APL2 Programming :

Language Reterence

—— E— —
I B S—
- E———
" E————
I - — -
L BN
I W —
E—— YV E——

SH21-1061-01

APL2 Programming :

Language Reterence

—— E— —
I B S—
- E———
" E————
I - — -
L BN
I W —
E—— YV E——

SH21-1061-01

— Note!

Before using this information and the product it supports, be sure to read the general information under FNotices’]

Second Edition (February 1994)

This edition replaces and makes obsolete the previous edition, SH21-1061-0. The technical changes for this edition are summarized
under “Summary of Changes,” and are indicated by a vertical bar to the left of a change.

This edition applies to:

¢ Release 2 of APL2/370 Version 2, Program Number 5688-228

* Release 2 of APL2/6000 Version 1, Program Number 5765-012

* Release 2 of APL2/PC Version 1, Program Numbers 5604-260 (EMEA) and 5799-PGG (USA)
* Release 1 of APL2 for Sun Solaris Version 1, Program Number 5648-065

* Release 1 of APL2/2 Advanced, Version 1.0, Part Number 89G1697

¢ Release 1 of APL2/2 Entry, Version 1.0, Part Number 89G1556

and to any subsequent releases until otherwise indicated in new editions or technical newsletters.

Changes are made periodically to this publication; before using this publication in connection with the operation of IBM systems,
consult the latest edition of the applicable IBM system bibliography for current information on this product.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your locality. If you
request publications from the address given below, your order will be delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed, comments may be addressed
to IBM Corporation, Department J58, P. O. Box 49023, San Jose, California, U.S.A. 95161-9023. IBM may use or distribute what-
ever information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1994. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices X
Programming Interface Information X
Trademarks X
About This Book Xi
Who Should Read This Book Xi
APL2 Publications Xi
Conventions Used in This Book Xii
Summary of Changes Xiv
Products Xiv
Chapter 1. APL2in Action 1
Interaction 1
Workspaces 2
Sample Use of APL2 2
Chapter 2. Arrays 5
Structure 5
Rank 5
Shape 6
Depth 8
Data e 10
Numeric Data 10
CharacterData 13
Construction of Arrays 14
Vector Notation 14
Using Functions to Create Arrays 15
Display of Arrays 17
Simple Scalars and Vectors 17
Simple Matrixes and Other Multidimensional Arrays 17
Nested Arrays 19
Chapter 3. Syntax and Expressions 20
Summary of Syntax and Evaluation of Expressions 20
APL2 Syntax 22
Functions 23
Operators 24
Names e 24
Syntactic Construction Symbols L. 27
Expressions 27
Defined Functions and Operators 31
System Functions and System Variables 31
Evaluating Expressions 32
Expressions with More Than One Function and No Operators 32
Determining Function Valence 33
Name and Symbol Binding 33
Multiple Expressionsina Line 36
Parentheses 36
Specification of Variables o 39

© Copyright IBM Corp. 1984, 1994 iii

Conditions for Axis Specification, 45

Chapter 4. General Information 46
Type and Prototype 46
Fill ltem 47
Empty Arrays 48
Prototypes of Empty Arrays 49
Empty Arrays and Nesting 50
Scalar and Nonscalar Functions 51
Monadic Scalar Function 53
Dyadic Scalar Function 54
Fill Functions 56
Fill Function for Primitive Scalar Functions 56
Fill Functions for Primitive Nonscalar Functions 57
System Effects on Evaluation 57
Size Limitations 57
Precision 58
Comparison Tolerance 58
System Tolerance 59
Errors and Interrupts in Immediate Execution L. 59
Shared Variables 60
Chapter 5. Primitive Functions and Operators 62
APL2 Expressions Used in the Descriptions 63
Meta Notation Used in Descriptions 64
Multivalued Functions 64
+Add . 65
! Binomial ... 66
Avaw~ Boolean Functions 68
[1Bracket Index 70
,Catenate 74
, [1 Catenate with Axis 77
[Ceiling 79
o Circle Functions 80
Circular Functions 82
Hyperbolic Functions 83
Pythagorean Functions 83
Complex Number Functions 84
/ Compress (from Slash) 85
/L1 #L 1] Compress with Axis (from Slash) 86
+ Conjugate 88
2 Deal ... 89
1 Decode 90
= Depth . . . 91
x Direction 93
> Disclose 94
5[] Disclose with Axis 96
+ Divide . . . 100
YDrop ..o 101
+L 1 Drop with Axis 105
T Each (Dyadic) 107
T Each (Monadic) 109
c Enclose 111
c[] Enclosewith Axis 113

iV APL2 Programming: Language Reference

T Encode 116

e Enlist 118
e Execute 120
\ Expand (from Backslash) 122
\[] X[JExpand with Axis (from Backslash) 124
* Exponential 127
! Factorial 128
e Find . . . 129
- 131
L Floor 133
s Format (Default) 135
s Format by Example 139
s Format by Specification oo 143
¥ Grade Down 147
¥ Grade Down (with Collating Sequence) 149
AGrade Up 153
A Grade Up (with Collating Sequence) 155
0Index 160
1Index Of . . . 162
0L Index with Axis 163
. Inner Product (from Array Product) 165
1nterval . . 168
;L1 Laminate 169
® Logarithm 171
| Magnitude 172
=Match 173
B Matrix Divide 174
B Matrix Inverse 177
[Maximum 180
e Member 181
L Minimum 182
x Multiply . . . o 183
® Natural Logarithm 184
- Negative 185
o, Outer Product (from Array Product) 186
c Partition 188
c[] Partition with Axis 192
O PRPITimes 194
S Pick . .. 195
* Power ..o 201
., Ravel . . . 202
, [1 Ravel with Axis 204
+ Reciprocal 208
/ Reduce (from Slash) 209
/ Reduce N-Wise (from Slash) 213
/[1 #[] Reduce N-Wise with Axis (from Slash) 215
/[#C] Reