ME
 WE US

 I A
 O E
 ρD
2 2 2
 �D
2

 J←0 2/[1]D
 J
IA
OE

IA
OE
 �J
1

W←2 b1 1/[2]D
 W
 HE ME
 HE ME

 WE US

 I A
 I A

 O E
 ρW
2 4 2
 �W
2

224 APL2 Programming: Language Reference

 ρ Reshape

 ρ Reshape

Z←LρR Structures the items of R into an array of shape L.

L: Simple scalar or vector, not negative integers.

 ρZ ←→ ,L
ρρZ ←→ ρ,L

Items are selected from R in row-major order and placed into the result in row-
major order.

If (
/ρR) ≮
/L, the first
/L items are used.

 3 5ρι24
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

If (
/ρR) <
/L, items from R are repeated cyclically.

B←JUPJ JONJ JTOJ JBYJ
 Y←2 3ρB
 Y
 UP ON TO
 BY UP ON

 5ρB
 UP ON TO BY UP

Z←2 3 4ρι24
 Z
1 2 3 4
5 6 7 8

 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

 ρZ
2 3 4
 ρρZ
3

 X←3 8ρZ
 X

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

 ρX
 3 8
 ρρX
 2

 Chapter 5. Primitive Functions and Operators 225

 ρ Reshape

Empty Argument: If R is empty, L must contain at least one zero. If L is empty,
the result is a scalar whose only item is the first item of R. An empty character
vector is treated like an empty numeric vector.

Zero in L: If L contains at least one zero, Z is an empty array whose prototype is
the prototype of R.

Selective Specification: Reshape can be used for selective specification:

 S←0 2ρι0
 S
(empty)
 ρS
0 2

V←5 6 7
 ρV
 3
 ρρV
 1

H←(ι0)ρV or
 H←JJρV
 H
 5
 ρH
 (empty)
 ρρH
 0

 M←3 0ρ0
 ρM
3 0
 ρρM
2

N←2 0 6ρ5 3 2 1
 ρN
2 0 6

 ρρN
 3

 T←JGROWTHJ

(2 3ρT)←2 3ρ|ι6
 T
b1 b2 b3 b4 b5 b6

 (4ρT)←JABCDJ
 T
ABCD b5 b6

 (8ρT)←ι8
 T
7 8 3 4 5 6

226 APL2 Programming: Language Reference

 Residue

 Residue

Z←L R For real positive L and R, the remainder
from dividing R by L. For all numbers,
Z is R|L
�R÷L+L=0.

| Note: � is computed with a comparison tolerance of zero.

L, R, and Z: Numeric
Implicit Argument: -CT

Scalar Function

For real L and R:

If L is zero, Z is R.
If R is zero, Z is zero.
If L is positive, Z≮0 and Z<L.
If L is negative, Z≯0 and Z>L.

 10 17
7

 4J6 7J10
 3J4

10 8 10 b4 4J3
8 0 6 4J3

b10 7J10 �3 17 5 10
b3 b5J7 0�1

 Chapter 5. Primitive Functions and Operators 227

 ' (Reverse

' (Reverse

Z←'R Creates an array with the items of R
reversed along the last axis.

 ρZ ←→ ρR
ρρZ ←→ ρρR

Selective Specification: Reverse can be used for selective specification.

| (means that reverse is applied along the first axis. For example:

| (C
| TIDE
| REGAL
| EMIT

 A←JDESSERTSJ
 'A
STRESSED

B←(1 2) (3 4) (5 6)
 'B
 5 6 3 4 1 2

C←3 5ρJEMIT REGALTIDE J
 C

EMIT
REGAL
TIDE
 'C
 TIME
LAGER
 EDIT

 D←3 4ρι12

 D
1 2 3 4
5 6 7 8

 9 10 11 12

 ('D)←3 4ρJSTOPSPINODERJ

 D
 POTS
 NIPS
 REDO

228 APL2 Programming: Language Reference

 '[] ([] Reverse with Axis

'[] ([] Reverse with Axis

Z←'[X]R Creates an array with items reversed along the
Xth axis.

X: Simple scalar or one-item vector, integer: XειρρR

Implicit argument: -IO

 ρZ ←→ ρR
ρρZ ←→ ρρR

Reverse with axis is similar to reverse, except that reversal of items is done along
the Xth axis instead of along the last axis.

A←2 3 1ρJINJ JOUTJ JUPJ JRIGHTJ JLEFTJ JDOWNJ
 A
IN
OUT
UP

RIGHT
LEFT
DOWN

 '[2]A
UP
OUT
IN

DOWN
LEFT
RIGHT

 '[1]A
RIGHT
LEFT
DOWN

IN
OUT
UP

Applied to First Axis: The symbol (is an alternate symbol for '[1]. If (is
followed by an axis (([X]), it is treated as '[X].

 Chapter 5. Primitive Functions and Operators 229

 '[] ([] Reverse with Axis

Selective Specification: Reverse with axis can be used for selective specifica-
tion:

 B←3 4ρι12

 B
1 2 3 4
5 6 7 8
9 10 11 12

 ('[1]B)←3 4ρ|ι12

 B
b9 b10 b11 b12

 b5 b6 b7 b8
 b1 b2 b3 b4

230 APL2 Programming: Language Reference

 Roll

 Roll

Z←
R Selects an integer at random from the population ιR.

R: Positive integer
Z: Integer in the set ιR

Implicit arguments: -IO and -RL

Scalar Function

Each integer in the population ιR has an equal chance of being selected.

The result depends on the value of -RL. A side effect of roll is to change the
value of -RL (random link).

Both examples below show the value of -RL prior to execution of the function. To
duplicate these results, specify -RL to be this value.

 -IO←1
 -RL
16807

10
2

 -RL
282475249

10 10 10 10 10 10
8 5 6 3 1 7

 -IO←0
 -RL
 16807

10
 1

 -RL
 282475249

10 10 10 10 10 10
7 4 5 2 0 6

 Chapter 5. Primitive Functions and Operators 231

 ' Rotate

 ' Rotate

Z←L'R Creates an array with items of R rotated
 L positions along the last axis.

The sign of L determines the direction of
the rotation.

L: Simple integer, either scalar or rank b1+ρρR
 ρZ ←→ ρR
ρρZ ←→ ρρR

If L is a nonnegative scalar or one-item vector, L items are removed from the
beginning of each vector along the last axis of R and appended to the same
vector.

If L is a negative scalar or one-item vector, L items are removed from the end of
each vector along the last axis of R and prefixed to the same vector.

If L is not a scalar or one-item vector, the rows of R are treated independently
according to the corresponding items of L. To conform, (ρL) must be b1↓ρR.

 H←3 3ρJATEEATTEAJ
 H
ATE
EAT
TEA

b1 0 1'H
EAT
EAT
EAT

A←1 2 3 4 5 6 7
 1'A
2 3 4 5 6 7 1

 B←2 5ρJANGLEASIDEJ
 B
 ANGLE
 ASIDE
 2'B
 GLEAN
 IDEAS

 b2'A
6 7 1 2 3 4 5

 D←2 4ρJACHEINKSJ
 D
 ACHE
 INKS
 b1'D
 EACH
 SINK

232 APL2 Programming: Language Reference

 ' Rotate

K←2 3ρJCATJ JBEARJ JPONYJ JGNUJ JBIRDJ JFOXJ
 K
 CAT BEAR PONY
 GNU BIRD FOX

 ρK
2 3

 �K
2

 1 2'K
 BEAR PONY CAT
FOX GNU BIRD

The example below demonstrates how the left argument is formed for three-
dimensional arrays. The rows of L correspond to the planes of R and the columns
of L correspond to the rows of R. For example, L[2;3] specifies the rotation for
the second plane, third row of R.

S←2 3 5ρJTARESSMARTEARTHSETONLAGERSHEARJ
 S
TARES
SMART
EARTH

SETON
LAGER
SHEAR

 ρS
2 3 5

Q←2 3ρ4 0 b1 b2 5 1
 Q
 4 0 b1
b2 5 1

 Q'S
STARE
SMART
HEART

ONSET
LAGER
HEARS

 Chapter 5. Primitive Functions and Operators 233

 ' Rotate

Selective Specification: Rotate can be used for selective specification:

 W←JSTRIPEJ
 2'W
RIPEST
 (2'W)←JTHERMOJ
 W
MOTHER

234 APL2 Programming: Language Reference

 '[] Rotate with Axis

'[] Rotate with Axis

Z←L'[X]R Creates an array with items of R rotated
 L positions along the Xth axis.

The sign of L determines the direction
of the rotation.

L: Simple integer, scalar, or vector
X: Simple scalar or one-item vector, integer: XειρρR

Implicit argument: -IO

 ρZ ←→ ρR
ρρZ ←→ ρρR

Rotate with axis is similar to rotate, except that removing items and appending or
prefixing them is done along the Xth axis instead of along the last axis.

A←JBETTAJ JCARPJ JEELJ JLOACHJ
B←JBAYJ JCEDARJ JELMJ JLARCHJ
C←3 4 1ρA,B,JBOAJ JCAVYJ JELANDJ JLIONJ

 C
BETTA
CARP
EEL
LOACH

BAY
CEDAR
ELM
LARCH

BOA
CAVY
ELAND
LION

 Chapter 5. Primitive Functions and Operators 235

 '[] Rotate with Axis

 1'[1]C
BAY
CEDAR
ELM
LARCH

BOA
CAVY
ELAND
LION
BETTA
CARP
EEL
LOACH

 1'[2]C
CARP
EEL
LOACH
BETTA

CEDAR
ELM
LARCH
BAY

CAVY
ELAND
LION
BOA

Applied to the First Axis: The symbol (is an alternate symbol for '[1].
However, if (is followed by an axis (([X]), it is treated as '[X].

U←3 1ρJALFREDJ JTHINKJ JQUICKJ
 U
ALFRED
THINK
QUICK

 1(U
THINK
QUICK
ALFRED

 b1
U
QUICK
ALFRED
THINK

236 APL2 Programming: Language Reference

 '[] Rotate with Axis

If L is not a scalar or one-item vector, (ρL) must be (ρR)[(ιρρR)�X].

 W←JabcdefghijklmnopqrstJ
 W←W,(ι20)

W←3 4 5ρW,JABCDEFGHIJKLMNOPQRSTJ
 W
a b c d e
f g h i j
k l m n o
p q r s t

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

A B C D E
F G H I J
K L M N O
P Q R S T

 ρW
3 4 5

V←2 5ρ0 1 b1 2 b2 b3 b1 1 3 0 1 0 2 b1 3
 V
 0 1 b1 2 b2
b3 b1 1 3 0
1 0 2 b1 3

 V'[2]W
a g r n o
f l c s t
k q h d e
p b m i j

 6 17 8 19 5
11 2 13 4 10
16 7 18 9 15
 1 12 3 14 20

F B M S T
K G R D E
P L C I J
A Q H N O

 Chapter 5. Primitive Functions and Operators 237

 '[] Rotate with Axis

Selective Specification: Rotate with axis can be used for selective specification.

 Y←3 4ρι12
(1 b1 2 b2'[1]Y)←3 4ρJABCDEFGHIJKLJ

 Y
IFGL
AJKD
EBCH

238 APL2 Programming: Language Reference

 � Scan (from Backslash)

� Scan (from Backslash)

Z←LO� R The Ith item along the last axis is determined
by the LO-reduction of I↑[ρρR]R.

LO: Dyadic function

 ρZ ←→ ρR
ρρZ ←→ ρρR

If the length of the last axis is greater than 0, the result is determined by:

(1↑[ρρR]R),(LO/[X]2↑[ρρR]R), ��� ,(LO/R)

If the length along the last axis is zero, the result is R.

+�1 2 3 4 5
1 3 6 10 15

��0 0 1 1 0
0 0 1 1 1

+�(1 2)(3 4)(5 6)
 1 2 4 6 9 12

,�JABJ JCDJ JEFJ
AB ABCD ABCDEF

 ,�2 3ρι6
1 1 2 1 2 3
4 4 5 4 5 6

 Chapter 5. Primitive Functions and Operators 239

 �[] �[] Scan with Axis (from Backslash)

�[] �[] Scan with Axis (from Backslash)

Z←LO�[X] R The Ith item along the Xth axis is
determined by the LO-reduction of I↑[X]R.

LO: Dyadic function
X: Simple scalar or one-item vector, integer: XειρρR

Implicit argument: -IO

 ρZ ←→ ρR
ρρZ ←→ ρρR

If the length of the last axis is greater than 0, the result is determined by:

(1↑[X]R),(LO/2↑[X]R), ��� ,(LO/[X]R)

Applied to First Axis: The symbol � is an alternative symbol for �[1].
However, if � is followed by an axis (�[X]), it is treated as �[X].

If the length along the Xth axis is 0, the result is R.

 M←3 4ρι12
 +�[1]M
1 2 3 4

 6 8 10 12
15 18 21 24

N←2 3 4ρι24
 +�[1]N

1 2 3 4
5 6 7 8
9 10 11 12

14 16 18 20
22 24 26 28
30 32 34 36

 ,�[1]2 3ρι6
1 2 3

 1 4 2 5 3 6

 +�[2]N
1 2 3 4
6 8 10 12

15 18 21 24

13 14 15 16
30 32 34 36
51 54 57 60

�[1]M
1 2 3 4
5 12 21 32

45 120 231 384

�M
 1 2 3 4

5 12 21 32
45 120 231 384

240 APL2 Programming: Language Reference

 ρ Shape

 ρ Shape

Z←ρR Yields the size of each axis of R.

Z: Simple nonnegative integer vector.

 ρZ ←→ ρρR
ρρZ ←→ ,1

In a character array, blanks (within quotation marks) are items:

As the last example in the first column shows, applying ρ twice yields the rank of
an array.

The high-order axis is the first item of the shape vector.

A←1 2 3 JAJ JBJ 4
 ρA
6
 ρρA
1

 B←JSTAND UPJ
 ρB
 8

 C←3 4ρι12
 C
1 2 3 4
5 6 7 8
9 10 11 12

 ρC
3 4
 ρρC
2

D←2 3 4ρ(ι12),|ι12
 D
 1 2 3 4
 5 6 7 8

9 10 11 12

 b1 b2 b3 b4
 b5 b6 b7 b8

b9 b10 b11 b12

 ρD
2 3 4

 ρρD
 3

 Chapter 5. Primitive Functions and Operators 241

 ρ Shape

H←JTOMJ JEDJ JHANKJ
 �H
2
 ρH
3
 ρ¨H
3 2 4

Q←(JELSIEJ JTOMJ) JHANKJ (JEDJ JBOBJ JKIMJ)
 �Q
3
 ρQ
3
 ρρQ
1
 ρ¨Q
2 4 3
 ρ¨¨Q
 5 3 2 3 3
 ↑

These four items are empty because the items of JHANKJ are scalars.

Scalar Argument: The shape of a scalar is empty and its rank is 0 because
scalars have no axes. Shape demonstrates the difference between a scalar and a
one-item vector.

Scalar One-Item Vector

 ρJAJ
(empty)
 ρρJAJ
0

 S←�2 3ρι6
 S
 1 2 3
 4 5 6
 �S
2
 ρS
(empty)

 ρ,JAJ
 1
 ρρ,JAJ
 1

 T←,�2 3ρι6
 T

1 2 3
4 5 6

 �T
 2
 ρT
 1

242 APL2 Programming: Language Reference

 | Subtract

 | Subtract

Z←L|R Subtracts R from L.

L, R, and Z: Numeric

Scalar Function

Subtract is the arithmetic subtraction function.

 5|3
2

 3J4|1J2
 2J2

6|8 �2 4J3
b2 5�8 2Jb3

b4 �5 0|b2 1�2 1J2
b2 b0�7 b1Jb2

 Chapter 5. Primitive Functions and Operators 243

 ↑ Take

 ↑ Take

Z←L↑R Selects subarrays from the beginning or end of the
Ith axis of R, according to whether L[I]
is positive or negative.

L: Simple scalar or vector, integer
 ρZ ←→ ,L
ρρZ ←→ ρ,L

Specifying the Amount to Take: If L is a scalar, it is treated as being a one-item
vector; and if R is a scalar, it is treated as being an array of shape (ρL)ρ1.
Then:

For L[I]>0, take selects L[I] subarrays from the beginning of the Ith axis
of R.

For L[I]<0, take selects |L[I] subarrays from the end of the Ith axis of
R.

For L[I]=0, no items are selected, and the resulting shape has an Ith axis
of length 0.

Nonscalar Right Argument: For nonscalar R, L must have the same number of
items as R has rank:

(ρ,L) = ρρR

 Y←4 5ρJTRIADFIELDMOOSEDINERJ
 Y
TRIAD
FIELD
MOOSE
DINER
 b2 3↑Y
MOO
DIN

W←3 3 4ρJBEATMYTHANTETONEMEANHEREUPONWEEKDOESJ
 W
BEAT
MYTH
ANTE

TONE
MEAN
HERE

UPON
WEEK
DOES

3↑34 12 73 53 41
34 12 73

b3↑34 12 73 53 41
73 53 41

244 APL2 Programming: Language Reference

 ↑ Take

V←b1 b2 2

(means take the

last plane, last

two rows, first

 two columns)
 Z←V↑W
 Z
WE
DO
 ρZ
1 2 2

Overtake: If |L[I] is greater than the length of the Ith axis, the extra positions
in the result are filled with the fill item (the prototype of R←→↑0ρ�↑R).

The last two examples in the right column show the effect of take with an empty
right argument. A nonempty left argument results in an overtake, using ↑R as the
fill item. The result is not empty.

Scalar Right Argument: For scalar R, L may have any length. The length of ,L
determines the rank of the result.

5↑21 33 52
21 33 52 0 0

b5↑21 33 52
0 0 21 33 52

 5↑JREDJ
RED
 ↑

Two blank characters

 b5↑JREDJ
 RED
 ↑

Two blank characters

 U←2 3ρι6
 U
1 2 3
4 5 6
 H←4 4↑U
 ρH
4 4
 H
1 2 3 0
4 5 6 0
0 0 0 0
0 0 0 0

N←(1 2) (3 4)
 4↑N
 1 2 3 4 0 0 0 0

b6↑JAJ 1 JBJ 2
A 1 B 2

b6↑1 JAJ 2 JBJ
0 0 1 A 2 B

 3↑ι0
0 0 0

2 3↑0 2ρ�0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 E←1↑2
 ρE
1
 E
2

 F←(ι0)↑2
 F
 2
 ρF
 (empty)

G←1 1 1↑2
 G
2
 ρG
1 1 1

 2 3↑2
2 0 0
0 0 0

 Chapter 5. Primitive Functions and Operators 245

 ↑ Take

Effect on Depth: Take does not affect the depth of any selected item. The depth
of the result is less than or equal to the depth of the argument, except when the
right argument is a simple scalar.

T←JTJ JTOJ (JTOTJ JTOTEJ)

Recall that the fill item is determined by the first item.

Selective Specification: Take can be used for selective specification:

 J←1↑T
 J
T
 �J
1

 K←2↑T
 K
 T TO
 �K
 2

S←8 ((6 5) (4 3))
 S
 8 6 5 4 3

 �S
3
 3↑S
 8 6 5 4 3 0

 Q←'S
 Q
 6 5 4 3 8
 3↑Q

6 5 4 3 8 0 0 0 0

 P←JABCDEJ
 (2↑P)←1 2
 P
1 2 CDE

 KY←3 4ρJABCDEFGHIJKLJ
 KY
 ABCD
 EFGH
 IJKL

(b2 1↑KY)←1 2
 KY
 A BCD
 1 FGH
 2 JKL

246 APL2 Programming: Language Reference

 ↑[] Take with Axis

↑[] Take with Axis

Z←L↑[X]R Selects subarrays from the beginning or end of
the X[I]th axis of R, according to whether
L[I] is positive or negative.

L: Simple scalar or vector, integer
R and Z: Nonscalar array
X: Simple scalar or vector; nonnegative integers: XειρρR; or empty

Implicit argument: -IO

(ρZ)[,X] ←→ ,L
 ρρZ ←→ ρρR

Take with axis is similar to take except that the subarrays are selected only from
the axes indicated by X. The shape along axes not selected by X remains
unchanged.

Take with Axis Compared to Take: The following identity states the relationship
between take and take with axis:

L↑R ←→ L↑[ιρρR]R

 A←3 5ρJGIANTSTORETRAILJ
 A
GIANT
STORE
TRAIL

 2↑[1]A
GIANT
STORE

 2 5↑A
GIANT
STORE

 b3↑[2]A
ANT
ORE
AIL

 3 b3↑A
ANT
ORE
AIL

 Chapter 5. Primitive Functions and Operators 247

 ↑[] Take with Axis

Overtake: If |L[I] is greater than the length of the X[I]th axis, the extra posi-
tions in the result are filled with the fill item. The fill item depends on the subarray
selected:

L↑[X]R ←→ �[X](�L)↑¨�[X]R

Permitted Axes: Multiple axes indicated by X need not be in ascending order;
however, no axis may be repeated. L[I] defines the number of subarrays to
take from the X[I]th axis.

K←3 3 4ρJHEROSHEDDIMESODABOARPARTLAMBTOTODAMPJ
 K
HERO
SHED
DIME

SODA
BOAR
PART

LAMB
TOTO
DAMP

 B←2 3ρι6
 B
1 2 3
4 5 6
 3↑[1]B
1 2 3
4 5 6
0 0 0

 H←2 3ρJABCDEFJ
 H
ABC
DEF
 Z←b4↑[1]H
 Z

ABC
DEF
 ρZ
4 3

C←2 3ρ1JAJ 3 4 5 6
 C

1 A 3
4 5 6

 4↑[1]C
1 A 3
4 5 6

 0 0
 0 0

248 APL2 Programming: Language Reference

 ↑[] Take with Axis

b1 3↑[1 3]K
LAM
TOT
DAM

b1 3↑[3 1]K
O
D
E

A
R
T

B
O
P

Effect on Depth: Take with axis does not affect the depth of any selected item.
The depth of the result is less than or equal to the depth of the argument, except
when the right argument is a simple scalar.

T←JDJ JDOJ(JDONJ JDONEJ)JMJ JMEJ(JMENJ JMENEJ)

Recall that the fill item is the type of the first item (prototype) of each subarray
along the Xth axis.

M←2 3ρ1(2 3)((4 5)(6 7))8(9 1)((2 3)(4 5))

 S←2 3ρT

 S
 D DO DON DONE
 M ME MEN MENE

 �S
3

 H←2↑[2]S
 H
 D DO
 M ME

 �H
 2
 J←1↑[1]S
 J
 D DO DON DONE
 �J
 3

 M
 1 2 3 4 5 6 7
 8 9 1 2 3 4 5
 ρM
2 3

 3↑[1]M
 1 2 3 4 5 6 7
 8 9 1 2 3 4 5
 0 0 0 0 0 0 0

 T←1'[2]M
 T
 2 3 4 5 6 7 1
 9 1 2 3 4 5 8

 3↑[1]T
 2 3 4 5 6 7 1
 9 1 2 3 4 5 8
 0 0 0 0 0 0 0

 Chapter 5. Primitive Functions and Operators 249

 ↑[] Take with Axis

Selective Specification: Take with axis can be used for selective specification:

 U←3 4ρJABCDEFGHIJKLJ
 U
ABCD
EFGH
IJKL

 (b2↑[2]U)←3 2ρι6
 U
AB 1 2
EF 3 4
IJ 5 6

250 APL2 Programming: Language Reference

) Transpose (General)

) Transpose (General)

Z←L)R Case 1: L selects all axes of R. Creates an
array similar to R but with the axes permuted
according to L.

Case 2: L includes repetitions of axes. Creates
an array with two or more axes of R mapped
into a single axis of Z, which is then a diagonal
cross section of R.

L: Simple scalar or vector, nonnegative integer

Implicit Argument: -IO

Case 1

 ρZ ←→ (ρR)[�L]
ρρZ ←→ ρρR

Case 2

I�ρZ ←→ �/(L=I)/ρR
(for each IειρρZ)

 ρρZ ←→ ,+/(LιL)=ιρL

L Selects All Axes of R: All axes of R must be represented in L:
�/(ιρρR)εL. The axes of R map by position to axes of Z according to L.
The diagram below shows the mapping of axes for 1 3 2)4 5 6ρι120:

The Ith axis of R becomes the L[I]th axis of Z.

 Chapter 5. Primitive Functions and Operators 251

) Transpose (General)

A←2 3 4ρJBEARLYNXDUCKPONYBIRDOXENJ
 A
BEAR
LYNX
DUCK

PONY
BIRD
OXEN
 ρA
2 3 4

Z←1 3 2)A
 ρZ
2 4 3

 Z
BLD
EYU
ANC
RXK

PBO
OIX
NRE
YDN

W←2 1 3)A
 ρW
3 2 4
 W
BEAR
PONY

LYNX
BIRD

DUCK
OXEN

252 APL2 Programming: Language Reference

) Transpose (General)

Y←3 1 2)A
 ρY
3 4 2
 Y
BP
EO
AN
RY

LB
YI
NR
XD
DO
UX
CE
KN

) Transpose (reversed axes), page 256, reverses the order of the axes for the
transposition:

)R ←→ ('ιρρR))R

Diagonal Cross Section of R: When there are repetitions in L, a diagonal cross
section of R is selected. L must be constructed such that �/(ι�/0,L)εL.
For a matrix, 1 1)R selects those items whose row and column indexes are the
same and creates a vector from those items.

 B←4 4ρι16
 B
1 2 3 4
5 6 7 8
 9 10 11 12
13 14 15 16

 1 1)B
1 6 11 16

 C←3 4ρι12
 C
1 2 3 4
5 6 7 8
9 10 11 12

 1 1)C
1 6 11

 Chapter 5. Primitive Functions and Operators 253

) Transpose (General)

D←JONEJ JFORJ JALLJ JHEADJ JTOJ
D←3 3ρD,JTOEJ JREADYJ JSETJ JGOJ

 D
 ONE FOR ALL
HEAD TO TOE
 READY SET GO

 V←1 1)D
 V
 ONE TO GO
 ρV
3
 �V
2

For higher rank arrays, the result is determined first by a selection of items whose
indexes are the same in the duplicated axes indicated by L. For example, 2 1
2)R selects all items whose first and third indexes are the same: R[1;1;1],
R[1;2;1], and so forth. The selected items are then transposed by
((LιL)=ιρL)/L. The transpose for items selected for the 2 1 2)R, for
example, is 2 1.

H←2 3 4ρJABCDEFGHIJKLJ,ι12
 H
A B C D
E F G H
I J K L

1 2 3 4
5 6 7 8
9 10 11 12

1 1 1)H
A 6

1 1 2)H
A B C D
5 6 7 8

2 2 1)H
A 5
B 6
C 7
D 8

254 APL2 Programming: Language Reference

) Transpose (General)

1 2 1)H
A E I
2 6 10

2 1 2)H
A 2
E 6
I 10

1 2 2)H
A F K
1 6 11

2 1 1)H
A 1
F 6
K 11

Effect of Index Origin: The index origin affects permissible values of L. For
either origin: �/(ιρρR)εL.

Selective Specification: Either case of transpose can be used for selective spec-
ification.

 -IO←1
 P←3 3ρι9

(1 1)P)←10 20 30
 P
10 2 3
 4 20 6
 7 8 30

 -IO←0
K←3 2 4ρι24

 K
0 1 2 3
4 5 6 7

 8 9 10 11
12 13 14 15

16 17 18 19
20 21 22 23

1 0 2)K
0 1 2 3
8 9 10 11

16 17 18 19

4 5 6 7
12 13 14 15
20 21 22 23

 Chapter 5. Primitive Functions and Operators 255

) Transpose (Reversed Axes)

) Transpose (Reversed Axes)

Z←)R Creates an array similar to R but with the order
of the axes of R reversed.

 ρZ ←→ 'ρR
ρρZ ←→ ρρR

 A←4 3ρJRAMONEATENETJ
 A
RAM
ONE
ATE
NET
 ρA
4 3
 Z←)A
 Z
ROAN
ANTE
MEET

 ρZ
3 4

B←2 3ρ(1 1)(1 2)(1 3)(2 1)(2 2)(2 3)
 B
 1 1 1 2 1 3
 2 1 2 2 2 3

 ρB
2 3

 �B
2

 X←)B
 X
 1 1 2 1
 1 2 2 2
 1 3 2 3

 ρX
3 2

256 APL2 Programming: Language Reference

) Transpose (Reversed Axes)

C←2 3 4ρι24
 C
1 2 3 4
5 6 7 8
 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

 W←)C
 W
 1 13
 5 17
 9 21

 2 14
 6 18
10 22

 3 15
 7 19
11 23

 4 16
 8 20
12 24

 ρW
4 3 2

Selective Specification: Transpose with reversed axes can be used in selective
specification:

 R←3 3ρJSTYPIEANTJ
 R
STY
PIE
ANT

 ()R)←3 3ρι9
 R

1 4 7
2 5 8
3 6 9

 Chapter 5. Primitive Functions and Operators 257

 � Without

 � Without

Z←L�R Yields the items in L that do not occur in R.

L: Scalar or vector
Z: Vector

Implicit argument: -CT

ρZ ←→ Depends on the contents of L and R
ρρZ ←→ ,1

The following identity holds:

L�R ←→ (�LεR)/L

Effect with Nested Arrays: An item of L is included in Z if an exact match (within
the comparison tolerance) in structure and data does not exist in R.

JGOJ JTOJ JITJ�JGOTOJ JITJ
 GO TO

Z←4 5 (ι0) 6 7�9 5 3 7
 Z
 4 6
 ρZ
3

W←4 5 (ι0) 6 7�9 5 3 7(ι0)
 W
4 6
 ρW
2

Intersection of Two Vectors: The intersection of two vectors L and R (including
any replication in L) may be obtained by the expression L�L�R.

3 1 4 1 5 5�3 1 4 1 5 5�4 2 5 2 6
4 5 5

1 2 3 4 5�2 3 4
1 5

 JRHYMEJ�JMYTHJ
 RE

258 APL2 Programming: Language Reference

Chapter 6. System Functions and Variables

This chapter describes all system functions and variables alphabetically. Each
system function and variable description consists of a summary and several
detailed sections. The organization of a system function description is similar to
that of the primitive functions.

Figure 29 shows a sample page for a system variable description. The information
in the summary at the top of the page is somewhat different from that in the
summary for system functions and is discussed following the figure. The callouts
on the figure correspond to that discussion.

Specifies or references
the number of significant digits in the display
of numbers.

Posit ive integer scalar

Default value:
Variable type: Implicit argument

Printing Precision

1

2

3

5

4

The minimum value for is . If is specified at or above the maximum
precision displayed by the system, all available precision is displayed.

However, in some cases, does not influence the display of integers.

Implicit Argument:

A reference of yields its current setting.

If is assigned an invalid value or erased and then implicity used by format a

results.

is an implicit argument of default format .

Figure 29. Sample Page of System Variables

 1. Variable name.

2. Variable name and description as it appears in the table of contents.

3. Variable syntax. If specifying the variable has an effect on its value, a specifi-
cation is shown: name←A. If specifying or localizing the variable has no effect,
only the name is shown.

4. Summary definition of the variable.

 Copyright IBM Corp. 1984, 1994 259

5. Properties of the variable:

� Data. If specifying the variable has an effect, the type of data that is mean-
ingful for the variable is listed.

� Default value. The value the variable has in a CLEAR WS or the value it
takes if you have not specified it. Note that the values you specify for
-NLT, -PW, and -TZ persist over a)CLEAR or a)LOAD.

� Variable type. A classification of the variable by its general characteristics.
Any of four characteristics of the variable can be highlighted.

Session variable, if the variable is one of the three listed above as per-
sisting over a)CLEAR or a)LOAD.

Debug variable, if the variable is assigned by the system when an exe-
cution error occurs.

Implicit argument, if the variable is used by a primitive function during the
course of its execution.

Localizing or assigning a value has no effect if the variable is respecified by
the system.

Figure 30 displays the APL2 system functions and system variables.

Figure 30 (Page 1 of 2). APL2 System Functions and System Variables

Control and Execution

These functions and variables control
| execution and session I/O.

- Evaluated Input/Output
. Character Input/Output
-DL Delay
-EX Expunge
-LX Latent Expression
-NA Name Association
-NLT National Language Translation
-PR Prompt Replacement
-PW Printing Width

Event Handling and Debugging

| These functions and variables provide for
error handling and testing of conditions
during an error situation.

-EA Execute Alternate
-EC Execute Controlled
-EM Event Message
-ES Event Simulation
-ET Event Type
-L Left Argument
-LC Line Counter
-R Right Argument

Workspace and System Information

These functions and variables provide
information about APL2 variables,
functions and operators.
They provide general system
information such as system time, user
load, and available working space.

| -AF Atomic Function
-AI Account Information
-AT Attributes
-AV Atomic Vector
-NC Name Class
-NL Name List

| -TC Terminal Control Characters
-TS Time Stamp

| -TZ Time Zone
| -UCS Universal Character Set

-UL User Load
-WA Workspace Available

260 APL2 Programming: Language Reference

Figure 30 (Page 2 of 2). APL2 System Functions and System Variables

Implicit Arguments

| These variables allow the user to alter
the results returned by certain APL2
primitive functions.

-CT Comparison Tolerance
| -FC Format Control

-IO Index Origin
| -PP Printing Precision

-RL Random Link

Transforming Data and Expressions

These functions allow a user to convert
character data to or from executable
form.

-CR Character Representation
-FX Fix
-TF Transfer Form

Sharing

These functions and variables allow a
user to share variables with other
APL2 users and other auxiliary
processors.

-SVC Shared Variable Control
-SVE Shared Variable Event
-SVO Shared Variable Offer
-SVQ Shared Variable Query
-SVR Shared Variable Retraction
-SVS Shared Variable State

 Chapter 6. System Functions and Variables 261

 -

- Evaluated Input/Output

| - Input: - presents a prompt for input (-:). The value of the
| expression entered replaces the quad, and the resulting
| expression is evaluated.

-←A Output: - displays the value of the expression to the right of the

specification arrow.

A: Any valid expression
Default value: None

The behavior of - is dependent on whether data is assigned to it (output), or it is
referenced (input).

 Assignment
When - appears to the left of the specification arrow (the left arrow), the value of
the expression to the right of the arrow is displayed.

 -←4+6
5
34

Assignment of - allows the display of interim results, or the display of a variable's
value in the expression in which it is specified.

 ρ-←ι3
1 2 3
3

 A←4+-←5+6
11
 A
15

 -←B←2÷3
0�6666666667
 B
0�6666666667

 Reference
| When - appears and is not on the left of the specification arrow, a prompt (-:) is

displayed, and the system waits for input under the control of default error or inter-
rupt handling.

After the requested input is supplied and evaluated (by producing an array), error
and interrupt handling reverts to whatever it was prior to the reference of -.

 4+-
5
-:
 11
59

 A←4+-
5
 -:
 ι3
 A
9 14 19

262 APL2 Programming: Language Reference

 -

Error in Expression: If the evaluation of the expression in the response to -:
generates an error, the error appears as it does in immediate execution mode.

When the expression in response to the prompt is in error, the prompt - is pre-
sented again. When, however, the error occurs after the value of the expression is
substituted for -, execution of the expression is suspended, no prompt is displayed,
and the expression appears in the state indicator. Clearing the state indicator is
discussed in “Clearing the State Indicator” on page 357.

 1+-
-:

2 3
4 5 6
LENGTH ERROR

2 3
4 5 6
 � �
-:
 JAJ
DOMAIN ERROR
 1+-
 ��
)SIS
* 1+-
 ��

Multiple Quads: More than one reference of quad can occur in an expression.
The usual evaluation rules apply (see “Evaluating Expressions” on page 32).

 -|-
-:
 8
-:
 3
b5

Escape: If the response to -: is the escape (→), execution ends and no result is
returned.

A situation such as that shown in the right column occurs if you forget to enter a
beginning del (c) when trying to display a function or operator definition.

A system command can be entered when a -: is displayed. The system
command and the system's response are not treated as responses to -:.

 4+-+5+6
-:
 →

 FN[-]
 -:
 →

 Chapter 6. System Functions and Variables 263

 -

The following system commands end execution of the expression that referenced
-:

 �)CLEAR
 �)LOAD
 �)RESET
� Some)HOST commands

 �)OFF

For example:

 4+-+5+6
-:
)WSID WORKOUT
WAS CLEAR WS
-:
)RESET

264 APL2 Programming: Language Reference

 .

. Character Input/Output

| . Input: The system waits for a response and treats the input as a
| character string.

.←A Output: Displays the value of the expression to the right of the

specification arrow. The position of the cursor or print element
carrier after output or before input depends on the situation, as
described below.

A: Any valid expression
Default value: None

The behavior of . is dependent on whether either data is assigned to it (output) or
it is referenced (input).

 Assignment
When . appears to the left of the specification arrow (the left arrow), the value of
the expression to the right of the arrow is displayed. The normal ending new line
character is always suppressed.

Successive assignments of vectors to . without any other intervening session input
or output can cause attempts to display the arrays on the same output line.
Because of this, the sum of the lengths of the vectors should be less than the width
of the session display line. Otherwise, unpredictable results can occur.

2 3 4,.←JA HA J
A HA 2 3 4 A HA

c F X
[1] .←JX J
[2] .←JISJ
[3] .←J J
[4] .←X
[5] c

 F 13
X IS 13

 c G
[1] .←2 3ρι6
[2] .←J IS A MATRIXJ
[3] c
 G
1 2 3
4 5 6 IS A MATRIX

 Chapter 6. System Functions and Variables 265

 .

 Reference
When . is referenced, session input is requested. The input is returned as a char-
acter vector.

 RESULT←.
WHAT IS 3+4
 Typed by the user.
 ρRESULT
12
 RESULT
WHAT IS 3+4

Quotation marks entered on a reference to . are characters. For example:

 X←.
JDONJJT STOPJ
 X
JDONJJT STOPJ

 ρX
13

Prompts and Responses: A reference to . preceded by an assignment without
any intervening session input or output creates a prompt/response interaction. The
last (or only) row of the assignment is called the prompt, and the result of the refer-
ence is called the response. The response is a vector composed of:

� A transformation of the unchanged characters in the prompt, as determined by
the prompt replacement system variable -PR (see page 316).

� Session input, including changed characters in the prompt.

For example:

 -PR←J J
 c Z←XPRMPT
[1] .←JSUPPLY X: J
[2] Z←.
[3] c

 RESULT←XPRMPT
SUPPLY X: 19 19 is entered by the user.
 RESULT

19 Result includes blanks that replace
ρRESULT the prompt of line 1.

12

The sum of the lengths of the prompt and the expected session input should be
less than the width of the display area; otherwise, the result may be unpredictable.

266 APL2 Programming: Language Reference

 .

| On most devices, the prompt can be changed before it is reentered. If -PR is
assigned the empty vector (JJ), the result of the expression that includes . is the

| vector in the display area when it is returned to the system.

 cZ←FN2
[1] .←JCHANGE THE PROMPT: J
[2] Z←.
[3] c

 -PR←JJ
 RESULT←FN2
CHANGE THE ENTRY 45 The word PROMPT is

ρRESULT changed to ENTRY and 45 entered.
21
 RESULT
CHANGE THE ENTRY 45

In contrast, if -PR is not JJ, characters not changed are replaced with -PR.
However, anything entered in response to . is not replaced by -PR. No replace-
ment occurs even if the response is typed in the prompt display area.

 -PR←J*J
 FN2
CHANGE THE PROMPT: _
 ENTRY: 45

CHANGE THE ENTRY: 45
***********ENTRY: 45

 -PR←J*J
 FN2
CHANGE THE ENTRY: 45
***********ENTRY: 45

Interrupting Quote-Quad Input: If an interrupt is signaled while the system is
waiting for input to a reference of ., the INTERRUPT message is displayed and
execution is suspended. If execution is resumed (by →ι0), the result of the
expression does not include the prompt.

 RESULT←XPRMPT
SUPPLY X:(interrupt signaled)
INTERRUPT
XPRMPT[2] Z←.
 �
 →ι0
19 Cursor or carrier waits at left

ρRESULT margin for input.
2

 Chapter 6. System Functions and Variables 267

 -AF

-AF Atomic Function

Z←-AF R Maps integers to characters and characters to integers.

R and Z: A simple numeric integer array or a simple character array

ρZ ←→ ρR
ρρZ ←→ ρρR

Integers in R must be nonnegative and less than 2*31.

-AF R is like -AVιR or -AV[R], except that it is origin independent (always
uses an origin of 0 value) and works on all characters, including those not in -AV.

| -AF depends on the current internal encoding of data, which can vary among plat-
| forms, as well as at different times on the same platform, depending on how the
| data has been created or manipulated. See “-UCS Universal Character Set” on
| page 342 for a platform-independent character mapping.

268 APL2 Programming: Language Reference

 -AI

-AI Account Information

-AI Provides user identification and compute, connect, and user
response times in milliseconds.

Variable type: Localizing or specifying -AI has no effect.

| -AI is a four-item numeric vector that provides the following information:

 -AI[1] User identification
 -AI[2] Compute time
 -AI[3] Connect time

-AI[4] User response time

All times are in milliseconds and are cumulative during the APL2 session.

 -AI
1001 185 53942 30029

 Chapter 6. System Functions and Variables 269

 -AT

 -AT Attributes

Z←L -AT R Returns an attribute vector selected by the integer specified
in L for each object named in R.

L: Integer scalar
R: Simple character scalar, vector, or matrix
Z: Integer vector or matrix

 ρZ ←→ (b1↓ρR),(3 7 4 2)[L]
ρρZ ←→ ,1�ρρR

Each row of R is interpreted as a constructed name. Each row of Z is an attribute
vector specified by the integer L for the corresponding name in R.

The items in an attribute vector are described for the various values of L as shown
in Figure 31.

Figure 31 (Page 1 of 2). Description of the Attribute Vector for Various Values of L

Value

of L

Contents of

Attribute

Vector

Description

of Each Item

How

Reported

1 Valences
(length 3)

[1] Explicit result
[2] Function valence
[3] Operator valence

Z[1] is 1, if the object has an
explicit result or is a variable.
Z[1] is 0, if otherwise.

Z[2] is 0, if the object is a
niladic function or not a func-
tion. Z[2] is 1, if the object
is a monadic function. Z[2]
is 2, if the object is an ambi-
valent function.

Z[3] is 0, if the object is not
an operator. Z[3] is 1, if
the object is a monadic oper-
ator. Z[3] is 2, if the object
is a dyadic operator.

2 Fix time,
which is the
time the defi-
nition of the
corresponding
operation
named in R
was last
updated
(length 7)

[1] Year
[2] Month
[3] Day
[4] Hour
[5] Minute
[6] Second
[7] Millisecond

Digits are shown for each item.

If R is not a defined function or
operator, the corresponding
row of Z is all 0's (7ρ0).

270 APL2 Programming: Language Reference

 -AT

Figure 31 (Page 2 of 2). Description of the Attribute Vector for Various Values of L

Value

of L

Contents of

Attribute

Vector

Description

of Each Item

How

Reported

3 Execution
properties
(length 4)

[1] Nondisplayable
[2] Nonsuspendable
[3] Ignores weak
 interrupts
[4] Converts non-

 resource errors
 to DOMAIN

 ERROR

A 1 indicates that the corre-
sponding property is set; a 0
indicates that it is not set.

The execution properties for a
variable are 0's (4ρ0).

The execution properties for
primitive and system functions
are 1 1 1 0. (Parameter
substitution can cause a primi-
tive function to have a con-
structed name.)

4 Object Size
(length 2)

[1] Bytes CDR
 requires
[2] Bytes data

 portion of CDR
 requires

CDR is the common data rep-
resentation of APL2 objects
used for shared variables. It
consists of structure informa-
tion and data.

Object size for a function or
operator is reported as 0 0.

 Chapter 6. System Functions and Variables 271

 -AT

Example with L←1:

-FX JTOTAL RJ J-←JJTOTAL ISJJ,+/RJ
TOTAL

1 -AT JTOTALJ
0 1 0

-FX JZ←TOTAL RJ JZ←+/RJ
TOTAL

1 -AT JTOTALJ
1 1 0

ANSWER←TOTAL 1 9 3
1 -AT 2 6ρJTOTAL ANSWERJ

1 1 0
1 0 0

Example with L←2:

2 -AT JTOTALJ
1991 12 19 17 38 18 286

Example with L←3:

3 -AT JTOTALJ
0 0 0 0

1 0 0 0 -FX -CR JTOTALJ
TOTAL

3 -AT JTOTALJ
1 0 0 0

3 -AT J-FXJ
1 1 1 0

Example with L←4:

4 -AT JTOTALJ
0 0

VARIABLE←10 20 30
4 -AT JVARIABLEJ

19 3

272 APL2 Programming: Language Reference

 -AV

-AV Atomic Vector

| -AV Contains 256 characters of the defined character set.

Variable type: localizing or specifying -AV has no effect.

-AV is a simple character vector. The results of displaying or printing certain of its
items can depend on the type of display device or printer being used.

| APL2 supports 2*31 different characters. -AV is a selection of 256 commonly-
| used characters, including the characters primitive to the APL2 language. The
| ordering of -AV is selected to match the principle character set of the platform
| (ASCII or EBCDIC).

See also Appendix A, “The APL2 Character Set” on page 470.

-AV determines the order in which objects are displayed as a result of the system
commands)NMS,)OPS,)FNS, and)VARS.

Note: Some characters are terminal control characters and can cause unpredict-
| able results when sent to certain devices.

 Chapter 6. System Functions and Variables 273

 -CR

-CR Character Representation

Z←-CR R Returns the character representation of the displayable defined
function or defined operator named in R.

R: Simple character scalar or vector
Z: Simple character matrix

R is the name of one defined operation.

The first row of Z is the function or operator header, as described in “Header” on
page 347.

Each remaining row of Z is a line of the function or operator. The rows contain no
unnecessary blanks, except for trailing blanks that pad the row and the blanks in
comments (including those immediately preceding the h). Trailing blanks in a
comment line may or may not be included, depending on the length of the other
rows.

 cZ←TOTAL R
[1] Z←+/R
[2] c

 -CR JTOTALJ
Z←TOTAL R
Z←+/R

The character representation of a defined function or operator may contain entirely
blank lines. An entirely blank row represents an empty expression in the function.
However, the last column of a character representation is not entirely blank.

If R is a variable name, the name of a nondisplayable defined function or operator,
the name of an external variable, function or operator, or an illegal APL name, the
result is an empty matrix.

A←89 34 4
 Z←-CR JAJ
 Z
 ρZ
0 0

1 0 0 0 -FX JZ←TOTAL RJ JZ←+/RJ

TOTAL
 Z←-CR JTOTALJ
 Z
 ρZ
0 0

274 APL2 Programming: Language Reference

 -CT

-CT Comparison Tolerance

-CT←A Contains the quantity used by some primitive functions to determine
equality.

A: Simple, real scalar greater than or equal to 0, but less than 1
Default value: 1Eb13
Variable Type: Implicit argument

Real numbers L and R are considered equal if:

(L|R) is less than or equal to -CT
(L)� R�

Complex numbers L and R are considered equal if both their real and imaginary
parts are equal. For comparison purposes, a nonreal number is considered to be
real if the greater of the absolute values of its imaginary part and the tangent of the
angle is much less than -CT.

Computations of -CT are approximated for efficiency. For this reason, using
values of -CT>1Eb9 is discouraged.

If -CT is assigned an invalid value or erased and then implicitly used by a primitive
function, a -CT ERROR results.

A reference of -CT yields its current value.

System tolerance, which cannot be set, is different from -CT. See “System
Tolerance” on page 59.

No number is within -CT of zero.

 -CT
1Eb13
 L←466�7
 R←466�6999
 -CT
(L)� R
4�667Eb11
 L|R
0�00009999999997
 L=R
0

 -CT
 1Eb13
 L←466�7
 R←466�69999999999
 -CT
(L)� R
 4�667Eb11
 L|R
 1�000444172Eb11
 L=R
 1

 Chapter 6. System Functions and Variables 275

 -CT

Primitive Functions That Use -CT: -CT is an implicit argument of the fol-
lowing primitive functions:

Ceiling �R page 79
| Find| L�R| page 129

Floor �R page 133
Index of LιR page 162

| Match| L�R| page 91
Member LεR page 181
Relational functions L<R

L≯R
L=R
L≮R
L>R
L≠R

page 219

Residue L R page 227
Without L�R page 258

276 APL2 Programming: Language Reference

 -DL

 -DL Delay

Z←-DL R Causes a pause of approximately R seconds.

R: Scalar nonnegative number
Z: Scalar real number

Z contains the actual number of seconds in the pause. The actual number of
seconds varies from execution to execution.

The pause can be interrupted by signaling an interrupt.

 -DL 2
2�010658
 -DL 2
2�010006

 -DL 4
 4�008428
 -DL 4
 4�006799

 Chapter 6. System Functions and Variables 277

 -EA

-EA Execute Alternate

Z←L -EA R Executes R. If R fails or is interrupted, executes L.

L and R: Simple character vector or scalar

The expression represented by R is executed. If an error occurs during its exe-
| cution or R is interrupted (interrupt signaled), -EM and -ET are set, execution of R

is abandoned without an error message, and the expression represented by L is
executed. Execution of L is subject to normal error handling.

Effect of Assigning Result: If R does not return an explicit result, the attempt to
assign the result to Z can generate an immediate VALUE ERROR or may gen-
erate an error that causes L to be executed.

Z←J3
2J -EA J→0J
 Z
6

Z←J3
2J -EA JDESCRIBEJ
THE XYZ WORKSPACE
PROVIDES SEVERAL � � �
VALUE ERROR

Z←J3
2J -EA JDESCRIBEJ
 � �

Jι3J -EA Jι4�5J
1 2 3

Jι3J -EA Jι4J
1 2 3 4

Jι3�3J -EA Jι4�5J
DOMAIN ERROR
 ι3�3
 �

Jι3�3J -EA Jι4�5J
 � �

JJJERRJJJ -EA Jι4�5J
 ERR

278 APL2 Programming: Language Reference

 -EA

If L is executed and does not return an explicit result, a SYNTAX ERROR results.

Z←JDESCRIBEJ -EA J�b3J
THE XYZ WORKSPACE
PROVIDES SEVERAL � � �

| VALUE ERROR
Z←JDESCRIBEJ -EA J�b3J

 � �

Z←J→0J -EA J�b3J
SYNTAX ERROR
 →0
 �

Z←J→0J -EA J�b3J
 � �

Assigning the results of R and L separately prevents this problem.

JZ←ι8J -EA JZ←ι3J
 Z
1 2 3

JZ←ι8J -EA JZ←�b3J
 Z
1 2 3 4 5 6 7 8

J→0J -EA JZ←�b3J

JDESCRIBEJ -EA JZ←�b3J
THE XYZ WORKSPACE
PROVIDES SEVERAL � � �

Defined Function Invoked by R: If R calls defined function F, the statements
executed by F are also under the control of the error trap. In particular, R can call
a long running function, and L can be a recovery function.

 Chapter 6. System Functions and Variables 279

 -EC

-EC Execute Controlled

Z←-EC R Executes R. Returns a return code, -ET, and the expression
result.

R: Simple character vector or scalar

The expression represented by R is executed. The first item of the result is a
return code as follows:

0 Error (2+JAJ)
1 Expression with a result which would display (2+3)
2 Expression with a result which would not display (A←2+3)
3 Expression with no explicit result (F X where F has no result)
4 Branch to a line (→3)
5 Branch escape (→)

The second item of the result is the value -ET would have. This is 0 0 unless an
error occurs. The current value of -ET is not affected.

The third item is the result of the expression if the return code is 1 or 2; 0 0ρ0 if
the return code is 3 or 5; the argument to branch if return code is 4; and -EM if
the return code is 0.

Stops (Sδ���) are ignored when executing under -EC. Errors or keyboard inter-
rupts are trapped and produce a zero return code (↑Z), a nonzero -ET (↑1↓Z),
and a -EM (↑2↓Z) that details the event. This implies that settings of Sδ are

| ignored. Quad input is permitted if it returns a value. For example, branch escape
| (→) and)CLEAR are not permitted.

 -EC J2+3J
 1 0 0 5

(RC ET R)←-EC J→J
 RC
5

(RC ET R)←-EC Jι4�5J
 RC
0
 ET
5 4
 R
DOMAIN ERROR
 ι4�5
 �

280 APL2 Programming: Language Reference

 -EM

-EM Event Message

-EM Text of the error or event message associated with the first line of
the state indicator.

Default value: 3 0ρJ J
| Variable type: Debug variable; specifying or localizing -EM has no effect.

When execution of an expression generates an error message, -EM contains all
lines of the message as displayed, even when the left argument of -ES (event
simulate) was used to specify the first row of -EM as part of event handling.
(APL2 error messages are described in Chapter 11, “Interpreter Messages” on
page 461.)

The following example shows the message and the value of -EM for a LENGTH
ERROR.

2+3 4 5=6 3
LENGTH ERROR

2+3 4 5=6 3
 � �

 ρ-EM
3 17
 -EM
LENGTH ERROR

2+3 4 5=6 3
 � �

If there is not enough room in the workspace to form -EM at the time of the error,
-EM is a matrix of shape 3 0, but the event type code -ET is not affected.

If there is not enough room in the workspace to suspend the statement in error, WS
FULL is reported and -EM is set to a matrix of shape 3 0. -EM is automat-
ically local to a function called by a line entered in immediate execution.

-EM and the State Indicator: -EM contains the event message associated with
the top line of the state indicator. As the stack is cleared (with → or)RESET n),
-EM is reset to the event message associated with the current top line of the state
indicator.

If the state indicator is clear, -EM is set to 3 0ρJ J.

 Chapter 6. System Functions and Variables 281

 -ES

| -ES Event Simulate (with either Error Message or Event Type)

-ES R Simulates an event and returns an error report for the event based
on the value of R.

R: Simple character scalar or vector; simple two-item vector of integers
between b32767 and 32767; or empty vector.

When -ES is executed from within a defined function or operator and R is not
empty, the event action is generated as though the function were primitive or
locked (by ¤ or by setting all execution properties using -FX to 1). Suspension
occurs at the calling point, not within the defined operation. The message dis-
played and the setting of -ET and -EM depend on the value of R, as described
below.

When R Is a Character Scalar or Vector: Normal APL2 error handling is initiated.
R is displayed as the error message and set in -EM (error message). -ET
(event type) is set to 0 1.

 cZ←EXPO A
[1] -ES(0=A)/JZERO INVALIDJ
[2] Z←*A
[3] c
 EXPO 3
20�08553692

 EXPO 0
ZERO INVALID
 EXPO 0
 �

 -EM
ZERO INVALID
 EXPO 0
 �

 -ET
0 1

282 APL2 Programming: Language Reference

 -ES

When R Is an Error Code Defined for -ET: The error message associated with
that event type code is reported as the first row of the message matrix in the
current national language.

 cZ←FACTR A
[1] -ES(0=A)/5 4
[2] Z←�A
[3] c
 FACTR 3
6

 FACTR 0
DOMAIN ERROR
 FACTR 0
 �

 -EM
DOMAIN ERROR
 FACTR 0
 �

 -ET
5 4

When R Is 0 0: In immediate execution, -ES 0 0 has no effect. In a defined
operation, -ES 0 0 sets -ET to 0 0, -EM to 3 0ρJ J but does not
simulate an event.

 cFN
[1] J2+3J -EAJ(A←B)←2)J h Causes a syntax error�
[2] -ET h Reports 2 4 as the event

h type�
[3] -ES 0 0 h Resets -EM and -ET�
[4] -ET h Shows -ET reset to 0 0�
[5] c
 FN
5
2 4
0 0

 Chapter 6. System Functions and Variables 283

 -ES

When R Is a Simple, Two-Item Integer Vector which is not a defined error

code: The value of R is assigned to -ET. An event simulation is generated in the
expression that invoked the function, but no message is reported.

 cZ←RECIP A
[1] -ES(0=A)/13 17
[2] Z←÷A
[3] c
 RECIP 3
0�3333333333

 RECIP 0
 RECIP 0
 �

 -EM

 RECIP 0
 �

 -ET
13 17

When R Is Empty: No action is taken. This gives you the ability to signal an
event conditionally:

-ES (cond)/R

If the condition is true, the event is simulated. If the condition is not true, no action
is taken. The functions EXPO, FACTR, and RECIP used in earlier examples
each signal an event conditionally.

284 APL2 Programming: Language Reference

 -ES

| -ES Event Simulate (with both Error Message and Event Type)

L -ES R Simulates an error, generates an error report, and returns the left
argument as the first row of the error message matrix (-EM).

L: Simple character scalar or vector
R: Simple character scalar or vector; simple two-item vector of integers

between b32767 and 32767; or empty vector.

When -ES is executed and if R is not empty, an error condition is simulated, R is
assigned to -ET, and an APL2 error message matrix is generated with the fol-
lowing contents:

� First row is L.

� Second row is the expression or the name of the function within which -ES
was executed.

� Third row contains the carets marking the error.

JERROR SIMULATIONJ -ES 101 9
ERROR SIMULATION

JERROR SIMULATIONJ -ES 101 9
 � �

 -EM
ERROR SIMULATION

JERROR SIMULATIONJ -ES 101 9
 � �

 -ET
101 9

If -ES is executed from within a defined function or operator, the event action is
generated as though the function were locked or primitive. Suspension occurs at
the calling point, not within the defined operation.

 Chapter 6. System Functions and Variables 285

 -ES

Unlike a monadic event simulate, even though R is an error code defined for -ET,
the normally associated error message is not displayed. The character scalar or
vector L is always displayed.

 cZ←FACTR A
[1] JZERO INVALIDJ -ES(0=A)/5 4
[2] Z←�A
[3] c
 FACTR 4
24

 FACTR 0
ZERO INVALID
 FACTR 0
 �

 -EM
ZERO INVALID
 FACTR 0
 �

 -ET
5 4

When R is 0 0: The left argument is ignored and the behavior of monadic -ES
is seen.

When R Is Empty: No action is taken. This gives you the ability to signal an
event conditionally:

L -ES (cond)/R

If the condition is true, the event is simulated. If the condition is not true, no action
is taken. The functions FACTR and FMT shown earlier are examples of functions
that signal an event conditionally.

286 APL2 Programming: Language Reference

 -ET

-ET Event Type

-ET Two-integer code indicating the type of the event (error) associated
with the first line of the state indicator.

Default value: 0 0
Variable type: Debug variable; assigning or localizing -ET has no

effect.

The first item of -ET indicates the major classification of the event; the second
indicates a more specific category. As a debug variable, -ET can be used to dis-
cover the possible source of an error. Figure 32 lists the major classes, the spe-
cific event type codes, and their meanings.

Figure 32. Event Type Codes

Major

Class

Event Type Code and Description

0
Defaults

0 0 - No error
0 1 - Unclassified event (-ES JmessageJ)

1
Resource
Errors

1 1|INTERRUPT
1 2|SYSTEM ERROR
1 3 - WS FULL
1 4 - SYSTEM LIMIT - symbol table
1 5 - SYSTEM LIMIT - interface unavailable
1 6 - SYSTEM LIMIT - interface quota
1 7 - SYSTEM LIMIT - interface capacity
1 8 - SYSTEM LIMIT - array rank
1 9 - SYSTEM LIMIT - array size
1 10 - SYSTEM LIMIT - array depth
1 11 - SYSTEM LIMIT - prompt length
1 12 - SYSTEM LIMIT - interface representation

| 1 13 - SYSTEM LIMIT - implementation restriction

2
SYNTAX
ERROR

| 2 1 - Required operand or right argument omitted (2
)
2 2 - Ill-formed line ([(])
2 3 - Name class (3←2)
2 4 - Invalid operation in context ((A←B)←2)
2 5 - Compatibility setting prohibits this syntax

3
VALUE
ERROR

3 1 - Name with no value
3 2 - Function with no result

4
Implicit
Argument
Errors

4 1 | -PP ERROR
4 2 | -IO ERROR
4 3 | -CT ERROR
4 4 | -FC ERROR
4 5 | -RL ERROR
4 7 | -PR ERROR

5
Explicit
Argument
Errors

5 1 | VALENCE ERROR
5 2 | RANK ERROR
5 3 | LENGTH ERROR
5 4 | DOMAIN ERROR
5 5 | INDEX ERROR
5 6 | AXIS ERROR

 Chapter 6. System Functions and Variables 287

 -ET

All undefined major event classifications numbered 0 through 99 are reserved.
Note that processor 11 external functions, and APL functions (through -ES), can
signal events with arbitrary numbers. For more information about particular errors,
see Chapter 11, “Interpreter Messages” on page 461.

The following examples show a reference of -ET after an error.

-ET is automatically local to a function called by a line entered in immediate exe-
cution. If there is not enough room in the workspace to suspend the statement in
error, WS FULL is reported, -EM is set to a character matrix of shape 3 0, and
-L and -R are not set.

-ES can set -ET as part of event handling within a defined function.

-ET and the State Indicator: -ET contains the event type associated with the
top line of the state indicator. As the stack is cleared (with → or)RESET n),
-ET is reset to the event type associated with the current top line of the state
indicator.

If the state indicator is clear, the value of -ET is 0 0.

 (A←B)←2)
SYNTAX ERROR+
 (A←B)←2)
 �
 -ET
2 4

 (ι68)ρ15
 SYSTEM LIMIT+
 (ι68)ρ15
 � �
 -ET
 1 8

288 APL2 Programming: Language Reference

 -EX

 -EX Expunge

| Z←-EX R Returns a 1 if the object is disassociated, and returns a 0 if it
| cannot be disassociated. An object cannot be disassociated for
| the following reasons:

| � The object is a system function.
| � The name is not valid.
| � The object is an external object and cannot be disassociated
| at this time.

R: Simple character scalar, vector, or matrix
Z: Simple Boolean scalar or vector

 ρZ ←→ b1↓ρR
ρρZ ←→ ,0�b1+ρρR

Each row of R is interpreted as a constructed name. Currently active user names
are disassociated from their values, and if they represent shared variables, the
shares are retracted. The following system variables can be disassociated from
their values: -CT, -FC, -IO, -LX, -PP, -PR, and -RL. The remaining
system variables and system functions cannot be disassociated from their values.

If an implicit argument system variable is expunged, a primitive function that
depends on it as an implicit argument generates an error.

 -IO
1
 -EX J-IOJ
1
 ι10
-IO ERROR
 ι10
 �

 RUNS←3
 -EX JRUNSJ
1
 RUNS
VALUE ERROR+
 RUNS
 �

 RUNS←1
-FX JZ←HITS XJ JZ←+/XJ

 HITS
 ERRS←2

-EX 3 4ρJHITSRUNSERRSJ
1 1 1

 SCORE←43
 -NC JSCOREJ
2
 -EX J-NCJ
0
 -NC JSCOREJ
2

 -NLT←JSVENSKAJ
 -EX J-NLTJ
 1
 -NLT
 SVENSKA

 Chapter 6. System Functions and Variables 289

 -EX

Suspended or pendent defined functions can be expunged. However, expunging
such functions does not affect their definitions in the state indicator. Until they are
cleared from the state indicator, these functions exist only in the state indicator and
cannot be edited. See “Clearing the State Indicator” on page 357 for information
on clearing the state indicator.

c Z←SQUARE R
[1] Z←R*2
[2] c
 R←JTJ

 SQUARE R
DOMAIN ERROR
SQUARE[1] Z←R*2
 � �

 -EX JSQUAREJ
1

)SIS
SQUARE[1] Z←R*2
 � �
* SQUARE R
 �

 SQUARE 5
VALUE ERROR+
 SQUARE 5
 �

 R←5
 →-LC
25
 SQUARE 5
VALUE ERROR+
 SQUARE 5
 �

Relationship to)ERASE:)ERASE (page 428) removes global variables,
defined functions, and defined operators from the active workspace.

290 APL2 Programming: Language Reference

 -FC

-FC Format Control

-FC←A Specifies or references characters for decimal point, thousands
indicator, fill character, overflow indicator, print-as-blank character,
and negative number indicator. It is used by format by example
and format by specification (L�R).

A: Simple character vector
Default value: �,*0_b
Variable type: Implicit argument

Although -FC may be a character vector of any length, only the first six characters
are used. If fewer than six characters are specified, the defaults for the missing
characters are used. Figure 33 gives the meaning of each of the first six items.

All items of -FC except -FC[6] are used as implicit arguments to format by
example, page 139. Items -FC[1 4 6] are used as implicit arguments to
format by specification.

If -FC is assigned an invalid value or erased and then implicitly used by format, a
-FC ERROR results.

A reference of -FC yields its last specified value.

Figure 33. Format Control Items

Item Default Meaning

-FC[1] � Character for decimal point

-FC[2] , Character for thousands indicator

-FC[3] * Fill for blanks indicated by the digit 8 in
format by example

-FC[4] 0 Fill for overflows that otherwise cause a
DOMAIN ERROR

-FC[5] _ Print-as-blank (cannot be
,�0123456789)

-FC[6] b Negative number indicator

 Chapter 6. System Functions and Variables 291

 -FX

-FX Fix (No Execution Properties)

Z←-FX R Establishes in the active workspace the defined function or oper-
ator represented in character form by R.

R: Simple character matrix or a vector whose items are character vectors or
 character scalars.
Z: Character vector or integer scalar

Implicit argument: -IO

R represents the definition, in character form, of a function or operator. If the defi-
nition is valid, the function or operator is established in the workspace, and the
name of the object is returned as the result. Thus, -FX is an alternative to using
an editor to define a function or operator. (See Chapter 9, “The APL2 Editors” on
page 375.)

-FX JZ←FMT RJ JZ←�RJ
FMT

 FMT JABCDEFJ
ABCDEF

-FX JZ←FACTR RJ JJJ-ETJJ -EA JJZ←�RJJJ
FACTR

 FACTR 5
120

R must be a name unassociated with an object or the name of an existing defined
function or operator.

Invalid Definition: If the definition is not valid, Z is a scalar integer indicating the
first row of the function or operator line in error. This integer is dependent on -IO.

-FX JZ←FN RJ JZ←1+R
2J -AV[1]
3

 -IO←0
-FX JZ←FN RJ JZ←1+R
2J -AV[1]

2

292 APL2 Programming: Language Reference

 -FX

Acceptable Variations in Format of R: -FX accepts a character form with the
following variations from that form produced by applying -CR to a definition estab-
lished in the workspace:

� R may contain unnecessary blanks.

� The header may have blanks instead of semicolons between local names.

� R may be a vector of character scalars and/or vectors instead of a character
matrix.

� R may have trailing blanks on comments.

Changing the Definition of a Suspended or Pendent Operation: Suspended or
pendent defined functions and operators can be changed by using -FX to estab-
lish a new definition. Establishing a new definition for the object in the workspace,
does not, however, change the definition of the function or operator in the state
indicator. The previously invoked definition is retained until it completes execution
or is cleared from the state indicator.

After the application of -FX, the previously invoked definition in the state indicator
and the current definition can differ.

-FX JFUNCJ J1J J2J J�b3J J4J
FUNC

 FUNC
1
2
DOMAIN ERROR
FUNC[3] �b3
 �

)SI
FUNC[3]
*

-FX JFUNCJ J22J J23J J24J J25J
FUNC
 →4
4

 FUNC
22
23
24
25

 Chapter 6. System Functions and Variables 293

 -FX

-FX Fix (with Execution Properties)

Z←L -FX R Establishes in the active workspace the defined function or oper-
ator represented in character form by R with execution proper-
ties specified by L.

L: Simple four-item Boolean vector or a Boolean scalar
R: Simple character matrix or a vector whose items are character vectors or
 character scalars.
Z: Name of the established object or integer scalar

Implicit argument: -IO

As with -FX (with no execution properties), R represents the definition, in char-
acter form, of a function or operator.

If L is a four-item Boolean vector, each item of L turns on (1) or off (0) one of four
independent execution properties:

L[1] Cannot be displayed
L[2] Cannot be suspended
L[3] Ignores attention signal
L[4] Converts any nonresource error to DOMAIN ERROR

If L is a Boolean scalar, it is used to turn on or off all the above properties.

The function or operator named in R must be either undefined or the name of an
existing defined function or operator. If the definition is valid, the function or oper-
ator is established in the workspace with the execution properties specified, and the
name of the object is returned as the result.

If R is not a valid function or operator definition, Z is a scalar integer that indicates
the row of the function or operator line in error. This integer is dependent on -IO.

Execution Properties: Each property can be set independently. If all four exe-
cution properties are set, the defined function or operator is locked, as it is with ¤
when you use an APL2 editor.

294 APL2 Programming: Language Reference

 -FX

If L[1] is 1, the defined function or operator cannot be displayed—not through
-CR, -TF, or the APL2 editors. Also, the object cannot be traced or edited. An
attempt to display it generates a DEFN ERROR.

1 0 0 0 -FX JZ←FACTR RJ JZ←�RJ
FACTR

 cFACTR[-]c
DEFN ERROR
 cFACTR[-]c
 �

If L[2] is 1, the defined function or operator cannot be suspended by an error or
an interrupt. The error or interrupt message is displayed, but the operation is not
suspended. The state indicator shows the error or interrupt as occurring during the
invocation of the operation.

0 1 0 0 -FX JZ←FACTR RJ JZ←�RJ
FACTR

 FACTR b3
DOMAIN ERROR
 FACTR b3
 �

)SIS
* FACTR b3
 �

If L[3] is 1, the defined function or operator ignores the attention signal and stop
control settings.

0 0 1 0 -FX JZ←FACTR RJ JZ←�RJ
FACTR

 SδFACTR←1
 FACTR 4
24

If L[4] is 1, an error other than a resource error is converted into a DOMAIN
ERROR. Resource errors are listed in Figure 32 on page 287.

0 0 0 1 -FX JZ←L INDEX RJ JZ←R[L]J
INDEX

3 INDEX 3 4
DOMAIN ERROR
INDEX[1] Z←R[L]
 ��

 Chapter 6. System Functions and Variables 295

 -FX

Changing Execution Properties: If a defined function or operator can be dis-
played, its execution properties can be changed by executing an expression in the
following format:

L -FX -CR Jname'

For example:

0 -FX -CR JINDEXJ
INDEX

3 INDEX 3 4
INDEX ERROR
INDEX[1] Z←R[L]
 ��

296 APL2 Programming: Language Reference

 -IO

-IO Index Origin

-IO←A Contains the index of the first item of a nonempty vector.

A: 0 or 1
Default value: 1
Variable Type: Implicit argument

If -IO is assigned an invalid value or erased and then implicitly used by another
function, a -IO ERROR results.

A reference of -IO yields its current value.

Primitive Functions That Use -IO: -IO is an implicit argument of the fol-
lowing functions:

Index origin also affects axis specification, page 23, and -FX Fix, pages 292 and
294.

 -IO
1

R←34 18 24
 R[1]
34

 -IO←0
 R[1]
18
 R[0]
34

 -IO←1
R←34 18 24

 �R
2 3 1
 -IO←0
 �R
1 2 0

Bracket indexing A[I] page 70
Deal L
R page 89
Grade down �R page 147
Grade down (with collating
sequence)

L�R page 147

Grade up �R page 153
Grade up (with collating sequence) L�R page 155
Index of LιR page 162
Interval ιR page 168
Pick L�R page 195
Roll
R page 231
Transpose (general) L)R page 251

 Chapter 6. System Functions and Variables 297

 -L

-L Left Argument

-L←A If the first line of the state indicator contains a dyadic function
whose execution was suspended by an error or an interrupt, -L is
the array value of its left argument. -L can be respecified and
execution resumed at the point of the error or interrupt by →ι0.

A: New left argument
Default value: None
Variable type: Debug

-L is set when an error occurs in a primitive dyadic function. Effectively, it is auto-
matically local to a function called by a line entered in immediate execution and
exists only while the statement in error is suspended.

c Z←F A
[1] Z←(2
A)+3 4 5
[2] c

F 6 7 10
15 18 25

F 6 7
LENGTH ERROR
F[1] Z←(2
A)+3 4 5
 � �
 -L
12 14

-L←12 14 20
 →ι0
15 18 25

If there is not enough room in the workspace to suspend the statement in error, WS
FULL is reported. -EM is set to a character matrix of shape 3 0, and -L and
-R are not set.

With VALENCE ERROR: If the primitive function fails because of a VALENCE
ERROR, -L can be respecified only if it is not referenced first. In this situation, if
-L is referenced first, a VALUE ERROR results.

Assignment First

c Z←FDROP R
[1] Z←↓ιR
[2] c
 FDROP 8
VALENCE ERROR
FDROP[1] Z←↓ιR
 ��
 -L←b3
 -L
b3
 →ι0
1 2 3 4 5

 Reference First

 FDROP 8
 VALENCE ERROR
 FDROP[1] Z←↓ιR
 ��
 -L
 VALUE ERROR+
 -L
 �
 -L←b3
 →ι0
 VALUE ERROR+
 -L
 �

298 APL2 Programming: Language Reference

 -L

With VALUE ERROR or SYNTAX ERROR: If the primitive function fails
because of a VALUE ERROR or a SYNTAX ERROR, any respecification of -L
is ignored, and a reference to -L generates a VALUE ERROR.

 1(2(3)
10+4(5 6)
SYNTAX ERROR+
 1(2(3)
10+4(5 6)
 �
 -L←5
 →ι0
SYNTAX ERROR+
 1(2(3)
10+4(5 6)
 �
 -L
VALUE ERROR+
 -L
 �

Effect of Resuming Execution: Note that the branch expression →ι0 causes the
suspended function to resume at the point of the error with the new value of the left
argument. Everything in the statement to the right of the leftmost caret was evalu-
ated prior to the error; only the function indicated by the rightmost caret is reevalu-
ated when execution begins.

c Z←FL A
[1] Z←(A
1 2 3)÷ρA
[2] c

FL 4 5 6
1�333333333 3�333333333 6

FL 4 5
LENGTH ERROR
FL[1] Z←(A
1 2 3)÷ρA
 � �
 -L
4 5

-L←4 5 6
 →ι0
2 5 9

Because the final result can be misleading, it is important to know where execution
resumes after respecification of -L. It can be especially important if the statement
in error contains shared variables or defined functions or operators.

-L and the State Indicator: As the state indicator is cleared (with → or
)RESET n), -L is reset to the left argument of the primitive function associated
with the current first line of the state indicator, if its execution was suspended by an
error or an interrupt.

If the state indicator is clear or if the error associated with the first line in the state
indicator is not in a primitive function, -L has no value.

 Chapter 6. System Functions and Variables 299

 -LC

-LC Line Counter

-LC Contains the line numbers of defined functions and operators in exe-
cution or halted (suspended or pendent), with the most recently acti-
vated line number first.

Default value: Empty vector
| Variable type: Debug variable; specifying or localizing -LC has no effect.

If displayed from within a defined function or operator, -LC contains:

� Line number where -LC appears

� Number of the last line executed in each pendent defined function or operator.

� Number of the last line executed in each suspended defined function or oper-
ator.

During the execution sequence entered by invoking G, notice how the value of the
line counter changes:

 G
G LINE 1
G: 2
H LINE 1
H LINE 2
H LINE 3
H: 4 3
J LINE 1
J LINE 2
J LINE 3
J LINE 4
J LINE 5
J: 6 5 3
J LINE 7
H LINE 6

 c G
[1] JG LINE 1J
[2] JG: J,-LC
[3] H
[4] c

 c H
[1] JH LINE 1J
[2] JH LINE 2J
[3] JH LINE 3J
[4] JH: J,-LC
[5] J
[6] JH LINE 6J
[7] c

 c J
[1] JJ LINE 1J
[2] JJ LINE 2J
[3] JJ LINE 3J
[4] JJ LINE 4J
[5] JJ LINE 5J
[6] JJ: J,-LC
[7] JJ LINE 7J
[8] c

300 APL2 Programming: Language Reference

 -LC

If referenced while execution is halted, -LC contains the number of the last line
activated for each suspended and pendent function, with the most recently acti-
vated line first. Each item of -LC corresponds to a line of the state indicator that
contains a name, as reported by)SI,)SIS, or)SINL.

During debugging, a branch to the line counter (→-LC) resumes execution with the
line number that is the first item of -LC.

 cJ[δ7]c
SI WARNING
 -LC
7 5 3 1 1
 →-LC
J LINE 7
H LINE 6
 -LC
1 1
 -R
b6

 cJ[6�1] """"""c

c Z←FACTR A
[1] Z←�A
 c
 FACTR b3
DOMAIN ERROR
FACTR[1] Z←�A
 ��
 -LC
1
 FACTR b6
DOMAIN ERROR
FACTR[1] Z←�A
 ��
 -LC
1 1
 G
G LINE 1
G: 2 1 1
H LINE 1
H LINE 2
H LINE 3
H: 4 3 1 1
J LINE 1
J LINE 2
J LINE 3
J LINE 4
J LINE 5
J: 6 5 3 1 1
SYNTAX ERROR+
J[7] """"""
 �

 -LC
7 5 3 1 1
)SIS
J[7] """"""
 �
H[5] J
 �
G[3] H
 �
* G
 �
FACTR[1] Z←�A
 ��
* FACTR b6
 �
FACTR[1] Z←�A
 ��
* FACTR b3
 �

 Chapter 6. System Functions and Variables 301

 -LX

-LX Latent Expression

-LX←A Specifies or references the APL2 statement that is automatically
executed (by �-LX) whenever the workspace is loaded.

A: Simple character scalar or vector
Default value: JJ

-LX can be used to display a message, invoke an operation, or resume an inter-
rupted operation. For example, to put the copyright notice into the workspaces dis-
tributed with APL2, the developer loaded the workspace, defined a variable named
COIBM and then set -LX:

| -LX←JCOIBMJ

|)SAVE 1 EXAMPLES
| 1993|05|21 13�59�50 (GMT|7)

When the workspace is loaded, the latent expression is executed automatically.

|)LOAD 1 EXAMPLES
| Saved 1993|05|21 13�59�50 (GMT|7)
| LICENSED MATERIALS | PROPERTY OF IBM
| 5688|228 (C) COPYRIGHT IBM CORP� 1984, 1994�

A reference of -LX yields its current value.

 -LX
COIBM

If single quotation marks enclose a name of a variable, the value of the variable is
displayed. And, if single quotation marks enclose an expression, the expression is
evaluated. In other words, when the workspace is loaded, the execute function is
applied to -LX:

 �-LX

For a character vector to be printed when the workspace is loaded, the string must
be enclosed within three sets of quotation marks. One set encloses the data speci-
fied to -LX, and the other two sets indicate quotation mark characters. See also
“� Execute” on page 120.

-LX←JJJUSE THE XYZ GUIDE WITH THIS WSJJJ

 -LX
JUSE THE XYZ GUIDE WITH THIS WSJ

)SAVE COURSE
| 10�17�24 1993|05|21 (GMT|7)

302 APL2 Programming: Language Reference

 -LX

)LOAD COURSE
| SAVED 10�17�24 1993|05|21 (GMT|7)

USE THE XYZ GUIDE WITH THIS WS

 Chapter 6. System Functions and Variables 303

 -NA

-NA Name Association (Inquire)

Z← -NA R Queries the associations of the objects named in R.

R: Simple character scalar, vector, or matrix of names
Z: Two item vector or two-column matrix

ρZ ←→ (b1↓ρR),2
ρρZ ←→ ,0�b1+ρρR

Each row of Z corresponds to a row of R and provides:

Z[1] The array that was passed to the processor when the name was activated.

Z[2] The processor with which the name is associated.

Names in the APL workspace not otherwise associated are associated with
processor 0 (APL itself). For such names, the name class is returned as the first
item of Z. Invalid names in R return b1 0 in Z.

3 11 -NA JPFAJ
1
 -NA JPFAJ
3 11

J(AP2VN011)J 11 -NA JOPTIONJ
1
 -NA JOPTIONJ
 (AP2VN011) 11
 -EX JDATAJ
1
 DATA←JSTUFFJ
 -NA JDATAJ
2 0

A surrogate name can be specified but must match the original surrogate name.

3 11 -NA JPATTERN PFAJ
1

-NA JPATTERN NEWNAMEJ
b1 0

304 APL2 Programming: Language Reference

 -NA

-NA Name Association (Set)

Z←L -NA R Associates names R with external objects that are accessed
through associated processors. L identifies the external
processors and contains information passed to them. The result
is 1 if the specified association is active, or 0 if it is not.

L: Two-item vector or a two-column matrix
R: Simple character scalar, vector, or matrix of names
Z: Boolean scalar or vector

ρZ ←→ b1↓ρR
ρρZ ←→ ,0�b1+ρρR

Each row of R is interpreted as a name or a name and a surrogate name. Each
row of L corresponds to a row of R and provides:

L[1] An array which is passed to the processor when the name is activated.
The content and use of this array is determined by the processor to which
it is passed.

L[2] A nonnegative integer used to identify the processor. The integer zero
refers to APL itself. Positive integers refer to other associated processors.

The result Z is a Boolean scalar or vector containing items corresponding to the
rows of L and R. A 1 in the result indicates that the corresponding name was
successfully associated with the specified processor and accepted, or activated, by
that processor. A 0 in the result indicates that the corresponding name cannot be
associated with the specified processor or has not been accepted (activated) by
that processor.

Names can be associated through a processor with routines written in languages
other than APL, with values that exist outside the workspace, or with APL objects in
namespaces. Once a name has been successfully associated with a processor
and activated, it behaves like other APL names, except that its value or definition
does not exist in the user's active workspace.

0 11 -NA JDISPLAYJ
 1
 -NC JDISPLAYJ
 3

1 -AT JDISPLAYJ
 1 2 0

DISPLAY JNOWJ JISJ JTHEJ JTIMEJ
 �→||||||||||||||||||||||||�
�→		� �→	� �→		� �→			�				
	NOW		IS		THE		TIME					
J			J J		J J			J J				J
 Jε||||||||||||||||||||||||J

 Chapter 6. System Functions and Variables 305

 -NA

If the processor specified in the left argument of -NA does not exist or if it cannot
satisfy the request to activate a name, or if it returns invalid information when con-
tacted, a 0 is returned as the result of -NA, and the name class of the specified
object does not change.)MORE can provide additional information about the
failure.

If the processor specified in the left argument of -NA does activate the specified
name, it must assign name class and attributes to that name if the name did not
exist previously in the APL workspace. If the name did exist before -NA was
issued, its name class and valence (1 -AT) are not changed as a result of -NA.

 -EX JPFAJ
1

0 11 -NA JPFAJ
1
 -NC JPFAJ
3

1 -AT JPFAJ
1 2 0

An attempt to activate a name that already exists is only successful if the left argu-
ment of -NA matches the original left argument of -NA specified when the name
was originally activated. This original left argument of -NA can be obtained by
issuing monadic -NA for the specified name.

| 0 11 -NA JPFAJ
| 1
| -NA JPFAJ
| 0 11
| 3 11 -NA JPFAJ
| 0
| 0 11 -NA JPFAJ
| 1
| (-NA JPFAJ) -NA JPFAJ
| 1

306 APL2 Programming: Language Reference

 -NA

Processor 0 is APL itself and allows names in the active workspace to be specified
in the left argument of -NA. Processor 0 expects a valid name class (a digit
between 1 and 4) as the first item of the left argument of -NA and returns a 1 if:

� the named object exists
� the named object is not associated with another processor
� the named object has a name class which matches that specified.

A←JTHIS IS A VARIABLEJ
 -NC JAJ
2

2 0 -NA JAJ
1

3 0 -NA JAJ
0

Processor 0 does not establish names that did not previously exist in the work-
space.

Conformability: If R is a scalar or vector, L must be a two-item vector. If R is a
matrix, L must be a two-column matrix with the same number of rows as R, or a
two-item vector, in which case it is reshaped to (b1↓ρR),2 before attempting to
contact the processor.

The following two expressions are equivalent:

| (2 2ρ3 11) -NA 2 3ρJATRRTAJ
| 1 1
| 3 11 -NA 2 3ρJATRRTAJ
| 1 1

Persistence of Associated Names: Once a name has been associated with a
processor and activated (a result of 1 from -NA), that name retains its name
class, valence and association with the processor until explicitly removed by -EX,
)ERASE,)COPY, or)IN. In particular, the association is retained if the work-
space is saved and subsequently reloaded. Associated names can be copied with
)COPY and)PCOPY and retain their name class, valence, and association. An
attempt to establish an associated name with)IN or 2 -TF, fails unless the
specified processor activates the name.)IN returns a NOT COPIED message
for such failures.

When an associated name is erased, the object and storage with which it is associ-
ated is retained until all references to the association are discarded. The other
references could arise because of partially executed expressions on the execution
stack. The command)RESET can be used to discard partially executed
expressions.

Surrogate Names: APL2 permits the use of an alias name for associated names
(except those associated with Processor 0). This alias is called the surrogate name
and can be used to avoid name conflicts. The associated processor recognizes the
surrogate name as the name of the object.

 Chapter 6. System Functions and Variables 307

 -NA

When a row of R contains a pair of names (separated by spaces), the first name in
the pair represents the name of the object to be associated and the second is the
name by which the object is known to the associated processor. For example, the

| following expression associates a function which is referred to as Bld_Struct
| in the workspace, but known as ATR by the associated processor:

| 3 11 -NA JBld_Struct ATRJ
1

If a surrogate is specified for a name already associated with a processor, it must
be the same as the one originally used.

| 3 11 -NA JBld_Struct ATRJ
| 1
| 3 11 -NA JBld_Struct XXXJ
| 0
| 3 11 -NA JBld_StructJ

1

The surrogate name, if one exists, can be determined through the use of 2 -TF:

| 2 -TF JBld_StructJ
| 3 11 -NA JBld_Struct ATRJ

308 APL2 Programming: Language Reference

 -NC

-NC Name Class

Z←-NC R Returns the name class of objects named in R.

R: Simple character scalar, vector, or matrix
Z: Simple integer scalar or vector

 ρZ ←→ b1↓ρR
ρρZ ←→ ,0�b1+ρρR

R is taken to represent constructed names—either user or distinguished. If more
than one name is specified in R, R must be a matrix, with each row representing a
constructed name.

Each item of Z is the name class of the corresponding name in R. The items in Z
have the following meanings:

b1 Invalid name or unused distinguished name
0 Unused but validly constructed user name

 1 Label
 2 Variable
 3 Function
 4 Operator

The following examples use the workspace DUMMY whose contents are shown in
the figure below.

CONTENTS OF THE WORKSPACE DUMMY

Functions

C F G HI ROD

Variables

DRY FAT IOD ME PRO SALT

Operators

HEX MOP TRI

Labels

FLAB X

Figure 34. Sample Workspace for Name List and Name Class System Functions

 Chapter 6. System Functions and Variables 309

 -NC

-NC 2 3ρJDRYC J
2 3

-NC �JRODJ JPROJ JMOPJ
3 2 4

Symbols representing primitive functions and operators are classified as invalid
names. Distinguished names are treated like functions and variables. A distin-
guished name unassociated with a value is considered invalid.

An undefined name is classified as a variable if it has been shared but not yet
assigned.

102 -SVO¨ JCTL102J JDAT102J
2 2

-NC �[2] JCTL102J JDAT102J
2 2

Name Class of Local Names: If -NC is used during the execution of a defined
operation or if execution is suspended or stopped, the name class of labels, param-
eters, and other local names can be queried. The name class is given for local
objects, not for similarly named global objects, which are shadowed by the local
objects.

cZ←L F R
[1] Z←-NC 2 1ρJLRJ
[2] c
 F 2
0 2

4 F 2
2 2

cZ←L(F OP G)R;V X
[1] TAG:V←1
[2] -NC 8 3ρJL F OP G R V X TAGJ
[3] c

3 +OP
 6
2 3 4 3 2 2 0 1

 (+OP 2)6
0 3 4 2 2 2 0 1

-NC 4 1ρJ*<5[J
b1 b1 b1 b1

-NC 2 1ρJXJ JZJ
0 0

-NC 3 3ρJ-EA-TS-KZJ
3 2 b1

310 APL2 Programming: Language Reference

 -NL

-NL Name List (by Alphabet and Class)

Z←L -NL R Lists labels, variables, functions, and defined operators in the
active workspace whose name class is R and whose first char-
acter is in L.

L: Simple character scalar or vector
R: Simple positive integer scalar or vector, Rει4
Z: Simple character or empty matrix

The values of R have the following meanings:

 1 Label
 2 Variable
 3 Function
 4 Defined operator

The examples in this discussion refer to the workspace DUMMY shown in
Figure 34 on page 309.

If L is a vector, Z contains all objects in the name class R whose names begin
with an item of L.

If R is a vector, Z is a list of all objects in the name classes R whose names begin
with an item of L.

JHJ -NL 3
HI

JHJ -NL 4
 HEX

JCFJ -NL 3
C
F

JHMTJ -NL 4
 HEX
 MOP
 TRI

JFJ -NL 2 3
F
FAT

JFHJ -NL 2 3
 F
 FAT
 HI

 Chapter 6. System Functions and Variables 311

 -NL

If executed while a defined function or operator is halted, L -NL R returns a list
of objects that includes labels and local names. The name class of local objects
shadows the name class of global objects of the same name.

JFXJ -NL 1 2 3
F
FAT

 SδF←1
 F 3
 F[1]

JFXJ -NL 1 2 3
 F
 FAT
 FLAB
 X

312 APL2 Programming: Language Reference

 -NL

-NL Name List (by Class)

Z←-NL R Lists labels, variables, functions, and defined operators
in the active workspace whose name class is R.

R: Simple positive integer scalar or vector, Rει4
Z: Simple character or empty matrix

The values of R have the following meanings:

 1 Label
 2 Variable
 3 Function
 4 Defined operator

The examples in this discussion refer to the workspace DUMMY shown in
Figure 34 on page 309.

If R is a vector, Z is a list of all objects in the name classes R.

If executed while a defined function or operator is halted, -NL R returns a list of
objects that includes labels and local names. Within a class, local objects are
listed. Any similarly named global objects are shadowed by the local objects.

 -NL 4
HEX
MOP
TRI

 -NL 3
 C
 F
 G
 HI
 ROD

-NL 3 4
 C
 F
 G
 HEX
 HI
 MOP
 ROD
 TRI

-NL 1 2
DRY
FAT
IOD
ME
PRO
SALT

 SδF←1
 F 3
 F[1]

-NL 1 2
 DRY
 FAT
 FLAB
 IOD
 ME
 PRO
 SALT
 X

 Chapter 6. System Functions and Variables 313

 -NLT

-NLT National Language Translation

-NLT←A Specifies or references the name of the national language in which
system messages are reported and system commands can be
entered. (System commands can also be entered in American
English regardless of the current language. Any messages not
defined in the current language are displayed in uppercase Amer-
ican English.)

A: Simple character vector
Default value: Installation-dependent
Variable type: Session

When associated with a value available to the system, -NLT sets the corre-
sponding language as the language for the text of system commands and mes-
sages. If -NLT is set to be empty or blank, uppercase American English is used
(though commands can still be entered in mixed case). Any other assignment to
-NLT is ignored, and its last valid value is retained. Leading and trailing blanks in
the value assigned to -NLT are ignored.

In most cases, either the spelled-out language name, or a three-character abbrevi-
ation adopted across IBM products can be assigned to -NLT, but the three-
character abbreviation is never returned when -NLT is referenced.

The initial value of -NLT at the beginning of each session is an installation attri-
bute. The system is shipped with a default of mixed-case English, but that default
can be changed for any installation.

If the installation-specified language is not available in the system, -NLT is initial-
ized to an empty character vector, yielding uppercase English.

If an invalid value is assigned to -NLT during the APL2 session (the language is
not available, or the language file contains formatting errors), it remains set to its
last valid value.

 -NLT←JNORJ
)AOID
ER AO NULLSTILT
 -NLT
NORSK
 -NLT←JMARTIANJ
 -NLT
NORSK
 -NLT←JJ
)WSID
IS CLEAR WS

Note: If -NLT is set to a value for which a user-defined language table exists,
and there is an error in that table, the previous value of -NLT is restored.
This is treated like an implicit error, so normally no error message is dis-
played. One or more messages describing the problem have been queued,
though, and can be displayed using)MORE.

314 APL2 Programming: Language Reference

 -PP

-PP Printing Precision

-PP←A Specifies or references the number of significant digits in the
display of numbers.

A: Positive integer scalar
Default value: 10
Variable type: Implicit argument

The minimum value for -PP is 1. If -PP is specified at or above the maximum
precision displayed by the system, all available precision is displayed.

However, in some cases, -PP does not influence the display of integers.

 -PP←1
 333
333

If -PP is assigned an invalid value or erased and then implicitly used by format, a
-PP ERROR results.

A reference of -PP yields its current setting.

Implicit Argument: -PP is an implicit argument of default format (�), page 135,
| and output of numbers.

 2÷3
0�6666666667

 -PP←200
 7÷9
 0�77777777777777778
 -PP
 18

 Chapter 6. System Functions and Variables 315

 -PR

-PR Prompt Replacement

-PR←A Controls the interaction between an assignment (the prompt) and
a successive reference (the reference) of the character
input/output system variable (.).

A: Character scalar or vector of length 1 or empty vector
Default value: 1ρJ J (character blank)
Variable type: Implicit argument

The character assigned to -PR replaces the unchanged characters in the prompt
(last row of character array assigned to .), becoming the first part of the response

| vector. The remainder of the response vector contains data that was changed or
| added by the session manager.

All the examples below use the following defined function:

 cZ←F
[1] .←JENTER NAME: J
[2] Z←.
[3] c

Any part of the prompt that is changed by session input is not affected by the value
of -PR.

 -PR←J J
 RESULT←F
ENTMCMILLAN User input replaces

part of the prompt.
 ρRESULT
12
 RESULT
 MCMILLAN

 -PR←J J
 RESULT←F
ENTER NAME: MCMILLAN
 ρRESULT
20
 RESULT
 MCMILLAN

 -PR←J*J
 RESULT←F
ENTER NAME: MCMILLAN

 ρRESULT
 20
 RESULT
 ************MCMILLAN

316 APL2 Programming: Language Reference

 -PR

If -PR is an empty vector, unchanged characters in the prompt are not replaced,
and the response vector contains unchanged prompt characters and the session
input.

A reference of -PR returns its current value.

If -PR is assigned an invalid value or erased and then implicitly used by format, a
-PR ERROR results.

 -PR←JJ
 RESULT←F
ENTER NAME: MCMILLAN
 ρRESULT
20
 RESULT
ENTER NAME: MCMILLAN

 RESULT←F
 ENTER MCMILLAN
 ρRESULT
 14
 RESULT
 ENTER MCMILLAN

 Chapter 6. System Functions and Variables 317

 -PW

-PW Printing Width

-PW←A Specifies or references the number of characters displayed per
line of output.

A: Positive integer scalar
Default value: System and device dependent
Variable type: Session

The minimum value that can be assigned to -PW is 30. If an invalid value is speci-
fied, it is ignored. Display of an array R wider than the value of -PW is folded at or
just before the column specified by -PW. The folded portions are indented six
spaces and are separated from the first part by N blank lines, where N is
0�b1+ρρR.

 W←JSUPERCALIFRAGILISTIC|EXPIALIDOCIOUSJ
 ρW
35
 -PW←30
 W
SUPERCALIFRAGILISTIC|EXPIALIDO
 TIOUS

The rows of a matrix are folded together and the pages of a multidimensional array
are folded together.

 -PW
30
 2 36ρJAAaBBbCCcDDdEEeFFfGGgHHhIIiJJjKKkLLlJ
AAaBBbCCcDDdEEeFFfGGgHHhIIiJJj
AAaBBbCCcDDdEEeFFfGGgHHhIIiJJj

 KKkLLl
 KKkLLl

The display of a simple array containing numbers may be folded at a width less
than -PW so that individual numbers are not split.

2 3"��10 20 30
3�321928095 4�321928095
2�095903274 2�726833028

 4�906890596
 3�095903274

If -PW is small and -PP is large, the display of some complex numbers in a
simple array may extend beyond -PW. If -PW is at least 13+2
-PP, individual
numbers in a simple array do not exceed -PW. Numbers in a nested array may be
split with any value of -PP.

A reference of -PW yields its current value.

318 APL2 Programming: Language Reference

 -R

-R Right Argument

-R←A If the first line of the state indicator contains a function whose exe-
cution was suspended by an error or an interrupt, -R is the array
value of its right argument. -R can be respecified and execution
resumed at the point of the error or the interrupt by →ι0.

A: New right argument
Default value: None
Variable Type: Debug

-R is set when an error or interrupt occurs in a primitive function. Effectively, it is
automatically local to a function called by a line entered in immediate execution and
exists only while the statement in error is suspended.

cZ←F R
[1] Z←(R
1 2)+3 4 5
[2] c
 F 10
LENGTH ERROR
F[1] Z←(R
1 2)+3 4 5
 � �
 -R
3 4 5
 -R←3 4
 →ι0
13 24

If there is not enough room in the workspace to suspend the statement in error, WS
FULL is reported. -EM is set to a character matrix of shape 3 0, and -R and
-L are not set.

With VALUE ERROR or SYNTAX ERROR: If the error is a VALUE ERROR
or a SYNTAX ERROR, any respecification of -R is ignored. If -R has not been
set by the system, a subsequent reference to -R results in a VALUE ERROR.

 Chapter 6. System Functions and Variables 319

 -R

h -R ASSIGNMENT IGNORED
 cZ←FA R
[1] Z←(R
1 2)+3(4(5)
[2] c
 FA 1
SYNTAX ERROR+
FA[1] Z←(R
1 2)+3(4(5)
 �
 cFA[-1]
[1] Z←(R
1 2)+3(4(5)
[1] Z←(R
1 2)+3(4 5)
[2] c
SI WARNING+

 -R
4 5
 -R←88 89
 →ι0
SYNTAX ERROR+
FA[b1]
 →1
 4 6 7

h -R VALUE ERROR
 cZ←FB R
[1] Z←(R
1 2)+
[2] c
 FB 3
SYNTAX ERROR+
FB[1] Z←(R
1 2)+
 � �
 -R←4 5
 →ι0
SYNTAX ERROR+
FB[1] Z←(R
1 2)+
 � �
 -R
VALUE ERROR+
 -R
 �

320 APL2 Programming: Language Reference

 -R

Effect of Resuming Execution: Note that the branch expression →ι0 causes the
suspended function to restart at the point of the error with the new value of the right
argument. Everything in the statement to the right of the leftmost caret was evalu-
ated prior to the error; only the function indicated by the rightmost caret is re-
evaluated when execution begins.

FR 4 5 6
1�333333333 3�333333333 6

FR 4 5
LENGTH ERROR
FR[1] Z←(1 2 3
A)÷ρA
 � �
 -R
4 5

-R←4 5 6
 →ι0
2 5 9

Because the final result can be misleading, it is important to know where execution
resumes after respecification of -R. It can be especially important if the statement
in error contains shared variables or defined functions or operators.

-R and the State Indicator: As the state indicator is cleared (with → or)RESET
n), -R is reset to the right argument of the primitive function associated with the
current first line of the state indicator, if its execution was suspended by an error or
an interrupt.

If the state indicator is clear or if the error associated with the first line in the state
indicator is not in a primitive function, -R has no value.

 Chapter 6. System Functions and Variables 321

 -RL

-RL Random Link

-RL←A Used or set to establish a basis for calculating random numbers.

Data: Simple positive integer scalar less than or equal to b2+2*31
Default value: 16807
Variable type: Implicit argument

The random number algorithm uses the value of -RL in its calculation of a random
number and sets -RL to a new value after the random number is calculated.

Because the random numbers selected by roll and deal are determined by an algo-
rithm, they are not truly random numbers, but rather are pseudo-random numbers.
A collection of them, however, satisfies many tests for randomness.

Repeatable results can be obtained from the functions roll (
R) and deal (L
R) if
-RL is first set to a particular value: For example, setting -RL to 16807 and
then entering
5 returns a 1, as in the previous example.

 -RL←16807

5
1

If -RL is assigned an invalid value and then implicitly used by roll or deal, a -RL
ERROR results.

A reference of -RL yields its current value.

 -RL
16807

5
1

 -RL
 282475249

5
 4

322 APL2 Programming: Language Reference

 -SVC

-SVC Shared Variable Control (Inquire)

Z←-SVC R Returns the access control vectors imposed on the variables
named in R.

R: Simple character scalar, vector, or matrix
Z: Simple Boolean vector or matrix

 ρZ ←→ (b1↓ρR),4
ρρZ ←→ ,1�ρρR

Each row of R is interpreted as a variable name. Z contains a four-item access
control vector for each corresponding variable name in R. The meaning of the
items is given with -SVC, shared variable control (set), page 324.

 -SVC JCTL102J
0 0 0 0

102 -SVO JCTL102J
2
 -SVC JCTL102J
0 0 0 1

The access control vector 0 0 0 0 denotes either that no access control was
set by either partner or that the variable has not been offered.

 Chapter 6. System Functions and Variables 323

 -SVC

-SVC Shared Variable Control (Set)

Z←L -SVC R Sets the protocol (access control vector L) regulating the
sequences for the setting and use of the variable(s) R by the
two partners and returns the resulting access control vector.

L: Simple Boolean scalar, vector, or matrix
R: Simple character scalar, vector, or matrix
Z: Simple Boolean vector or matrix

 ρZ ←→ (b1↓ρR),4
ρρZ ←→ ,1�ρρR

Each row of R is interpreted as a variable name. Each row of L is interpreted as
the corresponding access control vector for the name or names in R. The access
control vector indicates whether repeated attempts to set or use a variable by one
partner require an intervening use or set by the other.

| 2001 -SVO JXJ
| 1
| 0 1 0 1 -SVC JXJ
| 0 1 0 1

Z contains the resulting access control vectors imposed on each variable name in
R. The resulting access control for each variable may be more restrictive than
specified by L because a processor can only increase the degree of control
imposed by the other processor.

 -SVC JCTL3J
0 0 0 1

1 0 1 0 -SVC JCTL3J
1 0 1 1

324 APL2 Programming: Language Reference

 -SVC

Zeros in the access control vector are interpreted as no control imposed. Ones in
the access control vector are interpreted as follows (the first processor refers to the
user's processor; the second processor refers to the processor with which sharing
is taking place).

First Item Two successive sets by the first processor require an intervening set
or use by the second processor.

Second Item Two successive sets by the second processor require an intervening
set or use by the first processor.

Third Item Two successive uses by the first processor require an intervening set
by the second processor.

Fourth Item Two successive uses by the second processor require an intervening
set by the first processor.

If a variable has a degree of coupling of 0, any specified access control vector
results in an imposed access control vector of 0 0 0 0.

| Posting Rules: A partner in sharing is not notified of your use of a shared vari-
| able unless that use is regulated.

Conformability: L must be a matrix of shape ((b1↓ρR),4), a vector of
length 4, or a scalar. If L is a scalar or a vector, it is reshaped to
((b1↓ρR),4) before access control vectors are applied to R:

1 -SVC JCTLJ
1 1 1 1

1 0 1 0 -SVC 2 4ρJCTL CTL3J
1 0 1 1
1 0 1 1

L←2 4ρ1 1 0
 L
1 1 0 1
1 0 1 1

L -SVC 2 4ρJCTL CTL3J
1 1 0 1
1 0 1 1

 Chapter 6. System Functions and Variables 325

 -SVE

-SVE Shared Variable Event

-SVE←A Specifies the amount of time in seconds to be used in a wait for a
shared variable event and starts the timer.

X←-SVE Suspends execution until the specified number of seconds has
elapsed or a shared variable event occurs, as described below.
When an event occurs, returns the time remaining in the timer.

A: Simple nonnegative scalar
Default value: 0
Variable type: Localizing -SVE has no effect.

Assignment—Start the Timer: When -SVE is assigned a positive value n, a
countdown from n seconds begins.

Use—Check for Events or Wait for One: If an event does not exist, execution is
suspended until one occurs. The next section lists shared variable events.

If an event exists or if an event occurs during the suspension period:

� The use of -SVE completes and the value of the timer is returned.
� All events are cleared, even those on shadowed variables.

For example, the function SHR waits for up to 5 seconds for an offer to be
matched.

cZ←AP SHR SHRVAR
[1] -SVE←5
[2] h EXIT IF REJECT OR MATCH
[3] TRY:→(1≠Z←AP -SVO SHRVAR)/0
[4] h WAIT FOR SHARED VARIABLE EVENT
[5] →(0≠-SVE)/TRY
[6] c

Shared Variable Events: A shared variable event occurs when one of the fol-
lowing happens:

� An incoming offer to share a variable does not match a pending offer (made by
you).

� Your partner matches a pending (or outstanding) offer from you or retracts a
variable already shared.

� Your partner sets the access control vector (any dyadic -SVC) on a fully-
shared variable.

� The -SVE timer expires.

� Your partner attempts to access a variable under the situations shown in
Figure 35 on page 327. ACV used in the figure represents the left argument
of -SVC. Note that the access state vector may or may not change.

326 APL2 Programming: Language Reference

 -SVE

A shared variable event does not occur if:

� You specify -SVE.

� Your partner uses one of the following inquiry system functions:
-SVO R, -SVC R, -SVQ R, -SVS.

Other Circumstances That Clear Events: In addition to all events being cleared
when reference to -SVE is completed, events for all variables are cleared when
the active workspace is replaced using the commands)CLEAR,)LOAD, or
)OFF.

Also an event for a single variable is cleared when:

� You set or use the variable.

� Your attempt to access the variable is unsuccessful because of something
other than access constraints (for example, WS FULL).

� The variable is retracted (explicitly or implicitly).

You can explicitly clear all events by setting -SVE to 0 and then using it:

 -SVE←0
 -SVE
0

Figure 35. Accesses to Variable That Signal a Shared Variable Event

Constraints

(Per ACV Settings)

Event Occurs If

ACV[1] ←→ 1

(Two successive sets by me require an
intervening set or use by my partner.)

My partner uses the variable, causing a
change to the access state vector.

ACV[2] ←→ 1

(Two successive sets by my partner require
an intervening set or use by me.)

My partner attempts to set the variable, but
the specification cannot be completed
because of access control constraint. This
does not cause a change to the access
state vector.

ACV[3] ←→ 1

(Two successive uses by me require an
intervening set by my partner.)

My partner sets the variable, causing a
change to the access state vector.

ACV[4] ←→ 1

(Two successive uses by my partner require
an intervening set by me.)

My partner attempts to use the variable, but
the use cannot be completed because of
access control vector constraint. This does
not cause a change to the access state
vector.

 Chapter 6. System Functions and Variables 327

 -SVO

-SVO Shared Variable Offer (Inquire)

Z←-SVO R Returns the degree of coupling for the variables named in R.

R: Simple character scalar, vector, or matrix
Z: Integer scalar or vector in the set 0 1 2
 ρZ ←→ b1↓ρR
ρρZ ←→ ,0�b1+ρρR

Each row of R is interpreted as a variable name.

Z contains the degree of coupling for each corresponding variable name in R, as
described in Figure 13 on page 61.

| 211 -SVO JXJ
| 1
| -SVO JXJ
| 2

| R ← 2 3ρJCTLDATJ
| 124 -SVO R
| 1 1
| -SVO R
| 2 2

328 APL2 Programming: Language Reference

 -SVO

-SVO Shared Variable Offer (Set)

Z←L -SVO R Offers variables named in R to processors identified in L.
The result is the degree of coupling, indicating whether the
attempt to share was successful:
0 - Unshared
1 - Offered
2 - Shared (coupled)

L: Simple integer scalar or vector
R: Simple character scalar, vector, or matrix of names
Z: Integer scalar or vector in set 0 1 2

 ρZ ←→ b1↓ρR
ρρZ ←→ ,0�b1+ρρR

Each row of R is interpreted as a variable name. Each integer in L identifies the
corresponding processor for a variable name in R.

127 -SVO JCTLJ
1

Note: The variable is not fully coupled until the processor with whom you have
offered to share counters your offer with an offer of a variable of the same
name.

| If the degree of coupling is 1 or 2, a repeated offer has no further implicit
| result and either monadic or dyadic -SVO can be used for inquiry.

Conformability: L must have the same number of items as R has rows (ρL ←→
b1↓ρR) or L can be a scalar, in which case it is reshaped to b1↓ρR before the
shared variable offer is attempted. The following offers two variables to AP 211:

| 211 -SVO JVAR1J
| 1
| 211 -SVO JVAR2J
| 1

 Chapter 6. System Functions and Variables 329

 -SVO

The same offers can also be made with the expression:

| 211 -SVO 2 4ρJVAR1VAR2J
| 1 1

Or with:

| 211 -SVO¨ JVAR1J JVAR2J
| 1 1

Surrogate Names: To maintain compatibility between two independent
processors, APL2 permits the use of an alias name for a shared variable. This
alias is called the surrogate name. The surrogate name is the name by which the
variable is known to the processor to which the offer is being made.

When a row of R contains a pair of names (separated by a space), the first name
in the pair represents the name of the variable to be shared and the second is the
name by which the variable is known by your partner. For example:

| 124 -SVO JMYCNTL C124J

| AP 124 (the APL2 text display auxiliary processor) requires its control variable to
start with C. The variable name used in the APL2 operation that offers the variable
to AP 124, however, is MYCNTL.

(The name of a variable may be its own surrogate, which is the default when no
surrogate name is specified.)

General Share Offer: A share offer to processor 0 is interpreted as a general
share offer to any available processor. A general offer is coupled by the first spe-
cific offer to the caller from any processor of a variable with the same name.
General offers are not coupled with general offers, and a general offer does not
cause a shared variable event to occur.

330 APL2 Programming: Language Reference

 -SVQ

-SVQ Shared Variable Query

Z←-SVQ R Identifies processors making share offers or returns the names
of variables being offered by an identified processor but not yet
matched by you.

R: Simple integer scalar or one-item vector or empty vector
Z: Integer vector or a character matrix

 ρZ ←→ unpredictable
ρρZ ←→ ,1 if R is empty; otherwise ,2

R is an empty vector or contains the identification of a processor.

If R is an empty vector, Z is an integer vector of identifications for processors
making share offers to you. For example:

126 -SVO JCTL126J
2
 -SVQ ι0
126

If R is not empty, Z is a character matrix containing the names of variables not yet
shared but being offered by the processor identified in R. For example:

 -SVQ 126
DAT126

 Chapter 6. System Functions and Variables 331

 -SVR

-SVR Shared Variable Retraction

Z←-SVR R Requests retraction of each shared variable named in R and
returns its prior degree of coupling.

R: Simple character scalar, vector, or matrix
Z: Simple integer scalar or vector

 ρZ ←→ b1↓ρR
ρρZ ←→ ,0�b1+ρρR

Each row of R is interpreted as a variable name. Z contains the degree of cou-
pling prior to the retraction for each corresponding variable name in R. Figure 13
on page 61 defines each degree of coupling. After a variable is retracted, it is no
longer shared. (Its degree of coupling is less than 2.) For example:

 CTL←JJ
 -SVO JCTLJ
2
 -SVR JCTLJ
2
 -SVO JCTLJ
0

Multiple variables can be retracted in the same statement using the each (¨) oper-
ator or a character matrix. For example, the following two retractions have the
same effect:

-SVR¨ JCTL123J JDAT123J
2 2

-SVR 2 6ρJCTL123DAT123J
2 2

All shared variables can be retracted using the system function -NL (name list),
page 313:

 -NL 2
A
B
C

| CTL124
| DAT124

| -SVR -NL 2
| 0 0 1 2 2

| A and B in the example are not shared variables. Variable C had been shared, but
| the share had not been matched by the partner at the time of the retract.
| CTL124 and DAT124 had been fully-coupled shares.

332 APL2 Programming: Language Reference

 -SVR

If a shared variable has no value when retracted, it does not persist in the work-
space after retraction.

Implicit Retraction of a Shared Variable: A variable may be retracted implicitly
by any of the means listed below:

� You use)ERASE or -EX (expunge) to delete a shared variable from your
active workspace.

� You exit from a defined function that has the shared variable declared as a
local variable.

| � You use)COPY to copy a variable with the same name as a currently shared
variable.

� You use)IN or -TF (transfer form) to establish a variable or function with the
same name as a currently shared variable.

� You use one of the following system commands:

 –)CLEAR
 –)LOAD
 –)OFF
 –)CONTINUE

 Chapter 6. System Functions and Variables 333

 -SVS

-SVS Shared Variable State

Z←-SVS R Returns the access states of each variable named in R.

R: Simple character scalar, vector, or matrix
Z: Simple Boolean vector or matrix

 ρZ ←→ (b1↓ρR),4
ρρZ ←→ ,1�ρρR

The access state vector indicates which partner knows the current value and which
partner last set a value unknown to the other partner.

Each row of R is interpreted as an APL2 name (variable name). Z contains a
four-item vector of access states for each corresponding variable name in R.

A vector of access states may have one of the following four values. (First

processor refers to the user's processor. Second processor refers to the processor
with which sharing is taking place.)

For example:

 -SVO JCTLJ
2

1 0 0 1 -SVC JCTLJ
1 0 0 1
 CTL←JSOMETHINGJ
 -SVS JCTLJ
0 1 0 1
 RETURN←CTL
 -SVS JCTLJ
0 0 1 1

0 0 0 0 Not a shared variable.

0 0 1 1 Set by one of the processors and used by the
other. Also signifies the initial state before
either partner sets a value.

1 0 1 0 Set by the first processor, not yet used by the
second.

0 1 0 1 Set by the second processor, not yet used by
the first.

334 APL2 Programming: Language Reference

 -TC

-TC Terminal Control Characters

-TC Contains a three-item character vector of terminal control characters:

 -TC[1]—backspace
-TC[2]—new line (return)

 -TC[3]—line feed

Variable type: Specifying or localizing -TC has no effect.

References of items of -TC cause the terminal to display the corresponding char-
acter. Use -TC rather than -AV to avoid system dependencies (because the
order of -AV is different in different APL implementations).

Backspace: On display terminals, the character specified after -TC[1]
replaces the character specified before it. On typewriter-like terminals, the second
character overstrikes the first character.

New Line: After -TC[2], the cursor or print element carrier is positioned at the
left margin of the next line.

 JNEWJ,-TC[2],JLINEJ,-TC[2],JCHARACTERJ
NEW
LINE
CHARACTER

Line Feed: After -TC[3], the cursor or print element carrier is positioned on the
next line at the same column position.

 JLINEJ,-TC[3],JFEEDJ,-TC[3],JCHARACTERJ
LINE
 FEED
 CHARACTER

Display

Typewriter

 JcJ,-TC[1],J J

 JcJ,-TC[1],J J
 �

 Chapter 6. System Functions and Variables 335

 -TF

-TF Transfer Form

Z←L -TF R Creates the transfer form as specified in L of a variable, dis-
| playable defined operation, or external object named in R.

Or can establish an object in the active workspace from R,
which is of transfer form L.

L: Simple integer scalar or one-item integer vector
R: Simple character scalar or vector
Z: Simple character vector

L contains an integer (1 or 2) that specifies either the migration transfer form or
the extended transfer form:

The migration transfer form (L is 1) represents the name and value of a simple and
nonmixed variable or a displayable defined function. It is not permitted for nested
or mixed variables or defined operators.

The migration form vector consists of four parts:

1. A data type code header character:

JFJ for a function
JNJ for a simple numeric array
JCJ for a simple character array

2. The object name, followed by a blank.

3. A character representation of the rank and shape of the array, followed by a
blank.

4. A character representation of the array items in row-major order (any numeric
conversions are carried to 18 digits).

The extended transfer form (L is 2) is a simple character vector that represents the
| name and value of a variable, a displayable defined function or operator, or an
| external object. It is permitted for any variable and displayable defined operation.

Creating the Extended or Migration Transfer Form
See Appendix B, “APL2 Transfer Files and Extended Transfer Formats” on
page 484 for further details about transfer form.

Of a Variable or Defined Operation: If R is the name of a variable or displayable
defined operation, Z is a character vector that is the transfer form specified in L
for that object.

336 APL2 Programming: Language Reference

 -TF

Example 1: Transfer Forms of a Function

 cZ←ITEMS R
[1] Z←1
[2] →(0ερR)/0
[3] Z←
/ρR
[4] c

h MIGRATION TRANSFER FORM

Z←1 -TF JITEMSJ
 ρZ
49
 Z
FITEMS 2 4 9 Z←ITEMS RZ←1 →(0ερR)/0Z←
/ρR

h EXTENDED TRANSFER FORM

Z←2 -TF JITEMSJ
 ρZ
42
 Z
-FX JZ←ITEMS RJ JZ←1J J→(0ερR)/0J JZ←
/ρRJ

Example 2: Transfer Forms of a Simple Variable

 A←JJ A←2 3ρ1'ι6
1 -TF JAJ 1 -TF JAJ

 CA 1 0 NA 2 2 3 2 3 4 5 6 1
2 -TF JAJ 2 -TF JAJ

 A←JJ A←2 3ρ2 3 4 5 6 1

A←J DonJJt J A←�000000000001
1 -TF JAJ 1 -TF JAJ

 CA 1 7 DonJt NA 0 1Eb12
2 -TF JAJ 2 -TF JAJ

 A←J DonJJt J A←1Eb12

Example 3: Transfer Forms of an APL2 Variable

A←(JJ (ι0))(JQJ 3�2)(2+3
ι4) JDonJJtJ
B←�(�1 0 1) (2 3ρ4 6)
C←-AF 256⊤¨(�300 66),¨-AF JABJ h Kanji

 DISPLAY A
 �→||�
�→								� �→				� �→								� �→				�
	�(� �(�		Q 3�2		5 8 11 14		DonJt																	
				0		J+				J J�								J J					J	
	J	J J�J																						

 | Jε||||||||J |
 Jε||J

2 -TF JAJ
 A←(JJ(0ρ0))(JQJ 3�2)(5|3
-IO|ι4)JDonJJtJ

 Chapter 6. System Functions and Variables 337

 -TF

 DISPLAY B
 �|||||||||||||||||||||||||�
�→																				�
	�									� �→				�						
		�→				�	↓4 6 4													
			1 0 1			6 4 6														
		J�				J	J�				J									
	Jε								J											
Jε																				J

 Jε||||||||||||||||||||||||J
2 -TF JBJ

B←�(�1 0 1)(2 3ρ4 6 4 6 4 6)
 DISPLAY C
 �→|�
 |ωω|
 J||J

2 -TF JCJ
C←-AF 19677889 19677890

| Note: 1 -TF is not supported for any of these cases, and returns an empty
| result.

Example 4: Transfer Form of an External Object

000 11�0 -NAJsee DISPLAYJ
 1

1 -TF JseeJ h No migration form

2 -TF JseeJ h Extended transfer form
 0 11 -NA Jsee DISPLAYJ

Of a System Variable: If R contains the name of a system variable, Z contains
the transfer form specified by L of the variable at its current value:

2 -TF J-TSJ
-TS←1992 3 27 14 34 4 724

Of a System Function: If R contains the name of a system function, Z is an
empty character vector. (System functions are not displayable.)

Z←2 -TF J-DLJ
 ρZ
0

Of a Shared Variable: If R is the name of a shared variable, creating its transfer
form constitutes a reference of the variable. The value of Z depends upon the
value of L and the value of the variable at the time of the reference:

101 -SVO JCTLJ
2

2 -TF JCTLJ
CTL←0

338 APL2 Programming: Language Reference

 -TF

Creating the Inverse Transfer Form
If R is the transfer form specified by L of a variable or defined operation, that vari-
able or defined operation is established in the active workspace. Z is a simple
character vector containing the object's name. Such use of -TF is known as the
inverse transfer form.

)CLEAR
CLEAR WS

SCORES←34 18 20
R←1 -TF JSCORESJ

)VARS
R SCORES
)ERASE SCORES
)VARS
R

1 -TF R
SCORES

)VARS
R SCORES

If the transfer form in R is invalid, Z is an empty character vector (JJ).

 Chapter 6. System Functions and Variables 339

 -TS

-TS Time Stamp

-TS Contains the current system date and time.

Variable type: Localizing or specifying -TS has no effect.

The time stamp -TS is a simple integer vector composed of the following seven
items:

 -TS[1] Current year
 -TS[2] Current month
 -TS[3] Current day
 -TS[4] Current hour
 -TS[5] Current minute
 -TS[6] Current second
 -TS[7] Current millisecond

The value of -TS is offset from Greenwich Mean Time (GMT) according to the
value of the Time Zone system variable (-TZ), page 341.

 -TS
1992 3 27 21 6 43 251
 -TZ
b4
 -TZ←b10
 -TS
1992 3 27 15 6 48 247

Use format by example (�), page 139, to display the date and time in different
formats.

 J0006/06/00 06:06:06:000J�-TS
1992/03/27 08:12:30:548

J06/06/00 06:00J�100 -TS[2 3 1 4 5]
03/27/92 08:12

340 APL2 Programming: Language Reference

 -TZ

-TZ Time Zone

-TZ←A Specifies or references the offset in hours between local time and
Greenwich Mean Time (GMT).

A: Simple real scalar
Variable type: Session
Default value: Installation-dependent

The value of -TZ affects the current hour reported by -TS (page 340). -TZ
must be in the range b12 -TZ and -TZ 12. For example, b5 is Eastern
Standard Time, and 1 is Central European Standard Time. Although usually an
integer, the value associated with -TZ may be a fraction.

 -TZ
b4
 -TS
1992 3 27 8 35 53 829

 -TZ←5
 -TS
1992 3 27 17 35 56 926

-TZ affects the time stamp reported by the system commands)CONTINUE,
)COPY,)DROP,)LOAD,)PCOPY,)SAVE, and)TIME; it also affects the
time stamp reported for defined functions and operators in 3 -AT R or when
displayed.

An invalid value assigned to -TZ is ignored.

 -TZ←12�5
 -TS
1992 6 28 17 36 11 931

 Chapter 6. System Functions and Variables 341

 -UCS

| -UCS Universal Character Set

| Z←-UCS R Converts integers to characters and characters to integers using
| the ISO 10646 standard, which includes the Unicode subset.

| R and Z: A simple numeric integer array or a simple character array

| Integers in R must be nonnegative and less than 2*31.

| -UCS on characters produces the integer that specifies the character position in
| the universal character set given in Figure 71 on page 475. These numbers are
| platform independent.

| -UCS on numbers produces the corresponding character.

| -UCS JρA BJ
| 9076 65 32 66

342 APL2 Programming: Language Reference

 -UL

-UL User Load

-UL Contains the number of users on a system where that number can
be determined.

Variable type: Localizing or specifying -UL has no effect.

-UL is a simple nonnegative integer scalar. Its value is 0 on systems in which the
number of users cannot be determined.

 Chapter 6. System Functions and Variables 343

 -WA

-WA Workspace Available

-WA Contains the number of available bytes in the active workspace.

Variable type: Localizing or specifying -WA has no effect.

-WA is a simple nonzero integer scalar. Depending on the APL2 implementation,
the value of -WA can vary between two situations that appear to be the same.

344 APL2 Programming: Language Reference

Chapter 7. Defined Functions and Operators

| This chapter discusses functions and operators in terms of:

| � Structure
| � Definition contents
| � Execution
| � Debug controls

Many problems can be solved by merely entering APL2 expressions in immediate
execution mode. However, when a series of expressions needs to be entered
repeatedly in different situations, when a general solution can be applied to several
similar problems, or when expressions should be executed based on certain condi-
tions, you may prefer to define an operation (a function or operator) to hold the
necessary code.

A defined function or operator is fixed or established in the active workspace in one
of the following ways:

� Defined, using one of the APL2 editors. (The editors are discussed in
Chapter 9, “The APL2 Editors” on page 375.)

� Fixed, using the system function -FX or -TF, which changes a character
representation of the operation to an executable form. (-FX is discussed in
“-FX Fix (No Execution Properties)” on page 292 and “-FX Fix (with Exe-
cution Properties)” on page 294, and -TF is discussed in “-TF Transfer
Form” on page 336.)

| � Copied, using one of the copy system commands—)COPY or
|)PCOPY—brought into the active workspace as a result of the system

command)LOAD, or retrieved from a transfer file using the system commands
|)IN or)PIN. (These system commands are discussed in “Storing and

Retrieving Objects and Workspaces” on page 414.)

When a defined function or operator is invoked, the statements in it are executed.
For example, the defined function ROUND shown below rounds a number to a
specified number of decimal places. If no number of places is indicated, two places
are assumed.

The syntax and execution of ROUND are similar to those of a primitive function.
The definition of ROUND is shown and commented upon in Figure 36 on
page 346.

3 ROUND 45�678235
45�678

 ROUND 45�678235
 45�68

 Copyright IBM Corp. 1984, 1994 345

 cROUND[-]c
 c
[0] Z←Y ROUND X
[1] →(0≠-NC JYJ)/RN h GO TO RN IF Y HAS VALUE
[2] Y←2 h SET A VALUE FOR Y
[3] RN:Z←(10*|Y)
��5+X
10*Y h ROUND X TO Y PLACES

| c 1993|03|27 7�47�10 (GMT|4)

When a definition is displayed using)EDITOR 1, the display begins and ends with a del

(c) and includes line numbers. Alternatively, a definition can be listed using the system
function -CR (character representation), which does not show line numbers or dels
(-CR is discussed on page 274).

[0] The header establishes the syntax of the function. It shows the number of arguments
the function takes and the parameter names of the arguments and result within the definition.

[1] The branch statement directs the flow of control to statement [3]
(label RN) if a left argument is entered when ROUND is invoked.

[2] Statement sets the left argument to 2 if ROUND is invoked without a left
argument. Statements [1] and [2] are defined so that ROUND is
ambi-valent.

[3] Rounds the argument as specified. It begins with a label to identify the statement.

Note: The defined function ROUND shows no validity checking to ensure that conformable
numeric arguments are entered. Additional statements to handle these checks can be added.

Figure 36. An Example of a Defined Function

 Structure

Defined functions and operators have three parts, as illustrated in Figure 36 for the
ROUND function.

Header

Time Stamp

Body

Figure 37. The three parts of defined functions and operators

Each of these parts is explained in this section.

346 APL2 Programming: Language Reference

 Header
The operation header is the first line of a defined operation. The header estab-
lishes the syntax for the defined operation, including:

� Name of the operation

� Valence of the operation, and in the case of defined operators, also the valence
of the derived function

 � Parameter names

� Nature of the result—explicit or not explicit

 � Local names

“Defined Functions and Operators” on page 31 shows the possible types of
headers for defined functions and operators and discusses how defined functions
and operators are used in expressions.

Name of Operation
The name of the defined function or operator is a user name and follows the rules
for constructing names (see “Rules for Constructed Names” on page 25). If a
name is already in use as a variable name, an attempt at operation definition gen-
erates a DEFN ERROR. An attempt to specify as a variable a name already in
use as the name of a defined operation generates a SYNTAX ERROR.

 Valence
A defined function can have two, one, or no arguments. A defined operator can
have two or one operands, and its derived function can have two or one argu-

| ments. If two arguments are shown in a defined function, the function is ambi-
| valent (it can be invoked with either one or two arguments), and the possibility of

receiving only a right argument should be accounted for in its definition. Defined
operators, like primitive operators, are never ambi-valent with respect to their oper-
ands.

 Parameter Names
The result, right argument, left argument, right operand, and left operand named in
the header are parameters, used in the body of the definition. When the operation
is invoked, the values entered as arguments and/or operands are associated with
the parameter names. This is how the parameter names are first associated with
values. During the course of execution of the operation, the parameter names can
be associated with other values.

When execution of the operation is completed, the value of the result parameter is
returned as the result of the function.

 Local Names
The argument, operand, and result parameters have value only within the context
of the defined operation. When execution of the operation is completed, the
parameter names are no longer associated with the values they had during exe-
cution. Thus, they are called local names because their values are local to—exist
only within—the defined operation.

In addition to parameter names, you can declare other constructed names to be
local to the operation. These can be names that hold intermediate values, set

 Chapter 7. Defined Functions and Operators 347

counters, set system variables especially for the operation, or are otherwise not
needed after the operation has been executed. Labels are also local names.

All other names identify global objects in the workspace and are called global

names. The value associated with a global name is not available during execution
of the operation if the same name is local to that operation. Only the local value is
available, and the global name is said to be shadowed. After the operation has
been executed, however, only the global value exists in the workspace. For
example:

 Z←JTESTJ
 X←2000
 cZ←FN X
[1] X
[2] Z←X
3
[3] c

 FN 5
5
15
 Z
TEST
 X
2000

In the operation header, a semicolon separates local names from the operation
syntax and from each other. For example, to declare -IO, I, and CNT local to
the monadic function FN:

cZ←FN X;-IO;I;CNT

Separating local names by semicolons is optional on input. On display, semicolons
are always included in the operation header.

Objects identified by global names are available to a called operation if they are not
shadowed by the local names in it.

“Use of Local Names” on page 353 further discusses the use of local names in the
operation definition.

 Body
The definition body is made up of statements, which, as described in “Expressions”
on page 27, can include any of the following:

 � Label
 � Expressions
 � Comment

These take the form:

| label : expressions h comment

The ROUND function in Figure 36 on page 346 shows various forms of state-
ments.

348 APL2 Programming: Language Reference

 Time Stamp
Each defined operation is associated with a time stamp that identifies when the
operation was last fixed in the workspace. An operation is fixed in the active work-
space by using the system function -FX or -TF or by using one of the APL2
editors to create or modify an operation. When the defined operation is displayed
with)EDITOR 1, its time stamp and the offset from Greenwich Mean Time (of the
current session) are also displayed.

The system function -AT (attributes), page 270, can be used to determine the time
stamp of an object without displaying it.

 Definition Contents

Within the body of a defined operation, you can use any APL2 statement. Direct
entry of system commands or editor commands to be executed as part of the
defined operation is not permitted. Flow of control within a defined operation is
sequential, from the first statement to the last, except as altered by branching.

A defined operation may invoke another defined operation. It is thus possible to
write modular applications and easily reuse defined functions and operators in dif-
ferent applications. A defined operation may also invoke itself. This is called
recursion.

Defined or primitive operators may be combined with defined or primitive functions
to produce derived functions.

 Branching
A branch expression explicitly determines the next line of a defined function or
operator to be executed. It consists of a branch arrow (→) and an expression:

 →expression

Figure 38 shows the possible branch actions according to the value of the branch
expression.

Figure 38. Action Based on Value of Branch Expression within Defined Functions

If Value of Branch

Expression Is...

Then Next Action Is...

Line number N within the
function or operator

Line N of the function or operator is executed.

0 or any other line number
not within the function or
operator

Flow of execution returns to the invoking expression.

Empty vector| Next sequential expression (either the next expression to
| the right of a diamond in the same line, or else to the next
| line, if there is one, of the function or operator).

Vector of numbers The first number determines the branch action.

 Chapter 7. Defined Functions and Operators 349

For example, the ROUND function, shown earlier, contains the branch statement:

[1] →(0≠-NC JYJ)/RN hGO TO RN IF Y HAS VALUE

The result of executing this statement is to branch to the line labeled RN if a
parameter Y has been associated with a value. Otherwise, function execution con-
tinues with the next sequential statement.

Branching is also used in immediate execution to resume execution of a suspended
immediate execution statement, defined function, or defined operator. This use of
branching is discussed in “Errors and Interrupts in Immediate Execution” on
page 59 and “Clearing the State Indicator” on page 357.

Note: Executed branches are discussed under the heading “� Execute” on
page 120.

 Labels
If you branch to explicit line numbers, you have to review the branch expressions
and edit them every time you make a change to a function or operator. Using
labels avoids these steps. A label is a name that precedes an expression:

[3] RN:Z←(10*|Y)
��5+X
10*Y

A label is a local constant; that is, it has meaning only within the context of the
function or operator. The value of the label is the line number with which it is cur-
rently associated. If the line number changes, so does the value of the label.

Any branch expression whose result is expressed as a label takes the value of the
label—the line number currently associated with the label. Thus, when you edit a
defined function or operator and add or delete lines, your branch expressions
always point to the correct line. If you use line numbers instead of labels in branch
expressions, you must check every branching expression to ensure that it still
points to the correct line.

Always use labels when branching to a line in the operation.

 Conditional Branch
When a branch expression takes different values depending on relationships or
conditions, the branch is called a conditional branch. It is constructed by using →
with relational and selection operations.

The statement →(0≠-NC JYJ)/RN is a conditional branch statement because
its value may be RN or the empty vector, depending on the value of the relation-
ship in parentheses.

Conditions for branch expressions evaluate to 0 or 1. The relational functions (<
≯ = ≮ > ≠) are often used to express simple conditions.

Figure 39 shows three frequently used conditional branch expressions. In each
case, the condition evaluates to 0 or 1.

350 APL2 Programming: Language Reference

Note: Compression is the most commonly used operation in constructing branch
expressions. It works equally well for a one- or several-way branch. It is not origin
dependent.

Figure 39. Frequently Used Branch Statements

Form Description

→(condition)/0 End the function or operator execution if the
relationship is true.

| Execute the next sequential expression if the
relationship is false.

→(condition(s))/label(s) Continue execution at the labeled line if the
relationship is true.

| Execute the next sequential expression if the
relationship is false.

Any number of conditional expressions can
be used as long as there are the same
number of labels.

→label
condition Execute the labeled line if the relationship is
true.

End the function or operator execution if the
relationship is false.

 Unconditional Branch
When the branch expression contains a single constant or label name, it is called
an unconditional branch.

Unconditional branches have two main uses:

� End the function execution by branching to line zero (→0), a line outside the
function.

� Create a branch back to the beginning of a loop.

Branch to Escape
A branch arrow with no expression on the right causes the defined operation to
immediately terminate. Any functions pendent on this one are also terminated.
See “-EC Execute Controlled” on page 280 for an exception.

| Branch in a Line with Diamonds
| When a branch expression is one of several expressions separated by diamonds
| the following possibilities exist:

| � If the branch is taken, expressions to the right of the branch expression are not
| evaluated.

| � If the branch is not taken, execution continues with the expression to the right
| of the branch expression.

 Chapter 7. Defined Functions and Operators 351

Looping Is Rarely Needed
Many programmers who come to APL2 after using other languages structure their
function and operator definitions with the equivalent of DO loops, working with data
an item at a time. This approach is expensive in performance and introduces the
likelihood of programming errors.

Looping requires APL2 to interpret each expression in the loop each time it is eval-
uated. For efficient use of system resources and programs that are easier to
debug and maintain, looping should be avoided whenever possible.

APL2's array processing and operators help you avoid most looping. Array oper-
ations are entirely data-driven. They allow computations to be performed where the
data itself controls the limits of the operation. Summation (+/), for instance, is
controlled only by the data being summed. Loop control statements such as DO
and IF THEN ELSE are not needed. You can do arithmetic on entire collections of
numbers in a single operation.

In a practical sense, the operator each (¨), pages 109 and 107, is the equivalent of
a DO loop, except that the loop limits are not explicitly mentioned, but instead are
implicit in the data.

Structuring Ambi-valent Functions
Primitive, defined, and derived functions may be called with either one or two argu-
ments. (Defined functions may also be called with no arguments.) If a primitive
function or a derived function does not have a monadic definition, a VALENCE
ERROR is generated if it is used without a left argument. If a dyadic defined func-
tion or a function derived from a defined operator has not accounted for the possi-
bility of a monadic call in its definition and subsequently references the missing
argument, a VALUE ERROR is generated.

To define an ambi-valent function or derived function, you can define a conditional
branch to the code that executes the appropriate version of the program. Or you
can define a default value for an argument when one is not supplied. For example,
the function ROUND, shown in Figure 36 on page 346, supplies a default value to
take effect if no left argument is entered.

If you do not want the function to have a monadic definition, you can give a
VALENCE ERROR message by using -ES. Figure 40 on page 353 shows a
way of providing such a message.

 Event Handling
APL2 provides two system functions and two system variables that allow user han-
dling of error conditions:

 � System functions

-EA—Execute alternate, page 278
| -EC—Execute controlled, page 280

-ES—Event simulate, pages 282 and 285

 � System variables

-EM—Event message, page 281
-ET—Event type, page 287

352 APL2 Programming: Language Reference

For example, when you simulate an error with -ES, the defined function performs
as if it were a primitive function. An APL2 error report is generated and the
message displays a caret (�) to mark the error. Suspension then occurs at the
calling point, not within the defined function. Figure 40 shows how -ES can be
used to simulate a VALENCE ERROR in the ROUND function.

cZ←Y ROUND2 X
[1] -ES(2≠-NC JYJ)/5 1 hSIGNAL VALENCE ERROR
[2] Z←(10*|Y)
��5+X
10*Y hROUND X TO Y PLACES
[3] c

3 ROUND2 4�5677887
4�568

 ROUND2 4�5677887
VALENCE ERROR
 ROUND2 4�5677887
 �

Figure 40. Example Use of Event Simulation

Use of Local Names
Localizing names is a way of controlling the value of those names. They can have
no values other than those assigned within the defined operation. For example, if a
defined function depends on particular settings of system variables, such as -FC
(format control) for reports, -IO (index origin), or -CT (comparison tolerance) for
data analysis, then these variables can be declared as local. Execution of the
operation is not affected by their global values, and the global values are not
affected by execution of the operation.

Names that are needed within a defined operation but have no importance after the
operation is executed should be localized. These names appear as global to oper-
ations called from this one. If they are not, execution of the operation creates them
as global names whose values persist in the workspace and take up space until
they are explicitly erased. Specification of values may destroy the values of global
objects with the same name.

 Execution

When a defined operation appears in an expression, it is evaluated in the context of
that expression following the evaluation rules in “Evaluating Expressions” on
page 32. The execution of the operation is controlled by its definition and its exe-
cution properties, which affect the operation's behavior in error or interrupt situ-
ations (see “Execution Properties” on page 360).

Each statement in the definition is executed in sequence or as directed by
branching statements. If the function has been defined with an explicit result, the
last specification of the result parameter name is returned as the result of executing
the operation. This result is then available for further evaluation of the expression
in which the defined operation appears.

 Chapter 7. Defined Functions and Operators 353

Suspension of Execution
Execution of a defined operation may be suspended in either of two ways:

� By an attention
� By an interrupt or an error

You can suspend execution of a defined operation (or an expression) through the
keyboard in one of two ways: attention or interrupt. An attention suspends exe-
cution at the end of the current statement being executed. An interrupt causes the
system to behave as though an error were encountered; it suspends execution
immediately. All discussions concerning the effects of errors and their handling
apply to interrupts as well.

Attention signals and interrupts differ among input devices and host systems. For
| information on attention and interrupt for your system, see the appropriate work-
| station user's guide or APL2/370 Programming: System Services Reference.

If an error is encountered in a statement during execution of the defined operation
or if an interrupt is signaled, execution of the operation is suspended, and a
message and the suspended operation are displayed. For example:

 cZ←F X
[1] Z←10÷X
[2] c

 F 0
DOMAIN ERROR
F[1] Z←10÷X
 � �

 Calling Sequence
If a statement in a defined operation contains the name of a defined function or
operator, that operation is called and flow of control passes to it. While the called
operation is executing, the calling operation is said to be pendent, waiting to com-
plete execution. If the called function or operator, in turn, calls another, it is
pendent along with the original calling operation. Figure 41 on page 355 illustrates
this flow of control from one operation to another for the calling sequence beginning
with FUNCTIONA.

354 APL2 Programming: Language Reference

FUNCTIONA Original function begins executing.
 .
 .
 .
[AN] FUNCTIONB FUNCTIONB called.

FUNCTIONA is pendent.
 .
 .
 .
[BN] OPERATORA OPERATORA called.

FUNCTIONB is pendent.
 .
 . OPERATORA completes execution.
 . Control returns to FUNCTIONB.
 .
[BN] FUNCTIONB FUNCTIONB resumes execution at the

expression immediately after where it.
 . was called. When FUNCTIONB completes,
 . control returns to FUNCTIONA.
 .
[AN] FUNCTIONA FUNCTIONA resumes and completes execution.

Figure 41. Flow of Control of Calling and Called Operations

As each operation (or immediate execution expression) is invoked, it is placed in
the execution stack, and the line currently being executed is placed in the state

indicator. When the line completes, it is removed from the state indicator. When
execution of an operation or expression completes, it is removed from the exe-
cution stack.

The number of called functions or operators is not limited except as constrained by
the space available within the workspace. Pendent operations take up space; a
sequence of called and calling operations may create a WS FULL condition if
there is a large number of them or if any of them requires a sizable work area for
calculation.

A function that calls itself is recursive. Local copies of the function behave as sep-
arate functions in the execution stack. When a recursive function is called from an
operator, its name may be shadowed by local names.

 State Indicator
When an operation is suspended, the suspended statement and its calling
sequence are found in the state indicator. The state indicator is a list of:

� The calling sequence of defined functions and operators along with their calling
line numbers and associated statements (see Figure 41).

� Asterisk(s) and the associated expression for all immediate execution
expressions that did not complete, either because of an error in the expression
or because the function invoked by the expression is pendent or suspended.

� Defined functions or operators that are in definition mode, with the statement
currently being defined.

 Chapter 7. Defined Functions and Operators 355

The system commands)SIS (page 453),)SI (page “)SIS—Display the State
Indicator with Statements” on page 457 form=pageonly), and)SINL (page
“)SINL—Display the State Indicator with Name List” on page 456 form=pageonly)
display the state indicator and information about its contents:

�)SIS displays each statement in the state indicator with one or two carets to
indicate how far evaluation of the statement proceeded before it was stopped.

�)SI displays statement numbers and asterisks.

�)SINL displays local names for each defined operation in the state indicator.

For example:

While an operation is suspended, local names are available for inspection.
However, any global values associated with those names are shadowed.

You can also use the system variables -L (left argument) and -R (right argument)
to help determine the source of the error.

Figure 42 on page 357 shows an example of actions that add to the state indicator
and the resulting response to the)SIS command.

)SIS
F[1] Z←10÷X
 � �
* F 0
 �

)SI
 F[1]
 *

)SINL
 F[1] Z X
 *

356 APL2 Programming: Language Reference

)SIS State indicator is empty.
3ι Error adds statement to

SYNTAX ERROR state indicator.
 3ι
 ��

)SIS
* 3ι Asterisk indicates immediate

�� execution expression that did
 not complete.

 cZ←FN Function definition. Note call
[1] JLINE 1J of function GN at line 2.
[2] Z←GN
2
[3] JLINE 3Jc

 cZ←GN Function definition. Note error.
[1] Z←3÷0c

 FN Function invoked.
LINE 1 First line of function executes.
DOMAIN ERROR Error in the called function.
GN[1] Z←3÷0
 � �

)SIS First entry in the state indicator
GN[1] Z←3÷0 is last expression that did not
 � � complete.
FN[2] Z←GN
2
 �
* FN
 �
* 3ι
 ��

Figure 42. Actions That Add to the State Indicator

Clearing the State Indicator
Statements remain in the state indicator until they have been cleared. If a work-
space that has items in the state indicator is saved, the state indicator is also
saved. There are several ways, discussed below, to clear the state indicator. The
one you use depends on what you are trying to accomplish and the situation that
caused statements to be put in the state indicator.

 Chapter 7. Defined Functions and Operators 357

Escape: Escape (→), a branch arrow with no expression to its right, abandons
further attempts to execute the suspended function and the calling sequence that
led to its being invoked. Escape clears the state indicator down to and including
the next *. For example:

)SI
F[1]
*
 →
)SI

You can then correct the error and recall the function.

cF[1] JZ←JJCANNOT DIVIDE BY 0JJJ -EA JZ←10÷XJc
 F 0
CANNOT DIVIDE BY 0

Because only one calling sequence was in the state indicator, a single → cleared it.
This is not the case in the following example:

)SI
D[1]
*
B[2]
*
 →
)SI
B[2]
*
 →
)SI

To clear the state indicator, one → is needed for each asterisk in the state indicator.
As the calling sequence is removed from the state indicator, -EM and -ET are
set to values appropriate to the statement at the top of the state indicator.

)RESET: The system command)RESET clears the state indicator entirely.
)RESET n clears n lines from the display of the state indicator. (See)RESET,
page 449.)

)SI D[1] *
 B[2] *
)RESET
)SI

As with escape, -EM and -ET are set appropriately for the first entry in the state
indicator after the reset.

358 APL2 Programming: Language Reference

Resume or Restart Execution You may be able to respecify -L or -R to a suit-
able value and resume execution from the point at which it was halted by entering
→ι0. Execution can always be resumed by →ι0 if the state indicator shows

 F 0
DOMAIN ERROR
F[1] Z←10÷X
 � �
 -R←1
 →ι0
10
)SI

Alternatively, you can correct the line in error and redirect execution to begin at that
line or some other line by entering →-LC to restart execution with the current line
(see page 300) or →n, where n is a line number.

 F 0
DOMAIN ERROR
F[1] Z←10÷X
 � �

cF[1] JZ←JJCANNOT DIVIDE BY 0JJJ -EA JZ←10÷XJc
SI WARNING
 →1
CANNOT DIVIDE BY 0

The message SI WARNING is displayed when editing affects a line of an opera-
tion appearing in the state indicator (if you edit the line or delete or insert lines
before it). In these cases, a negative sign precedes the line number in the state
indicator, and no statement is shown.

)SIS
F[b1]
* F 0
 �

Note: If a line has been edited, you cannot use →ι0 to resume execution at the
point where it halted. You can, however, restart execution by branching to a line
number. If no number is shown within brackets, the operation can be neither
resumed nor restarted.

 Chapter 7. Defined Functions and Operators 359

Do Not Resume Execution by Invoking the Operation Again: If you correct the
error in the operation and then invoke the operation again, the state indicator is not

cleared. After the operation has executed, the earlier uncorrected version remains
in the state indicator.

 F 0
DOMAIN ERROR
F[1] Z←10÷X
 � �

cF[1] JZ←JJCANNOT DIVIDE BY 0JJJ -EA JZ←10÷XJc
SI WARNING
 F 0
CANNOT DIVIDE BY 0
)SIS
F[b1]
* F 0
 �

Use → or)RESET to clear the state indicator before invoking the operation a
second time.

When a Called Operation Is Suspended
Sometimes, a defined operation which has been called by another defined opera-
tion is suspended. The state indicator shows the entire calling sequence. The
values associated with local names in the operation at the top of the state indicator
are the only accessible values for those names. However, you can use the editor
to display calling operations. You cannot restart execution after correcting the error
unless the corrected defined operation is the first in the state indicator.

 Execution Properties
A defined operation has four execution properties, which can be set independently

with -FX (fix with execution properties) in “-FX Fix (with Execution Properties)”
on page 294. The following describes the execution effect of setting each property.

� The defined function or operator may not be displayed or edited through the
APL2 editors, through the system function -CR (character representation), or
through -TF (transfer form); and it may not be traced.

� The defined function or operator is not suspended by an error or an interrupt
and it may not be stopped.

� The defined function or operator ignores attentions and stop control settings
during its execution. (Interrupts are never ignored.)

Suspension of defined functions and operators and interrupts are discussed in
“Suspension of Execution” on page 354.

� The defined function or operator converts any error other than a resource error
into a DOMAIN ERROR. (INTERRUPT, SYSTEM ERROR, WS FULL,
and SYSTEM LIMIT are classified as resource errors.)

360 APL2 Programming: Language Reference

The execution properties of a called function or operator during an execution
sequence are determined by “or-ing” its properties with those of the calling function
or operator. For example, suppose function F has the nonsuspendable property (0
1 0 0) and function G has the error conversion property (0 0 0 1). If F calls
G, both the nonsuspendable property and the error conversion property are
imposed on G (0 1 0 1). Because execution properties are inherited by called
functions and operators, if a locked function calls an unlocked function, the
unlocked function behaves as though it were locked.

Execution properties can be changed only by using -FX and only if the operation
can be displayed. The execution properties of a defined operation can be deter-
mined by using -AT (attributes), page 270.

The default function or operator definition provided by the APL2 editors has none of
these properties. If an operation is locked during editing (with ¤), all the execution
properties are set.

 Debug Controls

APL2 includes two facilities for analyzing the behavior of defined functions and
operators: trace control and stop control.

 Trace Control
A trace is an automatic display of information generated by the execution of each
selected line of a defined function or operator. When a statement is traced, the
following information is displayed whenever the statement is executed:

� Function or operator name
� Line number in brackets
� Final array value (or branch) produced by that statement

The trace control for a defined operation is designated by prefixing Tδ to its name.
For example, a trace may be set on lines 1, 3, and 6 of a defined operation RS
by executing:

TδRS←1 3 6

A trace may be set on all lines by executing:

TδRS←ιnumber of lines in the operation (or more)

A trace is turned off by setting the trace control to ι0.

TδRS←ι0

Global names beginning with Tδ may not be used for any purpose other than trace
control.

 Chapter 7. Defined Functions and Operators 361

 cZ←(F XEACH)STACK;X
[1] Z←JJ
[2] hPROCESS FIRST ITEM; EXIT IF ERROR
[3] L1:J→0J -EA JX←F↑STACKJ
[4] Z←Z,�X hAPPEND RESULT
[5] →(0≠ρSTACK←1↓STACK)/L1 hEXIT IF STACK EMPTY
[6] c

For example, the function derived by the operator XEACH processes each item in
its argument until an error occurs.

Tracing lines 1 3 4 5 shows the behavior of the operator:

TδXEACH←1 3 4 5
÷XEACH 1 0 7

XEACH[1]
XEACH[3] 1
XEACH[4] 1
XEACH[5] →3
XEACH[3] →0
1
 TδXEACH←ι0

| Trace on a line containing multiple expressions separated by diamonds causes
| trace output for each expression evaluated.

Trace controls can be both set and referenced. A reference to a trace control
vector returns only valid line numbers (in increasing order) upon which a trace has
been set.

Settings of trace controls are relocated as a result of line insertion or deletion by
the APL2 editors.

Trace settings are ignored if the execution property 'nondisplayable' is set.

ιXEACH 2 4 6
 1 2 1 2 3 4 1 2 3 4 5 6

No error, so each item is proc-
essed.

ιXEACH 2 4 b2 6
 1 2 1 2 3 4

Error in the third item, so proc-
essing stops after the second item.

 Stop Control
A defined operation can be made to stop before a selected line is executed. When
a statement is assigned a stop control, execution stops just before the statement is
to be executed, and the following information is displayed:

 � Operation name
� Line number in brackets

Execution may be resumed by entering a branch statement.

362 APL2 Programming: Language Reference

The stop control for a defined operation is designated by prefixing Sδ to its name.
For example, a stop may be set on lines 1, 3, and 6 of a defined operation RS by
executing:

SδRS←1 3 6

A stop may be set on all lines by executing:

SδRS←ιnumber of lines in the operation (or more)

A stop is turned off by specifying the stop control to ι0.

SδRS←ι0

For example, with the operator XEACH shown in the previous section (page 361):

 SδXEACH←4
�XEACH (9 44 23) (10 11)

XEACH[4]
 X
1 3 2
 →4
XEACH[4]
 X
1 2
 →4
1 3 2 1 2

Global names beginning with Sδ may not be used for any purpose other than stop
control.

Stop controls may be both set and referenced. A reference to a stop control vector
returns only valid line numbers (in increasing order) upon which a stop has been
set.

Settings of stop controls are relocated as a result of line insertion or deletion by the
APL2 editors.

Stop control settings are ignored if the execution property 'ignore weak interrupt' is
set.

 Chapter 7. Defined Functions and Operators 363

| Chapter 8. Shared Variables

| Shared variables constitute an interface through which information is passed
| between two processors—information to be used by each for its own purpose. The
| two processors can consist of many possible combinations, including two APL2
| users, two auxiliary processors, one auxiliary processor and one user, one user and
| an APL2 interpreter using the shared variable interface, and so on.

| The next sections discuss the concepts and usage requirements of shared vari-
| ables.

| Shared Variable Concepts

| A variable becomes shared when one processor has offered to share it and a
| second processor has accepted the offer (made a counter offer for a variable with
| the same name). The variable is then fully-coupled between the two partners and
| data communication can take place.

| The two processors are called share partners.

| A given processor can simultaneously share variables with any number of other
| processors. However, each sharing is bilateral; that is, each shared variable has
| only two partners. For example, a shared data file can be made directly accessible
| to a single control processor. That processor can share variables bilaterally with
| each of several other processors, controlling their individual access to the data, as
| required.

| Either partner can set a value for the variable and also use the value. At any one
| time, a shared variable has only one value—the value most recently set by either
| partner.

| The communication protocol is controlled by the setting of the access control vector

| (ACV), which is defined by either or both partners. The access state vector (ASV),
| which is set by the system, indicates the current state of the shared variable so that
| you can execute requests appropriate to the state. For a discussion of the access
| control mechanism provided by the shared variable facility, see “Synchronization of
| Asynchronous Processors” on page 367.

| APL2 Shared Variable System Functions and System Variable

| There are five system functions and one system variable that can be used to estab-
| lish, query, and maintain proper communication between an APL2 user and a share
| partner. Chapter 6, “System Functions and Variables” on page 259 describes the
| syntax and results of the system functions and the setting and use of the system
| variable. Figure 43 summarizes the results of the monadic and dyadic forms of the
| functions, and Figure 44 on page 365 summarizes the setting and use of the vari-
| able.

364  Copyright IBM Corp. 1984, 1994

| Figure 43. System Functions Used with Shared Variables

| System

| Function

|

| Monadic

|

| Dyadic

| -SVO

| Shared
| Variable
| Offer

| Obtain the current degree of coupling
| of the variable(s) entered as the right
| argument.

| Offer the right-argument variable(s) to
| the processor(s) identified in the left
| argument.

| -SVC

| Shared
| Variable
| Control

| Query the setting of the access control
| vector (ACV) for the variable(s)
| entered as the right argument.

| Set your contribution to the ACV (the
| Boolean vector(s) entered as the left
| argument) of the variable(s) entered as
| the right argument.

| -SVS

| Shared
| Variable
| State

| Query the access state vector(s)
| (ASVs) for the variable(s) entered as
| the right argument.

| Not applicable.

| -SVR

| Shared
| Variable
| Retraction

| Retract the shared variable(s) entered
| as the right argument.
| Not applicable.

| -SVQ

| Shared
| Variable
| Query

| Obtain a list of unmatched variables

| offered by the processor entered as
| the right argument.

| If the right argument is an empty
| vector (-SVQ ι0), the function
| returns a list of processors that have
| made an unmatched offer to you.

| Not applicable.

Figure 44. System Variable Used with Shared Variables

System

Variable

Set

Use

| -SVE

| Shared
| Variable
| Event

| Specifies the amount of time in
| seconds to be used in a wait for a
| shared variable event and starts the
| timer.

| Suspends execution until either the speci-
| fied number of seconds has elapsed or a
| shared variable event occurs. When an
| event occurs, returns the time remaining
| in the timer.

| Characteristics of Shared Variables

| Syntactically, a shared variable is indistinguishable from any other variable. The
| only reliable way of knowing whether a variable is shared is to know its degree of

| coupling. The degree of coupling is a scalar integer maintained for each variable.
| It indicates the number of partners with whom it is shared (0, 1, or 2). It is the
| explicit result of both monadic and dyadic -SVO and -SVR. For detailed informa-
| tion, see “Degree of Coupling” on page 366.

| Number of Shared Variables: Some auxiliary processors distributed with APL2
| require a single variable to accomplish a user request; some accept one variable
| under some conditions and two variables under other conditions; others require a
| pair of variables matched either by name or by initial value.

| Shared Variable Names: The maximum length of a shared variable name cannot
| exceed 255 characters. Auxiliary processors can restrict the length of the name to
| less than 255, or can require special naming conventions.

 Chapter 8. Shared Variables 365

| For a variable to be shared, two partners must offer the same name for the vari-
| able. To maintain the independence between two autonomous processors, APL2
| permits the use of an alias or surrogate name to be shared when one partner
| requires a certain naming convention that is inconvenient for the other partner to
| comply with. For the general syntax of offering surrogate names, see the dis-
| cussion of -SVO in Chapter 6, “System Functions and Variables” on page 259.

| Shared Variable Values: The value associated with a variable at the time it is
| offered to a partner is the initial value. Some auxiliary processors require an initial
| value; some ignore an initial value. With others, an initial value is optional. After
| sharing has been established, the values you subsequently set or use in a shared
| variable depend on the function and requirements of the processor with which you
| are communicating. Some processors restrict the type of data that can be shared.
| For requirements for shared variable values, see the appropriate associated
| processor in the workstation user's guides or APL2/370 Programming: System

| Services Reference.

| Communication Procedure

| The following general procedure is used to communicate using shared variables.

| 1. Offer to share the variable(s).

| 2. Ensure the degree of coupling is 2.

| 3. Set access control for each variable offered.

| 4. Access the variable(s) by following the protocol established for them and the
| requirements for their values.

| 5. Retract the variable(s).

| Retracting a variable withdraws your share offer with your partner. After
| retraction, the variable can be offered to another processor or reoffered to the
| same processor. A variable can be explicitly retracted using -SVR, or it can
| be implicitly retracted when the variable no longer exists in your workspace or
| the workspace no longer exists. For a description of -SVR and a list of condi-
| tions when a variable is implicitly retracted, see “-SVR Shared Variable
| Retraction” on page 332.

| Degree of Coupling
| The degree of coupling is the explicit result of offering a shared variable (dyadic
| -SVO) or inquiring about a variable's share status (monadic or dyadic -SVO).
| Explicitly retracting a variable (-SVR) returns the degree of coupling the variable
| had immediately before it was retracted.

| The degree of coupling is a scalar integer that indicates the number of partners that
| share or have shared the variable. The possible values are 0, 1, or 2. The
| meaning of each value is described below.

| Degree of Coupling = 0: Either you have made no offer, or the offer failed.
| Reasons for a failed offer include:

| � The name you have specified as a shared variable is in use as the name of a
| function, an operator, or a label.

366 APL2 Programming: Language Reference

| � The name contains invalid characters (including names that begin with the
| quad, -).

| � The variable is already shared with, or has been offered to, another processor
| (a variable can be shared by only two partners).

| Degree of Coupling = 1: Your offer is pending. It may or may not be matched in
| the near future. Reasons for a pending offer include:

| � Unacceptable variable name specified in the offer when the specified partner
| requires a certain naming convention.

| � The processor needs a pair of variables to communicate, but only one has
| been offered.

| � A nonexistent processor ID was specified in the offer.

| � The processor has already accepted its maximum number of shared variables.

| � Your partner has not yet matched your offer.

| This is typical with the asynchronous behavior of the APL2 auxiliary processors.
| Use the system variable -SVE to explicitly wait a reasonable amount of time
| for your offer to be matched. See “Signaling of Shared Variable Events” on
| page 373.

| Degree of Coupling = 2: Sharing is complete; the variable is fully coupled. Each
| partner has offered the variable to the other.

| Synchronization of Asynchronous Processors

| In most practical applications it is important to know that a new value has been
| assigned by your partner between your successive uses of a shared variable, or
| that use has been made of a value before you set a new one. The shared variable
| facility embodies an access control mechanism to help ensure proper communi-
| cation.

| The access control operates by inhibiting the setting or use of a shared variable by
| either or both owners, depending on the values of two Boolean vectors maintained
| for each shared variable. The vectors are the access control vector (ACV) and the
| access state vector (ASV).

| The access control vector, queried by monadic -SVC and set by dyadic -SVC,
| contains the protocol that regulates the sequences for access of the variable by the
| two partners. It indicates whether repeated attempts to set or to use a variable by
| one partner require either a use or a set by the other.

| The access state vector, which is set by the system and can only be queried by
| you (using -SVS), indicates two things:

| � Which partner(s) have used (know) the current value of the variable

| � Which partner, if any, has set a value in the variable that has not yet been
| used by (is unknown to) the other partner.

 Chapter 8. Shared Variables 367

| Symmetry of the Access Control Mechanism
| Although each item of the access control and access state vectors has its own
| meaning, the relative positions of each item in the vectors relate to each other.
| Your view of the vectors is:

| � The first and third items refer to you
| � The second and fourth items refer to your partner
| � The first and second items refer to sets
| � The third and fourth items refer to uses

| Figure 45 shows the meaning of each item in the vectors.

YOUR ACCESS

PARTNER ACCESS

SETS

SETS USES

USES

| Figure 45. Items in the Access Control and Access State Vectors

| The view your partner has of the access vectors is the mirror image of yours. To
| clarify the symmetry of the vectors and to help you remember which items are
| which, reshape the vector to a 2 by 2 Boolean matrix.

| -SVC JSHAREDJ
| 0 1 1 0
| -←ACV←2 2ρ-SVC JSHAREDJ
| 0 1
| 1 0

| Reverse the matrix to see your partner's point of view:

| 'ACV
| 1 0
| 0 1

| In matrix form, column one refers to the viewer, and column two refers to the view-
| er's partner. Row one refers to sets, and row two refers to uses. Figure 46 illus-
| trates the control mechanism in matrix form.

YOUR ACCESS PARTNER ACCESS

SETS

USES

| Figure 46. Access Control or Access State Vectors as a Matrix

368 APL2 Programming: Language Reference

| Access Control Vector
| The settings in the access control vector indicate any constraints on the partners
| for access to a shared variable. A 1 indicates a constraint on the partner and type
| of access represented for each position of the vector. A 0 places no constraints on
| access. The constraints placed for each item are:

| ACV[1] You cannot set the variable two times in a row without an intervening
| access by your partner. (An access is either a set or a use.)

| ACV[2] Your partner cannot set the variable two times in a row without an inter-
| vening access by you.

| ACV[3] You cannot use the variable two times in a row without an intervening set
| by your partner.

| ACV[4] Your partner cannot use the variable two times in a row without an inter-
| vening set by you.

| Figure 47 illustrates, in matrix form, the constraints imposed for each position of
| the access control vector.

CONSTRAINT

Successive

SETS by ME

Successive

USES by ME

Require an

intervening access

by MY PARTNER

Require an

intervening set

by MY PARTNER

Successive

USES by my

PARTNER

Successive

SETS by my

PARTNER

Require an

intervening access

by ME

Require an

intervening set

by ME

| Figure 47. Access Control Matrix

| Setting the Access Control Vector
| You set access control when you want to synchronize your access of a variable
| with your partner's access of that same variable. For example, to make sure your
| partner always has a chance to set new data in the variable each time you use it,
| you can place a constraint on yourself that inhibits your use until your partner sets
| the variable. By setting the appropriate constraints on yourself and your partner,
| you can impose an orderly dialog between you both.

| Below are examples of access control vectors and their meanings.

| Note: Any combination of the four items in the vector is valid.

| 0 0 0 0 No constraints. Regardless of which partner set the last value and
| regardless of which partners know or do not know the current value,
| either partner can both set and use the value. Sharing can be com-
| pletely asynchronous.

| 1 1 1 1 Maximum constraint. Neither partner can set the variable two times in a
| row without an intervening access by the other partner. In addition,
| neither partner can use the variable two times in a row without an inter-
| vening set by the other partner.

 Chapter 8. Shared Variables 369

| 1 0 1 0 Constraint on both your set and your use of the variable, but no con-
| straint on your partner's access.

| 0 0 1 1 Constraint on both your use and your partner's use of the variable.
| Allows either partner to set the variable. This setting ensures that
| neither partner will see the value more than once.

| 0 0 1 0 Constraint on your use of the variable without an intervening set by your
| partner.

| Access control should be set immediately after you offer a shared variable. If you
| set it before the offer, it is ignored. After it is established, the ACV remains in
| effect until you or your partner changes it.

| The access control vector (ACV) can be set by either partner. Typically, auxiliary
| processors set appropriate access control vectors for the services provided. You
| should generally set the access control vector to prevent accidental loss of data.

| Your setting of an access control vector results in the OR (�) of your setting and
| the setting established by your partner. You can contribute only to the setting (that
| is, impose additional constraints), and you can decrease only the constraints you
| yourself have imposed. You are not allowed to decrease the control established by
| your partner.

| Use monadic -SVC to query the current ACV setting for a variable. Use dyadic
| -SVC to impose additional constraints on the access control set by your partner or
| to reduce your contribution to the constraints. For example:

| -SVC JCMS100J
| 0 0 0 1

| 1 0 0 0 -SVC JCMS100J
| 1 0 0 1

| 0 0 0 0 -SVC JCMS100J
| 0 0 0 1

| Access State Vector
| The settings in the access state vector indicate which partner(s) knows the current
| value, and which partner, if any, last set a value unknown to the other partner. The
| items in the vector have the same relationship to the partners and the access of the
| variable as the access control vector does.

| Use -SVS to see the access state vector. A 1 in an item of the access state
| vector (ASV) has the following meaning:

| ASV[1] You have set a value which your partner has not yet used.

| ASV[2] Your partner has set a value which you have not yet used.

| ASV[3] You know the current value of the variable.

| ASV[4] Your partner knows the current value of the variable.

| To illustrate its symmetry, Figure 48 on page 371 shows the meanings of the
| items in the access state vector in terms of a matrix.

370 APL2 Programming: Language Reference

MY PARTNER DOES NOT HAVE THE

CURRENT VALUE

I know the current value of

the variable. I have either

set it or used it.

I HAVE THE CURRENT VALUE

My partner has set the

variable, but I have not

yet used it.

I DO NOT HAVE THE CURRENT VALUE

My partner knows the current

value of the variable. My partner

has either set it or used it.

MY PARTNER HAS THE CURRENT

VALUE

I have set the variable,

but my partner has not yet

used it.

| Figure 48. Access State Matrix

| Access State Values
| The access state vector can contain only one of four possible values:

| 0 0 0 0 Not a shared variable.

| 0 0 1 1 The current value is known by both partners. This is also the setting
| when a variable is first offered.

| 1 0 1 0 You have set a value your partner has not yet used. You know what
| the value is, but your partner does not.

| 0 1 0 1 Your partner has set a value you have not yet used. Your partner
| knows what the value is, but you do not.

| Like the access control vector, the access state vector can be viewed from the per-
| spective of each partner. If your use of the ASV is 1 0 1 0, the ASV is seen by
| your partner as 0 1 0 1.

| Effect of Access Control and Access State on Communications
| Figure 49 on page 372 illustrates the permissible and non-permissible actions that
| can be taken by two share partners under the possible combinations of settings of
| the access control and access state vectors. Lines around the perimeter are per-
| missible actions in all cases. Lines around the inside are constrained or inhibited
| by ACV and ASV values.

 Chapter 8. Shared Variables 371

S A

S A SB

SB

SBS A

UB U A

S A

UBU A

SB

1 0

1 0

ASM

SET BY

A

0 1

0 1

ASM

SET BY

B

UB

U A UB

0 0

1 1

ASM

USED &

INITIAL

STATE

ACM

SA SB UA UB: Denote or by A or B.

ACM: Access Control Matrix

ASM: Access State Matrix

set use

A one in an element of ACM inhibits the associated access. Allowable accesses are given

by the zeros in . Access control vectors as seen by A and B, respectively, are

, and , .

Legend:

The access state matrix represents the last access: ones occur in the last row if it is not a set,

and in a column if it is, the first column if set by A and the last if set by B.

U A

| Figure 49. Access Control of a Shared Variable

| Shared Variable Interlock
| Execution is suspended if you attempt to access a shared variable twice in a row
| when its ACV is set to prevent your successive set or use of the variable. When
| this occurs, you are interlocked. Waiting for an access of the variable by your
| partner, execution is suspended for an indefinite amount of time. Enter an interrupt
| to release the suspension and raise an 'INTERRUPT' signal.

| For details on entering an interrupt under a particular system, see the appropriate
| workstation user's guide or APL2/370 Programming: System Services Reference.
| When an interrupt is entered, the INTERRUPT message appears in the session
| output.

| Over Specification
| No access control can be set that can prevent you or your partner from ignoring
| (not using) the value the other partner has set in a variable. When one partner
| sets a new value over the other's set without first using the value, it is called
| overset or overspecification.

372 APL2 Programming: Language Reference

| Typically, auxiliary processors supplied with APL2 specify a return code indicating
| success or failure from the most recent operation requested of the processor.
| Because there is no requirement for you to use a variable your partner has set, you
| are not required to obtain the return code your partner sets. However, you could
| lose important diagnostic information if a problem should arise while communicating
| with an auxiliary processor. It is recommended that you always check the return
| code from every auxiliary processor operation.

| Signaling of Shared Variable Events

| The system variable -SVE, shared variable event, gives you the ability to suspend
| execution until a shared variable event occurs.

| A shared variable event occurs when one of the following happens:

| � An incoming offer to share a variable does not match a pending offer (made by
| you)
| � Your partner matches a pending (or outstanding) offer from you
| � Your partner retracts a variable you share
| � Your partner sets the access control vector (any dyadic -SVC) on a fully-
| shared variable
| � Your partner attempts to access a variable under the situations shown in
| Figure 50 on page 373.

| Note: The access state vector may or may not change.

| � The -SVE timer expires before some other shared variable event occurs.

My SETs are constrained.

Signal if Partner USEs.

(Change to ASV.)

My USEs are constrained.

Signal if partner SETs.

(Change to ASV.)

My partner's SETs are

constrained.

Signal if partner tries to SET

but becomes interlocked.

(No change to ASV.)

My partner's USEs are

constrained.

Signal if partner tries to

USE but becomes interlocked.

(No change to ASV.)

| Figure 50. Shared Variable Accesses that Signal a Shared Variable Event

 Chapter 8. Shared Variables 373

| The specification of -SVE sets and starts a timer for n seconds. A use of -SVE
| delays execution until either the specified number of seconds elapses or one of the
| shared variable events listed above occurs.

| Use of -SVE gives you a means of determining when to take another action. For
| example, you can use -SVE to:

| � Wait for your share offer to be matched
| � Wait for offers to be made to you
| � Wait for reference or specification of shared variables.

| Regardless of the use, the structure of the code to establish a wait is similar to and
| may be a variation of the following:

| [1] -SVE←N h SET THE TIMER
| [2] TRY: →(condition)/0 h EXIT IF FUNCTION SUCCESSFUL
| [3] →(0≠-SVE)/TRY h WAIT FOR A SHARED VARIABLE EVENT
| [4] JFAILUREJ h MESSAGE IF TIME EXHAUSTED

| The condition in line 2 depends on the shared variable function being used. For
| example, to wait for an appropriate access state:

| c
| [0] Z←N WAITSET VAR
| [1] -SVE←N h START TIMER
| [2] TRY: →(Z←0 1 0 1�-SVS VAR)/0 h EXIT IF I CAN USE VARIABLE
| [3] →(0≠-SVE)/TRY h WAIT FOR A SHARED VARIABLE EVENT
| [4] JEVENT DIDNJJT HAPPENJ h TIME EXHAUSTED
| c

374 APL2 Programming: Language Reference

Chapter 9. The APL2 Editors

| APL2 supports a number of editors for creating and modifying defined functions and
| operators. Most of the editor facilities described in this chapter are available on all
| APL2 platforms, though there are some differences, especially in the techniques
| used for invoking the editors. The following types of editors are supported:

| � A traditional line editor.

| This editor can be used with all types of session input devices. It can also be
| used effectively for interactive processing when combined with the line reuse
| facilities of the APL session manager.

| � An APL full-screen (or windowed) editor.

| This editor, often called Editor 2, deals with pages of text and has no
| command line. It depends on function keys or other special control keys for
| actions such as scrolling. It supports concurrent editing of multiple objects.

| A simpler full-screen editor is available on some platforms, but does not support
| concurrent editing or have as many editing features, and can be used only to
| edit programs, not arrays.

| � An interface to system editors.

| This interface passes an APL object from the active workspace to some editor
| independent of APL, and that is available on the system. Typically, any editor
| can be used, though with some it is difficult or impossible to handle APL char-
| acters. In most cases only a single object can be edited at a time.

| � An interface to user-written APL editors.

| Installations or users can provide their own editors written in APL, or written
| specifically to meet APL2 interfaces.

| There are two groups of platforms, with somewhat different characteristics:

| Workstation Platforms: The line editor and named system editors can be
| invoked using c followed by an object name or program header. The editor to be
| invoked by c is the one that was last specified using the)EDITOR system
| command. The supported choices are:

|)EDITOR 1
| for the line editor (this is the default)
|)EDITOR name

| for a system editor

| Two other editors are provided in the EDIT workspace:

| � The APL full-screen editor can be accessed as follows:

|)PCOPY 1 EDIT EDITOR_2
| EDITOR_2 Jobject_nameJ

| � A smaller and faster, but limited function, APL full-screen editor for defined
| functions and operators can be accessed in a similar way:

|)PCOPY 1 EDIT EDIT
| EDIT Jprogram_nameJ

 Copyright IBM Corp. 1984, 1994 375

| Users can write their own editors in APL2, and can access them as described in
| the example above.

| APL2/370 Platforms: All editors can be invoked using c followed by an object
| name or program header. The editor to be invoked by c is the one that was last
| specified using the)EDITOR system command. The supported choices are:

|)EDITOR 1
| for the line editor (this is the default)

|)EDITOR 2
| for the APL full-screen editor

|)EDITOR name

| for a system editor, where name can be any command or command pro-
| cedure that could be invoked directly from a CMS or TSO command
| line.

|)EDITOR 2 name

| for a user-provided editor. The name provided must be one that is
| defined as a processor 11 entry point, and can be either a compiled
| program or an APL program in a namespace. For further information
| about processor 11, see the APL2 Programming: System Services Ref-

| erence.

| User-written APL editors can also be accessed using)PCOPY as described for
| the workstation platforms.

| Unless explicitly changed, the selected editor remains available throughout the
| session. System commands, including)CLEAR and)LOAD, do not alter the
| editor setting.

| In this chapter, the word object refers to an array, a function, or an operator.

 Editor Features

Editors 1 and 2 provide similar functions, although the provision for these functions
and their scope differ occasionally. Whenever possible, similar commands are
used; you need not learn two different sets of commands.

Figure 51 lists the major features of each editor. Some features are available only
when the session manager is used. Editor 2 provides extended capabilities.

376 APL2 Programming: Language Reference

Figure 51. Features of the APL2 Editors

Feature

Editor 1

Line

Editor

Editor 2

Full-

Screen

Editor

Named

System

Editor1

Named

APL

Editor2

Define a function or operator
Receive line number prompts
Lock a function or operator
Abandon editing of an object
Edit a function or operator:
 Add lines
 Replace lines
 Insert lines

Insert or delete characters in a line
Copy lines from current object
Copy lines from another object
Move a line

Globally change text or names in an object
Locate occurrences of text or names in an object
Display object or selected portions
Scroll through the display of an object
Delete object body or selected portions
Edit multiple objects
Execute expression while in definition mode
Edit simple character vector or matrix
Enter system commands while in definition mode
Record display and editing of object in the session log
Renumber lines
Establish object in the workspace without exiting editing
Rename a function
Edit arrays

Simple character array
 Numeric array
 Nested array
 Mixed array

yes
yes
yes
yes

yes
yes
yes
yes
yes3

yes3

yes3

yes
no
yes
yes3

yes
yes
yes
no
yes
yes3

no
no
yes

no
no
no
no

yes
no
yes
yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
yes
yes
yes

yes4

no
no
no

yes
no
yes
yes

yes
yes
yes
yes
yes
no
yes
yes
yes
yes
yes
yes
no
no
yes
no
no
no
no
yes

yes
yes
yes
yes

yes
yes
yes
yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes
yes
yes
yes

Notes:

1. The APL2 interface to the named system editor allows all of the features marked “yes.” Particular host editors can
restrict some of these features.

2. The named APL editor interface provides full access to APL2 facilities. A given editor can restrict access to APL2
facilities.

3. These features are available only when the session manager is used.

4. This cannot edit simple scalars.

 Chapter 9. The APL2 Editors 377

Characters Permitted within Statements
For statements containing characters that are elements of -TC, the following
restrictions apply:

� If the statement is displayed by Editor 1 or an error display, or if the -CR or
-EM of the statement is displayed, the -TC characters are interpreted as
control characters. In the case of backspace, one or more characters pre-
ceding the backspace in the line is overstruck or overlaid.

� If the statement is displayed with Editor 2, the -TC characters are displayed as
blots or blanks.

� Statements containing -TC characters cannot be entered with Editor 1 or 2.
They can be introduced into objects being edited with Editor 2 with the com-

| mands [�] and [�].

� Statements containing -TC characters can be modified by Editor 1 but those
modifications cause loss of the -TC characters and possibly characters fol-
lowing the -TC characters, since Editor 1 accepts the modified line as dis-
played.

� Statements containing -TC characters can be modified by Editor 2, but those
modifications can cause the -TC characters to be converted to blanks or
deleted.

� When named editors are used, -TC characters are handled as defined by the
named editor. Many named editors provide for hexadecimal display, modifica-
tion, and entry, and thus support the editing of these characters.

For statements containing other characters that are contained in -AV, but cannot
be displayed on the display device in use, the following restrictions apply:

� If the statement is displayed by Editor 1 or 2, or an error display, or if the -CR
or -EM of the statement is displayed, the characters are displayed as blots or
blanks.

� Statements containing nondisplayable characters cannot be entered with Editor
1 or 2. They can be introduced into objects being edited with Editor 2 with the

| commands [�] and [�].

� Statements containing nondisplayable characters can be modified with Editor 1
or 2, but modifications can cause those characters to be converted to blanks or
lost, or can cause an ENTRY ERROR or a DEFN ERROR to be generated.

� When named editors are used, all characters are handled as defined by the
named editor. Many named editors provide for hexadecimal display, modifica-
tion, and entry.

378 APL2 Programming: Language Reference

Characters that are not contained in -AV are referred to as extended characters.
Some APL environments can provide a character set identification that defines a
range of extended characters that can be correctly handled. (See the description of
the DBCS invocation option in APL2/370 Programming: System Services Refer-

ence.) For a given character set identification, N, an extended character, C, is
defined to be within the range if

N=256⊤2↑(4ρ256)�-AF C

For objects containing extended characters that are outside the range, the following
considerations apply if a character set identification is not provided by the APL
environment:

� Extended characters are displayed as omegas (ω) by Editor 1. Modification of
statements so displayed causes the extended characters to be converted to
omegas.

� Editor 2 and named system editors produce a DEFN ERROR when editing is
requested.

� If the object to be edited contains extended characters outside the range
defined by the character set identification, Editor 2 and named system editors
produce a DEFN ERROR when editing is requested. Editor 2 also produces a
DEFN ERROR if such characters are introduced into the object being edited

| with [�] or [�] commands. Editor 1 causes such characters to be con-
verted to omega (ω) prior to display.

� Named APL editors are responsible for prompting their users for input and
| establishing any changes made to objects in the workspace. Some of these
| editors can support extended characters on suitably-equipped devices.

For objects containing extended characters within the range, the following consider-
ations apply if a character set identification is provided by the APL environment:

� If the object to be edited contains shift-in or shift-out characters (-AF 14 or
-AF 15), Editor 2 and named editors produce a DEFN ERROR when editing
is requested. Editor 2 also produces a DEFN ERROR if shift-in or shift-out

| characters are introduced into the object being edited with [�] or [�] com-
| mands. Editor 1 treats shift-in and shift-out characters as nondisplayable char-

acters as described above.

� Objects containing extended characters within the range defined by the char-
acter set identification are correctly displayed and can be entered and modified
with Editors 1 and 2 and certain named editors on suitably-equipped devices.

For additional information concerning display and entry of extended characters, see
| the appropriate workstation user's guide or APL2/370 Programming: System Ser-

vices Reference.

 Chapter 9. The APL2 Editors 379

Named System Editor

APL objects can be passed to a specified named system editor in response to c.
Unlocked functions and operators and arrays of rank 0, 1, and 2 can be edited. An
attempt to edit an array that is not a scalar, vector, or matrix results in a DEFN
ERROR report.

The named system editor is set with)EDITOR name and persists for the entire
session unless changed. It can refer to an EXEC or a MODULE in CMS, a CLIST

| in TSO, a shell script in AIX* and Solaris, or an executable file in OS/2 (for
| example, a .CMD file).

The editor converts the APL object in your active workspace to a character matrix
form, writes a temporary file, and then invokes the named system editor, passing it
the name of the temporary file.

With array editing, the rank of the array is preserved unless additional items or
rows are added. A scalar can be coerced to a vector if it is changed to a nonsingle
or a matrix, if other than one row is created. A vector can be coerced to a matrix if
additional rows are appended. Array rank never decreases, so a matrix edited to
one row results in a 1 by n matrix and not a vector.

When given a name to edit that does not currently exist, it is assumed to be the
name of a program. To initialize a variable to be edited as a simple character
array, NAME←0 0ρJJ . (See “Editing Simple Character Arrays”.) To initialize a
variable to be edited in evaluated form NAME←0 0ρ0 . (See “Editing Evaluated
Arrays (APL2/370 Only)” on page 381.)

To lock a program, you must begin or end with ¤. You cannot lock the program
during editing.

Exiting the Editor
To exit the editor, simply exit as indicated by your named system editor. If there is
an error in a temporary file you have altered, and you want to exit without saving
that file, you must either erase the temporary file or change the file to consist of a
single line containing a blank character. Then, you exit.

Editing a Program
The text of the program being edited is displayed in the same form used by Editor
1 or Editor 2, except that line numbers are omitted. On exit, the program is re-fixed
if there were any changes. Any currently suspended version of the same program
is replaced by the new version.

Editing Simple Character Arrays
Simple character arrays of rank 0, 1, and 2 are displayed in their default display
form, one record of the file per row of the variable.

The file built for editing a rank 0 or 1 array has variable record length. The file built
for editing a rank 2 array has fixed record length equal to which ever is larger, the
width of the array or the variable name.

Upon exit from the editor, trailing blank columns are deleted from rank 0 and 1
arrays. Trailing blank columns are not deleted from rank 2 arrays. Some system

380 APL2 Programming: Language Reference

editors support commands which can be used to change the file's record format
and length. The editors may then strip trailing blanks if the data is saved.

To exit the editor without changing rank 0 or 1 arrays, make the file consist of a
single line with a blank character, then exit. To exit the editor without changing
rank 2 arrays, simply exit.

| Editing Evaluated Arrays (APL2/370 Only)
All arrays that are not simple character arrays are edited in an evaluated form. On
exit, each record is evaluated in the user's workspace. Since the records are eval-
uated, they may contain any APL expression that returns an array result. The
resulting array is reconstructed by combining the evaluated records using disclose
(�).

If an error occurs during evaluation or reconstruction, a DEFN ERROR message
is displayed briefly, possibly followed by a specific APL error report and the first
offending record. The editor is then re-entered after a short delay.

Under CMS, the name of the temporary edit file used is n AP2EDEVL, where n is
the first counting number of a currently unused file name.

For example: Suppose a record was changed from 1 2 (3 4 5) to 1 2+(3 4 5). A
new screen would appear showing:

DEFN ERROR
LENGTH ERROR

1 2+(3 4 5)
 � �

Then, the editor is re-entered after a short delay. To exit the editor without
changing the array, make the file consist of a single line with a blank character,
then exit.

Note: The display of an array can include APL2 characters that define the array's
structure. Most commonly used are ρ (), �, and J.

 Chapter 9. The APL2 Editors 381

For example:

A←1ρ¨1 2 3

would be displayed as

 A
(,1) (,2) (,3)

Named APL Editor (APL/370 Only)

User requests to edit APL objects can be passed to a named APL editor. In
response to a c, APL2 uses -NA and processor 11 to create an association to
and call the named APL editor to handle the edit request.

The named APL editor is identified with)EDITOR 2 name and persists for the
entire session unless changed. The named APL editor can reside in an APL2
namespace or be a non-APL program.

The named APL editor is executed as if it had been called directly from the user's
current namescope. However, it is not associated in the current namescope so its
association does not cause name conflicts.

Guidelines for Writing a Processor 11 Editor
When the user enters an expression with a leading c, APL2 attempts to establish
an association with the name specified in the)EDITOR 2 name command.
APL2 uses 3 11 as the left argument to -NA. If the association fails, APL2 then
uses name 11 as the left argument to -NA. APL2 then calls the function.

The named APL editor function is passed a character vector containing the user's
c expression. It is the function's responsibility to parse the vector, interpret the
user's request, invoke an editor or provide editing capabilities, and reestablish the
object's definition. APL2 does not ensure that the c expression's syntax is valid.
It is the responsibility of the processor 11 function to interpret the expression.

Note: There is one exception to this. If the expression indicates a valid request
for display of all or part of a function's or operator's definition using)EDITOR 1
rules, the request is answered by APL2; the named APL editor is not called.

If the function resides in a namespace, it can use the EXP function to reach back
into the user's current namescope to reference or specify object definition(s). If the
function is a non-APL program, it may use processor 11 external services (XE, XF,
and so on) to access the user's namescope.

382 APL2 Programming: Language Reference

Editor 1 (The Line Editor)

Some editing features of Editor 1 are illustrated in Figure 52, which assumes that a
function PIGLAT has been defined to convert a word, phrase, or sentence into
Pig Latin. Editing of PIGLAT is shown.

The current version of PIGLAT prompts for an entry:
 PIGLAT
ENTER A WORD, PHRASE, OR SENTENCE:
 HAPPY BIRTHDAY
YOUR ENTRY IN PIG LATIN IS:
 APPYHAY IRTHDAYBAY

The following sequence illustrates some editing of
PIGLAT: a line is inserted to enter an expression
containing quotation marks; the header is modified; and two
lines are deleted to allow a word, phrase, or sentence to serve
as an argument to a function instead of a response to a prompt.

cPIGLAT[-] Display the function and keep the definition open
c for editing (page 388)

[0] PIGLAT
[1] JENTER A WORD, PHRASE, OR SENTENCE:J
[2] X←.
[3] h REMOVE DUPLICATE BLANKS
[4] X←(�J J�X)/X
[5] h REPLACE BLANKS WITH QUOTE|BLANK|QUOTE
[6] ((J J=X)/X)←�JJJ JJJ
[7] h REMOVE NESTING AND EXECUTE
[8] X←1↓�J0 JJJ,(εX),JJJJ
[9] JYOUR ENTRY IN PIG LATIN IS:J
[10] (1'¨X),¨�JAYJ

c 10�17�51 11/06/83 (GMT|5)
[11] [2�1] h DOUBLE ANY QUOTES Insert lines (page 390)
[2�2] X←(1+JJJJ=X)/X
[2�3] [δ1 2] Delete lines (page 391)
[2�01] [0] Z←PIGLAT X Replace a line (page 390)
[0�1][10-10] Insert characters in line10
[10] Z←(1'¨X),¨�JAYJ Insert characters in a line
[11] c Close the function definition (page 388)

Figure 52. Editing with Editor 1 (The Line Editor)

 Chapter 9. The APL2 Editors 383

 Line Numbers
Each line of text in the definition of an object begins with a bracketed line number,
which is displayed to the left of the line. After a definition is opened for editing,
either the bracketed line number is supplied as a prompt by the system or you must
type the bracketed line number itself.

The objects header line number is always [0]. When the object is first dis-
played, the statements are assigned consecutive positive integers, beginning with
[1]. Most editing uses these line numbers as references.

To insert a new line in a definition, number the new line with a fractional number
(between brackets) to indicate its position relative to the existing lines. For
example, a line inserted between lines [3] and [4] may be given the fractional
number [3�1]. A line inserted between [3] and [3�1] may be given the
number [3�01]. When a definition is closed, the system renumbers all lines to
sequential positive integers.

Line Number Prompts
Editor 1 displays a bracketed line number as a prompt in the form:

[n]

In response, you can do one of the following:

� Enter text for the line
� Change the line number and enter text
� Enter a command

The line number may be an integer or a fraction, depending on which commands
for display, deletion, and insertion have been issued previously. For example:

| The system attempts to avoid prompting with an existing line number. If unavoid-
| able, the next line is displayed with text. Up to four places after the decimal can be
| used to specify an added line.

Prompting for an insert following the
display of line 1:

 cENTER[-1]
[1] I←TABι�,NAME

| [1�1]

Prompting for an additional
line following the display of

 line 2:
 cENTER[-2]
 [2] TAB←TAB,(I>ρTAB)/�,NAME

| [3]

Editor 1 Commands
Except for the opening and closing c and ¤ (lock) commands, all Editor 1 com-
mands are entered in brackets.

Editing commands may be entered on any line of a displayed object or may be
entered in response to a line number prompt. For example:

[3] [→] Abandon editing of the object

[5] [-1|3] Display lines 1 through 3

384 APL2 Programming: Language Reference

No text should appear to the left of the left bracket. If several bracketed line
numbers or edit commands appear on the same line, only the rightmost is exe-
cuted. For example:

[3] [→][1�5] JINSERT AFTER 1J
[1�6] Only the insert is made

Editor 1 commands are described in the following sections.

Opening a Definition
To open a definition of an object, use the c (del) command:

 c option

To open a locked definition of an object, use the ¤ (del tilde) command:

 ¤ option

The locked function cannot be displayed or edited after the definition is closed. For
a description of locked definitions, see “The Effect of Locking” on page 388.

Options for Opening a Definition: The following options for opening a definition
allow you to define and name an object, rename the object, and add lines or insert
lines to an existing object.

The header defines the syntax of the defined function or operator. At the minimum,
the header must contain the name of the object. “Defined Functions and
Operators” on page 31 describes the various forms of headers.

After you type a del, the header, and press the Enter key, the line prompt [1] is
displayed and the cursor or carrier is positioned in column 7, indicated by an
underbar (_) in the examples. For example:

 cZ←MEAN X
[1] _

If the header name is that of a variable or a locked function or operator, a DEFN
ERROR is generated. If the header consists of only a name and that name already
exists in the workspace as a defined operation, a prompt for the next available
numbered line is displayed. If the header consists of more than a name (argu-
ments, operands, explicit result, and/or local names) and the name already exists in
the workspace as a defined operation, a DEFN ERROR is generated.

The header can be edited and the name of the object can be changed. However, if
the name is changed, a new object is opened. The definition associated with the
former name remains unless the object is explicitly erased with)ERASE or -EX.

To Define a New Object
c header

To Add to the End of an Existing Object
c name

 Chapter 9. The APL2 Editors 385

The line prompt [n+1] is displayed, where n is the last line of the object. For
example:

 cXEACH
[6] _

If the name has not been established, the definition is opened for a niladic defined
function without a result and a prompt for line 1 is displayed. The header may be
changed by editing line 0.

Editing an existing defined function or operator begins by executing the given
command. For example:

 cXEACH[-4]
[4] Z←Z,�X
[4�1] _

If only a line number is included within the brackets, a prompt is displayed with that
line number.

 cXEACH[4]
[4] _

If a closing del (c) follows the command, the edit command is executed and the
definition is closed. For example:

 cXEACH[-4]c
[4] Z←Z,�X

Suspended operations may be edited. When the definition is closed, the message
SI WARNING is displayed. Do not reexecute the operation until you have
cleared the suspension from the state indicator. See “Clearing the State Indicator”
on page 357.

To Edit an Existing Object
c name [command]

386 APL2 Programming: Language Reference

Opening More Than One Object for Editing
More than one object can be opened for editing at the same time. After a definition
is closed, the next previous definition is available for editing. For example, function
B is opened during the definition of A. When the definition of B is closed, editing of
A resumes.

 cA
[1] JA1J
[2] JA2J
[3] JA3J
cB Second function definition is opened.
[1] JB1J
[2] JB2Jc
[4] [-0] When definition of B is
[0] A closed, editing of A resumes.
[0�1] c

If there are intervening suspensions of execution, previous definitions cannot be
resumed until the suspensions are cleared from the state indicator. For example,
an intervening suspension of execution prevents the definition of function F from
being resumed after the definition of G is closed.

 cF
[1] JF1J
[2] JF2J
)SI State indicator shows that F
F[3] c is being edited.
*
[3] JF3J Definition of F continues.
ι1�2
DOMAIN ERROR Error in an immediate execution expression.
ι1�2
�

cG New object is defined.
[1] JG1J
[2] JG2Jc

)SI Editing of F will not continue
* because editing is not at the top
F[4] c� of the execution stack.
*
 →
[4] JF4Jc After the top item in the stack is cleared

F can be edited.

Caution: An operation already opened for editing should not be opened for editing
again. Unexpected results can occur.

 Chapter 9. The APL2 Editors 387

Closing a Definition
To close a definition, enter either the del (c) or the del tilde (¤).

The closing c (or ¤ to lock the object) may appear in the following contexts:

� At the end of any line of text that does not include a comment (h). For
example:

[2] Z←(+/X)÷ρXc

� Or on a line by itself. For example:

[3�1] c

� At the end of any editing command. For example:

cF[-]c

Closing the definition establishes the object in the workspace and ends the editing
of it. Use)SAVE to store the updated workspace. (See “Abandoning Editing of
an Object” on page 392 to learn how to quit definition mode without establishing
the object in the workspace.)

If more than one object is opened for editing, the closing del for one object is fol-
lowed by a line number prompt for the next open definition in LIFO order (unless
there are intervening suspensions of execution on the execution stack, as dis-
cussed in “Opening More Than One Object for Editing” on page 387.) The closing
del on the only remaining open object ends the editing session and returns you to
immediate execution mode.

The Effect of Locking: An object whose definition is locked cannot be displayed
or edited; it can only be erased and re-created, if it is necessary to change the
definition. If you want to lock a function when it is used in a production application,
you should keep an unlocked version of the function as an aid to maintenance of
the application. (See also -FX, page 294, for setting execution properties of a
defined operation.)

Changing the Name of an Object
You can change the name of an object by editing the name in line 0. If the object
is subsequently saved, it is saved under the new name. The original definition
(under the original name) will not be affected. An attempt to change the name of
an object to one that already exists in the workspace is rejected with a DEFN
ERROR.

Displaying an Object
To display an object, enter:
 [- option]

All display commands include a - (quad) to indicate display. Display commands
may be entered when a definition is opened, or at any time during the editing
session as a response to a line number prompt.

Display Options: The following options allow you to display either the entire defi-
nition or only a range of lines. Line numbers specified as endpoints of display
ranges need not exist. Lines falling within the range are displayed.

388 APL2 Programming: Language Reference

The object is displayed beginning with line 0. For example:

 cHEXDEC[-]
 c
[0] Z←HEXDEC X
[1] h CONVERTS X IN HEXADECIMAL TO DECIMAL
[2] Z←16⊤b1+J0123456789ABCDEFJιX

| c 1993|05|21 14�45�24 (GMT|5)
[3] _

The lines specified by the vector of line numbers are displayed. These line
numbers may be listed in the command in any order and may contain repetitions
and redundant blanks. APL2 expressions to define the line numbers are not per-
mitted. For example:

cDUMP[-1 2 3 7]
[1] h DUMP DEFINITIONS IN THE WORKSPACE
[2] h USES FUNCTIONS: DISP, SHOW
[3] h DUMP, DISP, SHOW, NLb, AND Xb ARE NOT DUMPED
[7] h DISP MAY BE MODIFIED FOR A FILE OR A PRINTER
[7�1] _

The lines specified from n1 through n2 are displayed. For example:

 cDUMP[-4|6]
 c
[4] NLb←-NL 3 4
[5] Xb←3 4ρJDISPDUMPSHOWJ
[6] NLb←(�/NLb��≠)(1↓ρNLb)↑[-IO+1]Xb)	NLb
[6�1] _

To Display a Definition
[-]

To Display Specific Lines
[-n1 n2 n3 . . .]

To Display a Range of Lines
[-n1-n2]

 Chapter 9. The APL2 Editors 389

The object is displayed from line 0 through line n. For example:

 cDUMP[-|2]
 c
[0] DUMP;NLb Xb
[1] h DUMP DEFINITIONS IN THE WORKSPACE
[2] h USES FUNCTIONS: DISP, SHOW
[2�1] _

The object is displayed from line n through the end. For example:

 cDUMP[-7|]c
 c
[7] h DISP MAY BE MODIFIED FOR A FILE OR A PRINTER
[8] DISP¨�[-IO+1]NLb

To Display from the Beginning Line to Line n
[-|n]

To Display from Line n through the End Line
[-n|]

Replacing or Inserting Lines
To replace or insert lines in a definition, enter:
 [n] text

where n may be a whole or fractional number:

� If n is an existing line number, the existing line is replaced.

� If n does not exist, the new line is inserted.

For example:

[4] [2�1] X←εX Insert a line
[2�2] [1] h X MUST BE NUMERIC Replace a line

Copying or Moving Lines
Copying lines in Editor 1 is a one-step procedure:

� To copy a line, change its line number.

When you press Enter, the copied line appears as the line number specified, but
the original text and line number are unaffected.

Moving lines in Editor 1 is a two-step procedure:

1. Copy a line by changing its line number.

2. Delete the original line.

When you press Enter, the copied line appears as the line number specified, and
the original text and line number is deleted.

390 APL2 Programming: Language Reference

 Deleting Lines
To delete lines from a definition, use the delta (δ):
 [δ option]

The delete command deletes all or part of an object, except the header. The
delete command may be entered when a definition is opened or at any time during
the editing session.

Some form of the delete command is required to delete lines from the definition of
an object that has been established in the active workspace. Merely erasing a line
from the screen does not delete it from the object.

No text should follow the delete command. Thus, if the delete command is inserted
to precede a number in a bracketed line number, the ERASE EOF key should be
used to delete the text from the line.

Delete Options: The following delete options allow you to delete specific lines or
a range of lines. These options are similar to the display options. Line numbers
specified as endpoints of delete ranges need not be existing line numbers. Line
numbers falling within the range are deleted. Renumbering occurs after the defi-
nition is closed.

The lines specified by the vector of line numbers are deleted. These line numbers
may be in any order and may contain repetitions and redundant blanks. Zero is
ignored. APL2 expressions to define the line numbers are not permitted. For
example:

[6] [δ1 4]
[4�1] _

Lines n1 through n2 are deleted. For example:

[9] [δ4|7]
[7�1] _

To Delete Specific Lines
[δn1 n2 n3 . . .]

To Delete a Range of Lines
[δn1-n2]

To Delete from Line 1 through Line n
[δ|n]

 Chapter 9. The APL2 Editors 391

Lines from line 1 through line n are deleted. For example:

[4] [δ|3]
[3�1] _

Lines from line n through the end are deleted. For example:

[3] [δ4|]
[8]

Except for the header, the entire object is deleted. Use)ERASE or -EX to
remove an object from the active workspace.

Note: The command [δ] results in a DEFN ERROR.

Caution: If you delete more lines than you intended, stop editing the object with
the [→] command. The original definition is retained and can then be reopened
for editing. This recovery technique works only for objects previously established in
the workspace. Lines deleted in nonestablished objects cannot be recovered.

To Delete from Line n through the End Line
[δn|]

To Delete All the Lines
[δ1|]

Abandoning Editing of an Object
To abandon editing of the function or operator, enter:

 [→]

This command ends the editing session and retains the most recently established
definition of the object. If the object is new (not established), none of its definition
is retained. This command may be entered at any time during the editing session.

If more than one object is opened for editing, the [→] quits from the most recently
opened object. Editing of the next object resumes if there are no intervening sus-
pensions of execution, as discussed in “Opening More Than One Object for Editing”
on page 387. When no further open definitions exist, the editing session ends.

392 APL2 Programming: Language Reference

The Display-Edit Command
To display a line for editing when the session manager is not available, enter:

 [n-p]

where:

n Specifies a particular line of the defined function or operator to be
displayed.

p Is 0 or a positive integer specifying a position within the line.

Note: You cannot use the [n-p] command to edit lines longer than -PW or the
screen width.

| The edit action:

� Displays line n in the input area.

� If p=0, places the cursor just after the end of the line.

If p≠0, places the cursor at the position specified.

� Accepts input to change the line.

The display-edit command may be entered as the command when a definition is
opened or at any time during the edit session.

Immediate Execution with Editor 1
Any input line not beginning with a left bracket ([) is executed immediately and is
not part of the definition. The definition of the defined function or operator is sus-
pended and the input line is executed in the active workspace. After successful
execution, editing is resumed. If an error occurs, the statement in error is normally
cleared from the state indicator with → or)RESET n, so that editing can continue.
Clearing the error from the state indicator is especially important if more than one
object is opened for editing, as described in “Opening More Than One Object for
Editing” on page 387.

Entering System Commands
System commands can be entered by typing over or erasing the line number
prompt or by typing on any blank line. The system command or any response to it
is not treated as input to the editor.

The system commands)SI,)SINL, and)SIS use the del (c) to identify the
names of defined functions and operators still in edit mode.

If you enter the)EDITOR 2 system command while one or more definitions are
open in Editor 1, Editor 2 (the full-screen editor) is started only for the definitions
opened after you issue the)EDITOR 2 command. The definitions previously
opened in Editor 1 remain available within Editor 1 and can be edited or closed
when all segments of Editor 2 are closed.

If, during editing, you save the workspace with)SAVE, edit mode is resumed
when the workspace is loaded.

The following system commands cause editing to end without the object's being
established in the active workspace:

 Chapter 9. The APL2 Editors 393

)CLEAR
)LOAD
)OFF
)CONTINUE
)RESET

System Services and Editor 1
Use of Editor 1 is affected by the APL2 session manager and by the type of
display.

Editor 1 with the APL2 Session Manager
| When Editor 1 is invoked, the facilities of the session manager are still available for

use with the editor.

Lines in the session log can have bracketed numbers and can be used as input to
the definition. Lines selected for reuse that do not have bracketed line numbers
are treated as lines for immediate execution, not as lines of text for the definition.

Displayed lines of the definition are lines of output in the session manager and can
be edited directly by typing over the displayed text. When Enter is pressed, the
lines are redisplayed in the session manager input/output area, following the rules
of the session manager. The original lines reappear as they were displayed, and
the changed lines appear with bracketed line numbers as input to the definition.

| For more information on the APL2 session manager and its use, see the appro-
| priate workstation user's guide or APL2/370 Programming: System Services Refer-

ence.

| Editor 1 without the APL2 Session Manager
If you start an APL2 session without the session manager, Editor 1 operates under
the standard input/output protocol of the host system.

Editor 2 (Full-Screen Editor)

If used on a display device, Editor 2 operates in full-screen mode and uses function
keys to simplify entry of commands.

Changes made through Editor 2 are not recorded in the session log when the editor
is invoked from the session manager. The command that starts the editor is
recorded, but work within the editor does not become part of the log.

To log the results of changing an object with Editor 2, close the definition to fix it in
the active workspace and redisplay the object in the session manager, using the
expression cNAME[-]c (where NAME is the name of the object).

Figure 53 shows the Editor 2 display of a function opened for editing with
cPALIN.

394 APL2 Programming: Language Reference

| [h]cPALIN�3 ρ: 4 1993|05|21 14�13�32
[0] PALIN R
[1] R←(RεALF)/R
[2] R←R��='R
[3] (R,�R)/JA PALINDROMEJ JNOT A PALINDROMEJ
_

Figure 53. Display of Object with Editor 2

Editor 2 displays one page at a time of the definition. The display includes:

information line Identified by [h].

line number field The first six columns of each line. The remaining columns
of each line are the text field.

 Information Line
When a definition is opened, an information line precedes the header line. The
information line varies for defined operations and variables.

For Defined Functions and Operators: The information line has the following
format:

[h]cname.x ρ: n yyyy-mm-dd hh.mm.ss

where:

name Is the name of the object being edited.

x Is a number that indicates the type of object:

3 = Defined function
4 = Defined operator

ρ: n Indicates the number of rows in the object when last estab-
lished in the workspace. It is calculated as 1↑ρ-CR name.

yyyy-mm-dd Is the date the object was last fixed in the workspace.

hh.mm.ss Is the time the object was last fixed in the active workspace.

The above fields display zeros if the object is new.

The information line is updated each time you establish the current definition in the
workspace with the [c] command (fix the object in the workspace and remain in
edit mode).

For Simple Character Vectors and Matrixes: The information line has the fol-
lowing format:

[h]cname.2 ρ: n

where:

name Is the name of the variable being edited.

.2 Indicates a character vector or matrix.

 Chapter 9. The APL2 Editors 395

ρ: n Is the shape of the variable. This field is updated each time the
variable is saved in the workspace with a [c] command.

 Line Numbers
When they are displayed, all object lines are given bracketed line numbers. The
object's header is line [0], and subsequent lines are assigned the positive inte-
gers beginning with [1]. Editing is done with reference to these line numbers or
to the lines themselves.

During editing, inserted lines are displayed with fractional numbers to indicate their
positions relative to existing lines. For example, a line inserted between lines [3]
and [4] is displayed with the fractional number [3�1]. A line inserted between
[3] and [3�1] is displayed with the number [3�01]. All lines are renum-
bered to positive integers when a definition is closed or in response to the
renumber command ([ι]).

Line Number Prompts
Editor 2 does not display line number prompts. However, after you press Enter, the
editor numbers previously unnumbered lines. You can also enter bracketed line
numbers as part of a line.

Editor 2 Commands
Unlike other full-screen editors, Editor 2 does not have a command line. Therefore,
editing with this full-screen editor is accomplished by one of the following:

� Issuing commands, as with Editor 1
� Manipulating line numbers within brackets
� Modifying or manipulating displayed lines of the object
� Scrolling through function keys or commands within brackets and not with

command line commands

Except for the opening and closing c and ¤ (lock) commands, editor commands
are entered within brackets. They may be entered on any line of a displayed object
or on a line by themselves, with no text to the left. For example:

[→] Abandon editing of the object
[δ5] I←1+I Delete line 5

Two sets of bracketed numbers cannot be adjacent on the same line. For
example:

[5][2�1]

The [2�1] is taken to be the text for line 5; a SYNTAX ERROR is generated
when the operation is subsequently executed.

Some edit commands are represented by function keys. The function key assign-
ments are shown in Figure 54 on page 397. Each key's use is discussed with the
explanation of the associated edit command.

396 APL2 Programming: Language Reference

If you use a display terminal, the number of lines in the object may exceed the
capacity of the definition area for display. When an existing definition is opened, as
much of the requested definition as will fit in the definition area is shown. To see
the remainder of the display, use the scrolling commands [↑] (PF7), [↓] (PF8),
and [�] (PF9), as described in “Scrolling through a Definition” on page 401.

If more than one line or command is entered on the screen, they are processed
from top to bottom when ENTER is pressed.

Figure 54. Function Key Assignments for Editor 2

1 [
]
 Display
 Function Key
 Settings

2 [ι]

 Renumber

3 c
 Close
Definition

4 5 6 [c]
Fix Object in
Workspace.
Resume Editing

7 [↑]
Scroll
Backward

8 [↓]
Scroll
Forward

9 [�]
Cursor-Dependent
Scroll Forward

10

11

12

Opening a Definition
To open a definition of an object, use the c (del) command:

 c option

To open a locked definition of an object use the ¤ (del tilde) command:

 ¤ option

The locked function cannot be displayed or edited after the definition is closed. For
a description of locked definitions, see “Effect of Locking” on page 399.

More than one object can be opened for editing at a time. Editing multiple objects
is discussed in “Editing Multiple Objects” on page 411.

 Chapter 9. The APL2 Editors 397

Options for Opening a Definition: The following options for opening a definition
are available.

The header defines the syntax of the new defined function or operator. At
minimum, it must contain the object name. The header can be edited. However, if
the name is changed, a new object is implied. The definition associated with the
former name remains unless the object is explicitly erased with)ERASE or -EX.

After you press the Enter key, both the information line and line [0] display. The
remaining lines are blank.

If the header consists of only a name, and that name already exists in the work-
space as a defined operation or character vector or matrix, the object is displayed.
If the header specifies a monadic or dyadic operation and the name already exists
in the workspace as a defined operation, a DEFN ERROR is generated.

Editing of the existing defined function or operator begins by the user executing the
given command. If only a line number is included within the brackets, a DEFN
ERROR results.

If a closing c follows the command, the edit command is executed and the defi-
nition is closed. Full-screen mode is not entered.

If no command is given, the object is displayed. If the name has not been estab-
lished, the definition is opened as a niladic defined function without an explicit
result.

Only named simple character vectors and matrixes can be edited. The character
vector or matrix is displayed without single quotation marks and may be edited
without them. They are implied by the information line that displays .2 after the
object name (meaning a variable), and quotation marks should not be explicitly
entered unless they are to be displayed as part of the variable. If a vector or matrix
is so wide that one row does not fit on the whole screen, then the object cannot be
edited.

If the name represents an array that is not a simple character vector or matrix, a
DEFN ERROR is generated. If the name does not exist in the workspace, it is
taken to represent the header of a niladic defined function without an explicit result.

To Define a New Object
c header

To Edit an Existing Object
c name [command]

To Edit a Simple Character Vector or Matrix
c name

398 APL2 Programming: Language Reference

Closing a Definition
To close a definition, press PF3 or enter either c (del) or ¤ (del tilde).

The closing c (or ¤ to create a locked object) may appear on a line by itself or
after the text on any line or after a command. For example:

[2] h L MAY BE NESTED TO DEPTH 2c

[δ7 8 12]c

The c establishes the definition in the active workspace and ends editing of the
object.

Closing the definition establishes the object in the workspace. Use)SAVE to
store the updated workspace. For a description of quitting the definition mode
without establishing the object in the workspace see “Abandoning Editing of an
Object”.

For a description of the effect of the closing del when multiple objects are being
edited, see “Editing Multiple Objects” on page 411.

Effect of Locking: An object whose definition is locked cannot be displayed or
edited; it can only be erased and re-created if it is necessary to change its defi-
nition. Although on rare occasions you may want to lock a function when it is used
in a production application, you should keep an unlocked version of the function as
an essential aid to maintenance of the application. (See also -FX, page 294, for
setting execution properties of a defined operation.)

Fixing the Object in the Workspace and Staying in Edit Mode
To fix the function, operator, or character vector or matrix in the workspace and

stay in edit mode, press PF6 or enter:

 [c]

This command establishes the current definition of the object in the active work-
space but leaves the definition open.

After this command is executed, the information line for defined functions and oper-
ators is updated.

Abandoning Editing of an Object
To abandon editing of the function, operator or character vector, or matrix, enter:
 [→]

The [→] command ends a definition without establishing the object. It must be
entered in brackets. It can be entered on a line by itself or it can be typed over any
displayed line number in the definition.

 Chapter 9. The APL2 Editors 399

Changing the Name of an Object
You can change the name of an object by editing the name in line 0. If the object
is subsequently saved, it is saved under the new name. The original definition
(under the original name) is not affected. An attempt to change the name of an
object to one that already exists in the workspace is rejected with a DEFN
ERROR.

Displaying an Object
To display an object, enter:
 [- option]

Display commands include a - (quad) to indicate display. They may be entered as
the command when a definition is opened with a c or ¤ or at any time during the
editing session.

If the display command is issued as part of opening a definition and if it is not
followed by a closing del, full-screen edit mode is entered. If the display command
is followed by a closing del, full-screen edit mode is not entered.

When the display command is issued as part of opening a definition, a full page of
the requested display is shown without the information line. When you press Enter
or a function key for the first time, the information line and a page of the object are
displayed, beginning with the first line requested. You can then scroll through the
definition. If, however, you close the definition (with c or PF3), you do not see the
information line and the object is not displayed further.

If a display command is entered during an editing session, the requested lines are
displayed at the point at which the command was entered and remain displayed
until you press Enter or a function key. The object is then redisplayed beginning
with the first line shown on the screen. Therefore, in order to move a specific line
in the object, issue the display command on the line following the information line.

Display Options: The following display options are available. You can display the
entire object, specific lines, or ranges of lines. Line numbers specified as endpoints
of display ranges need not be existing line numbers. Lines falling within the range
are displayed.

The first page of the object is displayed beginning with line 0.

The lines specified by the vector of line numbers, up to a full page, are displayed.

The line numbers in the command may be in any order and may contain repetitions
and redundant blanks. APL2 expressions to define the line numbers are not per-
mitted.

To Display the Definition
[-]

To Display Specific Lines
[- n1 n2 n3 . . .]

To Display a Range of Lines
[-n1-n2]

400 APL2 Programming: Language Reference

The lines specified from n1 through n2 are displayed.

The object is displayed from line 0 through line n.

The object is displayed from line n through the end.

To Display from the Beginning Line to Line n
[-|n]

To Display from Line n through the End
[-n|]

Scrolling through a Definition
To scroll one screen backward or to the top, press PF7 or enter:
 [↑]

To scroll one screen forward or to the bottom, press PF8 or enter:
 [↓]

To scroll one screen forward from the cursor position, press PF9 or enter:
 [�]

Scroll Backward: If this command is entered on the first screen of the definition,
no action is taken. For all other screens, the first line on the screen becomes the
last line displayed after the command is executed.

� �
 [12] MMMMMM
 [13] NNNNNN
 [14] OOOOOO
 [15] PPPPPP
 [16] QQQQQQ
 [17] RRRRRR
 [18] SSSSSS

 �

� �
 [6] GGGGGG
 [7] HHHHHH
 [8] IIIIII
 [9] JJJJJJ
 [10] KKKKKK
 [11] LLLLLL
 [12] MMMMMM

 �
Before PF7 is pressed
or [↑] is entered.

After PF7 is pressed
or [↑] is entered.

 Chapter 9. The APL2 Editors 401

Scroll Forward: The last line on the screen becomes the first line displayed after
the command is executed.

Cursor-Dependent Scroll Forward: The line on which the command is issued
becomes the first line of the definition displayed. Succeeding lines of the object are
displayed in numeric order below the line.

Pressing PF9 makes the line that the cursor is on be the first line of the next dis-
played screen.

Cursor-Dependent Scroll Backward: To display the line on which the command
is issued as the last line displayed, press PF9 followed by PF7.

� �
 [12] MMMMMM
 [13] NNNNNN
 [14] OOOOOO
 [15] PPPPPP
 [16] QQQQQQ
 [17] RRRRRR
 [18] SSSSSS

 �

� �
 [18] SSSSSS
 [19] TTTTTT
 [20] UUUUUU
 [21] VVVVVV
 [22] WWWWWW
 [23] XXXXXX
 [24] YYYYYY

 �
Before PF8 is pressed
or [↓] is entered.

After PF8 is pressed
or [↓] is entered.

� �
 [12] MMMMMM
 [13] NNNNNN
 [14] OOOOOO
 [15] PPPPPP
 [16] QQQQQQ
 [17] RRRRRR
 [18] SSSSSS

 �

� �
 [16] QQQQQQ
 [17] RRRRRR
 [18] SSSSSS
 [19] TTTTTT
 [20] UUUUUU
 [21] VVVVVV
 [22] WWWWWW

 �
Before PF9 is pressed
or [�] is entered.

After PF9 is pressed
or [�] is entered.

 Adding Lines
Lines can be added to an object or inserted into it by typing the addition or insertion
or by copying another line.

Adding Lines by Typing: Input lines can be typed anywhere within the definition
area and may be numbered with a bracketed line number [n] or entered without a
line number.

When editor processing is requested (by an Enter or a function key), the editor
sequentially renumbers the unnumbered lines in the definition area from top to
bottom.

A line can be added to the end of a definition by:

� Typing it on a blank line after the last line of the object.

� Typing the new line over line [0]. Start your text over the left bracket ([).
Use the ERASE EOF key to delete any text not needed. When you press
Enter, line [0] is restored and the new line is added to the end of the object.
This line is displayed as the first line of the page; the remaining definition area
is blank.

402 APL2 Programming: Language Reference

� Typing over any displayed line with the new line number and text. Use the
ERASE EOF key to delete any text not needed. When you press Enter, the
line typed over is restored and the new line is added to the end of the defi-
nition. You can see the added line by using a display command or scrolling to
the end of the definition.

Inserting Text Lines by Typing: There are two options for inserting text lines by
typing.

Option 1

To insert one or more lines between two lines of an existing object, type the new
text beginning at the left margin on the line immediately following the line at which
the text is to be inserted. The lines typed over retain their original definition, and
the inserted lines are numbered by the system.

Before Insertion

[2] N←2
[3] L1:A←εARRAY
[4] Z←N ROUND(+/A)÷ρA

Insertion Typed

[2] N←2
→(CHARACTER)/NONUM
[4] Z←N ROUND(+/A)÷ρA

Result After Enter

[2] N←2
[2�1] →(CHARACTER)/NONUM
[3] L1:A←εARRAY
[4] Z←N ROUND(+/A)÷ρA

If the inserted line is shorter than the line on which it is typed, press ERASE EOF
to clear the remainder of text from the line; otherwise, the remaining text appears
as part of the inserted line.

 Chapter 9. The APL2 Editors 403

Option 2

Number any line of the definition with the appropriate fractional line number and
type the text.

If the line used is an existing text line, the line typed is restored to its original text,
and the line created is inserted as the line number specified.

Entering Lines Wider Than One Screen Row—Continue
Command
To enter a line wider than one screen row, precede the continuation line with:

 []

The continue command is used to create a single logical line from text lines that
are wider than the width of the screen. The command can be typed anywhere on
the line but may have no text to its left.

If typed as part of a text entry, the continue command indicates that the text line is
continued from a previous screen row. When the editor processes a line with con-
tinue commands, it creates a single text line that covers more than one screen row.
The [] is never displayed by the editor.

Creating a Single Line from Two Lines—Continue Command
To append a text line to the line above it, erase, with the terminal's delete key, the
text's line number, but not the brackets. The brackets remain:

 []

When you press Enter, the line is appended to the previous line. Indicate that the
line is to continue, if necessary, by inserting [] at the beginning of each succes-
sive row.

Note: The text of the original line is unchanged.

Replacing Text Lines
Lines of the definition are replaced by a new line with the same number as the line
you want to replace. To replace text lines, do one of the following:

� Display the line to be changed and type over the line text (using the ERASE
EOF key as needed); do not change the bracketed line number.

� Number and type the text of the replacement on a blank line.

� Change the bracketed number of a displayed line and type over the displayed
text.

The line typed over retains its original definition; the line created replaces the
line with the number specified.

404 APL2 Programming: Language Reference

Inserting and Deleting Characters in a Line
You insert characters into a line by using one of the following:

� Insert mode of the terminal keyboard
� Change command described on page 407

You delete characters using the terminal delete key.

 Deleting Lines
To delete lines from a definition, use the δ (delta):
 [δ option]

The delete command deletes all or part of an object, except the header. The
delete command may be entered when a definition is opened or at any time during
the editing session.

Some form of the delete command is required to delete lines from the definition of
an object that has been established in the active workspace. Merely erasing a line
from the screen does not delete it from the object.

Delete Options: The following delete options allow you to delete specific lines or
a range of lines. Line numbers specified as endpoints of delete ranges need not
be existing line numbers. Line numbers falling within the range are deleted.

The lines specified by the vector of line numbers are deleted. These line numbers
may be in any order and may contain repetitions and redundant blanks. Zero is
ignored. APL2 expressions to define the line numbers are not permitted.

Use)ERASE or -EX to remove an object from the active workspace. Note that
the command [δ] results in a DEFN ERROR.

Caution: To avoid deleting lines that should be retained, always enter one or
more line numbers after the δ. If you delete more lines than intended, stop editing
the object with the [→] command. The original definition is retained and can then
be reopened for editing. This recovery technique works only for objects previously
established in the workspace. Deleted lines in objects not previously established
cannot be recovered.

To Delete Specific Lines
[δn1 n2 n3 . . .]

To Delete From Line n1 to Line n2

[δn1-n2]

To Delete from Line 1 to Line n
[δ|n]

To Delete from Line n through the End Line
[δn|]

To Delete All the Lines Except the Header
[δ1|]

 Chapter 9. The APL2 Editors 405

 Renumbering Lines
To renumber lines, press PF2 or enter iota (ι) within brackets:
 [ι]

All lines of the object are renumbered to consecutive integers beginning with [0]
for the header.

Lines are also renumbered when the definition is closed.

Locating Strings of Characters—Locate Command
To locate strings of characters and display the lines that contain the string, use the
locate command:

[/string/ N lines]

where:

/string/

Specifies the string of characters to be located.

The delimiter, represented here by /, may be any nonalphameric character not
occurring in the string except the following:

] → ↓ ↑ ι
 h - δ c � � �

If the terminating delimiter is not specified neither N nor lines may be specified.

An entry in the form /string specifies a search of all object lines.

N Specifies that the characters in string represent an APL2 name. Valid matches
include strings within quotation marks but exclude any strings of characters that
are not also APL2 names.

If N is omitted, any occurrence of the string is located.

N may be specified in combination with lines.

lines

Specifies the lines to be searched for the string.

If lines is omitted, the search begins with line 0. If lines is not omitted, only
one of the following may be specified:

� n1 n2 n3 . . ., specifies a vector of line numbers

� n1|n2, specifies a range of lines

� n-, specifies all lines in the object beginning with line n

� -n, specifies all lines in the object through line n.

Caution: No text should follow the locate command. Use the ERASE EOF key,
as necessary, to delete text after the command.

406 APL2 Programming: Language Reference

Sample Command: In the following example, α is the delimiter, and the string to
be located is /��. All lines through line 13 of the object are to be searched for the
string.

 [α/��α |13]

Characteristics of the Locate Command Display: The located lines replace the
current display in the definition, beginning with the line at which the command is
entered (including the information line) and continuing for a page. Lines not dis-
played are unaffected by the command. Located lines may be edited.

When Enter or a function key is subsequently pressed, the object is redisplayed
beginning with the first line shown on the screen. If the command was issued on
the first line of the screen, the display will begin with the first found line.

If more lines are located than can fit on a screen, scrolling commands cannot be
used to view additional screens of output. Instead, a second locate command must
be issued specifying line numbers beyond that shown as the last line on the
screen.

Replacing One String of Characters with Another—Change
Command
To replace a specified string of characters with another, use the change command:

[/oldstring/newstring/ form lines]

/oldstring/newstring/

oldstring is a string of characters to be replaced by the characters specified as
newstring.

The delimiter, represented here by /, may be any nonalphameric character not
occurring in the string except the following:

] → ↓ ↑ ι
 h - δ c � � �

The terminating delimiter must be entered.

A change command in the format /oldstring/newstring/ changes the first occur-
rence of oldstring in every line that it appears.

form

Specifies the form of the search; it may be omitted. If provided, either or both
of the following may be specified, with either operand first.

� ¨ specifies that all occurrences of the old string on any eligible line are to
be changed. If the ¨ option is not specified, only the first occurrence of
oldstring on any eligible line is changed.

� N specifies that the characters in a string represent an APL2 name. Valid
matches exclude any strings of characters that are not APL2 names.

 Chapter 9. The APL2 Editors 407

lines

Specifies the lines to be affected by the change command. If no lines are
specified, all lines are affected by the command. This operand must follow any
specification of form.

Only one of the following may be specified for lines:

� n1 n2 n3 . . ., specifies a vector of line numbers

� n1|n2, specifies a range of lines

� n-, specifies all lines in the object beginning with line n

� -n, specifies all lines in the object through line n.

Any form operand(s) must precede the lines operand; blanks between operands are
not necessary.

Caution: No text should follow the change command. Use the ERASE EOF key,
as necessary, to delete the text following the command.

Sample Command: The following forms are equivalent commands:

[/TVAR/XV/ ¨ N 6|]
[/TVAR/XV/ N ¨ 6|]

 [/TVAR/XV/N¨6|]

In the example, / is the delimiter, and the APL2 name TVAR is to be changed to
XV wherever it appears in the object. ¨ indicates that all occurrences on a line
are to be changed, N indicates that the old string is an APL2 name, and 6- indi-
cates that all lines of the object, beginning with line 6, are to be affected by the
command.

Change Command Useful for a Long Line: To insert characters in the middle of
a long line, especially one that continues to a second line, use the change
command for a single line. For example:

[/VAR/VARIABLE/ 17]

Type the change command on any line except a continuation line, then press Enter.

408 APL2 Programming: Language Reference

Copying Lines Into a Definition—Get Command
To copy lines into a definition, use the get command. The get command gets the
lines specified from the character representation of the object named and inserts
them at the point of the command in the object being edited.

[� name lines]

name

Any simple character variable of rank 2 or less, an unlocked defined function,
or an unlocked defined operator may be specified. Scalars and vectors are
treated as one-row matrixes.

If the name is omitted, lines are copied from the current object being edited.

lines

Specified as with display and delete commands, lines may be individual line
numbers or a range of numbers. (See “Displaying an Object” on page 400.)
Lines are selected with index origin 0. Thus, for example, a 3 selects the
fourth row of a matrix.

If lines are not specified, the entire object is inserted.

If the object has 0 rows, a DEFN ERROR is generated. An object will have 0
rows if:

� It is locked.
� It is a 0 by n empty matrix.
� It is undefined.

If an array is an n by 0 empty array (where n is not equal to 0), n lines without text
are inserted.

Copying or Moving Lines within a Definition
Lines of an object may be copied by changing their line numbers, or by using the
get command. To move lines, simply copy them, then delete the originals.

� To make a copy of a line, change its line number.
� To copy a line with text changes, change the line number and the text.

When you press Enter, the copied line appears as the line number specified, but
the original text and line number are unaffected.

 Chapter 9. The APL2 Editors 409

To copy several consecutive lines, change the line number of the first line to be
copied and blank out the line number field on subsequent lines to be copied. For
example, to copy lines 4 through 6 and place after line 8:

Original Display

[3] LINE 3
[4] LINE 4
[5] LINE 5
[6] LINE 6
[7] LINE 7
[8] LINE 8
[9] LINE 9

Lines Marked for Copy

[3] LINE 3
[8�1] LINE 4
 LINE 5
 LINE 6
[7] LINE 7
[8] LINE 8
[9] LINE 9

After the Copy

[3] LINE 3
[4] LINE 4
[5] LINE 5
[6] LINE 6
[7] LINE 7
[8] LINE 8
[8�1] LINE 4
[8�2] LINE 5
[8�3] LINE 6
[9] LINE 9

To copy a block of lines that occupy more than one screen or are not displayed on
the current screen or to copy from another object, use the put and get commands
(see “Copying Lines Into a Definition—Get Command” on page 409 and “Copying
Lines From a Definition—Put Command”).

Copying Lines From a Definition—Put Command
To copy lines from a definition, use the put command. The put command takes the
character representation of specified lines from the object being edited and creates
in the active workspace a character matrix with the specified name. Line numbers
are not part of the created matrix.

410 APL2 Programming: Language Reference

[� name lines]

name

The name is constructed following the rules for names. If it is the same as a
variable in the workspace, the value will be replaced. If it is the same as a
defined function or operator in the workspace, a DEFN ERROR is generated.

lines

Specified as with display and delete commands, lines may be individual line
numbers or a range of numbers. (See “Displaying an Object” on page 400.) If
lines are not specified, the entire object is used.

Editing Multiple Objects
Multiple objects can be viewed and edited concurrently by dividing the screen into
horizontal segments. Each segment has the same structure as when a single defi-
nition is opened and is treated as a separate definition area. All the editing facili-
ties described in “Editor 2 Commands” on page 396 apply to each segment.

Opening Screen Segments
Segments are opened from within the editor by issuing an appropriate c or ¤
command (with no text to the left of c on the line). The segment begins on the line
at which the c is entered.

If c is entered on a line at which lines of an object are currently displayed, lines of
the currently displayed segment are replaced by lines of the segment just opened.
The lines of the original segment can still be displayed in their own segment with
the display or scroll commands.

A new segment may not be opened on the last line of the screen.

Working with Multiple Segments
Commands that change or delete lines can affect the entire object. You may be
unable to see some of the changes until you display more lines of the object. To
avoid changing or deleting lines you cannot see, you can limit such commands to
the lines you can see by specifying only the numbers of the lines currently dis-
played.

When Enter or a defined function key is pressed, the editor scans all lines on the
terminal screen for input and processes any modified line. More than one line can
be typed before processing is requested. The lines may be typed on any line of
the screen segment where they are to take effect. When the screen is split, an edit
command affects only the object being edited in the screen segment where the
command is issued (although the entire screen is processed). The editor ignores
blank lines.

Entering the closing c or pressing PF3 when the cursor is in a segment releases
that segment. Any screen segment immediately above the released segment
expands to include the screen rows released. If the released segment is the top
segment on the screen, the segment immediately below expands upward to include
the screen rows released. If only one segment is open, the closing c ends the
editor and returns to immediate execution under the system.

Signaling an interrupt ends all segments of Editor 2 without establishing any
objects.

 Chapter 9. The APL2 Editors 411

Immediate Execution in Editor 2
An APL2 statement or defined function or operator can be executed within Editor 2
through the execution command (�) entered on any line of a segment. The exe-
cution command has the form:

[�]expression

The expression is evaluated, and the expression and result remain displayed, as
illustrated below:

Command Is Typed

[�]6+ι4

Enter Is Pressed

[�] 6+ι4
7 8 9 10

The result of an executed expression can be made part of the definition. This is
done by typing over any character in the result, or inserting or deleting characters
in it.

System commands cannot be executed in Editor 2.

To execute an object that you have been editing in another segment, use [c] or
PF6 to fix the definition in the workspace. Then execute the object with [�]
expression.

412 APL2 Programming: Language Reference

 Chapter 10. System Commands

APL2 provides three types of system commands for:

� Storing and retrieving objects and workspaces
| � Using system services and information

� Using the active workspace

| This chapter describes all system commands alphabetically. System-specific com-
| mands are labeled. The structure of the system command is given at the beginning

of each command description, as shown in Figure 55.

)SAVE [[library] workspace]

Figure 55. Structure of a Command

Brackets indicate that the enclosed item is an optional parameter--they are not
entered as part of the command. Any parameter not shown in brackets must be
entered. Parameters must be entered in the order shown.

In this chapter, command names and keywords are shown in uppercase, and fields
to be substituted with user data are shown in lowercase. In actual usage,
command name and keyword characters may be entered in any case. Some user-
supplied fields in system commands refer to APL objects (variables, functions, and
operators). These fields are case sensitive, since APL2 treats uppercase object

| names as distinct from lowercase object names. For other user-supplied fields
| (such as file, workspace, or editor names), case sensitivity varies by operating
| system.

Figure 56 displays the APL2 system commands, grouped according to use.

Figure 56 (Page 1 of 2). APL2 System Commands

Storing and Retrieving Objects and Work-

spaces
These system commands move data
between the active workspace and other
workspaces or external files. They also
enable a user to migrate workspaces.

)LIB List workspace names

)LOAD Retrieve workspace from library

)SAVE Save active workspace

)CLEAR Activate a clear workspace

)WSID Query/assign workspace identifier

)COPY Copy objects into active workspace

)PCOPY Copy objects into active workspace

)MCOPY1 Migrate VS APL objects into active work-
space

)IN Read transfer file into active workspace

)PIN Read transfer file into active workspace

)OUT Write objects to transfer file

)DROP Delete a library workspace

 Copyright IBM Corp. 1984, 1994 413

Figure 56 (Page 2 of 2). APL2 System Commands

Using the Active Workspace
These system commands provide information
about the active workspace, specify the
APL2 editor to be used, and remove vari-
ables, defined functions, and defined opera-
tors from the active workspace.

)NMS List names

)VARS List variables

)FNS List functions

)OPS List operators

)ERASE Delete objects

)SIS Display state indicator

)SI Display state indicator

)SINL Display state indicator

)RESET Clear state indicator

)PBS2 Printable backspace character

)EDITOR Query/specify editor

)QUOTA2| Display resource limits

)SYMBOLS Query/modify symbol table size

System Commands for System

Services/Information
These system commands provide diagnostic

| information and access to operating system
| commands.

)OFF End APL2 session

)CONTINUE Save active workspace and end session

)HOST Execute a host system command

)MORE List additional diagnostics

)TIME3 Display current time

)MSG3 Send message to another user

)OPR3 Send message to the system operator

|)CHECK| Diagnose errors

| Note:

| 1. APL2/370 only. Refer to the APL2 Migration Guide for additional information.
| 2. APL2/370 only.
| 3. These system commands are provided on CMS and TSO for compatibility with older APL products.

Storing and Retrieving Objects and Workspaces

APL2 provides several system commands for storing and retrieving objects and
workspaces. These commands:

� Store workspaces, list stored workspace names, and remove stored work-
spaces.

� Retrieve the contents of stored workspaces.

� Write and read objects to and from transfer files.

Figure 57 on page 415 summarizes the actions of several of these commands.

414 APL2 Programming: Language Reference

Adds all or selected objects

from inactive workspace to

contents of active workspace.

Active Workspace
Library of

Stored

Workspaces

Files (not workspaces)

Containing

Transfer Forms

adds to the active workspace all or selected objects

from a file containing transfer forms.

moves entire workspace or selected objects, but

always replaces the entire file to which it is directed.

and

o r

EMPTY

Workspace

affect the entire active workspace.

Instructions

or data

Figure 57. How Selected System Commands Affect the Active Workspace

 Chapter 10. System Commands 415

| Common Command Parameters—Library, Workspace
The system commands that move objects to and from libraries may require the
library number, as well as the workspace name. These three parameters are
explained below without the detailed descriptions of the individual commands.
Other parameters are described with the relevant commands in the detailed
sections of this chapter.

Parameter Meaning

library Is the number of the library to be accessed by the command. You
must enter a number if the library is not your default library.

The library structure is dependent on the host system, but differences
in structure do not affect the way the system commands work.

workspace Is the name of the workspace to be accessed. Workspace names
may contain up to eight characters (A through Z, 0 through 9), and
they must begin with a character.

The underlying workspace structure is also dependent on the host
system, but the differences in structure do not affect the way the
system commands work.

| A quoted filename format is supported on some platforms.

System Services and Information

APL2 provides system commands for ending an APL2 session, gaining access to
host system services, and obtaining information from the system. These system
commands are used to:

� End the APL2 session
� Issue host system commands

| � Obtain additional information on error reports from system commands

Using the Active Workspace

APL2 provides several system commands for using the active workspace. These
commands:

� List or erase global objects (variables, defined functions, and defined operators)
� Display or reset the state indicator
� Set or query the editor or printable backspace

Common Parameters—First, Last
For the system commands that list objects, you may request an alphabetic range
for the list. The parameters for specifying the range are explained below rather
than repeated with the detailed descriptions of the individual commands.

Parameter Meaning

first Begins the list of names with the characters shown for this parameter.
first may be a single character or a set of characters.

last Ends the list of names after names beginning with this parameter have
been displayed. last may be a single character or a set of characters.

416 APL2 Programming: Language Reference

| First and last are separated by a hyphen. Either name (or both) may be omitted to
indicate that the range is unbounded at that end. For example:

)FNS QU| (all names from QU to the end of the list)

)FNS |QA (all names from the beginning of the list
through the last one that begins with QA)

)FNS Q|T (all names beginning with a letter from Q through T

The atomic vector (-AV) character sequence (see Figure 69 on page 471 for
EBCDIC and Figure 68 on page 470 for ASCII) determines the order of the names
listed as a result of any of the following commands:

)NMS list global names
)VARS list global variable names
)FNS list defined function names
)OPS list defined operator names

|)LIB list workspace names

All names reported in the list begin at eight-column intervals. A multiple-row list
forms columns if the names are short enough to fit every eight columns.

The examples of these system commands assume a workspace with the contents
shown in Figure 58.

CONTENTS OF EXAMPLE WORKSPACE USED WITH

)NMS,)FNS,)VARS, AND)OPS

Variables

CHANGE_ACTIVITY COIBM DCS GPAPL2 GPDESC TIMER

Functions

ABSTRACT ASSOC BIN COMB DEC2HEX DESCRIBE
DO EXAMPLE EXAMPLES EXPAND FC GCD HELP
HEX2DEC HILB HOW IOTAU LFC PACK PALL PER
PERM PO POL POLY POLYB REP REPLICATE
SORTLIST TIME TRUTH TYPE UNIQUE UNPACK

Operators

AND COMMUTE CR EL ELSE ER FAROUT HEX
IF NOP PAD PL POWER PR TRACE TRAP
TRUNC ZERO

Figure 58. Sample Workspace for System Command Examples

 Chapter 10. System Commands 417

)CHECK

|)CHECK—Diagnostic Information

|)CHECK command options common to all platforms are described here. For infor-
| mation about the additional options supported in APL2/370, see APL2/370 Diag-

| nosis Guide.

| The common options are grouped as follows:

| Workspace validation

|)CHECK WS [ON|OFF]

| Tracing functions

|)CHECK TRACE STMT
|)CHECK TRACE OFF

| Forcing dumps

|)CHECK DUMP

| Workspace Validation

|)CHECK WS

| Causes an immediate comprehensive check of the workspace. This is independent
| of the other settings of)CHECK.

| Diagnostic information is produced as APL2 output if any inconsistency is found
| and the active workspace is replaced with a clear workspace (CLEAR WS).

| Note:)CHECK WS is done automatically when the)LOAD and)SAVE com-
| mands are issued.

|)CHECK WS ON

| Causes a comprehensive check of the workspace at the completion of every primi-
| tive function and prior to the processing of a new line of input from the keyboard or
| AP 101 stack.

| A minidump of selected areas of APL2 storage is produced as APL2 output if any
| inconsistency is found and the active workspace is replaced with a clear workspace
| (CLEAR WS).

| Note: Using this command causes significant performance degradation.

|)CHECK WS OFF

| Resets the command)CHECK WS ON. The)LOAD and)CLEAR commands
| also reset)CHECK WS ON.

418 APL2 Programming: Language Reference

)CHECK

| Tracing Functions

|)CHECK TRACE STMT

| Displays the text of each statement of defined functions or operators as the state-
| ment is about to be executed. The text of the statement is preceded in the trace by
| the current value of the second element of -AI.

|)CHECK TRACE OFF

| Resets the)CHECK TRACE STMT request.

| Forcing Dumps

|)CHECK DUMP

| Produces a small minidump of selected areas of APL2 storage and replaces the
| active workspace with a clear workspace (CLEAR WS).

 Chapter 10. System Commands 419

)CLEAR

)CLEAR—Activate a Clear Workspace

|)CLEAR

)CLEAR replaces the current active workspace with a clear workspace. When
)CLEAR is executed, these actions take place:

� All shares are retracted.

� The contents of the active workspace are discarded and the state indicator is
cleared.

� Most system variables are set to their initial default values. These default
values are shown in Figure 59 on page 421.

� The active workspace has no name.

For example:

)CLEAR
CLEAR WS

)WSID
IS CLEAR WS

System Variables Not Reset: The values of the system variables -NLT (national
language translation), -PW (printing width), and -TZ (time zone) and the settings
established by)PBS (printable backspace) and)EDITOR (named editor) are not
reset. Their values are retained, except that if any of the three system variables
had been localized before)CLEAR, their value is restored to their last valid global
value.

420 APL2 Programming: Language Reference

)CLEAR

Figure 59. Environment Reset by CLEAR Command

Symbol Meaning Default

-L Left argument No value
-R Right argument No value
-CT Comparison tolerance 1Eb13
-EM Event message 3 0ρJ J
-ET Event type 0 0
-FC Format control J�,*0_bJ
-IO Index origin 1
-LC Line counter ι0
-LX Latent expression JJ
-PP Printing precision 10
-PR Prompt replacement J J
-RL Random link 7*5 (that is, 16807)
-SVE Shared variable event 0
-WA Workspace available| Depends on installation and invoca-

| tion options
)WSID Workspace name None (that is, CLEAR WS)
)SI State indicator Cleared

 Chapter 10. System Commands 421

)CONTINUE

)CONTINUE—Save Active Workspace and End Session

)CONTINUE

)CONTINUE saves the active workspace in the default private library under the
name CONTINUE and ends the APL2 session. APL2 displays connect and
processor time, and control then returns to the host system.

Each time you start APL2, the CONTINUE workspace is loaded automatically, as
indicated by the SAVED date/time message, and any latent expression in the
CONTINUE workspace is executed. If, however, you have used the INPUT
parameter in your invocation of APL2, the input specified there replaces the load of
the CONTINUE workspace.

)WSID
DUMMY
)VARS
DRY FAT IOD ME PRO SALT
)CONTINUE

| 1993|05|21 11�30�56 (GMT|4) CONTINUE

Next APL2 session:

| SAVED 1993|05|21 11�30�56 (GMT|4)
)WSID
CONTINUE
)VARS
DRY FAT IOD ME PRO SALT

After being established by)CONTINUE or)SAVE CONTINUE, the CON|
TINUE workspace remains in your library unless explicitly dropped.

Caution: Any CONTINUE workspace in the library is replaced by the active
workspace whenever the)CONTINUE command is executed. The name of the
active workspace does not need to be CONTINUE for this to occur.

422 APL2 Programming: Language Reference

)COPY

)COPY—Copy Objects into the Active Workspace

|)COPY [library] workspace [names]

The results of the)COPY command depend on whether object names are
included in the command:

� If the command lists names, the named global objects either are added to the
active workspace or replace global objects of the same name that are currently
in the active workspace.

� If the command does not include names, all global objects from the workspace
are added to the active workspace or replace global objects of the same name
that are currently in the active workspace.

In either case, the definitions of local objects are not affected by the)COPY
command. The only system objects that can be copied are -CT, -FC, -IO,
-LX, -PP, -PR, and -RL. These system objects are also copied when object
names are not included in the command.

The examples below show the)COPY command and the system response to it.

)COPY LANGMAN SHOW TEST TESTING -LX
| SAVED 1993|05|21 13�56�08 (GMT|4)

)COPY LEARN
| SAVED 1993|05|21 17�23�58 (GMT|4)

The SAVED message indicates the date and time the workspace was last saved.

If an object being replaced is a shared variable, its share is retracted. If an object
being replaced is a suspended or pendent function, SI WARNING is reported.

Defined function and operator definitions are copied without any associated trace
and stop controls. Because only the definitions are copied, there is no effect on the
copy if these defined functions or operators are suspended or pendent in the library
workspace.

The)COPY command requires space in both the source workspace and the active
workspace in order to copy each of the objects. If there is insufficient room in
either workspace to copy an object,)COPY continues to the next object, and so
forth, until all of the objects that can be copied are brought into the active work-
space. If some objects cannot be brought in, WS FULL and NOT COPIED are
displayed along with the names of the uncopied objects.

To circumvent WS FULL problems on)COPY, it may be necessary to invoke
APL2 with a larger workspace.

If objects to be copied cannot be found in the source workspace, NOT FOUND is
displayed along with the names of those objects.

 Chapter 10. System Commands 423

)COPY

Copying Versus Loading a Workspace: Copying an entire workspace into a
clear workspace is not equivalent to using the)LOAD command for the same
workspace. The)COPY command requires the system to do more work than the
)LOAD command, and it omits some potentially important control information that
may be in the stored workspace. The following are not copied:

� Local variables, functions, or operators that are part of suspended or pendent
functions or operators in the source workspace

� The state indicator, which lists where evaluation halted in the source workspace

� System variables associated with suspension
(-EM, -ET, -L, -R, -LC, -SVE)

 Parameters
The introduction to this chapter (page 416) gives the general requirements for the
library and workspace parameters. The examples below demonstrate their use.

)COPY 1 EXAMPLES TRACE PL XI MIX
| SAVED 1993|05|21 12�21�14 (GMT|4)

|)COPY 1010 TOOLBOX LOCKOUT SUMCOL MODIFY
| SAVED 1993|05|21 14�02�54 (GMT|4)

Additional Parameter Information: In addition to the general parameter require-
ments, the following information applies to)COPY.

Parameter Meaning

names lists valid global object names. One or several names may be
included.

If the name list includes the name of a simple character scalar, vector,
or matrix enclosed within parentheses, its rows are interpreted as APL2
names, and these objects are copied instead of the array itself. The
array may also contain its own name and then it is copied as well.
This form of copying is called indirect copy. Indirect copying offers a
convenient way to copy a group of objects simultaneously. Figure 60
shows an example.

424 APL2 Programming: Language Reference

)COPY

)WSID
TOOLS

PGRP←�JPROMPTJ JEMPTYJ JIFJ JCHARACTERJ JPGRPJ
)SAVE
 1993|05|21 22�02�39 (GMT|4) TOOLS

)CLEAR
CLEAR WS

)COPY TOOLS (PGRP)
SAVED 1993|05|21 22�02�39 (GMT|4)

All objects named in the matrix PGRP are copied into the workspace.

)NMS
CHARACTER�3 EMPTY�3 IF�3 PROMPT�3
PGRP�2

 PGRP
PROMPT
EMPTY
IF
CHARACTER
PGRP

Figure 60. Use and Effect of Indirect Copy

 Chapter 10. System Commands 425

)DROP

)DROP—Remove a Workspace from a Library

|)DROP [library] workspace

Execution of)DROP deletes the named workspace from the indicated library.

)DROP THISWS
| 1993|05|21 22�17�56 (GMT|4)

The message indicates the current time, date, and time zone.

To drop a workspace, you must have write access. Also, note that only one work-
space can be dropped at a time.

 Parameters
The introduction to this chapter (page 416) gives the general requirements for the
library and workspace parameters. The examples below demonstrate their use.

|)DROP 1008 WSONE
 1993|05|21 22�18�55 (GMT|4)

)DROP 10 CLASS
 1993|05|21 22�19�34 (GMT|4)

426 APL2 Programming: Language Reference

)EDITOR

)EDITOR—Query or Select Editor to be Used

)EDITOR
)EDITOR 1
)EDITOR 2 [name]
)EDITOR name

APL2 provides the following editors for defining and editing functions and operators:

1 Line editor

2 APL full-screen editor

2 name Named APL editor

name Named system editor

Use of the editors is described in Chapter 9, “The APL2 Editors” on page 375.

When you start APL2, the initial setting for the editor is 1. To determine the current
setting, enter)EDITOR:

)EDITOR
IS 1

To change the editor setting, enter 1 for the line editor or 2 for the full-screen
editor. For example:

)EDITOR 2
)EDITOR
IS 2
)EDITOR XEDIT
)EDITOR
IS XEDIT

The editor setting is a session parameter. It is not affected by the)CLEAR or
)LOAD commands.

 Chapter 10. System Commands 427

)ERASE

)ERASE—Delete Objects from the Active Workspace

)ERASE names

Parameter Meaning

names Is a list of valid global object names. One or several names may be
included.

Note: If the name list includes the name of a simple character scalar,
vector, or matrix enclosed within parentheses, its rows are interpreted
as APL2 names, and these objects are erased instead of the array
itself. The array may also contain its own name, which is then erased
as well. This form of erasing is called indirect erase. Indirect erasing
offers a convenient way to erase a group of objects simultaneously.
Figure 62 on page 430 shows an example of indirect erasing.

)ERASE removes the named global objects (variables, defined functions, and
defined operators) from the active workspace. For example:

)NMS R
ROUND�3 SHOW�4 STATS�3 SUMCOL�3 TOTS�2
TRACE�4 TRAP�4 TRPLGRP�2 TRUNC�4 UWAY�2

)ERASE SUMCOL TOTS UWAY STATS

)NMS R
ROUND�3 SHOW�4 TRACE�4 TRAP�4 TRPLGRP�2
TRUNC�4

If an object being erased is a shared variable, its share is retracted. If the name
list includes a defined function or defined operator that is pendent or suspended,
that object is erased; however:

� SI WARNING is not reported and the stack is not affected.

� The defined function or operator in the state indicator retains its original defi-
nition until its execution is completed or until the state indicator is cleared
(using → or)RESET).

� The name previously associated with the function or operator now has no
value, and further execution and editing of the original definition is not possible.

Figure 61 on page 429 demonstrates the effect of erasing a suspended defined
function.

428 APL2 Programming: Language Reference

)ERASE

 c
[0] F
[1] JLINE 1J
[2] 2÷0
[3] JLINE 3J
 c
 F
LINE 1
DOMAIN ERROR
F[2] 2÷0
 ��

)SI
F[2]
*
)ERASE F

)SI
F[2] Definition of F is retained
* in the state indicator.

→3 Execution of F resumes
LINE 3 at line 3.

 F Attempt to invoke F results
VALUE ERROR in an error because the definition
 F of F no longer exists.
 �

Figure 61. Effect of Erasing a Suspended Defined Function

 Chapter 10. System Commands 429

)ERASE

)CLEAR
CLEAR WS

 MAT←2 3ρJFORYOUJ
 SCA←5

VEC←5 6 7
 NEST←JHIJ JGUYJ

GROUP←3 4ρJNESTVEC SCA J
 CHAR←JYJ

 GROUP
NEST
VEC
SCA
)VARS
CHAR GROUP MAT NEST SCA VEC

)ERASE CHAR (GROUP)

)VARS
GROUP MAT

Figure 62. Use and Effect of Indirect Erase

-EX Expunge (page 289) eliminates the currently active objects named in its argu-
ment and may be used to eliminate certain system variables.

430 APL2 Programming: Language Reference

)FNS

)FNS—List Indicated Objects in the Active Workspace

)FNS [first] [-] [last]

)FNS displays an alphabetic list of the global defined functions in the active work-
space.

See the introduction to this chapter (page 416) for explanations of the parameters
first and last. The following examples illustrate the commands used to display
partial contents of the sample workspace shown in Figure 58 on page 417.

)FNS P|
PACK PALL PER PERM PO POL POLY
POLYB REP REPLICATE SORTLIST TIME
TRUTH TYPE UNIQUE UNPACK

)FNS |I
ABSTRACT ASSOC BIN COMB DEC2HEX DESCRIBE
DO EXAMPLE EXAMPLES EXPAND FC GCD
HELP HEX2DEC HILB HOW IOTAU

)FNS I|P
IOTAU LFC PACK PALL PER PERM PO
POL POLY POLYB

)FNS P|I

)FNS PE|PE
PER PERM

 Chapter 10. System Commands 431

)HOST

)HOST—Execute a Host System Command

)HOST [command]

)HOST allows you to execute host system commands from within APL2.

)HOST passes the given command to the system and displays the system return
code. If you enter)HOST with no parameters, the name of the host system is
displayed.

432 APL2 Programming: Language Reference

)IN

)IN—Read a Transfer File into the Active Workspace

)IN file [names]

A transfer file may be created by using)OUT (see page 442), by using auxiliary
processors, or by a process external to APL2.

The result of the)IN command depends on whether object names are included in
the command:

� If the command lists object names, the transfer forms of these objects are read
from the named transfer file and are defined in the active workspace.

� If the command does not list object names, the entire transfer file is read and
its objects are defined in the active workspace.

| The format of the transfer file created by)OUT is shown in Appendix B, “APL2
| Transfer Files and Extended Transfer Formats” on page 484.)IN ignores

sequence numbers in the transfer file (columns 73 through 80).

If)IN is successful, no messages are displayed, as shown below:

)IN TOOLS

)IN TRIAL PAL ROUND PIG

If a name conflict occurs, the object from the transfer file replaces the one currently
in the active workspace.

If the object being replaced is a shared variable, its share is retracted. If the object
being replaced is a suspended or pendent function, no warning is reported.

 Parameters
The following information applies to)IN.

Parameter Meaning

file Is the name of a transfer file, following the file naming conventions and
| defaults of the operating system.

names Are names of objects to be read and defined in the active workspace.
Names may include system variables if these are present in the
transfer file.

 Chapter 10. System Commands 433

)LIB

)LIB—List Workspace Names in a Library

)LIB [library] [first] [-] [last]

)LIB displays an alphabetic list of workspace names, according to these condi-
tions:

� All names in the library list begin at nine-column intervals so that a multiple-row
list forms columns (if -PW is appropriate to your display device.)

� The collating sequence gives alphabetic characters higher significance than
numeric characters.

For example, to list the workspaces in your private library:

)LIB
BUDGET BUDGET2 ESTIMATE GENES INFOEST
LANGMAN LEARN OUTTEST SCHEDULE STATUS
TOOLS UISAMPLE

| Note: If the library exists but contains no workspaces, an empty list is displayed.

 Parameters
The introduction to this chapter (page 416) gives the general requirements for the
parameters of the)LIB command. The examples below demonstrate their use:

|)LIB 1 D|E
DISPLAY EXAMPLES

)LIB 1010
ADDCUST DICKNICK EXECMEAN PAULS SBIC2
TOOLBOX

Additional Parameter Information: In addition to the general parameter require-
ments, the following information applies to)LIB parameters:

Parameter Meaning

first Provides a partial list of workspaces, starting with any that begin with
the indicated letter or set of characters.

last Ends the list of workspace names after names beginning with this
parameter are displayed. last may be a single character or a set of
characters.

434 APL2 Programming: Language Reference

)LIB

For example:

)LIB S
SCHEDULE STATUS TOOLS UISAMPLE

)LIB ST|
STATUS TOOLS UISAMPLE

)LIB G|S
GENES INFOEST LANGMAN LEARN OUTTEST
SCHEDULE STATUS

See the introduction to this chapter, page 416, for more information on the parame-
ters first and last.

 Chapter 10. System Commands 435

)LOAD

)LOAD—Bring a Workspace from a Library into the Active Workspace

|)LOAD [library] workspace

See the introduction to this chapter (page 416) for information about the general
requirements for the parameters library and workspace.

When)LOAD is issued:

� A duplicate of the indicated library workspace completely replaces the contents
of the active workspace. The original copy of the workspace on the permanent
storage device remains intact and in place.

� Any shared variables that were in the active workspace are retracted.

The example below shows a)LOAD command and the system response to it.

)LOAD TOOLS
| SAVED 1993|05|21 13�56�08 (GMT|4) 675K(615K)

The SAVED message indicates the time, date, and time zone when the workspace
was last saved. Also reported may be the size of the active workspace after the
)LOAD, and, in parentheses, the size of the workspace when it was last saved.
This information is provided only if the load size differs from the saved size.

If the workspace was saved with a latent expression, specified by -LX, the system
executes the latent expression (�-LX) immediately after the)LOAD.

|)LOAD 1010 LEARN
| SAVED 1993|05|21 17�23�58 (GMT|4)

HI� ARE YOU READY TO LEARN MORE APL2

When a workspace is loaded, the active workspace assumes the name of that
workspace, for example:

)WSID
IS CLEAR WS
)LOAD SCHEDULE
SAVED 1993|05|21 22�54�21 (GMT|4) 675K(783K)
)WSID
SCHEDULE

Note: The current values of the session system variables in the active workspace
-NLT (national language translation), -PW, (printing width) and -TZ (time zone)
and the settings established by)PBS (printable backspace) and)EDITOR
(named editor) are not altered by a)LOAD command.

436 APL2 Programming: Language Reference

)LOAD

| On some APL2 platforms, an additional parameter can be supplied to control the size of the active
| workspace when loading. Without the size parameter, the maximum workspace size is used.

)LOAD STATUS
| SAVED 1993|05|21 12�21�14 (GMT|4) 683K(1043K)

-WA hBYTES AVAILABLE IN THE WORKSPACE
605476

The size parameter specifies the size of the active workspace, which is reported as part of the SAVED
message.

)LOAD STATUS 100000
| SAVED 1993|05|21 12�21�14 (GMT|4) 97K(1043K)

 -WA
6036

The workspace is saved with the current workspace size, which is then reported within parentheses
the next time the workspace is loaded.

)SAVE
| 1993|05|21 10�18�56 (GMT|4) STATUS

)LOAD STATUS
| SAVED 1993|05|21 10�18�56 (GMT|4) 683K(97K)

An error message is displayed if the size parameter is not large enough to accommodate the work-
space.

)LOAD STATUS 78000
SYSTEM LIMIT
CLEAR WS

Figure 63. Use and Effect of Size Parameter

 Chapter 10. System Commands 437

)MORE

)MORE—List Additional Diagnostic Information

)MORE [number]

Error messages display one line of information. The command)MORE is used to
request additional information about the error. The following are examples of the
use of)MORE:

 -AF←-AV A←JJJ
SYNTAX ERROR+ SYNTAX ERROR+
 -AF←-AV A←JJJ
 � � �
)MORE)MORE
NAME CLASS ILL|FORMED LINE

In the case on the left, the additional message indicates that the assignment cannot
complete because of the name class of -AF. (Assignment requires a variable
name, while -AF is a function.) In the case on the right, the message indicates
the character constant beginning at the caret is not formed properly. (Quote char-

| acters within a character constant must be doubled.) The plus sign on the error
| message indicates that more information is available.

In situations where you do not get an error message but do not get the expected
response,)MORE may give information to help you diagnose the problem. For
example, if a function merely returns an auxiliary processor return code,)MORE
may provide more information.

)MORE must be used immediately after a message is displayed. If any input other
than)MORE is entered, the information on the message is erased.

If no diagnostic information is available, a message is displayed indicating that no
further information is available.

)MORE
NO MORE INFORMATION

To display more than one message at a time, use the optional number parameter.
For example, if you want to see the last three error messages issued, enter:

)MORE 3

APL2/370 Messages and Codes lists the messages received from)MORE and
suggests corrective actions.

438 APL2 Programming: Language Reference

)NMS

)NMS—List Names in the Active Workspace

)NMS [first] [-] [last]

)NMS displays an alphabetic list of the global objects (variables, defined functions,
and defined operators) in the workspace.

Each name reported is followed by a dot and an integer indicating its name class:

Integer Name Class

2 Variable
3 Defined function
4 Defined operator

These numbers are the same as those produced by -NC for these objects (see
page 309).

See the introduction to this chapter, page 416, for explanations of the parameters
first and last. The following example shows the)NMS display for the contents A
through E of the sample workspace shown in Figure 58 on page 417.

)NMS A|E
ABSTRACT�3 AND�4 ASSOC�3 BIN�3 CHANGE_ACTIVITY�2
COIBM�2 COMB�3 COMMUTE�4 CR�4 DCS�2 DEC2HEX�3
DESCRIBE�3 DO�3 EL�4 ELSE�4 ER�4 EXAMPLE�3
EXAMPLES�3 EXPAND�3

 Chapter 10. System Commands 439

)OFF

)OFF—End APL2 Session

)OFF

)OFF ends the APL2 session. Any active workspace objects not previously saved
are lost. Control returns to the host system.

440 APL2 Programming: Language Reference

)OPS

)OPS—List Indicated Objects in the Active Workspace

)OPS [first] [-] [last]

)OPS displays an alphabetic list of the global defined operators in the active work-
space.

See the introduction to this chapter, page 416, for explanations of the parameters
first and last. The following examples illustrate the commands used to display
partial contents of the sample workspace shown in Figure 58 on page 417.

)OPS |P
AND COMMUTE CR EL ELSE ER FAROUT HEX
IF NOP PAD PL POWER PR

)OPS I|
IF NOP PAD PL POWER PR TRACE TRAP
TRUNC ZERO

)OPS I|P
IF NOP PAD PL POWER PR

)OPS P|I

)OPS TR|TR
TRACE TRAP TRUNC

 Chapter 10. System Commands 441

)OUT

)OUT—Write Objects to a Transfer File

)OUT file [names]

Parameter Meaning

file Names the transfer file. The conventions governing the name (and
name defaults) of the file, its location, control of access to it, and its

| permanence are all local conventions of the particular operating system
| under which APL2 runs. (See the appropriate workstation user's guide
| or APL2/370 Programming: System Services Reference.)

names Names of objects whose transfer forms are to be written to the named
file.

The result of the)OUT command depends on whether object names are included
in the command invocation:

� If the command lists object names, the transfer forms of the named objects are
written to the named transfer file.

� If the command does not list object names, the transfer forms of all unshared
variables, defined functions, and defined operators, and the system variables
-CT, -FC, -IO, -LX, -PP, -PR, and -RL are written to the
named transfer file.

If the command is successful, no messages are displayed, as shown below:

)OUT TOOLS ALTER TRACE SHOW

)OUT TRIAL

System variables in addition to those listed above can be transferred with)OUT if
specifically requested:

)OUT SV -PW -TZ

In this case, only the named objects are transferred.

Transfer File Format: A transfer file has fixed-length 80-character records. Either
migration transfer forms or extended transfer forms of APL2 objects may be in the

| transfer file. See Appendix B, “APL2 Transfer Files and Extended Transfer
| Formats” on page 484 for format details.

442 APL2 Programming: Language Reference

)OUT

Figure 64 shows a sample workspace written to a transfer file with)OUT. The file
contains one function named G.

XA-LX|JJ 00000100
XA-IO|1 00000200
XA-PP|10 00000300
XA-CT|1E 13 00000400
XA-RL|16807 00000500
XA-FC|J�,≠0_ J 00000600
XA-PR|1 J J 00000700

| *(1993 8 17 30 16) 00000800
XFG -FX JZ|G XJ J2+J 00000900

Figure 64. Transfer Form of a Workspace (Each record is 80 characters long.)

Warning:)OUT does not add to an existing file. If a transfer file by the speci-
fied name already exists, its contents are entirely replaced by the transfer forms of
objects in the current active workspace.

Transferring the Most Local Version: The most local version of an object is
transferred. Figure 65 shows the writing of a local object to a transfer file.

 I
GLOBAL
 FN
FN[2] hFUNCTION IS SUSPENDED

I hVALUE OF LOCAL VARIABLE I
LOCAL

)OUT TEST I hWRITE I TO A TRANSFER FILE
→2 hRESUME FUNCTION EXECUTION

END OF FUNCTION
I hVALUE OF GLOBAL VARIABLE I

GLOBAL

)IN TEST I hREAD I FROM TRANSFER FILE
 I
LOCAL

Figure 65.)OUT Writes Local Objects

 Chapter 10. System Commands 443

)PBS (APL2/370 Only)

)PBS—Query or Set the Printable Backspace Character (APL2/370
Only)

)PBS
)PBS ON
)PBS OFF

Parameter Meaning

ON Turns on the printable backspace character.

OFF Turns off the printable backspace character.

| If you are using a terminal that cannot enter all the APL2 characters, you must use
the printable backspace to enter or edit any line containing one of the characters

| listed below.

The character _ is the printable backspace character. Within the context of the ten
characters shown below, it tells the system to treat the characters entered to its
right and left as overstruck, thus forming a single character.

For example, to enter or edit the depth or match symbol � with the printable back-
space character, enter either =__ or __=.

The characters that are entered with the printable backspace follow:

The overstrike pairs may be entered in either order, with the intervening printable
backspace character.

| The initial setting is determined by your display. To determine the current setting,
enter)PBS. To deactivate the printable backspace character, enter)PBS OFF.

)PBS
IS _

)PBS OFF

Character Entered As...

¦
§
�
�

| ©
�
ª

|
⊣
¬

-_"
ι__
ε__
[_]
-_�
=__
¨_�
<_>
[_|
|_]

444 APL2 Programming: Language Reference

)PBS (APL2/370 Only)

The printable backspace character is effective only in the context of the new APL2
characters. For example:

)PBS ON
 C←Jε__J
 ρC
(empty)
 C←J↑_↓J
 ρC
3

Note: APL2 always treats a printable backspace combination as a single char-
acter, for example, when determining the width of a display under -PW Printing
Width, page 318.

If your terminal has the programmable symbol set (PSS), the new characters are
always displayed in their true typographical form.

A←J-_" ι__ ε__ [_] -_� �_¨ =__ <_> [_| |_]J
 A

¦ § � � © ª � ⊣ ¬

If)PBS is on and you do not have the PSS, the characters will display with the
printable backspace character as they were entered.

)PBS
IS _

A←J-_" ι__ ε__ [_] -_� �_¨ =__ <_> [_| |_]J
 A
-_" ι__ ε__ [_] -_� ¨_� =__ <_> [_| |_]

If)PBS is off and your terminal does not have the PSS, the display depends on
the character set built in to your display.

The printable backspace character is a session parameter. It is not affected by a
)CLEAR or)LOAD command.

Cases of apparent ambiguity in the use of the printable backspace are resolved by
taking as the printable backspace the first underscore that can be a printable back-
space. For example:

1=__=2 3

is 1 match equal 2 3 (which yields a VALENCE ERROR), NOT 1 equal depth 2
3.

 Chapter 10. System Commands 445

)PCOPY

)PCOPY—Copy Objects into the Active Workspace with Protection

)PCOPY [library] workspace [names]

)PCOPY is identical to)COPY in all respects except one:

If the active workspace contains global objects with the same name as any that
are requested to be copied, they are not copied and the old ones are not
replaced.

The example below shows the)PCOPY command and the system response to it.

)LOAD LEARN
| SAVED 1993|05|21 17�23�58 (GMT|4) 675K(783K)

)PCOPY UISAMPLE AVERAGE ROUND ADDTOTALS
| SAVED 1993|06|20 16�23�32 (GMT|4)

NOT COPIED: ROUND

Refer to)COPY, page 423, for details of the command syntax and results.

446 APL2 Programming: Language Reference

)PIN

)PIN—Read a Transfer File into the Active Workspace with Protection

)PIN file [names]

)PIN, like)IN, reads objects into the active workspace from a transfer file. The
two commands are identical in all respects except one:

)PIN will not transfer an object if another object of the same name already
exists in the active workspace, whereas)IN replaces any object in the active
workspace that has the same name as the object being transferred in.

If)PIN is successful, no messages are displayed, as shown below:

)PIN TOOLS

)PIN TOPS SIDES SPINS

If a name conflict does occur, the object from the transfer file is listed in a NOT
COPIED: message, as shown below:

)PIN WORK DONE OVER
NOT COPIED: WORK

Refer to)IN on page 433 for details of the command syntax and results.

Note: System variables are also protected when using)PIN. Most or all of them
will be included in the NOT COPIED: list, unless a specific name list is provided
in either the)PIN command or the)OUT command that created the transfer file.

 Chapter 10. System Commands 447

)QUOTA (APL2/370 Only)

)QUOTA—List Workspace, Library, and Shared Variable Quotas
(APL2/370 Only)

)QUOTA

)QUOTA displays a report on the availability of your private library, workspaces,
and shared variables. The report is shown and explained below:

)QUOTA
LIB 3404800 FREE 735200
WS 618496 MAX 618496
SV 88 SIZE 32768

Each row of the report provides information on your library, workspace size, and
shared variable capabilities, respectively. In some implementations, not all the
information is available. For more information, see APL2/370 Programming:
System Services Reference.

Item Meaning

LIB Total amount of space (in bytes) in your library

FREE The amount of space (in bytes) still available in your library for
saving

WS The default size (in bytes) in the active workspace

MAX The maximum size workspace (in bytes) that may be requested (as
with)CLEAR or)LOAD)

SV The maximum number of variables that may be simultaneously
shared

SIZE The size (in bytes) of your shared storage

448 APL2 Programming: Language Reference

)RESET

)RESET—Clear the State Indicator

)RESET [number]

)RESET is a synonym for)SIC.

Clearing n Lines from the State Indicator:)RESET with number clears that
number of lines from the state indicator and resets -EM, -ET, -L, and -R to
values appropriate to the statement at the top of the state indicator after the reset.
If this is a line stopped by an error, , -L and -R indicate the values of the func-
tion's arguments at which the error occurred, and -EM and -ET reflect the error.
If the line did not stop because of an error, -L and -R have no value, -EM is an
empty matrix, and -ET is 1 1 (interrupt). For example:

)SI
GN[1]
FN[2]
*
*
 -EM
DOMAIN ERROR
GN[1] Z←3÷0
 � �
)RESET 3
)SI
*
 -EM
DOMAIN ERROR
 1
ι1�2
 ��
 -ET
5 4
 -L
3
 -R
0
 -R
1�2
 -L
VALUE ERROR -L has no value because

-L the function interval has no
 � left argument.

 Chapter 10. System Commands 449

)RESET

Clearing the Entire State Indicator: If a number is not specified with the
command,)RESET clears all suspended and pendent statements and editing
sessions from the state indicator. For example:

)SI
GN[1]
FN[2]
*
*
)RESET
)SI

This is equivalent to entering → (escape) until the state indicator is clear.

Because they are effectively local to functions in lines of immediate execution,
)RESET without a number returns the system variables -EM and -ET to their
initial values in a clear workspace and removes the values of -L and -R.
)RESET also purges and contracts the internal symbol table.

See also “)SIC—Clear the State Indicator” on page 454.

450 APL2 Programming: Language Reference

)SAVE

)SAVE—Save the Active Workspace in a Library

)SAVE [[library] workspace]

)SAVE stores a copy of the active workspace in the indicated library.)SAVE
has one of the following effects on the library:

� If the named workspace does not exist in the library,)SAVE establishes it in
the library.

� If the named workspace exists in the library,)SAVE replaces the current con-
tents of the library workspace with the active workspace.

� If the named workspace exists in the library but is not the same as the name of
the active workspace, the following error message is displayed:

NOT SAVED: THIS WS IS name

The example below shows a)SAVE and the system response to it.

)SAVE THISWS
1992|03|27 21�48�04 (GMT|4)

The message indicates the time, date, and time zone in effect when the workspace
was saved.

Current values of any shared variables are saved in the stored copy even though
they have not yet been referenced. The state indicator, current values of system
variables, and stop and trace controls are also saved.

)SAVE does not affect the contents of the active workspace. However, the active
workspace assumes the name given in the)SAVE command.

)WSID
IS CLEAR WS
)SAVE NEWWS
1992|03|27 21�50�45 (GMT|4)
)WSID
IS NEWWS

 Parameters
The introduction to this chapter (page 416) gives the general requirements for the
library and workspace parameters. The examples below demonstrate their use.

)SAVE 10 CLASS
1992|03|27 21�40�23 (GMT|4)

|)SAVE 1008 WSONE
1992|03|27 21�49�23 (GMT|4)

 Chapter 10. System Commands 451

)SAVE

Additional Parameter Information: If you omit the workspace name and associ-
ated library number, they are supplied from the current workspace identification
(see)WSID, page 460).

For example:

)WSID
THISWS
)SAVE
1992|03|27 21�51�09 (GMT|4) THISWS

Note: The system response includes the workspace name when it is omitted from
the)SAVE command.

452 APL2 Programming: Language Reference

)SI

)SI—Display the State Indicator

)SI [number]

The state indicator, discussed in “State Indicator” on page 355, is a list of:

� The calling sequence of defined functions and defined operators (and their per-
tinent line numbers).

� Asterisk(s) for all immediate execution expressions that did not complete, either
because of an error in the expression or because the function invoked by the
expression is pendent or suspended.

The command)SI without a number specified displays data from each line of the
state indicator. If a number is provided, the command does not display more than
that number of lines of the state indicator.

The)SI command is similar to)SIS but it does not list the statement that was
being executed at the time the line was added to the state indicator.)SI lists
the defined functions and defined operators (and their pertinent line numbers) in the
state indicator, and an asterisk for all immediate execution expressions that did not
complete. For example:

)SI
GN[1]
FN[2]
*
*

)SI 2
GN[1]
FN[2]

If a definition line appears in the state indicator, the value within brackets indicates
the status of the object:

Clearing the State Indicator:)SIC, page 454, and)RESET, page 449, both
clear the state indicator as does → (escape), described under “Clearing the State
Indicator” on page 357.

[Positive integer I] Execution is suspended at line I.
Execution can be resumed by →ι0.

[Negative integer I] Execution is suspended at line I.
Execution can be restarted by
→-LC or →n, where n is a line
number.

[blank] Execution is suspended by a line,
but which one cannot be deter-
mined. Execution can be neither
restarted nor resumed.

[]c The object is being edited.

 Chapter 10. System Commands 453

)SIC

)SIC—Clear the State Indicator

)SIC [number]

Clearing n Lines from the State Indicator:)SIC with number clears that
number of lines from the state indicator and resets -EM, -ET, -L, and -R to
values appropriate to the statement at the top of the state indicator after the reset.
If this is a line stopped by an error, , -L and -R indicate the values of the func-
tion's arguments at which the error occurred, and -EM and -ET reflect the error.
If the line did not stop because of an error, -L and -R have no value, -EM is an
empty matrix, and -ET is 1 1 (interrupt). For example:

)SI
GN[1]
FN[2]
*
*
 -EM
DOMAIN ERROR
GN[1] Z←3÷0
 � �
)SIC 3
)SI
*
 -EM
DOMAIN ERROR
 1
ι1�2
 ��
 -ET
5 4
 -L
3
 -R
0
 -R
1�2
 -L
VALUE ERROR -L has no value because

-L the function interval has no
 � left argument.

454 APL2 Programming: Language Reference

)SIC

Clearing the Entire State Indicator: If a number is not specified with the
command,)SIC clears all suspended and pendent statements and editing ses-
sions from the state indicator. For example:

)SI
GN[1]
FN[2]
*
*
)SIC
)SI

This is equivalent to entering → (escape) until the state indicator is clear.

Because they are effectively local to functions in lines of immediate execution,
)SIC without a number returns the system variables -EM and -ET to their intitial
values in a clear workspace and removes the values of -L and -R.)SIC also
purges and contracts the internal symbol table.

|)SIC is identical to)RESET (see “)RESET—Clear the State Indicator” on
| page 449) and was added to meet international APL standards.

 Chapter 10. System Commands 455

)SINL

|)SINL—Display the State Indicator with Name List

)SINL [number]

The state indicator, discussed in “State Indicator” on page 355, is a list of:

� The calling sequence of defined functions and defined operators (and their per-
tinent line numbers).

� Asterisk(s) for all immediate execution expressions that did not complete, either
because of an error in the expression or because the function invoked by the
expression is pendent or suspended.

The command)SINL without a number specified displays data from each line of
the state indicator. If a number is provided, the command does not display more
than that number of lines of the state indicator.

Like)SI,)SINL lists the defined functions and defined operators (and their perti-
nent line numbers) in the state indicator, and an asterisk for all immediate exe-
cution expressions that did not complete. In addition, it lists the names local to the
function or operator. For example:

)SINL
GN[1] Z
FN[2] Z
*
*

If a definition line appears in the state indicator, the value within brackets indicates
the status of the object:

Clearing the State Indicator:)SIC, page 454, and)RESET, page 449, both
clear the state indicator as does → (escape), described under “Clearing the State
Indicator” on page 357.

[Positive integer I] Execution is suspended at line I.
Execution can be resumed by →ι0.

[Negative integer I] Execution is suspended at line I.
Execution can be restarted by
→-LC or →n, where n is a line
number.

[blank] Execution is suspended by a line,
but which one cannot be deter-
mined. Execution can be neither
restarted nor resumed.

[]c The object is being edited.

456 APL2 Programming: Language Reference

)SIS

|)SIS—Display the State Indicator with Statements

)SIS [number]

The state indicator, discussed on page 355, is a list of:

� The calling sequence of defined functions and defined operators (and their per-
tinent line numbers).

� Asterisk(s) for all immediate execution expressions that did not complete, either
because of an error in the expression or because the function invoked by the
expression is pendent or suspended.

The command)SIS without a number specified, will display data from each line of
the state indicator. If a number is provided, the command will not display more
than that number of lines of the state indicator.

The)SIS command displays each line in the state indicator and the statement
that was being executed at the time the line was added to the state indicator.
Carets shown on the line below the statement indicate how much of the statement
had been executed.

)SIS
GN[1] Z←3÷0 First entry in the state indicator

� � is last expression that did not
FN[2] Z←GN
2 complete.
 �
* FN
 �
* 3ι
 ��

If a definition line appears in the state indicator, the value within brackets indicates
the status of the object:

Clearing the State Indicator:)SIC, page 454, and)RESET, page 449, both
clear the state indicator as does → (escape), described under “Clearing the State
Indicator” on page 357.

[Positive integer I] Execution is suspended at line I.
Execution can be resumed by →ι0.

[Negative integer I] Execution is suspended at line I.
Execution can be restarted by
→-LC or →n, where n is a line
number.

[blank] Execution is suspended by a line,
but which one cannot be deter-
mined. Execution can be neither
restarted nor resumed.

[]c The object is being edited.

 Chapter 10. System Commands 457

)SYMBOLS

)SYMBOLS—Query or Modify the Symbol Table Size

)SYMBOLS [number]

)SYMBOLS refers to the number of symbols in the APL2 symbol table.

The symbol table contains the names used in a workspace. When a name is first
specified or defined, an entry is made for it in the symbol table.

If a number is not specified with the command, then)SYMBOLS purges unas-
signed names, compresses the internal symbol table, and reports the number of
symbols currently in use. This is larger than the number of names of variables,
functions, and operators in use. For example:

)CLEAR
CLEAR WS

)SYMBOLS
IS 47

 A←B←C←D←E←1
)SYMBOLS
IS 52

If number is specified with the command, then)SYMBOLS expands or com-
presses the internal symbol table to at least the given number of slots. For
example:

 -WA
412708
)SYMBOLS 100
 -WA
412084

The symbol table is automatically expandable; system efficiency may be improved
by enlarging the symbol table. A larger symbol table consumes more workspace
but may save computation time. Some workspace may be reclaimed by com-
pressing the symbol table.

Note: System functions and system variables exist in a clear workspace.

458 APL2 Programming: Language Reference

)VARS

)VARS—List Indicated Objects in the Active Workspace

)VARS [first] [-] [last]

)VARS displays an alphabetic list of the global variables in the active workspace.

See the introduction to this chapter, page 416, for explanations of the parameters
first and last. The following examples illustrate the commands used to display
partial contents of the sample workspace shown in Figure 58 on page 417.

)VARS D|
DCS GPAPL2 GPDESC TIMER

)VARS |G
CHANGE_ACTIVITY COIBM DCS GPAPL2 GPDESC

)VARS D|G
DCS GPAPL2 GPDESC

)VARS G|D

)VARS GP|GP
GPAPL2 GPDESC

 Chapter 10. System Commands 459

)WSID

)WSID—Query or Assign the Active Workspace Identifier

)WSID [[library] workspace]

To learn the current identifier of the active workspace (called wsid), enter)WSID.

)WSID
IS CLEAR WS Indicates that no identifier is

associated with the workspace
...
)WSID
IS LANGMAN
...
)WSID
IS 1 DISPLAY

To change the current identification of the active workspace, enter the workspace
name and, optionally, a library number:

)WSID NEWNAME
WAS LANGMAN

)WSID 1008 ANOTHER
WAS NEWNAME

)WSID
IS 1008 ANOTHER

 Parameters
The introduction to this chapter (page 416) gives the general requirements for the
library and workspace parameters.

460 APL2 Programming: Language Reference

 Interpreter Messages

| Chapter 11. Interpreter Messages

| This chapter lists and explains interpreter messages in alphabetical order. If a
message is associated with a specific -ET setting, that setting is shown to the right
of the message.

| APL2 displays interpreter messages as the next line of output, beginning at the left
margin. Such messages indicate:

� An interrupt signaled or an error within an expression. This could be an incor-
rect number of arguments for a function, invalid arguments, or incorrect syntax.

� Successful or unsuccessful completion of actions initiated by system com-
mands.

In some cases messages are displayed with “+” as their final character. This
means that additional, more detailed, information is available. That can be
obtained by entering)MORE at the first opportunity (see “)MORE—List Additional
Diagnostic Information” on page 438).

| Messages for the workstations, including those for the APL2 session manager and
| auxiliary processors, are explained in the appropriate user's guide. All messages
| for APL2/370, including those concerning the APL2 session manager and auxiliary

processors, are detailed in APL2/370 Messages and Codes.

Interrupts and Errors in APL2 Expressions

Interrupts and errors in expressions generate the following types of messages:

 � Classification
� The expression was interrupted or is in error
� Two carets pointing to the expression

Figure 66 shows the message displayed when an error occurs in the expression
2÷JXJ.

2÷JXJ Expression as entered
DOMAIN ERROR Classification

2÷JXJ Expression in error
�� Carets pointing to the expression

Figure 66. Display When an Error Occurs within an APL2 Expression

The left caret indicates how far APL2 interpreted the statement—from right to left.
The right caret indicates where the error or interrupt occurred. In Figure 66, APL2
interpreted the entire expression. The error occurred with the divide function
because the right argument was not numeric. Sometimes one caret appears
because the point where the error occurred and the point at which APL2 interpreted
the expression are the same.

The error message can be retrieved using -EM (event message), page 281.
Further information on the category of error can be obtained using either -ET
(event type), see page 287, or)MORE, see page 438.“Errors and Interrupts in

 Copyright IBM Corp. 1984, 1994 461

 Interpreter Messages

Immediate Execution” on page 59 discusses clearing the error from the state indi-
cator.

Interrupts and Errors in Defined Functions or Operators

When execution of a defined operation results in an error, APL2 displays an error
message similar to that generated by an error in immediate execution. The name
of the operation and the line number precede the display of the statement in error.
Figure 67 shows a message displayed when an error occurs within the defined
function named AVERAGE.

AVERAGE 4 9 JBJ Function invoked
DOMAIN ERROR Error classification
AVERAGE[1] Z←(+/X)÷ρεX Statement causing the error

� � Pointers showing how far APL2
interpreted the statement and
where the error occurred

Figure 67. Display When an Error Occurs within a Defined Function or Operator

“Clearing the State Indicator” on page 357 describes clearing the state indicator
when an error suspends execution of a defined operation.

Errors in System Commands

Messages generated as a result of system commands may indicate successful
completion of an operation or an error. For instance, issuing the)CLEAR system
command to clear the active workspace results in the display of the information
message CLEAR WS:

)CLEAR
CLEAR WS

The message indicates successful clearing of the active workspace. After receiving
an information message, you can proceed as normal.

If the message is caused by an error in the execution of a system command, the
command is not executed. If the message ends with “+”, additional information is
available. The additional information can be obtained by using the system
command)MORE.

 Messages

Note: For descriptions of workstation messages, see the appropriate user's guide.
For complete descriptions of APL2/370 messages, standard IBM message
numbers, and corrective actions, see APL2/370 Messages and Codes.

AXIS ERROR -ET ←→ 5 6

462 APL2 Programming: Language Reference

 Interpreter Messages

The indicated axis is incompatible with the function or operator and the given argu-
ments; or the operator is not defined with an axis; or the axis specification includes
semicolons.

CLEAR WS

The current active workspace was replaced with a clear workspace. See
“)CLEAR,” page 420, for a description of the initial contents of a clear workspace.

DEFN ERROR

The c or an editing command was misused:

� A syntactically incorrect c or ¤ command was entered to begin edit mode.

� An invalid character was used outside of a quote string or comment.

� The object cannot be edited. For example, a variable under the line editor or a
locked function.

� An invalid edit command was entered.

� The closing c or ¤ was entered to establish an invalid object.

� Under Editor 1 (the line editor), a c or ¤ was entered on an unnumbered line to
close a definition.

� Under Editor 2 (the full-screen editor), an attempt to pass lines from one
segment to another failed because two lines numbered [0] appear in the
same segment.

� An attempt was made to name an object with a name already in use in the
active workspace.

Chapter 9, “The APL2 Editors” on page 375 discusses the use of the editors and
explains all the edit commands.

 Chapter 11. Interpreter Messages 463

 Interpreter Messages

DOMAIN ERROR -ET ←→ 5 4

The data type, degree of nesting, or number of arguments or operands specified for
a primitive operation is invalid.

A DOMAIN ERROR is also generated if:

� A calculation requires or produced data that is beyond the range of the system
implementation but does not fit any of the categories of SYSTEM LIMIT
(this can occur with some mathematical functions).

� A nonresource error occurred in a defined function or operator whose fourth
execution property is set to convert nonresource errors to a DOMAIN
ERROR. (See -FX, page 294.)

� A derived function from the slash operator or inner product was presented with
an empty argument but no identity function existed for the function operand. Or
a derived function from the Each operator or inner product was presented with
an empty argument but no fill function existed for the function operand.

ENTRY ERROR

The APL2 system received invalid characters. (Valid characters are listed in
Appendix A, “The APL2 Character Set” on page 470.)

IMPROPER LIBRARY REFERENCE

The library number specified for a)COPY,)LOAD,)LIB, or)SAVE command
is incorrect or does not exist; or you are not authorized to access the library.

INCORRECT COMMAND

The APL2 system command entered is invalid or has invalid parameters.

INDEX ERROR -ET ←→ 5 5

The index specified for bracket indexing (R[I]) or pick (L�R) is invalid with
respect to the array given as the argument.

464 APL2 Programming: Language Reference

 Interpreter Messages

INTERRUPT -ET ←→ 1 1

An interrupt was signaled from the terminal during processing and execution is
halted. Execution can be resumed with →ι0 or restarted by branching to a line
number in the defined operation. If execution is not resumed or restarted, the state
indicator should be cleared (with → or)RESET), as described in “Clearing the
State Indicator” on page 357.

LENGTH ERROR -ET ←→ 5 3

An argument of a primitive function or operand of a primitive operator has an axis
whose length is incompatible with respect to that of the other argument or operand.

LIBRARY I/O ERROR

An internal error is preventing successful completion of a)CONTINUE,)COPY,
)DROP,)LOAD, or)SAVE command.

LIBRARY NOT AVAILABLE

The)CONTINUE,)COPY,)DROP,)LOAD,)SAVE operation cannot be suc-
cessfully completed because other user(s) have temporary control of a shared
library; or you do not have write access to the library.

NOT COPIED: object-names

The listed objects were not copied by the)PCOPY system command because the
objects already exist in the active workspace. Or the listed objects were not copied
by the)PCOPY or)IN system command because the objects do not fit in the
active workspace.

Also, the listed objects specified with the)IN system command do not have valid
transfer forms in the file specified. Or the listed objects specified with the)OUT
system command were not written to a transfer file because they do not exist in the
active workspace or cannot be transferred.

NOT ERASED: object-names

The listed objects were not erased by the)ERASE command because the objects
do not exist in the active workspace.

 Chapter 11. Interpreter Messages 465

 Interpreter Messages

NOT FOUND: [object-names]

The objects listed were either:

)PCOPY system command but cannot be found in the specified library work-
space.

� Specified with an)IN system command but are not in the transfer file.

If no objects are listed, the file specified by name with the)IN system command
cannot be found or is not a transfer file.

NOT SAVED, THIS WS IS wsid

The)SAVE system command was issued in a CLEAR WS with no specified
workspace name; or the workspace named in the)SAVE command exists in the
library but is not the same as the name of the active workspace.

NOT SAVED, LIBRARY FULL

The space allotted for saving workspaces is full; or the remaining space is not large
enough to save the workspace.

RANK ERROR -ET ←→ 5 2

An array specified as the argument of a function or operand of an operator has a
rank that is incompatible with another argument or operand. If the array is nested,
the incompatibility may exist below the top level of structure.

SI WARNING

A suspended or pendent defined function or operator was altered by editing or was
replaced by the)COPY or)PCOPY command; or an attempt was made to use
→ι0 to resume execution of an operation that cannot be resumed (see “Suspen-
sion of Execution” on page 354).

SYNTAX ERROR -ET ←→ 2 n

The displayed APL2 expression is constructed improperly (for example, a function
has a missing right argument); or an expression has mismatched parentheses or
brackets.

If the error type is 2 5 (compatibility setting error), enter)CS 0 to return the
compatibility setting to full APL2.

466 APL2 Programming: Language Reference

 Interpreter Messages

SYSTEM ERROR -ET ←→ 1 2

A fault occurred in the internal operation of the APL2 system; or the active work-
space was damaged.

| On APL2/370, the damaged workspace is copied into a DUMPnnnn workspace.
You may be able to copy objects from the DUMPnnnn workspace; however,
examine and test them to ensure that they have not been damaged.

| The active workspace is replaced by a CLEAR workspace.

See APL2/370 Diagnosis Guide for other information on recovering data.

SYSTEM LIMIT -ET ←→ 1 n

The requested operation or action exceeds the system limits for symbol table size,
number of shared variables, size of shared variable storage, rank of an array,
number of dimensions of an array, number of items in an array, depth of an array,
or size of a prompt in a prompt/response interaction.

VALENCE ERROR -ET ←→ 5 1

An attempt has been made to specify a left argument for a monadic function, or to
specify a single argument for a dyadic function, or to execute a function declared
through the use of dyadic -NA whose definition cannot be activated.

VALUE ERROR -ET ←→ 3 n

The constructed name being referenced was not specified; or an attempt was made
to reference a value from a function that does not return a result; or a defined func-
tion that references two arguments was called with only a right argument, and the
definition of the function does not check for this.

WS CANNOT BE CONVERTED

This message occurs after a WS FULL message if, because of system mainte-
nance, the internal format of workspaces was changed and a larger workspace size
is now needed.

WS CONVERTED, RESAVE

If system maintenance has changed the internal format of workspaces, the work-
spaces are automatically converted when you issue a)LOAD command. Saving
the workspace ensures that the library copy of the workspace has the changed

 Chapter 11. Interpreter Messages 467

 Interpreter Messages

internal format. If you do not save the workspace, as directed, this message
appears every time you load the workspace.

WS FULL -ET ←→ 1 3

An attempt was made to execute an operation that requires more storage than is
currently available.

WS INVALID

The)LOAD system command was issued to load a file that is not an APL2 work-
space.

WS LOCKED

The password specified with a)COPY,)PCOPY, or)LOAD command differs
from that for the library workspace.

WS NOT FOUND

The workspace specified with a)DROP or)LOAD command does not exist.

-CT ERROR -ET ←→ 4 3

An attempt was made to execute a primitive function that uses -CT as an implicit
argument when -CT has an inappropriate value or no value.

-FC ERROR -ET ←→ 4 4

An attempt was made to:

� Execute a primitive function that uses -FC as an implicit argument but -FC
has an inappropriate value or no value.

� Display a negative number (with L�R) when -FC[6] has an inappropriate
value or no value.

-IO ERROR -ET ←→ 4 2

An attempt was made to execute a primitive function that uses -IO as an implicit
argument when -IO has an inappropriate value or no value.

468 APL2 Programming: Language Reference

 Interpreter Messages

| -PP ERROR -ET ←→ 4 1

An attempt was made to display an array when -PP has an inappropriate value or
no value; or to execute a primitive function that uses -PP as an implicit argument
when -PP has an inappropriate value or no value.

-PR ERROR -ET ←→ 4 7

An attempt was made to use the . system variable to create a character prompt
immediately followed by a request for character input. However, -PR has no value
or an inappropriate one.

-RL ERROR -ET ←→ 4 5

An attempt was made to execute roll or deal, each of which requires -RL as an
implicit argument, but -RL has an inappropriate value or no value.

 Chapter 11. Interpreter Messages 469

Appendix A. The APL2 Character Set

The APL2 character set is composed of 143 characters (plus blank) for which spec-
ified graphics must be used. The -AV system variable defines these 144 code
points plus an additional 112 deprecated or non-APL code points that may have no
defined graphic, or whose graphics may vary.

Different APL implementations may choose differing -AV orderings, and several
have been used in the past. There are currently two orders being used by APL2
products:

� The ASCII order used on workstations and shown in Figure 68
� The EBCDIC order used on System/370 and shown in Figure 69

Both figures show a matrix corresponding to 16 16ρ-AV and are labeled with
hexadecimal indexes into the matrix. The hexadecimal representation XX of a
character gives its row and column in the table. A corresponding index to -AV can
be obtained by the expression:

1+16⊤b1+J0123456789ABCDEFJιXX

| The following table shows the ASCII encoding of APL2 characters used on the
| workstation implementations.

| Figure 68. ASCII Character Set (Workstations)

| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0
| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F

| 00| │| │| 00
| │| │
| 10| │| │| 10
| │| │
| 20| │| !| "| #| $| %| &| '| (|)| *| +| ,| || �| /| │| 20
| │| │
| 30| │| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| :| ;| <| =| >|
| │| 30
| │| │
| 40| │| @| A| B| C| D| E| F| G| H| I| J| K| L| M| N| O| │| 40
| │| │
| 50| │| P| Q| R| S| T| U| V| W| X| Y| Z| [| \|]| �| _| │| 50
| │| │
| 60| │| `| a| b| c| d| e| f| g| h| i| j| k| l| m| n| o| │| 60
| │| │
| 70| │| p| q| r| s| t| u| v| w| x| y| z| {| | }| �| │| 70
| │| │
| 80| │| Ç| ü| é| â| ä| à| å| ç| ê| ë| è| ï| î| ì| Ä| Å| │| 80
| │| │
| 90| │| -| .| !| ô| ö| ò| û| ù| �| Ö| Ü| 0| £| ⊤| ₧| ¯| │| 90
| │| │
| A0| │| á| í| ó| ú| ñ| Ñ| ª| º| ¿| �| ¬| °| ¡| �| �| │| A0
| │| │
| B0| │| ░| ▒| ▓| │| ┤| �| δ| c| →| ╣| ║| ╗| ╝| ←| �| ┐| │| B0
| │| │
| C0| │| └| ┴| ┬| ├| ─| ┼| ↑| ↓| ╚| ╔| ╩| ╦| ╠| ═| ╬| �| │| C0
| │| │
| D0| │| §| �| ª| �| ©| ¦| ⊣| ¬| | ┘| ┌| █| ▄| ▌| ▐| ▀| │| D0
| │| │
| E0| │| α| β| �| �| h| �| ρ| �| '| (| ○| �| ι|)| ε| ±| │| E0
| │| │
| F0| │| 	| �| ≮| ≯| ≠|
| ÷| g| "| ω| ¤| �| �| b| ¨| │| F0

| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0
| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F

470  Copyright IBM Corp. 1984, 1994

| The following table shows the EBCDIC encoding of APL2 characters used on the
| System/370 implementation.

Note: The characters that are not shown in the above figures may or may not
have graphic representations on specific APL2 input and output devices. All char-
acters in -AV and those obtained using -AF can be used in comments and char-
acter constants even though they may not have graphic representations. Except
for comments and character constants, only APL2 graphic characters whose use is
defined in this manual can be meaningfully used in APL2 expressions.

| Figure 69. EBCDIC Character Set (APL2/370)

| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0
| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F

| 00| │| │| 00
| │| │
| 10| │| │| 10
| │| │
| 20| │| │| 20
| │| │
| 30| │| │| 30
| │| │
| 40| │| �| �| �| �| �| �| �| �| �| ¢| �| <| (| +| | │| 40
| │| │
| 50| │| &| �| �| �| �| ¢| �| �| �| �| !| $| *|)| ;| ¬| │| 50
| │| │
| 60| │| || /| �| �| �| �| �| �| | ¡| ³| ,| %| _| >|
| │| 60
| │| │
| 70| │| | �| ¨| ¦| §| �| ⊣| ¬| �| `| :| #| @| J| =| "| │| 70
| │| │
| 80| │| ˜| a| b| c| d| e| f| g| h| i| ↑| ↓| ≯| �| �| →| │| 80
| │| │
| 90| │| -| j| k| l| m| n| o| p| q| r| �| �| ○| ←| │| 90
| │| │
| A0| │| b| ˜| s| t| u| v| w| x| y| z| ±| °| ⊤| [| ≮| "| │| A0
| │| │
| B0| │| α| ε| ι| ρ| ω|
| \| ÷| c| δ| �|]| ≠| | │| B0
| │| │
| C0| │| {| A| B| C| D| E| F| G| H| I| �| �| �| '| ©|)| │| C0
| │| │
| D0| │| }| J| K| L| M| N| O| P| Q| R| ¯| !| �| �| .| h| │| D0
| │| │
| E0| │| \| �| S| T| U| V| W| X| Y| Z| 	| �| ª| (| !| �| │| E0
| │| │
| F0| │| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| ¤| g| �| �| │| F0

| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0
| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F

APL2 Special Characters

Figure 70 shows the APL2 special characters and their names. The names of the
characters do not necessarily indicate the operations they represent. The table
includes the pages containing descriptions for the APL2 use of the symbols.

Figure 70 (Page 1 of 3). Names of APL2 Characters

Symbol

Symbol Name

Monadic Use

(Operation

Name and Page)

Dyadic Use

(Operation

Name and Page)

Other

Reference

(Page)

¨ dieresis Each (109, 107) — —

 Appendix A. The APL2 Character Set 471

Figure 70 (Page 1 of 3). Names of APL2 Characters

Symbol

Symbol Name

Monadic Use

(Operation

Name and Page)

Dyadic Use

(Operation

Name and Page)

Other

Reference

(Page)

b overbar — — 11
< less — Less Than (219) —
≯ not greater — Less Than or Equal

(219)
—

= equal — Equal (219) —
≮ not less — Greater Than or

Equal (219)
—

> greater — Greater Than (219) —
≠ not equal — Not Equal (219) —
� down caret — Or (68) —
� up caret — And (68) —
| bar Negative (185) Subtract (243) —
÷ divide Reciprocal (208) Divide (100) —
+ plus Conjugate (88) Add (65) —

 times Direction (93) Multiply (183) —

 query Roll (231) Deal (89) —
ω omega — — —
ε epsilon Enlist (118) Member (181) —
ρ rho Shape (241) Reshape (225) —
� tilde Not (68) Without (258) —
↑ up arrow First (131) Take (244), Take

with Axis (247)
—

↓ down arrow — Drop (101), Drop
with Axis (105)

—

ι iota Interval (168) Index Of (162) —
○ circle Pi Times (194) Circle (80) —
* star Exponential (127) Power (201) —
→ right arrow — — 349
← left arrow — — 27, 39
α alpha — — —
� up stile Ceiling (79) Maximum (180) —
� down stile Floor (133) Minimum (182) —
_ underbar — — 25, 27, 444
c del — — 391
δ delta — — 25
" jot — Outer Product

(186)
—

J quote — — 13
- quad — — 262
(left paren — — 27, 36
) right paren — — 27, 36
[left bracket — Bracket Index (70) 27, 34
] right bracket — Bracket Index (70) 27, 34
� left shoe Enclose (111),

Enclose with Axis
(113)

Partition (188), Par-
tition with Axis
(192)

—

� right shoe Disclose (94), Dis-
close with Axis (96)

Pick (195) —

± up shoe — — —
° down shoe — — —
⊤ down tack — Decode (90) —
� up tack — Encode (116) —
 stile Magnitude (172) Residue (227) —
; semicolon — — 27, 347

472 APL2 Programming: Language Reference

Figure 70 (Page 2 of 3). Names of APL2 Characters

Symbol

Symbol Name

Monadic Use

(Operation

Name and Page)

Dyadic Use

(Operation

Name and Page)

Other

Reference

(Page)

: colon — — 27
, comma Ravel (202), Ravel

with Axis (204)
Catenate (74), Cat-
enate with Axis
(77), Laminate
(169)

291

� dot — Outer product
(186), Inner
product (165)

10, 291

� � slope
slope bar

Backslash (Expand
(122, 124), Scan
(239, 240))

— —

/ 	 slash
slash bar

Slash (Reduce
(209, 217), N-wise
Reduce (213, 215),
Replicate (220,
222))

— —

� down caret tilde — Nor (68) —
� up caret tilde — Nand (68) —
� del stile Grade Down (147) Grade Down (with

Collating
Sequence) (149)

—

� delta stile Grade Up (153) Grade Up (with
Collating
Sequence) (155)

—

' (circle stile
circle bar

Reverse (228),
Reverse with Axis
(229)

Rotate (232),
Rotate with Axis
(235)

—

) circle slope Transpose (with
Reversed Axis)
(256)

Transpose
(General) (251)

—

(circle bar See circle stile See circle stile —
� circle star Natural Log (184) Logarithm (171) —
¯ I-beam — — —
¤ del tilde — — 391
� down tack jot Execute (120) — —
� up tack jot Format (Default)

(135)
Format By Specifi-
cation (143),
Format By
Example (139)

—

h up shoe jot — — 27
. quad quote — — 265
� quote dot Factorial (128) Binomial (66) —
! quad divide Matrix Inverse

(177)
Matrix Divide (174) —

| g delta underbar — — 25
| © quad slope — — —
¦ quad jot — — —
� squad — Index (160), Index

with Axis (163)
—

ª dieresis dot — — —
� equal underbar Depth (91) Match (173) —
� epsilon underbar — Find (129) —
§ iota underbar — — —

 Appendix A. The APL2 Character Set 473

Figure 70 (Page 3 of 3). Names of APL2 Characters

Symbol

Symbol Name

Monadic Use

(Operation

Name and Page)

Dyadic Use

(Operation

Name and Page)

Other

Reference

(Page)

 diamond — —| 36

⊣ left tack — — —
¬ right tack — — —

474 APL2 Programming: Language Reference

| Figure 71 maps -AV into characters defined by the ISO 10646 standard 32-bit
| code and the Unicode subset of these characters.

Figure 71 (Page 1 of 5). ASCII, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode
APL

Char DescriptionDecimal Hex Decimal Hex Decimal Hex

0 00 0 00 0 0000 Null
1 01 1 01 1 0001 Start of heading
2 02 2 02 2 0002 Start of text
3 03 3 03 3 0003 End of text
4 04 55 37 4 0004 End of transmission
5 05 4 04 5 0005 Enquiry
6 06 46 2E 6 0006 Acknowledge
7 07 47 2F 7 0007 Bell
8 08 22 16 8 0008 Backspace
9 09 5 05 9 0009 Horizontal tabulation
10 0A 37 25 10 000A Linefeed
11 0B 11 0B 11 000B Vertical tabulation
12 0C 12 0C 12 000C Formfeed
13 0D 21 15 13 000D Carriage return
14 0E 14 0E 14 000E Shift out
15 0F 15 0F 15 000F Shift in
16 10 16 10 16 0010 Data link escape
17 11 17 11 17 0011 Device control one
18 12 18 12 18 0012 Device control two
19 13 19 13 19 0013 Device control three
20 14 60 3C 20 0014 Device control four
21 15 6 06 21 0015 Negative acknowledgement
22 16 50 32 22 0016 Synchronous idle
23 17 38 26 23 0017 End of transmission block
24 18 7 07 24 0018 Cancel
25 19 9 09 25 0019 End of medium
26 1A 20 14 26 001A Substitute
27 1B 39 27 27 001B Escape
28 1C 34 22 28 001C File separator
29 1D 29 1D 29 001D Group separator
30 1E 53 35 30 001E Record separator
31 1F 13 0D 31 001F Unit separator
32 20 64 40 32 0020 Space
33 21 219 DB 33 0021 ! Exclamation mark
34 22 127 7F 34 0022 Quotation mark
35 23 123 7B 35 0023 Number sign
36 24 91 5B 36 0024 Dollar sign
37 25 108 6C 37 0025 Percent sign
38 26 80 50 38 0026 Ampersand
39 27 125 7D 39 0027 J Apostrophe, quote
40 28 77 4D 40 0028 (Opening parenthesis
41 29 93 5D 41 0029) Closing parenthesis
42 2A 92 5C 42 002A * Star
43 2B 78 4E 43 002B + Plus sign
44 2C 107 6B 44 002C , Comma
45 2D 96 60 45 002D | Bar
46 2E 75 4B 46 002E � Dot
47 2F 97 61 47 002F / Slash
48 30 240 F0 48 0030 0 Digit zero
49 31 241 F1 49 0031 1 Digit one
50 32 242 F2 50 0032 2 Digit two

 Appendix A. The APL2 Character Set 475

Figure 71 (Page 2 of 5). ASCII, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode
APL

Char DescriptionDecimal Hex Decimal Hex Decimal Hex

51 33 243 F3 51 0033 3 Digit three
52 34 244 F4 52 0034 4 Digit four
53 35 245 F5 53 0035 5 Digit five
54 36 246 F6 54 0036 6 Digit six
55 37 247 F7 55 0037 7 Digit seven
56 38 248 F8 56 0038 8 Digit eight
57 39 249 F9 57 0039 9 Digit nine
58 3A 122 7A 58 003A : Colon
59 3B 94 5E 59 003B ; Semicolon
60 3C 76 4C 60 003C < Less-than sign
61 3D 126 7E 61 003D = Equals sign
62 3E 110 6E 62 003E > Greater-than sign
63 3F 111 6F 63 003F
 Query
64 40 124 7C 64 0040 Commercial at
65 41 193 C1 65 0041 A Capital A
66 42 194 C2 66 0042 B Capital B
67 43 195 C3 67 0043 C Capital C
68 44 196 C4 68 0044 D Capital D
69 45 197 C5 69 0045 E Capital E
70 46 198 C6 70 0046 F Capital F
71 47 199 C7 71 0047 G Capital G
72 48 200 C8 72 0048 H Capital H
73 49 201 C9 73 0049 I Capital I
74 4A 209 D1 74 004A J Capital J
75 4B 210 D2 75 004B K Capital K
76 4C 211 D3 76 004C L Capital L
77 4D 212 D4 77 004D M Capital M
78 4E 213 D5 78 004E N Capital N
79 4F 214 D6 79 004F O Capital O
80 50 215 D7 80 0050 P Capital P
81 51 216 D8 81 0051 Q Capital Q
82 52 217 D9 82 0052 R Capital R
83 53 226 E2 83 0053 S Capital S
84 54 227 E3 84 0054 T Capital T
85 55 228 E4 85 0055 U Capital U
86 56 229 E5 86 0056 V Capital V
87 57 230 E6 87 0057 W Capital W
88 58 231 E7 88 0058 X Capital X
89 59 232 E8 89 0059 Y Capital Y
90 5A 233 E9 90 005A Z Capital Z
91 5B 173 AD 91 005B [Left bracket
92 5C 183 B7 92 005C \ Slope
93 5D 189 BD 93 005D] Right bracket
94 5E 113 71 94 005E � Up caret
95 5F 109 6D 95 005F _ Underbar
96 60 121 79 96 0060 Grave accent
97 61 129 81 97 0061 a Small a
98 62 130 82 98 0062 b Small b
99 63 131 99 83 0063 c Small c
100 64 132 84 100 0064 d Small d
101 65 133 85 101 0065 e Small e
102 66 134 86 102 0066 f Small f
103 67 135 87 103 0067 g Small g
104 68 136 88 104 0068 h Small h

476 APL2 Programming: Language Reference

Figure 71 (Page 3 of 5). ASCII, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode
APL

Char DescriptionDecimal Hex Decimal Hex Decimal Hex

105 69 137 89 105 0069 i Small i
106 6A 145 91 106 006A j Small j
107 6B 146 92 107 006B k Small k
108 6C 147 93 108 006C l Small l
109 6D 148 94 109 006D m Small m
110 6E 149 95 110 006E n Small n
111 6F 150 96 111 006F o Small o
112 70 151 97 112 0070 p Small p
113 71 152 98 113 0071 q Small q
114 72 153 99 114 0072 r Small r
115 73 162 A2 115 0073 s Small s
116 74 163 A3 116 0074 t Small t
117 75 164 A4 117 0075 u Small u
118 76 165 A5 118 0076 v Small v
119 77 166 A6 119 0077 w Small w
120 78 167 A7 120 0078 x Small x
121 79 168 A8 121 0079 y Small y
122 7A 169 A9 122 007A z Small z
123 7B 192 C0 123 007B Left curly brace
124 7C 191 BF 124 007C | Stile
125 7D 208 D0 125 007D Right curly brace
126 7E 128 80 126 007E � Tilde
127 7F 65 41 127 007F Delete
128 80 66 42 199 00C7 Capital C cedilla
129 81 67 43 252 00FC Capital U dieresis
130 82 68 44 233 00E9 Small e acute
131 83 69 45 226 00E2 Small a circumflex
132 84 70 46 228 00E4 Small a dieresis
133 85 71 47 224 00E0 Small a grave
134 86 72 48 229 00E5 Small a ring
135 87 73 49 231 00E7 Small c cedilla
136 88 81 51 234 00EA Small e circumflex
137 89 82 52 235 00EB Small e dieresis
138 8A 83 53 232 00E8 Small e grave
139 8B 84 54 239 00EF Small i dieresis
140 8C 85 55 238 00EE Small i circumflex
141 8D 86 56 236 00EC Small i grave
142 8E 87 57 196 00C4 Capital A dieresis
143 8F 88 58 197 00C5 Capital A ring
144 90 144 90 9647 25AF - Quad
145 91 222 DE 9054 235E . Quote quad
146 92 238 EE 9017 2339 ! Quad divide
147 93 89 59 244 00F4 Small o circumflex
148 94 98 62 246 00F6 Small o dieresis
149 95 99 63 242 00F2 Small o grave
150 96 100 64 251 00FB Small u circumflex
151 97 101 65 249 00F9 Small u grave
152 98 188 BC 8868 22A4 � Up tack
153 99 102 66 214 00D6 Capital O dieresis
154 9A 103 67 220 00DC Capital U dieresis
155 9B 74 4A 248 00F8 Small o slash
156 9C 104 68 163 00A3 Pound sign
157 9D 172 AC 8869 22A5 ⊤ Down tack
158 9E 105 69 9078 2376 Alpha underbar

 Appendix A. The APL2 Character Set 477

Figure 71 (Page 4 of 5). ASCII, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode
APL

Char DescriptionDecimal Hex Decimal Hex Decimal Hex

159 9F 218 DA 9014 2336 ¯ I-beam
160 A0 33 21 225 00E1 Small a acute
161 A1 161 A1 237 00ED Small i acute
162 A2 35 23 243 00F3 Small o acute
163 A3 36 24 250 00FA Small u acute
164 A4 106 6A 241 00F1 Small n tilde
165 A5 158 9E 209 00D1 Capital N tilde
166 A6 224 E0 170 00AA Feminine ordinal indicator
167 A7 181 B5 186 00BA Masculine ordinal indicator
168 A8 41 29 191 00BF Inverted question mark
169 A9 141 8D 8968 2308 � Up stile
170 AA 95 5F 172 00AC Not sign
171 AB 54 36 189 00BD Fraction one half
172 AC 171 AB 8746 222A ° Down shoe
173 AD 43 2B 161 00A1 Inverted exclamation mark
174 AE 239 EF 9045 2355 � Up tack jot
175 AF 254 FE 9038 234E � Down tack jot
176 B0 10 0A 9617 2591 Light shade
177 B1 32 20 9618 2592 Medium shade
178 B2 42 2A 9619 2593 Dark shade
179 B3 26 1A 9474 2502 Forms light vertical
180 B4 63 3F 9408 2524 Forms light vertical and left
181 B5 253 FD 9055 235F � Circle star
182 B6 187 BB 8710 2206 δ Delta
183 B7 186 BA 8711 2207 c Del
184 B8 143 8F 8594 2192 → Right arrow
185 B9 49 31 9571 2563 Forms double vertical and left
186 BA 48 30 9553 2551 Forms double vertical
187 BB 51 33 9559 2557 Forms double down and left
188 BC 52 34 9565 255D Forms double up and left
189 BD 159 9F 8592 2190 ← Left arrow
190 BE 142 8E 8970 230A � Down stile
191 BF 27 1B 9488 2510 Forms light down and left
192 C0 30 1E 9492 2514 Forms light up and right
193 C1 62 3E 9524 2534 Forms light up and horizontal
194 C2 59 3B 9516 252C Forms light down and hori-

zontal
195 C3 61 3D 9500 251C Forms light vertical and right
196 C4 45 2D 9472 2500 Forms light horizontal
197 C5 44 2C 9532 253C Forms light vertical and hori-

zontal
198 C6 138 8A 8593 2191 ↑ Up arrow
199 C7 139 8B 8595 2193 ↓ Down arrow
200 C8 185 B9 9562 255A Forms double up and right
201 C9 56 38 9556 2554 Forms double down and right
202 CA 57 39 9577 2569 Forms double up and hori-

zontal
203 CB 79 4F 9574 2566 Forms double down and hori-

zontal
204 CC 90 5A 9568 2560 Forms double vertical and right
205 CD 156 9C 9552 2550 Forms double horizontal
206 CE 58 3A 9580 256C Forms double vertical and hori-

zontal
207 CF 225 E1 8801 2261 � Equal underbar

478 APL2 Programming: Language Reference

Figure 71 (Page 5 of 5). ASCII, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode
APL

Char DescriptionDecimal Hex Decimal Hex Decimal Hex

208 D0 116 74 9080 2378 § Iota underbar
209 D1 117 75 9079 2377 � Epsilon underbar
210 D2 236 EC 8757 2235 ª Dotted del (dieresis dot)
211 D3 204 CC 9015 2337 � Squash quad
212 D4 206 CE 9026 2342 © Quad slope
213 D5 115 73 9019 233B ¦ Quad jot
214 D6 118 76 8866 22A2 ¬ Right tack
215 D7 119 77 8867 22A3 ⊣ Left tack
216 D8 112 70 9674 25CA Diamond

217 D9 31 1F 9496 2518 Forms light up and left
218 DA 28 1C 9484 250C Forms light down and right
219 DB 24 18 9608 2588 Full block
220 DC 40 28 9604 2584 Lower half block
221 DD 23 17 166 00A6 Broken vertical bar
222 DE 25 19 204 00CC Capital I grave
223 DF 8 08 9600 2580 Upper half block
224 E0 176 B0 9082 237A α Alpha
225 E1 250 FA 9081 2379 Omega underbar
226 E2 155 9B 8834 2282 � Left shoe
227 E3 154 9A 8835 2283 � Right shoe
228 E4 223 DF 9053 235D h Up shoe jot
229 E5 202 CA 9074 2372 � Up caret tilde
230 E6 179 B3 9076 2374 ρ Rho
231 E7 203 CB 9073 2371 � Down caret tilde
232 E8 205 CD 9021 233D ' Circle stile
233 E9 237 ED 8854 2296 (Circle bar
234 EA 157 9D 9675 25CB ○ Circle
235 EB 120 78 8744 2228 � Down caret
236 EC 178 B2 9075 2373 ι Iota
237 ED 207 CF 9033 2349) Circle slope
238 EE 177 B1 8714 220A ε Epsilon
239 EF 170 AA 8745 2229 ± Up shoe
240 F0 234 EA 9023 233F 	 Slash bar
241 F1 235 EB 9024 2340 � Slope bar
242 F2 174 AE 8805 2265 ≮ Not-less-than sign
243 F3 140 8C 8804 2264 ≯ Not-greater-than sign
244 F4 190 BE 8800 2260 ≠ Not-equal sign
245 F5 182 B6 215 00D7
 Times
246 F6 184 B8 247 00F7 ÷ Divide
247 F7 252 FC 9049 2359 g Delta underbar
248 F8 175 AF 8728 2218 " Jot
249 F9 180 B4 9077 2375 ω Omega
250 FA 251 FB 9067 236B ¤ Del tilde
251 FB 221 DD 9035 234B � Delta stile
252 FC 220 DC 9042 2352 � Del stile
253 FD 160 A0 175 00AF b Overbar
254 FE 114 72 168 00A8 ¨ Dieresis
255 FF 255 FF 160 00A0 Nonbreaking space

 Appendix A. The APL2 Character Set 479

Explanation of Characters
The alphabetic characters are:

 ABCDEFGHIJKLMNOPQUSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz
 δg

The alphameric characters include the alphabetic characters, and also:

 0123456789_b

The blank is not visible in the EBCDIC and ASCII character set figures (Figure 69
on page 471 and Figure 68 on page 470), but is encoded in EBCDIC as -AF 64
(X'40') and in ASCII as -AF 32 (X'20').

The underbarred APL alphabet is now deprecated, having been replaced by lower-
case letters, and is not defined at all in ASCII. When APL objects containing
underbarred letters are transferred to an ASCII based system, the characters are
mapped as follows:

The ASCII character set figure (Figure 68 on page 470) shows a number of char-
acters that are not displayed in the EBCDIC figure (Figure 69 on page 471).
There is a one-for-one code point mapping of these characters, but either the
EBCDIC code points are below X'40' so that they may not display or print on
some devices, or the graphics for the EBCDIC code points are national language
dependent. The following table shows these code points and the graphics defined
by a few commonly used code pages:

hex 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 62 63 64 65 66 67 68 69
EBCDIC � � � � � � � � � � � � � ¢ � � � � � � � � � � ¡
ASCII ⌂ Ç ü é â ä à å ç ê ë è ï î ì Ä Å ô ö ò û ù Ö Ü £

hex 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 93 94 95 96 97 99 9A 9C 9E

ASCII ¢ $ ¬ ` # @ { } ┘ ┼ ─ ┬ ├ ┴ ┤ │ ┐ ┌ └
ASCII hex 9B 24 AA 60 23 40 7B 7D B3 BF DA C0 D9 C5 C4 C2 C3 C1 B4
EBCDIC hex 4A 5B 5F 79 7B 7C C0 D0 1A 1B 1C 1E 1F 2C 2D 3B 3D 3E 3F

Codepage 037 ¢ $ ¬ ` # @ { } (Canada, US)
Codepage 273 Ä $ ^ ` # § ä ü (Austria, Germany)
Codepage 275 É $ ^ ã Õ Ã õ é (Brazil)
Codepage 277 # Å ^ ` Æ Ø æ å (Denmark, Norway)
Codepage 278 § Å ^ é Ä Ö ä å (Finland, Sweden)
Codepage 280 ° $ ^ ù £ § à è (Italy)
Codepage 281 £ ¥ ¬ ` # @ { } (Japan-Latin)
Codepage 282 [$ ^ ` Ã Õ ã ´ (Portugal)
Codepage 284 [$ ¬ ` Ñ @ { } (Latin America, Spain)
Codepage 285 $ £ ¬ ` # @ { } (United Kingdom)
Codepage 290 £ ¥ ¬ ` # @ { } (Katakana)
Codepage 297 ° $ ^ µ £ à é è (France)
Codepage 500 [$ ^ ` # @ { } (International)

480 APL2 Programming: Language Reference

The following characters are not shown in either the ASCII or EBCDIC character
set figures (Figure 68 on page 470 and Figure 69 on page 471). They do have
an extended ASCII assignments that are honored by APL-ASCII, though the code
points may be redefined by other ASCII code pages. But the graphics for the
EBCDIC mapping are national language dependent, as this table shows:

The character X'FF' (-AF 255) has no graphics associated with it and, if used
in comments, may not be preserved by the editors. Similar problems may occur for
any of the characters X'00' through X'3F' (64↑-AV) in EBCDIC, and the char-
acters X'00' through X'1F' (32↑-AV) in ASCII, although in some cases graphics
are associated with them. In particular, APL systems and their editors often recog-
nize the following as control characters:

Figure 72 on page 482 and Figure 73 on page 482 show complete code point
mapping tables from EBCDIC to ASCII and from ASCII to EBCDIC. Hexadecimal
source code points are shown in the table margins, with hexadecimal destination
code points in the body of the table.

ASCII í ñ Ñ ª º ╚ ╦ ╠ ═ ß
ASCII hex A1 A4 A5 A6 A7 C8 CB CC CD E1
EBCDIC hex A1 6A 9E E0 B5 B9 4F 5A 9C FA

Codepage 037 ˜ ¦ Æ \ § ¾ | ! æ Û (Canada, US)
Codepage 273 ß ö Æ Ö @ ¾ ! Ü æ 0 (Austria, Germany)
Codepage 275 ˜ ç Æ \ § ¾ ! $ æ 0 (Brazil)
Codepage 277 ü ø [\ @ ¾ ! ☼ { 0 (Denmark, Norway)
Codepage 278 ü ö Æ É [¾ ! ☼ æ 0 (Finland, Sweden)
Codepage 280 ì ò Æ ç @ ¾ ! é æ 0 (Italy)
Codepage 281 ¯ ¦ Æ $ § ¾ | ! æ 0 (Japan-Latin)
Codepage 282 ç õ Æ Ç § ¾ !] æ 0 (Portugal)
Codepage 284 ¨ ñ Æ \ § ¾ |] æ 0 (Latin America, Spain)
Codepage 285 ¯ ¦ Æ \ § ¾ | ! æ 0 (United Kingdom)
Codepage 297 ¨ ù Æ ç] ¾ ! § æ 0 (France)
Codepage 500 ˜ ¦ Æ \ § ¾ !] æ 0 (International)

EBCDIC ASCII -TC index

(Origin 1)

Usage as a

Control Character-AF hex -AF hex

 5 05 9 09 Tab
14 0E 14 0E Shift Out
15 0F 15 0F Shift In
21 15 13 0D 2 Carriage Return
22 16 8 08 1 Backspace
37 25 10 0A 3 Line Feed

 Appendix A. The APL2 Character Set 481

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 +---+
00 | 00 01 02 03 05 09 15 18 DF 19 B0 0B 0C 1F 0E 0F | 00
10 | 10 11 12 13 1A 0D 08 DD DB DE B3 BF DA 1D C0 D9 | 10
20 | B1 A0 1C A2 A3 0A 17 1B DC A8 B2 AD C5 C4 06 07 | 20
30 | BA B9 16 BB BC 1E AB 04 C9 CA CE C2 14 C3 C1 B4 | 30
40 | 20 7F 80 81 82 83 84 85 86 87 9B 2E 3C 28 2B CB | 40
50 | 26 88 89 8A 8B 8C 8D 8E 8F 93 CC 24 2A 29 3B AA | 50
60 | 2D 2F 94 95 96 97 99 9A 9C 9E A4 2C 25 5F 3E 3F | 60
70 | D8 5E FE D5 D0 D1 D6 D7 EB 60 3A 23 40 27 3D 22 | 70
80 | 7E 61 62 63 64 65 66 67 68 69 C6 C7 F3 A9 BE B8 | 80
90 | 90 6A 6B 6C 6D 6E 6F 70 71 72 E3 E2 CD EA A5 BD | 90
A0 | FD A1 73 74 75 76 77 78 79 7A EF AC 9D 5B F2 F8 | A0
B0 | E0 EE EC E6 F9 A7 F5 5C F6 C8 B7 B6 98 5D F4 7C | B0
C0 | 7B 41 42 43 44 45 46 47 48 49 E5 E7 D3 E8 D4 ED | C0
D0 | 7D 4A 4B 4C 4D 4E 4F 50 51 52 9F 21 FC FB 91 E4 | D0
E0 | A6 CF 53 54 55 56 57 58 59 5A F0 F1 D2 E9 92 AE | E0
F0 | 30 31 32 33 34 35 36 37 38 39 E1 FA F7 B5 AF FF | F0
 +---+

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Figure 72. APL2 EBCDIC to ASCII code point mapping

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 +---+
00 | 00 01 02 03 37 04 2E 2F 16 05 25 0B 0C 15 0E 0F | 00
10 | 10 11 12 13 3C 06 32 26 07 09 14 27 22 1D 35 0D | 10
20 | 40 DB 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61 | 20
30 | F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F | 30
40 | 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6 | 40
50 | D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD B7 BD 71 6D | 50
60 | 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 | 60
70 | 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 BF D0 80 41 | 70
80 | 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 | 80
90 | 90 DE EE 59 62 63 64 65 BC 66 67 4A 68 AC 69 DA | 90
A0 | 21 A1 23 24 6A 9E E0 B5 29 8D 5F 36 AB 2B EF FE | A0
B0 | 0A 20 2A 1A 3F FD BB BA 8F 31 30 33 34 9F 8E 1B | B0
C0 | 1E 3E 3B 3D 2D 2C 8A 8B B9 38 39 4F 5A 9C 3A E1 | C0
D0 | 74 75 EC CC CE 73 76 77 70 1F 1C 18 28 17 19 08 | D0
E0 | B0 FA 9B 9A DF CA B3 CB CD ED 9D 78 B2 CF B1 AA | E0
F0 | EA EB AE 8C BE B6 B8 FC AF B4 FB DD DC A0 72 FF | F0
 +---+

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Figure 73. APL2 ASCII to EBCDIC code point mapping

482 APL2 Programming: Language Reference

The appearance of some national-language-dependent EBCDIC characters may be
very similar to APL characters even though they are distinct. The specific charac-
ters vary by language, but ones that often cause confusion are:

The above characters can also cause problems when using non-APL facilities (such
as terminal emulators or upload programs) to transfer data between an ASCII
system and an EBCDIC system. The problems occur if the facility attempts to map
between APL and ASCII code points. You should have no problem if you let APL
do the translation, or if you use a terminal emulator that supports the 3270 APL
feature.

EBCDIC

hex

EBCDIC

-AF
APL

char

Some EBCDIC code points

that may appear similar

80 128 � 48 58 59 A0 A1 BC BD DC
AD 173 [4A 63 70 71 90 9E B1 B5 BA
B7 183 � 48 68 71 B2 E0 EC
BD 189] 51 5A 68 80 9F B5 BB FC
DB 219 � 4F 5A 5B BB
BF 191 4F BB

 Appendix A. The APL2 Character Set 483

Appendix B. APL2 Transfer Files and Extended Transfer
Formats

Transfer file formats have been defined to permit exchange of APL2 workspaces or
workspace objects among all IBM APL2 implementations. In general, users need
only be concerned with the APL commands needed to create and read transfer
files, and with the physical requirements of moving files from one system to
another. APL2 systems implementers, and occasionally writers of sophisticated
applications, also need to understand the internal formats of the files. Each of
these is covered below.

Reading and Writing Transfer Files

The APL commands used to create and read transfer files are)OUT,)IN, and
)PIN. The APL system function -TF also converts individual APL objects
between their internal format and a character-based representation that can be
used in transfer files. Since)OUT,)IN, and)PIN also take care of all of the
additional file format requirements, provide support for multiple objects or entire
workspaces, and perform the file I/O itself, they are the preferred technique in
almost every case.

Moving Transfer Files from One System to Another

The techniques for physically moving files from one system to another vary greatly
depending on the types of systems and what connections exist between them.

� One key issue is that some systems (for example MVS/TSO and VM/CMS) use
an EBCDIC character encoding, while others (for example PC/DOS and
AIX/6000) use an ASCII encoding. Both ASCII and EBCDIC transfer file
formats are defined, and all IBM APL2 systems accept both formats. No data
conversion should be attempted within the file itself when transferring it from
one system to another. The receiving APL2 system performs any necessary
conversion. If the transfer is done electronically through a network connection,
the programs controlling that transfer must be told that this is a “binary” rather
than “character” file. (The exact terminology used may vary depending on the
system and network control programs being used.)

� Some systems use “record oriented” files while others use stream files. If
stream files are being transferred to a system that expects record oriented files,
an arbitrary record length may be used, but the existing record separators
(“CR” or “CR/LF”) must be retained. Conversely, separators should not be
inserted when record oriented files are being transferred to a system that
expects stream files. Again, the receiving APL2 system adjusts to these differ-
ences.

� Within these constraints, standard data transmission commands appropriate to
the system such as “ftp put”, “SEND”, “SENDFILE”, or “TRANSMIT” may be
used for network transmission, with corresponding commands such as “ftp get”
or “RECEIVE” as appropriate to the receiving system.

� Because the receiving APL2 system performs all necessary conversions, it is
also possible to use shared DASD, remote file systems, removable media, or
other such facilities to transport the data.

484  Copyright IBM Corp. 1984, 1994

Internal Formats of Transfer Files

The remainder of this appendix deals with data formats within transfer files, and is
not of concern to most users.

Note: The migration and extended forms of objects defined below can be inter-
mixed within a transfer file.

File and Record Structure
A transfer file is logically structured as a set of 80-byte records, whether or not the
file system is record oriented. For stream files each record must be followed by
either a CR (ASCII X'0D' or EBCDIC X'15') or a CR/LF combination (ASCII
X'0D0A', no EBCDIC equivalent).

Caution: Any of these three code points may also be embedded within the data.
They must be interpreted as record separators only if they appear imme-
diately following the 80th byte of a record. No record in a transfer file can
begin with one of these three code points, so a check for them at the end of
a record is unambiguous.

Within each 80-byte record the structure is:

Columns Content

1 Blank in all records which are part of an object except for the last (or only)
record of the object, which contains “X”. Records which is not part of an
object contain “?”. See “Records Not Containing Objects” on page 486 for
the usage of those records. Note that the only valid code points (in hex)
are ASCII 20, 2A, or 58, or EBCDIC 40, 5C, or E7. Thus the first byte of
a file can be used to determine whether it is in ASCII or EBCDIC format.

2-72 Part or all of the transfer form representation of an object. Column 2 of
the first record for an object must indicate the representation type:

A An array in extended (2 -TF) transfer format.
C A character array in migration (1 -TF) transfer format.
F A defined function or operator in extended (2 -TF) transfer format.
N A numeric array in migration (1 -TF) transfer format.

Note: The “C” or “N” in column 2 is actually the first character produced
by 1 -TF. The “A” or “F” in column 2 precedes the first char-
acter produced by 2 -TF. A transfer file is not allowed to contain
a function in 1 -TF format.

Objects not complete by column 72 of a record are continued in column 2
of the next record. Unused bytes in the last record of an object must be
blank.

73-80 These columns may contain sequence numbers or any other desired infor-
mation. They are not inspected during)IN processing.

 Appendix B. APL2 Transfer Files and Extended Transfer Formats 485

Records Not Containing Objects
Any record beginning with “?” is either a comment or a special directive. The cases
are distinguished by the content of column 2.

blank A comment record, ignored by)IN and)PIN.

(A time stamp. This should appear immediately preceding a function or
operator definition. Its format is

?(year month day hour min sec millisec)

(i.e. -TS format) for the time when the function was created or last
modified. The timestamp should be adjusted to Greenwich Mean Time
if possible. Transmitting systems should supply trailing zeroes if
timestamp information is not known precisely.

Time stamps should be provided for each defined function or operator if
the information is available, but receiving systems must be able to
accept defined objects without timestamps. If no timestamp is available,
but the receiving system maintains a timestamp for the object type, then
the time of receipt should be used.

I Reserved for an “imbed” facility. At present)OUT must not produce
transfer files containing this directive, and)IN and)PIN need not
support it.

Migration Transfer Form of an Object
The migration form is one of two forms of objects that can be intermixed within a
transfer file. Migration form can be used for simple arrays (unless they contain
complex numbers), but cannot be used for functions or for objects unique to APL2.
In migration form an object is represented by four character segments:

1. A data type indicator character, “C” or “N” for simple character or numeric data.
“F” (for functions) is also supported as 1 -TF output, but not in a transfer file.
Where “F” is supported, the remaining three fields are based on the matrix form
of the function produced by -CR. (Any -FX execution attributes are ignored.)

2. The name of the object, followed by a single blank. (there is no blank between
the type indicator and the name.)

3. A character representation (digits 0-9) of the rank followed by the shape of the
array, with one blank following each numeric item. For example:

scalar “0 ”
293 element vector “1 293 ”
17 by 11 matrix “2 17 11 ”

4. A character representation (as produced by �) of the ravel of the array.
Numeric conversions are done as if -PP←18. Note that trailing blanks must
be present, even if this requires extra records in the transfer file, and even
though they are indistinguishable from record padding blanks.

486 APL2 Programming: Language Reference

Extended Transfer Form of an Object
The extended form is the second of the two forms of objects that can be intermixed
within a transfer file. Extended form can be used for all APL2 objects. There are
three basic subformats within extended form, each having the attribute that the
object can be recreated by applying the � primitive to the entire representation:

� The variable format, described in detail below. It begins with a name followed
by “←”. This form is used for shared variables and system variables as well as
ordinary variables in the workspace.

� The function format, used for defined functions and defined operators in the
workspace. It begins with -FX, preceded by a character representation of the
four -FX execution attributes if any of them are nonzero, and continues with
the lines of the function, each represented as a quoted character constant, with
a single blank between each constant.

� The external object format, used for all objects external to the workspace
regardless of their class. This format is a reconstruction of the -NA function
originally used to make a workspace association to the object, though with the
-NA arguments represented as constants regardless of how they may have
originally been provided.

Conceptually the variable format could contain, to the right of the “←”, any valid
APL statement which returns a result and has no side effects. In practice only a
very limited set of constructs is permitted in transfer files, to allow APL2 systems to
optimize processing during)IN. For the same reason, redundant blanks and
parentheses are prohibited. The overall object representation is:

name←value

where value must be one of the following:

Construct Format or Example

scalar constant e.g. JQJ or 3�26J1Eb5
empty vector must be JJ or 0ρ0
one-element vector 1ρscalar, e.g. 1ρJAJ or 1ρ2
vector constant e.g. JABCJ or 6 b2 0
progression expression (see below)
rank 2 or higher array shapeρdata (see below), e.g. 2 2ρJABCDJ
enclosed value �value (recursive), e.g. �2 1 4

where progression applies to an array of integers of any rank, 1 or greater, where
the difference between all pairs of adjacent values (in raveled order) is a constant.
The representation is first|incr
-IO|ιcount.

Example Value Representation

9 8 7 9|b1
-IO|ι3
b3 0 3 6 b3|3
-IO|ι4

and where data must be one of the following, defining exactly
/shape items:

Construct Format or Example

empty vector must be JJ or 0ρ0
scalar or vector constant e.g. JABCDEJ or b3�14159
progression expression (see above)
extended character vector using -AF, e.g. -AF 19677897 19677890
enclosed value �value (recursive), e.g.�JXYZJ

 Appendix B. APL2 Transfer Files and Extended Transfer Formats 487

strand expression two or more items in any combination from the fol-
lowing:
� a scalar or empty character constant
� a scalar or vector numeric constant
� a parenthesized value (recursive)

488 APL2 Programming: Language Reference

| Appendix C. System Limitations for APL2

| System limitations for APL2 vary depending on the APL2 product. Figure 74
| shows the limitations imposed on APL2 on the various systems by the nature of the
| implementation. Because they interact, a particular limitation may not be attainable.

| Figure 74. Limitations by System

| Limitation| Workstations| APL2/370

| APL2/PC

| 16-Bit| 32-Bit

| Largest and smallest represent-
| able numbers in an array
| 1.7976931348623158E+308
| and
| b1.7976931348623158E+308

| 7.2370055773322621E75
| and
| b7.2370055773322621E75

| 1.7976931348623158E+308
| and
| b1.7976931348623158E+308

| 1.7976931348623158E+308
| and
| b1.7976931348623158E+308

| Most infinitesimal (near 0)
| representable numbers in an
| array

| 2.2250738585072014Eb308
| and
| b2.2250738585072014Eb308

| 5.397605346934027891Eb79
| and
| b5.397605346934027891Eb79

| 2.2250738585072014Eb308
| and
| b2.2250738585072014Eb308

| 2.2250738585072014Eb308
| and
| b2.2250738585072014Eb308

| Maximum rank of an array| 63| 64| 63| 63

| Maximum length of any axis in
| an array
| b1+2*31 (2147483647)| b1+2*31 (2147483647)| 65520| b1+2*31 (2147483647)

| Maximum product of all dimen-
| sions in an array
| b1+2*31 (2147483647)| b1+2*31 (2147483647)| 65520| b1+2*31 (2147483647)

| Maximum depth of an array
| applied with the primitive func-
| tions depth (�R) and match
| (L�R)

| 181| 181| No limit| No limit

| Maximum depth of a shared
| variable
| 181| 181| 6| 6

| Maximum depth of a copied var-
| iable
| 181| 181| 168| 168

| Maximum number of characters
| in the name of a shared variable
| 255| 255| 18| 18

| Maximum number of characters
| in a comment (minus leading
| blanks)

| 4090| 32764| 4089| 4089

| Maximum length of line| 8190| N/A| 4096| 4096

| Maximum number of lines in a
| defined function or operator
| b1+2*15 (32767)| b1+2*31 (2147483647)| 700| 545

| Maximum number of labels in a
| defined function or operator
| Limited by number of lines| 32767| 700| 545

| Maximum number of local
| names (excluding labels) in a
| defined function or operator

| Limited by lengths of lines
| and names
| 32767| Limited by lengths of lines
| and names
| Limited by lengths of lines and
| names

| Bytes in internal symbol label| 8191| N/A| 64999| 4095

| Maximum number of slots in the
| internal symbol table. A slot is
| required for each unique name,
| each unique constant, and each
| ill-formed constant in the work-
| space.

| N/A| 32767| N/A| N/A

| Maximum value of -PW| 254| 390| 254| 254

| Maximum value of -PP| 16| 18| 16| 16

 Copyright IBM Corp. 1984, 1994 489

 Bibliography

 APL2 Publications

� APL2 Fact Sheet, GH21-1090

� APL2/370 Application Environment Licensed

Program Specifications, GH21-1063

� APL2/370 Licensed Program Specifications,

GH21-1070

� APL2 for AIX/6000 Licensed Program Specifica-

tions, GC23-3058

� APL2 for Sun Solaris Licensed Program Specifica-

tions, GC26-3359

� APL2/370 Installation and Customization under

CMS, SH21-1062

� APL2/370 Installation and Customization under

TSO, SH21-1055

� APL2 Migration Guide, SH21-1069

� APL2 Programming: Language Reference,

SH21-1061

� APL2/370 Programming: Processor Interface Ref-

erence, SH21-1058

� APL2 Reference Summary, SX26-3999

� APL2 Programming: An Introduction to APL2,

SH21-1073

� APL2 for AIX/6000: User's Guide, SC23-3051

� APL2 for OS/2: User's Guide, SH21-1091

� APL2 for Sun Solaris: User's Guide, SH21-1092

� APL2 for the IBM PC: User's Guide, SC33-0600

� APL2 GRAPHPAK: User's Guide and Reference,

SH21-1074

� APL2 Programming: Using Structured Query Lan-

guage, SH21-1057

� APL2/370 Programming: Using the Supplied Rou-

tines, SH21-1056

� APL2/370 Programming: System Services Refer-

ence, SH21-1054

� APL2/370 Diagnosis Guide, LY27-9601

� APL2/370 Messages and Codes, SH21-1059

Other Books You Might Need

| The following book is recommended:

| � APL2 at a Glance, by James Brown, Sandra Pakin,
| and Raymond Polivka, published by Prentice-Hall,
| ISBN 0-13-038670-7 (1988). Copies can be
| ordered from IBM as SC26-4676.

| See your system-specific user's guide for other books
| you might need for your operating system.

| APL2 Keycaps and Decals

| Plastic replacement keyboard keycaps are available
| from IBM as:

| � APL2 Keycaps (US and UK base set), SX80-0270
| � APL2 Keycaps, German upgrade to SX80-0270,
| SX23-0452
| � APL2 Keycaps, French upgrade to SX80-0270,
| SX23-0453
| � APL2 Keycaps, Italian upgrade to SX80-0270,
| SX23-0454

| APL2 Keyboard Decals, SC33-0604, can also be
| ordered from IBM.

490  Copyright IBM Corp. 1984, 1994

 Index

Special Characters
)CHECK 418
)CLEAR 420
)CONTINUE 422
)COPY 423
)DROP 426
)EDITOR 427
)ERASE 428
)FNS 431
)HOST 432
)IN 433
)LIB 434
)LOAD 436
)MORE 438
)NMS 439
)OFF 440
)OPS 441
)OUT 442
)PBS 444
)PCOPY 446
)PIN 447
)QUOTA 448
)RESET 449
)SAVE 451
)SI 453
)SIC 454
)SINL 456
)SIS 457
)SYMBOLS 458
)VARS 459
)WSID 460
([] Reverse Along the First Axis 229
+ Add (dyadic) 65
� And (dyadic) 68
� Binomial (dyadic) 66
[] Bracket Index 70
, Catenate (dyadic) 74
,[] Catenate with Axis (dyadic) 77
� Ceiling (dyadic) 79
○ Circle Functions (dyadic) 80
/ Compress (from Slash) 85
+ Conjugate (monadic) 88

 Deal (dyadic) 89
⊤ Decode (dyadic) 90
� Depth (monadic) 91

 Direction (monadic) 93
� Disclose (monadic) 94
�[] Disclose with Axis (monadic) 96
÷ Divide (dyadic) 100
↓ Drop (dyadic) 101

↓[] Drop With Axis (dyadic) 105
¨ Each (Dyadic) 107
¨ Each (Monadic) 109
� Enclose (monadic) 111
�[] Enclose with Axis (monadic) 113
� Encode (dyadic) 116
ε Enlist (monadic) 118
= Equal (dyadic) 219
� Execute (monadic) 120
� Expand (from Backslash) 122
�[] �[] Expand With Axis (from Backslash) 124
* Exponential 127
� Factorial (monadic) 128
� Find (dyadic) 129
↑ First (monadic) 131
� Floor (monadic) 133
� Format (Default) (monadic) 135
� Format by Example (dyadic) 139
� Format by Specification (dyadic) 143
� Grade Down (monadic) 147
� Grade Down (With Collating Sequence)

(dyadic) 149
� Grade Up (monadic) 153
� Grade Up (With Collating Sequence) (dyadic) 155
> Greater Than (dyadic) 219
≮ Greater Than or Equal (dyadic) 219
� Index 160
ι Index of 162
�[] Index with Axis 163
� Inner Product (from Array Product) 165
ι Interval (monadic) 168
,[] Laminate (dyadic) 169
< Less Than (dyadic) 219
≯ Less Than or Equal (dyadic) 219
� Logarithm (dyadic) 171
 Magnitude (monadic) 172
� Match (dyadic) 173
! Matrix Divide (dyadic) 174
! Matrix Inverse (monadic) 177
� Maximum (dyadic) 180
ε Member (dyadic) 181
� Minimum (dyadic) 182

 Multiply (dyadic) 183
� Nand (dyadic) 68
� Natural Logarithm (monadic) 184
| Negative (monadic) 185
� Nor (dyadic) 68
� Not (monadic) 68
≠ Not Equal (dyadic) 219
� Or (dyadic) 68
"� Outer Product (from Array Product) 186

 Copyright IBM Corp. 1984, 1994 491

� Partition 188
�[] Partition with axis 192
○ Pi Times (monadic) 194
� Pick (dyadic) 195
* Power (dyadic) 201
, Ravel (monadic) 202
,[] Ravel with Axis (monadic) 204
÷ Reciprocal (monadic) 208
/ Reduce (from Slash) 209
/ Reduce N-Wise (from Slash) 213
/[] Reduce N-Wise With Axis (from Slash) 215
/[] Reduce With Axis (from Slash) 217
/ Replicate (from Slash) 220
/[]	[] Replicate with Axis (from Slash) 222
ρ Reshape (dyadic) 225
 Residue (dyadic) 227
' (Reverse (monadic) 228
'[] ([] Reverse with Axis (monadic) 229

 Roll (monadic) 231
' Rotate (dyadic) 232
'[]Rotate with Axis (dyadic) 235
(Rotate Along the First Axis 235
� Scan (from Backslash) 239
�[] Scan With Axis (from Backslash) 240
ρ Shape (monadic) 241
| Subtract (dyadic) 243
↑ Take (dyadic) 244
↑[] Take with Axis (dyadic) 247
) Transpose (General) (dyadic) 251
) Transpose (Reversed Axes) (monadic) 256
� Without (dyadic) 258
- 262
-AF 268
-AI 269
-AT 270
-AV 273
-CR 274
-CT 275
-CT ERROR 468
-DL 277
-EA 278
-EC 280
-EM 281
-ES 282, 285
-ET 287
-EX 289
-FC 291
-FC ERROR 468
-FX 292, 294
-IO 297
-IO ERROR 468
-L 298
-LC 300
-LX 302
-NA 304, 305

-NC 309
-NL 311, 313
-NLT 314
-PP 315
-PP ERROR 469
-PR 316
-PR ERROR 469
-PW 318
-R 319
-RL 322
-RL ERROR 469
-SVC 323, 324
-SVC shared variable control 365, 367
-SVE 326
-SVE shared variable event 365, 373

determining your next action 374
using, sample function 374

-SVO 328, 329
-SVO shared variable offer 365
-SVQ 331
-SVQ shared variable query 365
-SVR 332
-SVR shared variable retraction 365
-SVS 334
-SVS shared variable state 365, 367, 370
-TC 335
-TF 336
-TS 340
-TZ 341
-UCS 342
-UL 343
-WA 344

A
abort

See escape
absolute value

See magnitude
access control matrix 369

See also access control vector (ACV)
access control mechanism

combinations of access control and access
state 371

description of 367
meaning of settings 369
symmetry of 368
terminal interlock 372
vector reshaped to matrix 368

access control vector (ACV)
examples 369
meanings of settings 369
purpose of 364
querying 370
reshaped to matrix, illustration 369
setting 369

492 APL2 Programming: Language Reference

access control vector (ACV) (continued)

setting the protocol 324
what it indicates 367

access control, setting 370
access state matrix

See access state vector
access state vector (ASV)

illustrated as a matrix 371
in general 370
meaning of settings 370
possible settings 371
purpose of 364
what it indicates 367

access states, of shared variable 334
accessing shared variables, constraints 369
account information (-AI)

discussion of 269
account number -AI[1] 269
accuracy

See precision
See tolerance

ACOSHZ, formula for 81
ACOSZ, formula for 81
activate a clear workspace 420
active function 354
active workspace 2

See also workspace, active
ACV

See access control vector (ACV)
add +

discussion of 65
add lines to definition

full-screen editor 398, 402
line editor 385

-AF 268
-AI 269
algorithm, for matrix inverse, matrix divide 179
alias, or surrogate, shared variable names 366
alignment of data

in array display 18
with format by specification 145

all �/ 212
alpha α 472
alphabet

See APL2 character set
alphabetic sort

grade down (with collating sequence) � 149
grade up (with collating sequence) � 155

alternate
See execute alternate

alternating product ÷/ 212
alternating sum |/ 212
ambi-valence, not for operators 24
ambi-valent functions

defining 347
determining which valence 33

ambi-valent functions (continued)

structuring 352
and �

discussion of 68
angle

See phase
any �/ 212
APL2

character set 470
system limitations 489

apostrophe
See quotation mark

arccosh b6○R 83
arccosine b2○R 83
archtanh b7○R 83
arcsine b1○R 83
arcsinh b5○R 83
arctangent b3○R 83
arguments

See also operands
and binding for evaluation 36
conformability of 52
meaning 23
nested, with scalar function 54
of defined or derived function 31
placement 23
position in binding hierarchy 34

arithmetic functions
add + 65
divide ÷ 100
multiply
 183
subtract | 243

arithmetic progression 168
array

See also empty array
alignment in display 18
construction 14
cross-section 253
display of

items in scaled form 18
nested 19
simple matrix 17
simple multidimensional 18
simple scalar 17
simple vector 17

edit of character vector or matrix 398
empty 48
expression 27
mixed numbers and characters 10
named by a variable 26
nested

discussion of 8
empty 50
scalar 17
vector 15
with empty items 50

 Index 493

array (continued)

null
See empty

simple 8
simple nonscalar 9
simple scalar 8
simple vector 14
structure illustrated 9
turned into a matrix 206
variable name for 24

array expression, in parentheses 38
array product �

deriving inner product 165
deriving outer product 186

arrow, branch →
syntactic construction symbol 27
syntax rules for 29

arrow, specification ←
syntactic construction symbol 39
syntax rules for 29

ascending order 153
ASCII character mappings 475
ASINHZ, formula for 81
ASINZ, formula for 81
assignment

See specification
assignment arrow

See specification arrow
asterisk *

exponential 127
in state indicator 355
power 201
removing from state indicator 59, 357

ASV
See access state vector

asynchronous processors 367
-AT 270
ATANHZ, formula for 81
ATANZ, formula for 81
atomic function (-AF)

discussion of 268
atomic vector (-AV)

discussion of 273
attention, to suspend execution 354
attributes (-AT)

discussion of 270
automatic localization

with -EM 281
with -ET 287

auxiliary processor 60
auxiliary processors

shared variables for communicating 260
-AV 273
available workspace (-WA)

See also)QUOTA
discussion of 344

axes
expressions representing 63
length 6, 241
names of 5
of an array 5

AXIS ERROR 462
axis specification

See also individual functions and operators having
“with axis” in their names

conditions for 45
meaning 23
operations that allow 45
syntax of 23
syntax with operators 24

B
backslash �

deriving expand 122
deriving scan 239

backslash bar �
See backslash with axis

backslash with axis �[]�[]
alternate symbol � 125, 240
deriving expand 124
deriving scan 240

backslash, national � 124
backspace character -TC[1] 335
bar |

negative 185
subtract 243

bare input/output
See character input/output

base jot � (execute) 120
base top ¯ (I-beam) 473
base value

See decode
best fit 174
beta function (β) 66
bilateral sharing 364
binary

functions
See Boolean functions

number
See Boolean number

binding
discussion of 33
summary of binding strengths 21
use of parentheses 36

binomial expansion, coefficients of 66
binomial �

discussion of 66
blank

See also spaces
as a character 14
as fill item 47

494 APL2 Programming: Language Reference

blank (continued)

in display of arrays 17, 19
indicator of numeric type 46

blanks, deleting multiple 130
body, of a defined function 348
Boolean functions

discussion of 68
table 69

Boolean number
meaning 10
tolerance for determining 59

box -
See quad

bracket index []
discussion of 70

brackets []
and binding for evaluation 34
for axis specification 23
position in binding hierarchy 34
syntactic construction symbol 27
syntax rules for 29

branch arrow →
See also escape
position in binding hierarchy 34
syntactic construction symbol 27
syntax rules for 29

branching
conditional 350
discussion of 349
examples 351
in a line with diamonds 351
looping 109, 352
to escape 351
to line counter 359
unconditional 351

break
See attention
See interrupt

bring a workspace from a library into the active work-
space 436

bytes
See -AT
See -WA

C
calculation precision 58
calculator mode

See immediate execution mode
call

See function
See operator
See valence

calling programs in other languages
See name association

calling sequence 354
canonical representation

See character representation
cap ±

See up shoe
cap jot h (comment) 28
caret � (and) 68
caret, error indicator 59
carriage return

See new line character
cartesian form

See J notation
cartesian product

See outer product
case, upper and lower 470
catenate ,

compared to vector notation 74
discussion of 74

catenate with axis ,[]
discussion of 77

CDR 271
ceiling �

discussion of 79
chain

See catenate
See vector notation

change command, full-screen editor 407
CHARACTER ERROR

See ENTRY ERROR
character input/output (.)

discussion of 265
interrupting input 267

character mappings 475
character representation (-CR)

See also format �
discussion of 274

character set 470
character vector or matrix, edit of 398
characters

See also -AF
See also -AV
APL2 set of 470
as data 13
display 14, 17, 318
mixed with numbers 10
names of 471
response to . 265
sorted 149, 155

)CHECK 418
check protection 142
circle ○

circle functions 80
pi times 194

circle backslash)
transpose (general) 251
transpose (reversed axes) 256

 Index 495

circle bar (
reverse with axis 229
rotate with axis 235

 circle functions ○
discussion of 80
formulas for complex arguments 81

circle star �
logarithm 171
natural logarithm 184

circle stile '
rotate 232

circle stile ' (
reverse 228

circle, small " (jot) 27
circular functions 82
class 309
)CLEAR 420
clear the state indicator 449, 454
CLEAR WS, message 463
close a definition

full-screen editor 399
line editor 386

codes, event type 287
coding 345
coefficients

of binomial expansion 66
polynomial evaluation 90

collating sequence array (DCS) 157
collation 155
colon :

syntax rules for 30
use in statement 28

column 5
combinations

See binomial
comma ,

catenate 74, 77
laminate 169
ravel 202

commands
editor

full-screen 396
line 384

system
)CHECK 418
)CLEAR 420
)CONTINUE 422
)COPY 423
)DROP 426
)EDITOR 427
)ERASE 428
)FNS 431
)HOST 432
)IN 433
)LIB 434
)LOAD 436
)MORE 438

commands (continued)

system (continued)

)NMS 439
)OFF 440
)OPS 441
)OUT 442
)PBS 444
)PCOPY 446
)PIN 447
)QUOTA 448
)RESET 449
)SAVE 451
)SI 453
)SIC 454
)SINL 456
)SIS 457
)SYMBOLS 458
)VARS 459
)WSID 460

comment h
part of statement 28

common data representation (CDR) 271
communication

using shared variables 60
communication procedure, shared variables 366
communication protocols 366
comparison tolerance 275

concept 58
complement 68
complex number 10

display 13
representation of 11

complex number functions 84
component

See item
compress 85, 86
compute time, -AI to determine 269
concurrent process

See access states
conditional branch 350

examples 351
conformability

See also individual functions by name
See also LENGTH ERROR
See also RANK ERROR
meaning 52
with dyadic scalar functions 54

conjugate +
discussion of 88

connect time, -AI to determine 269
constant

See data
constraints

access of shared variables 369
imposed by access control 369

496 APL2 Programming: Language Reference

constructed names
See names, constructed

)CONTINUE 422
continue

See restart
See resume

control
flow of in definition 349
format 291
shared variable -SVC 323, 324
stop Sδ 362
terminal characters -TC 335
trace Tδ 361

control characters, for format by example 140
control variable 365
coordinate

See axis
)COPY 423
copy objects into the active workspace 423
copy objects into the active workspace with

protection 446
copying

lines from another object 409, 410
lines in a definition 394, 409

corrections, to definition 375
See also full-screen editor

cosh b6○R 83
COSHZ, formula for 81
cosine 2○R 82
COSZ, formula for 81
cotangent 3○R 82
counter, line -LC 300
coupling, degree of 60

See also degree of coupling
coupling, of shared variables 364
CPU time -AI[2] 269
-CR 274
cross-section, diagonal 253
-CT 275
cup °

See down shoe
cursor-dependent scroll, in full-screen editor 402
curve fitting 175
cut, complex number functions 84

D
D notation 11
damage

See SI WARNING
See SYSTEM ERROR

dash
See negative
See subtract

data
See also array

data (continued)

alignment with format by specification 145
associated with names 24
character 13
how entered 10
internal type 271
mixed character and numeric 10
numeric 10

data type
See type

data variable 365
date
-TS[1 2 3] 340

day -TS[3] 340
deal

discussion of 89
debug variable 260
debugging

stop control Sδ 362
trace control Tδ 361

decimal alignment 18
decimal indicator -FC[1] 140, 291
decision branch

See conditional branch
decode ⊤

discussion of 90
decorator characters, for format by example 140
defined functions

See functions, defined
defined functions and operators 345

See also functions, defined
See also operations, defined
See also operators, defined

defined operators
See operators, defined

definition
See also edit
See also full-screen editor
See also line editor
body of 348
conditional branching in 350
contents 349
flow of control in 349
header 347
mode 2
of functions and operators 345
of new object 385, 398
structure 346
time stamp 349
unconditional branching in 351
use of labels in 350

DEFN ERROR 463
degree of coupling 60, 365, 366
degrees

converted from radians 82
converted to radians 82

 Index 497

del c
definition closing 399
definition opening 385, 397

del stile � (grade down) 147, 149
del tilde ¤ 388, 399
delay
-DL

discussion of 277
-SVE 326

delete
See)ERASE
See -EX

delete characters, from definition line 405
delete lines, from definition 405
delete objects from the active workspace 428
delta δ

delete command for editing 405
in constructing names 25

delta stile � (grade up) 153, 155
delta underbar g 25
depth

measure of array structure 8
of an array 8

depth �
discussion of 91

descending order 147
diagnostic information 418
diagonal cross-section 253
dialog 1
diamond

branching 351
multiple expressions in a line 36
syntactic construction symbol 27
traces 362

diamond ◊ 474
dieresis ¨ (each) 107, 109
difference

See subtract
)DIGITS

See -PP
digits

format by example 139
precision 315

dimension, of an array 5
See also axes

direction

discussion of 93

disclose �
discussion of 94
relationship to disclose with axis 95
relationship to enclose 95
use of fill item 47

disclose with axis �[]
discussion of 96
relationship to enclose with axis 99
use of fill item 47

display
arrays 17
characters 14
complex number 13
definition 400
in scaled form 13
messages 461
nested array 19
numbers 12
precision 12
range of lines 389, 400
rules for format (default) 135
simple matrix 17
simple multidimensional array 17
simple scalar 17
simple vector 17
specific lines 389, 400

DISPLAY function 9
determining depth from 10
meaning of symbols 9

display the state indicator
)SI 453
)SINL 456
)SIS 457

display-edit command 393
displayable, execution property 360
distance

See magnitude
distinguished names

See names, distinguished
divide ÷

discussion of 100
-DL 277
DOMAIN ERROR 464
domino !

matrix divide 174
matrix inverse 177

DOP, arbitrary dyadic operator name 31
dot �

decimal point 10, 140
inner product 165
outer product 186

dotted del � 473
double arrow ←→ 64
double attention

See interrupt
down arrow ↓ (drop) 101, 105
down shoe ° 472
down stile �

floor 133
minimum 182

down tack ⊤
See decode

down tack jot �
See execute

498 APL2 Programming: Language Reference

downgrade
See grade down

)DROP 426
drop ↓

discussion of 101
drop with axis ↓[]

discussion of 105
dump 467
duration of sharing 332
dyadic

format � 143
grade down � 149
grade up � 155
transpose) 251

dyadic function
distinguished from monadic 33
syntax 23
valence 23

dyadic operator
syntax 24
valence 24

dyadic scalar functions, rules 54

E
E notation 11
E, in scaled form 11
e, raised to the 127
-EA 278
each ¨ 107

deriving dyadic 107
deriving monadic 109

EBCDIC 470
EBCDIC character mappings 475
-EC 280
edit 375

existing object 386, 398
mode 2
of multiple objects 411

)EDITOR 427
editors

See also full-screen editor
See also line editor
See also named editor
features 376
full-screen 394
full-screen commands 396
immediate execution 393, 412
line editor commands 384
named 380
use of 375

element
See item

-EM 281
empty array

and nesting 50

empty array (continued)

discussion of 6, 48
fill function 110
identity function 210
prototype of 49
uses 48
value of nested 50
ways to create 49

enclose �
discussion of 111
relationship to disclose 112

enclose with axis �[]
discussion of 113
relationship to disclose with axis 115

encode �
discussion of 116

end APL2 session 440
enlist ε

compared with ravel 119
discussion of 118

ENTRY ERROR 464
epsilon ε

enlist 118
member 181

epsilon underbar �
find 129

equal =
discussion of 219

equal underbar �
depth 91
match 173

equality, tolerance for 58
equivalent

See match
)ERASE 428

See also)DROP
delete objects from the active workspace 428
effect on shared variable 333

error
event simulate -ES 282, 285
event type -ET 287
in defined operation 462
in immediate execution 59
shown in state indicator 355

error message
-EM 281
-ES 282, 285
converted to DOMAIN ERROR 360
with execute 120

error messages 461, 462
See also individual message

error recovery
See -EA
See -ES
See restart
See resume

 Index 499

-ES 282, 285
escape

See also interrupt
character input/output 267
evaluated input/output 263
full-screen editor 399
line editor 392
to clear state indicator 358

escape arrow →, syntactic
construction symbol 27

-ET 287
evaluated input/output (-)

discussion of 262
escape from 263

evaluation
ambi-valent functions 33
expressions 32

summary 20
expressions with parentheses 37
expressions with variables 39
item-by-item

each derived functions 107, 109
scalar functions 53, 54

rule of 32
even root 201
event code

See event type
event handling 352

example function 353
event message (-EM)

discussion of 281
event simulate (-ES)

error message and event type explained 285
error message or event type explained 282
example function 353

event type (-ET)
discussion of 287

event, shared variable -SVE 326
-EX 289
examples, display of 2, 63
exclusive or ≠ 68
execute a host system command 432
execute alternative (-EA)

discussion of 278
execute controlled (-EC)

discussion of 280
execute �

discussion of 120
of a latent expression 302

execution
See also evaluation
and state indicator 355
calling sequence 354
immediate

error or interrupt in 59, 461
with full-screen editor 412
with line editor 393

execution (continued)

interrupted 354
of defined function or operator 353
order of 32
pendent operation 354
resume or restart 359
suspended

defined operation 354
execution error, shown in state indicator 59
execution mode 2
execution properties 360
-AT[3] 289
of locked function 361
set with -FX 294

execution stack 355
exit

See escape
expand

derived from backslash 122
derived from backslash with axis 124
use of fill item 47

explicit argument 31
errors 287

explicit result 31
exponent

See scaled form
exponential *

discussion of 127
relationship to power 127

exponential notation 11
exponentiation

See power
expression

array 27
branch 349
evaluated 32
evaluated with parentheses 37
examples 2
function 27
meaning 27
operator 27
part of statement 28
rule for evaluation 20, 32
rules for valid syntax 28
subexpression 36
used in definitions 63
valueless 31, 120
with - 262
with . 265
with variables 39

expressions
and system functions and variables 260

expunge (-EX)
compared with)ERASE 290
discussion of 289

500 APL2 Programming: Language Reference

extended transfer form -TF 336
extended transfer formats

discussion of 484
extension, scalar 54

F
F, arbitrary function name 31
factorial �

discussion of 128
failure

See error
false, Boolean value 219
-FC 291
field, with format by example 139
fill character -FC[3], for format by example 140
fill functions 56

for scalar functions 56
table 110

fill item 47
find �

discussion of 129
find string, in full-screen editor 406
first ↑

compared with pick and enclose 132
discussion of 131

fit, best 174
fix

definition in active workspace 345
object in workspace during editing 399

fix (-FX)
no execution properties

discussion of 292
with execution properties

discussion of 294
fix time -AT[2] 270
flat array

See array, simple
float, decorator with format 139
floor �

discussion of 133
flow of control 349

See also branching
)FNS 431
font

See character set
form, transfer -TF 336
format control (-FC)

discussion of 291
format �

by example
discussion of 139

by specification
discussion of 143

default
discussion of 135
rules for display 135

fractional numbers 10
full-screen editor

abandon editing 399
adding lines 398, 402
change command 407
close definition 399
combining lines 404
commands 396
copying from another object 409, 410
copying lines 409
cursor-dependent scroll 402
define new object 398
definition display 400
delete 405

all lines 405
characters from a line 405
lines 405
range of lines 405
specific lines 405

display lines 400
edit character vector or matrix 398
edit existing object 398
entering long lines 404
escape definition 399
features 376
fixing object in workspace 399
function keys 397
get command 409
illustrated 395
immediate execution with 412
information line 395
insert characters in a line 405
insert lines 402
line number 396
locate command 406
multiple objects 411
open definition 397
open segments 411
overview 394
put command 410
renumber lines 406
replace lines 404
scroll through definition 401
work with segments 411

fully-coupled shared variable 367
function expression 27

in parentheses 38
function keys, for full-screen editing 397
function table

See outer product
functions

See also functions, defined
See also functions, primitive
ambi-valent 33
arguments of 23
associated with names 24

 Index 501

functions (continued)

dyadic 23
fill 56

for scalar functions 56
table 110

operand(s) to operator 24
functions, defined

ambi-valent 352
annotated example of 346
associating names with 26
body 348
convert to character representation 274
definition mode 2
editing 375
errors when editing 393
establish 345
execution of 353
execution properties 360
fixed in workspace 345
header 347
interrupts and errors 462
local names to 347, 353
locked 361
name 24
name list 311
niladic 23, 31
recursive 355
stop control 362
structure 346
suspended execution 354
syntactic behavior of niladic 31
syntax

illustrated 31
rules for 28

trace control 361
valence 23
with explicit result 31
without explicit result 31

functions, derived
ambi-valence 24
result of applying an operator 24
valence 24

functions, primitive
See also individual functions by name
and selective specification 44
Boolean 68
circular 82
complex number 84
example uses 2
hyperbolic 83
mixed (nonscalar) 52
monadic 23
multivalued 64
names 25
nonscalar

identities 212
list 52

functions, primitive (continued)

Pythagorean 83
relational 219
scalar

identities 211
list 51
rules for dyadic 54
rules for monadic 53

symbols 470
trigonometric 82
with axis specification 45

functions, system 259
fuzz

relative 58
system 59

-FX 292, 294

G
gamma function 128
GDDM

and full-screen editor 375
general logarithm

See logarithm
general share offer 330
get command, full-screen editor 409
global name

discussion of 348
shadowed 360

GMT (Greenwich Mean Time) 341
GO TO

See branching, unconditional
grade down (with collating sequence) �

discussion of 149
grade down �

discussion of 147
grade up (with collating sequence) �

discussion of 155
grade up �

discussion of 153
greater than >

discussion of 219
greater than or equal ≮

discussion of 219
greatest �/ 212
Greenwich Mean Time (GMT) 341

H
halted

See pendent
See suspended

header
discussion of 347
in definition editing 384

502 APL2 Programming: Language Reference

hexadecimal 470
hierarchy, binding 33
)HOST 432
hour -TS[4] 340
hyperbolic functions 83
hyphen

See negative
See subtract

I
i (0J1) 12
I-beam ¯ 473

See also system functions and variables
identification, account -AI 269
identifier

See name
identity element

See indentity functions
identity functions

table of nonscalar 212
table of scalar 211

ignoring your partner's shared variable spec 372
imaginary number 12
immediate execution

error or interrupt in 59
interrupts and errors 461
line editor 393
mode 2
with full-screen editor 412

implication, material 68
implicit argument

errors 287
variable 260

IMPROPER LIBRARY REFERENCE 464
)IN 433
inactive workspace

See workspace, stored
INCORRECT COMMAND 464
indent 1
INDEX ERROR 464
index generator

See interval
index �

discussion of 160
index of ι

discussion of 162
index origin (-IO)

discussion of 297
index with axis �[]

discussion of 163
index, of an array 6
indexed assignment

See selective specification
indexed specification

See selective specification

indexing [] 70
indicator, state

See state indicator
information line, full-screen editor 395
inhibit

See shared variable control
inhibiting specification or reference of shared

variable 367
initial value of shared variables 366
inner product

discussion of 165
input, indentation for 2
input/output, evaluated

See evaluated input/output
insert characters, in a definition line 405
insert lines, in a definition 402
instruction

See expression
integer

interval (ι) to create consecutive 168
meaning 10
tolerance for determining 59

interaction 1
interface

See shared variables
INTERFACE CAPACITY EXCEEDED

See SYSTEM LIMIT
INTERFACE QUOTA EXHAUSTED

See SYSTEM LIMIT
interlock

See shared variable control
interlock, shared variable 372
interrupt 465

See also attention
display of message 461
entering to escape shared variable interlock 372
in immediate execution 59
of quote-quad input 267
to suspend execution of a function or operator 354

interruptible, execution property 294, 360
interval ι

discussion of 168
inverse

circular functions 82
matrix 177
pseudo of a matrix 178
reciprocal 208

inverse permutation
See grade down
See grade up

inverse transfer form 339
-IO 297
iota ι

index of 162
interval 168

 Index 503

iota underbar § 473
irrational numbers 11
item

by item evaluation
each derived functions 107, 109
scalar functions 53, 54

fill 47
index of 6
number of in an array 6
of an array 5

J
J notation 11
join

See catenate
See laminate

jot "
outer product 186
syntactic construction symbol 27

juxtaposition 14

K
keying time 269
keyword

See distinguished name

L
-L 298
L, arbitrary left argument name 31
label 26, 350

importance of 350
in a statement 28

laminate ,[]
discussion of 169

lamp h
See comment

languages, national 314
largest �/ 212
latent expression (-LX)

discussion of 302
-LC 300
leading zeros 12
least squares 174, 177
least �/ 212
left argument (-L) 298
left arrow ← (specification) 27
left shoe

See enclose
left tack ⊣ 474
length

See also shape
of a vector 6

LENGTH ERROR 465
less than <

discussion of 219
less than or equal ≯

discussion of 219
)LIB 434
library 2
LIBRARY I/O ERROR 465
LIBRARY NOT AVAILABLE 465
limitations

system 489
line counter (-LC)

See also branching
See also state indicator
discussion of 300

line editor
abandon definition 392
add lines 385
close definition 386
define new object 385
definition display 389
delete

all lines 392
lines 391
range of lines 391
specific lines 391

display lines 389
display-edit command 393
edit existing object 386
escape definition 392
features 376
illustration 383
immediate execution 393
line number prompts 396
line numbers 384
open definition 385
prompts 384
system commands with 393
with full-screen editor 396
with session manager 394
without session manager 394

line feed character -TC[3] 335
line number

and label 350
prompts 384
use of fractions 384
with line editor 384

line width
See printing width

linear equations, solving 174
lines, renumbering by full-screen editor 406
link, random 89, 231, 322
list

names 311, 313
list additional diagnostic information 438

504 APL2 Programming: Language Reference

list indicated objects in the active workspace 431, 441,
459

list names in the active workspace 439
list workspace names in a library 434
list workspace, library, and Shared Variable

Quotas 448
literal

See character data
literal input/output

See character input/output
LO, arbitrary left operand name 31
)LOAD 436

bring a workspace from a library into the active work-
space 436

latent expression 302
local names

meaning 347
name class for 310
use of 353

localization, automatic
with -EM 281
with -ET 287

locate
See find
See index of

locate command, full-screen editor 406
locked object

created with full-screen editor 399
execution properties of 361

locked workspace 468
logarithm �

discussion of 171
logarithm, natural � 184
logical

See Boolean
looping

rarely needed 352
replaced by each 109

lowercase 470
-LX 302

M
magnitude

discussion of 172
malfunction

See error
mantissa 11
match �

discussion of 173
material implication 68
mathematical membership 181
matrix

display of simple 17
edit of simple character 398
from an array 206

matrix (continued)

meaning 5
matrix divide !

compared to matrix inverse 176
discussion of 174

matrix inverse !
compared to matrix divide 179
discussion of 177

matrix multiplication +�
 165
matrix product +�
 165
maximum �

discussion of 180
member ε

discussion of 181
membership, mathematical 181
messages 461, 462

display of 461
error in immediate execution 59
latent when workspace loaded 302
with execute 120

migration transfer form -TF 336
millisecond
-TS[7] 340
with -AI 269

minimum �
discussion of 182

minus
See negative
See subtract

minute -TS[6] 340
mixed character and numeric data 10
mixed functions

See nonscalar functions
mode

See also definition mode
See also execution mode
definition of 2
immediate execution 2

modulus
See residue

monadic
format � 135
grade down � 147
grade up � 153
transpose) 256

monadic functions
distinguished from dyadic 33
rules for scalar 53
syntax 23
valence 23

monadic operators
syntax 24
valence 24

month -TS[2] 340
MOP, arbitrary monadic operator name 31

 Index 505

)MORE 438
multidimensional array 5

display of simple 18
multiple branch 351
multiple specification 40
multiplier 11
multiply

discussion of 183

N
n-wise reduce

derived from slash 213
derived from slash with axis 215

-NA 304, 305
naked branch

See escape
name association (-NA)

inquire
discussion of 304

set
discussion of 305

name class (-NC)
discussion of 309

name list (-NL)
by alphabet and class

discussion of 311
by class

discussion of 313
named system editor 380
names

array 26
association of 24
binding of 33
constructed

receiving value 25
types of 24

defined functions 26
defined operation 347
defined operators 26
distinguished 26
global 348
in expressions 27
labels 26
local 347

use of 353
of characters 471
primitive 25
rules for 25
shadowed 348
summary of rules for 20
surrogates for shared variables 330
symbols for 25, 470
use of 24
valid 26
variable 26

names (continued)

without values 26
nand �

discussion of 68
national language translation (-NLT)

discussion of 314
natural logarithm �

discussion of 184
-NC 309
negation (Boolean)

See not
negative |

discussion of 185
relationship to subtract 185

negative number indicator -FC[6], for format by
specification 144

negative number, representation 11
negative sign | 11
nested arguments, with scalar function 54
nesting, degree of 8
new line character -TC[2] 335
niladic branch

See escape
niladic function

syntactic behavior 31
valence 23

-NL 311, 313
-NLT 314
)NMS 439
no error, -ET code 287
NO SHARES

See SYSTEM LIMIT
nondisplayable, execution property 360
nonreal number 10

tolerance for determining 59
nonscalar array 5
nonscalar functions, table 52
nonsuspendable, execution property 360
nor �

discussion of 68
NOT COPIED: 465
not equal ≠

discussion of 219
NOT ERASED: 465
NOT FOUND: 466
not greater

See less than or equal
not less

See greater than or equal
not �

discussion of 68
NOT SAVED, LIBRARY FULL 466
NOT SAVED, THIS WS IS 466
notation

complex number 11
exponential 11

506 APL2 Programming: Language Reference

notation (continued)

scaled form 11
scientific 11
subscript

See bracket index
notation, vector 14
nub (cap) 472
null (jot) 27
null array

See empty array
number

Boolean or not 59
complex 10, 11
data 10
display

in scaled form 13
leading, trailing zeros 12
of complex 13
precision 12

imaginary 12
mixed with characters 10
negative 11
nonreal 10
random 89, 231
real 10
real versus nonreal 59
representation 10
scaled form 11
tolerance for determining kind of 59

numeric data 10

O
object size, -AT[4] 271
objects

list of 311, 313
meaning 1
system

See system functions and variables
odd root 201
)OFF 440
offer

general share 330
to share 328, 329

omega ω 472
one-item vector 15, 242
open definition

full-screen editor 385
line editor 385

operand
See also arguments
and binding for evaluation 35
number of 24
position in binding hierarchy 34
to an operator 23

operation
defined

See function, defined
See operators, defined

description of 1
primitive

See function, primitive
See operator, primitive

suspended 360
operation table 186
operator expression 27

in parentheses 38
operators

associated with names 24
purpose 24
syntax

dyadic 24
monadic 24
rules 28

valence 24
valence of derived function 24

operators, defined
associating names with 26
body 348
convert to character representation 274
editing 375
establish 345
execution 353
execution properties 360
fixed in workspace 345
header 347
interrupts and errors 462
local names to 347, 353
locked, execution properties 361
name 24
name list 311
stop control 362
structure 346
suspended execution 354
syntax 31
trace control 361
with explicit result 31
without explicit result 31

operators, primitive
See also individual operators by name
example uses 2
names of 25
symbols 470
with axis specification 24

)OPS 441
or �

discussion of 68
order

See grade down
See grade up

 Index 507

order of execution
of statements within an operation 349
within a statement 32

)ORIGIN
See -IO

origin -IO 297
)OUT 442
outer product

discussion of 186
use of jot 27

output
See also character input/output
See also evaluated input/output
distinguished from input 2

overbar b 11
overdrop 102
overflow character -FC[4], for format 141
overset 372
overspecification, of shared variables 372
overtake 245, 248

use of fill item for 48

P
pad

See also fill
in format by example 139

page 5
page width

See printing width
parameter names, shown in header 347
parameter substitution 26
parentheses

and binding for evaluation 36
and valueless expressions 31
array expressions 38
effect on binding hierarchy 34
evaluation of expression with 37
function expressions 38
operator expressions 38
redundant 30, 37
summary of use 21
syntactic construction symbol 27
syntax rules for 29
vectors 37

partition �
discussion of 188

partition with axis �[]
discussion of 192

partner, shared variable 60
pattern, finding 129
pause -DL 277
)PBS 444
)PCOPY 446
pendent operation 354

pending offer, shared variables 367
period

See format by example
See inner product
See numbers
See outer product

permutation
ordered 147, 153
random 89

pervasive 51
phase 84, 93
pi times ○R

discussion of 194
pick �

compared with first 200
discussion of 195

picture format
See format by example

)PIN 447
plane 5
plus + (add) 65
point

See period
polar notation 11
polynomial approximation 175
polynomial evaluation 90
power *

See also scaled form
discussion of 201
relationship to exponential 127

-PP 315
-PR 316
precedence

binding hierarchy 33
right-to-left rule 32

precision 58
See also system limits
See also tolerance
display 12
printing and format (default) 138

primitive functions
See functions, primitive

primitive names 25
primitive operators

See operators, primitive
principal value, of multivalued function 64
print

See display
print-as-blank character -FC[5], for format 141
printing precision (-PP)

discussion of 315
printing precision -PP

and format (default) 138
printing width (-PW)

discussion of 318

508 APL2 Programming: Language Reference

probability
See random numbers

processor 60
product

See multiply
product, inner 165
product, outer 186
program

See functions, defined
See operators, defined

program function keys 397
progression, arithmetic 168
prompt
- 262
for line numbers 384
. 266

prompt replacement (-PR)
discussion of 316

prompt/response interaction 266
properties, execution

See execution properties
protocol, for shared variables. 324
prototype 46

See also type
of empty array 49
reasons for 48

pseudo-inverse of a matrix 178
put command, full-screen editor 410
-PW 318
Pythagorean functions

discussion of 83

Q
quad -

distinguished name 26
evaluated input/output 262
in editing 400

quad backslash ¬ 473
quad divide ! 174, 177
quad jot @ 473
quad prime . 265
quad prompt -: 262
quad quote .

See quad prime
query

See deal
See roll
See shared variable query

query or assign the active workspace identifier 460
query or modify the symbol table size 458
query or select editor to be used 427
query or set the printable backspace character 444
question mark

deal 89
roll 231

quit
See branch
See escape
See interrupt

)QUOTA 448
quotation mark J

for character data 13
syntactic construction symbol 27
syntax rules for 29

quote
See quotation mark

quote dot �
binomial 66
factorial 128

quote quad . 265
quotient 100

R
-R 319
R, arbitrary right argument name 31
R notation 11
radians

converted from degrees 82
converted to degrees 82

radix, mixed 90, 116
random link (-RL)

discussion of 322
random numbers 89, 231
random seed

See random link
range

See DOMAIN ERROR
See VALUE ERROR

rank 241
See also shape
measure of an array structure 5

RANK ERROR 466
rational numbers 10
ravel ,

compared with enlist 203
discussion of 202

ravel with axis ,[]
discussion of 204

re-specification
See specification

read a transfer file into the active workspace 433
read a transfer file into the active workspace with pro-

tection 447
real number

attributes 10
formats for 11
meaning 10
tolerance for determining 59

reciprocal ÷
discussion of 208

 Index 509

rectangularity 6
recursive function 355
reduce

derived from slash 209
derived from slash with axis 217

reduce, n-wise
derived from slash 213
derived from slash with axis 215

redundant parentheses 30, 37
redundant spaces 30
reference

of a variable 39
relational functions

discussion of 219
relative fuzz 58
remainder

See residue
remove a workspace from a library 426
replace lines, in a definition 404
replace strings, full-screen editor 407
replacement, prompt 316
replicate

derived from slash 220
derived from slash with axis 222
use of fill item 47

reports
See messages

reports, formatting of
See format

representation
See encode

representation, character
See -AF
See -AV

)RESET 449
description of 449
to clear state indicator 358

reshape ρ
discussion of 225

residue
discussion of 227

resource errors 287
respecification, of a variable 39
response time, -AI to determine 269
response vector, with . 266
response, prompt 266
restart execution 359
result, explicit

defined operations with 31
defined operations without 31

result, valueless expression 31, 120
resume execution 359

See also)CLEAR
See also)RESET

retracting a shared variable 366

retraction, of shared variable 332
retrieve

See)LOAD
See reference

return
See escape
See line counter
See restart
See resume

return, carriage
See new line character

reverse '
alternate symbol (229

reverse ' (
discussion of 228

reverse with axis '[] ([]
alternate symbol (229
discussion of 229

rho ρ
reshape 225
shape 241

right argument (-R) 319
right arrow →

branching 349
escape 27

right shoe
See disclose
See pick

right tack ¬ 474
right-to-left rule 32
-RL 322
RO, arbitrary right operand name 31
roll

discussion of 231
root 201
rotate '

alternate symbol (236
discussion of 232

rotate with axis '[]
alternate symbol (236
discussion of 235

round off
See ceiling
See floor
See precision

row 5
row-major order 7
rules

evaluation of expressions 32
names 25
scalar conformability 54
syntax 28

510 APL2 Programming: Language Reference

S
Sδ 362
)SAVE 451
save active workspace and end session 422
save the active workspace in a library 451
scalar

compared to one-item vector 242
created with enclose 112
display of simple 17
nested 17
simple 8

scalar extension 54
scalar functions

rules for dyadic 54
rules for monadic 53
table 51

scaled form
display of arrays with 18
meaning 11
when displayed 13

scan
derived from backslash 239
derived from backslash with axis 240

schedule
See shared variable event

scientific notation 11
screen segments 411
scrolling, full-screen editor 401
search

See find
See index of

seconds -TS[6] 340
seed

See random link
segments

opening 411
screen 411
working with 411

selective specification
bracket index 72
discussion of 40
drop 104
drop with axis 106
functions allowed 44
pick 200
ravel 203
ravel with axis 207
reshape 226
reverse 228
reverse with axis 230
rotate 234
rotate with axis 238
take 246
take with axis 250
transpose (general) 255

selective specification (continued)

transpose (reversed axes) 257
semicolon ;

syntactic construction symbol 27
syntax rules for 29
use in header 348
with bracket index 72

session 1
session manager, and line editor 394
session variable 260
set difference

See without
set membership

See member
set, of a variable 39
shadowed names 348
shape

measure of array structure 6
vector 6

shape ρ
discussion of 241

shared variable control (-SVC)
inquire

discussion of 323
set

discussion of 324
shared variable event (-SVE)

discussion of 326
shared variable events 373
shared variable offer (-SVO)

inquire
discussion of 328

set
discussion of 329

shared variable query (-SVQ)
discussion of 331

shared variable retraction (-SVR)
discussion of 332

shared variable state (-SVS)
discussion of 334

shared variables 260
degree of coupling 60
offer

failure 366
pending 367

system functions and system variables 364
system functions and variables for 60

shoe
See also disclose
See also enclose
left (enclose) 111, 113
right (disclose) 94, 96
right (pick) 195

shriek �
See binomial
See factorial

 Index 511

)SI 453
SI DAMAGE

See SI WARNING
SI WARNING 466
)SIC 454

See also)RESET
sign, reversing 185
signaling of shared variable events 373
signum 93
simple array

See array, simple
simple scalar

See scalar, simple
simulate, event -ES 282, 285
sine 1○R 82
sinh 5○R 83
SINH, formula for 81
)SINL 456
SINZ, formula for 81
)SIS 457
size

See also shape
of a vector 6
of an object 271

slash /
deriving n-wise reduce 213
deriving reduce 209
deriving replicate 220

slash bar
See slash with axis

slash with axis /[]
deriving n-wise reduce 215
deriving reduce 217
deriving replicate 222

small circle
See jot

smallest of an array �/ 212
sort

ascending 153
descending 147

spaces
See also)QUOTA
See also blank
See also workspace available
as characters 14
in a comment 28
in vector notation 14
not needed 30
redundant 30
summary of when needed 22
syntax rules for 30
when needed 30

specification
multiple 40
of a variable 39
of axis with primitive functions 23

specification (continued)

of variables 39
selective 40

functions allowed 44
specification arrow ←

and binding for evaluation 35
position in binding hierarchy 34
syntactic construction symbol 27
syntax rules for 29

specification of variables 39
multiple specification 40
respecifying a variable 39
selective specification 40
using a variable 39
vector specification 40

specification, axis
conditions for 45
operations that allow 45

square root 201
stack indicator

See state indicator
stack, execution 355
stamp, time -TS 340
star

See exponential
See power

state indicator
actions that add to 357
and value of -EM 281
and value of -ET 288
clearing 357
discussion of 355
error in immediate execution 59
resume or restart execution 359
use of)RESET 358
use of escape 358

state, shared variable 334
statement 28

in definition body 348
stile

magnitude 172
residue 227

stop control Sδ 362
storage

libraries 2
space 344
workspace 2

strand
See vector notation

strong interrupt
See interrupt

structure
illustrated 9
of arrays 5

subarray 7
contiguous 7

512 APL2 Programming: Language Reference

subexpression 36
subroutine

See functions, defined
See operators, defined

subscripts
See bracket index

subtract |
discussion of 243
relationship to negative 185

sum
See add

sum, alternating |/ 212
summary of changes xiv
summation () +/ 212
surrogate name 330
surrogate, or alias, shared variable names 366
suspendable, execution property 360
suspended execution

and line editor 387, 393
of a defined operation 354

suspended operation, if called 360
suspending execution, until shared variable event 373
-SVC 323, 324, 365, 367
-SVE 326, 365, 373

determining your next action 374
using, sample function 374

-SVO 328, 329, 365
shared variable offer 365

-SVQ 331, 365
-SVR 332, 365
-SVS 334, 365, 367
SYMBOL TABLE FULL

See SYSTEM LIMIT
)SYMBOLS 458
symbols

APL2 characters 470
binding of 33
for primitive names 25
list of syntactic construction 27
not names 25
syntactic construction, rules for 27

symmetry
of access control mechanism 368
of access state vector 371

synchronization of share partners 367, 369
syntactic construction symbols

diamond 27
syntax

defined operation with explicit result 31
defined operation without explicit result 31
dyadic functions 23
monadic functions 23
purpose of 22
rules for valid expressions 28
summary 20
syntactic construction symbols 27

SYNTAX ERROR 466
system commands

See also individual commands by name
)CHECK 418
)CLEAR 420
)CONTINUE 422
)COPY 423
)DROP 426
)EDITOR 427
)ERASE 428
)FNS 431
)HOST 432
)IN 433
)LIB 434
)LOAD 436
)MORE 438
)NMS 439
)OFF 440
)OPS 441
)OUT 442
)PBS 444
)PCOPY 446
)PIN 447
)QUOTA 448
)RESET 449
)SAVE 451
)SI 453
)SIC 454
)SINL 456
)SIS 457
)SYMBOLS 458
)VARS 459
)WSID 460
common command parameters 416
error in 462
list of 413
messages 462
range parameters 416
storing and retrieving objects and workspaces 414
system services and information 416
types of 413
uses of 413
using the active workspace 416
with line editor 393

SYSTEM ERROR 467
system functions

distinguished names for 26
list of 261
syntactic behavior 31
uses of 260

system functions and variables
See individual system functions and variables by

name
system functions and variables

ions and variables 259

 Index 513

system fuzz 59
SYSTEM LIMIT 467
system limitations 489
system of linear equations 174
system services, with line editor 394
system time 340
system tolerance 59

See also comparison tolerance
system variables

distinguished names for 26
list of 261
syntactic behavior 31
types of 260
uses of 260

T
Tδ 361
table

See matrix
See outer product

take ↑
discussion of 244
use of fill item 47

take with axis ↑[]
discussion of 247
use of fill item 47

tangent 3○R 82
tanh 7○R 83
TANHZ, formula for 81
TANZ, formula for 81
-TC 335
terminal control characters (-TC)

discussion of 335
terminate

See escape
See interrupt

-TF 336
thorn

See format
thousands indicator -FC[2] 140
tilde �

not 68
without 258

time
-AI to determine 269
delay -DL 277

time stamp
-AT to determine operation's 270
of definition 349

time stamp (-TS)
discussion of 340

time zone (-TZ)
discussion of 341

timer, for shared variable event 326

times
See multiply

tolerance
comparison 58
system 59

top � (encode) 116
top jot � (format) 135, 139, 143
trace control Tδ 361
transfer files

discussion of 484
extended transfer form of an object 487
file and record structure 485
internal formats 485
migration transfer form of an object 486
moving between systems 484
reading and writing 484
records not containing objects 486

transfer form (-TF)
discussion of 336
inverse 339

translation
See national language translation

transpose (general))
discussion of 251

transpose (reversed axes))
discussion of 256

trap
See -EA
See -ES

trigonometric functions 80
trouble report

See error messages
true, Boolean value 219
-TS 340
type 46

See also prototype
-TZ 341

U
-UCS 342
-UL 343
unconditional branch 351
underbar _ 472

See also names
underline

See underbar
underscore

See underbar
Unicode character mappings 475
unite

See enlist
universal character set (-UCS) 342
up arrow ↑

first 131
take 244

514 APL2 Programming: Language Reference

up shoe 472
up shoe jot

See comment
up stile �

ceiling 79
maximum 180

up tack �
See encode

up tack jot �
See format

upgrade
See grade up

uppercase 470
use

of a variable 39
user identification -AI[1] 269
user load (-UL)

discussion of 343
user response time, -AI to determine 269

V
valence
-AT[1] 270
how determined for evaluation 33
of an operator 24
of derived function 24
shown in header 347

VALENCE ERROR 467
valid characters 470
VALUE ERROR 467
value, associated with names 25
variables

See also system variables
debug 260
evaluated in an expression 39
implicit argument 260
meaning 26
multiple specification of 40
name 25
reference of 39
selective specification 40
session 260
set of 39
shared 60, 260
specification of 39
using 39

)VARS 459
vector

access control 324
display of simple 17
edit of simple character 398
empty 48
in parentheses 37
intersection of two 258
length or size 6

vector (continued)

nested 15
one item, compared to scalar 242
one-item nested 112
position in binding hierarchy 34
shape 6
simple 14
type of array 5

vector binding 35
vector notation 14

and binding for evaluation 35
compared to catenate 74
compared to enclose 111
syntax rules for 28

vector specification 40

W
-WA 344
wait

See delay
See shared variable event

weak interrupt
See attention

width, printing 318
window, for n-wise reduce 213, 215
withdrawing shared variable offer

See retracting a shared variable
without �

discussion of 258
work area

See workspace available
workspace 2
MATHFNS 11
stored 2
UTILITY 157

workspace available (-WA)
discussion of 344

workspace dump 467
write objects to a transfer file 442
WS CANNOT BE CONVERTED 467
WS CONVERTED, RESAVE 467
WS FULL 468
WS INVALID 468
WS LOCKED 468
WS NOT FOUND 468
)WSID 460

Y
year -TS[1] 340

Z
Z, arbitrary result name 31

 Index 515

ZCODE
See -AV

zero
display of leading and trailing 12
indicator of numeric type 46
suppress

See format
zone, time -TZ 341

516 APL2 Programming: Language Reference

Readers' Comments — We'd Like to Hear from You

APL2 Programming:
Language Reference

Publication No. SH21-1061-01

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? 	 Yes 	 No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction 	 	 	 	 	

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate 	 	 	 	 	
Complete 	 	 	 	 	
Easy to find 	 	 	 	 	
Easy to understand 	 	 	 	 	
Well organized 	 	 	 	 	
Applicable to your tasks 	 	 	 	 	

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SH21-1061-01

IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

&@rcfaddr(1)

Fold and Tape Please do not staple Fold and Tape

SH21-1061-01

IBM

File Number: S370-40
Program Number: 5688-228

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

The APL2 Library

GH21-1090 APL2 Family of Products (fact sheet)
SH21-1073 APL2 Programming: An Introduction to APL2
SH21-1061 APL2 Programming: Language Reference
SX26-3999 APL2 Reference Summary
SH21-1074 APL2 GRAPHPAK: User's Guide and Reference
SH21-1057 APL2 Programming: Using Structured Query Language
SH21-1069 APL2 Migration Guide
SC33-0600 APL2 for the IBM PC: User's Guide
SC33-0601 APL2 for the IBM PC: Reference Summary
SC33-0851 APL2 for the IBM PC: Reference Card
SH21-1091 APL2 for OS/2: User's Guide
GC23-3058 APL2 for AIX/6000 Licensed Program Specifications
SC23-3051 APL2 for AIX/6000: User's Guide
GC26-3359 APL2 for Sun Solaris Licensed Program Specifications
SH21-1092 APL2 for Sun Solaris: User's Guide
GH21-1063 APL2/370 Application Environment Licensed Program Specifications
GH21-1070 APL2/370 Licensed Program Specifications
SH21-1062 APL2/370 Installation and Customization under CMS
SH21-1055 APL2/370 Installation and Customization under TSO
SH21-1054 APL2/370 Programming: System Services Reference
SH21-1056 APL2/370 Programming: Using the Supplied Routines
SH21-1058 APL2/370 Programming: Processor Interface Reference
LY27-9601 APL2/370 Diagnosis Guide
SH21-1059 APL2/370 Messages and Codes

SH21-1061-01

S
p
in

e
 in

fo
rm

a
tio

n
:

I
B

M
A

P
L

2
 P

rogram
m

in
g:

L
an

gu
age R

eferen
ce

	Contents
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	Who Should Read This Book
	APL2 Publications
	Conventions Used in This Book

	Summary of Changes
	Products
	Document Changes

	Chapter 1. APL2 in Action
	Interaction
	Workspaces
	Sample Use of APL2

	Chapter 2. Arrays
	Structure
	Rank
	Shape
	Rectangularity
	Subarrays

	Depth
	Picture of an Array's Structure

	Data
	Numeric Data
	Real Numbers
	Complex Numbers

	Character Data
	Display of Characters

	Construction of Arrays
	Vector Notation
	Using Functions to Create Arrays

	Display of Arrays
	Simple Scalars and Vectors
	Simple Matrixes and Other Multidimensional Arrays
	Nested Arrays

	Chapter 3. Syntax and Expressions
	Summary of Syntax and Evaluation of Expressions
	APL2 Syntax
	Functions
	Axis Specification

	Operators
	Names
	Primitive Names
	Constructed Names
	Rules for Constructed Names
	Distinguished Names

	Syntactic Construction Symbols
	Expressions
	Statements
	Syntactically Valid Expressions

	Defined Functions and Operators
	System Functions and System Variables

	Evaluating Expressions
	Expressions with More Than One Function and No Operators
	Determining Function Valence
	Name and Symbol Binding
	Brackets
	Specification—Left and Right
	Right Operand and Left Operand
	Vector Written with Vector Notation
	Left Argument and Right Argument

	Multiple Expressions in a Line
	Parentheses
	Redundant Parentheses

	Specification of Variables
	Using a Variable
	Respecifying a Variable
	Multiple Specification
	Vector Specification
	Selective Specification

	Conditions for Axis Specification

	Chapter 4. General Information
	Type and Prototype
	Fill Item
	Empty Arrays
	Prototypes of Empty Arrays
	Empty Arrays and Nesting

	Scalar and Nonscalar Functions
	Conformability of Arguments
	Monadic Scalar Function
	Dyadic Scalar Function
	Scalar Conformability Rules
	Axis Specification with Scalar Dyadic Functions

	Fill Functions
	Fill Function for Primitive Scalar Functions
	Fill Functions for Primitive Nonscalar Functions

	System Effects on Evaluation
	Size Limitations
	Precision
	Comparison Tolerance
	System Tolerance

	Errors and Interrupts in Immediate Execution
	Shared Variables

	Chapter 5. Primitive Functions and Operators
	APL2 Expressions Used in the Descriptions
	Meta Notation Used in Descriptions
	Multivalued Functions
	Add
	Binomial
	Boolean Functions
	Bracket Index
	Catenate
	Catenate with Axis
	Ceiling
	Circle Functions
	Circular Functions
	Hyperbolic Functions
	Pythagorean Functions
	Complex Number Functions

	Compress (from Slash)
	Compress with Axis (from Slash)
	Conjugate
	Deal
	Decode
	Depth
	Direction
	Disclose
	Disclose with Axis
	Divide
	Drop
	Drop with Axis
	Each (Dyadic)
	Each (Monadic)
	Enclose
	Enclose with Axis
	Encode
	Enlist
	Execute
	Expand (from Backslash)
	Expand with Axis (from Backslash)
	Exponential
	Factorial
	Find
	First
	Floor
	Format (Default)
	Format by Example
	Format by Specification
	Grade Down
	Grade Down (with Collating Sequence)
	Grade Up
	Grade Up (with Collating Sequence)
	Index
	Index Of
	Index with Axis
	Inner Product (from Array Product)
	Interval
	Laminate
	Logarithm
	Magnitude
	Match
	Matrix Divide
	Matrix Inverse
	Maximum
	Member
	Minimum
	Multiply
	Natural Logarithm
	Negative
	Outer Product (from Array Product)
	Partition
	Partition with Axis
	Pi Times
	Pick
	Power
	Ravel
	Ravel with Axis
	Reciprocal
	Reduce (from Slash)
	Reduce N-Wise (from Slash)
	Reduce N-Wise with Axis (from Slash)
	Reduce with Axis (from Slash)
	Relational Functions
	Replicate (from Slash)
	Replicate with Axis (from Slash)
	Reshape
	Residue
	Reverse
	Reverse with Axis
	Roll
	Rotate
	Rotate with Axis
	Scan (from Backslash)
	Scan with Axis (from Backslash)
	Shape
	Subtract
	Take
	Take with Axis
	Transpose (General)
	Transpose (Reversed Axes)
	Without

	Chapter 6. System Functions and Variables
	Evaluated Input/Output
	Assignment
	Reference

	Character Input/Output
	Assignment
	Reference

	Atomic Function
	Account Information
	Attributes
	Atomic Vector
	Character Representation
	Comparison Tolerance
	Delay
	Execute Alternate
	Execute Controlled
	Event Message
	Event Simulate (with either Error Message or Event Type)
	Event Simulate (with both Error Message and Event Type)
	Event Type
	Expunge
	Format Control
	Fix (No Execution Properties)
	Fix (with Execution Properties)
	Index Origin
	Left Argument
	Line Counter
	Latent Expression
	Name Association (Inquire)
	Name Association (Set)
	Name Class
	Name List (by Alphabet and Class)
	Name List (by Class)
	National Language Translation
	Printing Precision
	Prompt Replacement
	Printing Width
	Right Argument
	Random Link
	Shared Variable Control (Inquire)
	Shared Variable Control (Set)
	Shared Variable Event
	Shared Variable Offer (Inquire)
	Shared Variable Offer (Set)
	Shared Variable Query
	Shared Variable Retraction
	Shared Variable State
	Terminal Control Characters
	Transfer Form
	Creating the Extended or Migration Transfer Form
	Creating the Inverse Transfer Form

	Time Stamp
	Time Zone
	Universal Character Set
	User Load
	Workspace Available

	Chapter 7. Defined Functions and Operators
	Structure
	Header
	Name of Operation
	Valence
	Parameter Names
	Local Names

	Body
	Time Stamp

	Definition Contents
	Branching
	Labels
	Conditional Branch
	Unconditional Branch
	Branch to Escape
	Branch in a Line with Diamonds
	Looping Is Rarely Needed

	Structuring Ambi-valent Functions
	Event Handling
	Use of Local Names

	Execution
	Suspension of Execution
	Calling Sequence
	State Indicator
	Clearing the State Indicator
	When a Called Operation Is Suspended

	Execution Properties

	Debug Controls
	Trace Control
	Stop Control

	Chapter 8. Shared Variables
	Shared Variable Concepts
	APL2 Shared Variable System Functions and System Variable
	Characteristics of Shared Variables
	Communication Procedure
	Degree of Coupling

	Synchronization of Asynchronous Processors
	Symmetry of the Access Control Mechanism
	Access Control Vector
	Setting the Access Control Vector

	Access State Vector
	Access State Values

	Effect of Access Control and Access State on Communications
	Shared Variable Interlock
	Over Specification

	Signaling of Shared Variable Events

	Chapter 9. The APL2 Editors
	Editor Features
	Characters Permitted within Statements

	Named System Editor
	Exiting the Editor
	Editing a Program
	Editing Simple Character Arrays
	Editing Evaluated Arrays (APL2/370 Only)

	Named APL Editor (APL/370 Only)
	Guidelines for Writing a Processor 11 Editor

	Editor 1 (The Line Editor)
	Line Numbers
	Line Number Prompts

	Editor 1 Commands
	Opening a Definition
	Opening More Than One Object for Editing
	Closing a Definition
	Changing the Name of an Object
	Displaying an Object
	Replacing or Inserting Lines
	Copying or Moving Lines
	Deleting Lines
	Abandoning Editing of an Object
	The Display-Edit Command

	Immediate Execution with Editor 1
	Entering System Commands

	System Services and Editor 1
	Editor 1 with the APL2 Session Manager
	Editor 1 without the APL2 Session Manager

	Editor 2 (Full-Screen Editor)
	Information Line
	Line Numbers
	Line Number Prompts

	Editor 2 Commands
	Opening a Definition
	Closing a Definition
	Fixing the Object in the Workspace and Staying in Edit Mode
	Abandoning Editing of an Object
	Changing the Name of an Object
	Displaying an Object
	Scrolling through a Definition
	Adding Lines
	Entering Lines Wider Than One Screen Row—Continue Command
	Creating a Single Line from Two Lines—Continue Command
	Replacing Text Lines
	Inserting and Deleting Characters in a Line
	Deleting Lines
	Renumbering Lines
	Locating Strings of Characters—Locate Command
	Replacing One String of Characters with Another—Change Command
	Copying Lines Into a Definition—Get Command
	Copying or Moving Lines within a Definition
	Copying Lines From a Definition—Put Command

	Editing Multiple Objects
	Opening Screen Segments
	Working with Multiple Segments

	Immediate Execution in Editor 2

	Chapter 10. System Commands
	Storing and Retrieving Objects and Workspaces
	Common Command Parameters—Library, Workspace

	System Services and Information
	Using the Active Workspace
	Common Parameters—First, Last

)CHECK—Diagnostic Information
	Workspace Validation
	Tracing Functions
	Forcing Dumps

)CLEAR—Activate a Clear Workspace
)CONTINUE—Save Active Workspace and End Session
)COPY—Copy Objects into the Active Workspace
	Parameters

)DROP—Remove a Workspace from a Library
	Parameters

)EDITOR—Query or Select Editor to be Used
)ERASE—Delete Objects from the Active Workspace
)FNS—List Indicated Objects in the Active Workspace
)HOST—Execute a Host System Command
)IN—Read a Transfer File into the Active Workspace
	Parameters

)LIB—List Workspace Names in a Library
	Parameters

)LOAD—Bring a Workspace from a Library into the Active Workspace
)MORE—List Additional Diagnostic Information
)NMS—List Names in the Active Workspace
)OFF—End APL2 Session
)OPS—List Indicated Objects in the Active Workspace
)OUT—Write Objects to a Transfer File
)PBS—Query or Set the Printable Backspace Character (APL2/370 Only)
)PCOPY—Copy Objects into the Active Workspace with Protection
)PIN—Read a Transfer File into the Active Workspace with Protection
)QUOTA—List Workspace, Library, and Shared Variable Quotas (APL2/370 Only)
)RESET—Clear the State Indicator
)SAVE—Save the Active Workspace in a Library
	Parameters

)SI—Display the State Indicator
)SIC—Clear the State Indicator
)SINL—Display the State Indicator with Name List
)SIS—Display the State Indicator with Statements
)SYMBOLS—Query or Modify the Symbol Table Size
)VARS—List Indicated Objects in the Active Workspace
)WSID—Query or Assign the Active Workspace Identifier
	Parameters

	Chapter 11. Interpreter Messages
	Interrupts and Errors in APL2 Expressions
	Interrupts and Errors in Defined Functions or Operators
	Errors in System Commands
	Messages

	Appendix A. The APL2 Character Set
	APL2 Special Characters
	Explanation of Characters

	Appendix B. APL2 Transfer Files and Extended Transfer Formats
	Reading and Writing Transfer Files
	Moving Transfer Files from One System to Another
	Internal Formats of Transfer Files
	File and Record Structure
	Records Not Containing Objects
	Migration Transfer Form of an Object
	Extended Transfer Form of an Object

	Appendix C. System Limitations for APL2
	Bibliography
	APL2 Publications
	Other Books You Might Need
	APL2 Keycaps and Decals

	Index

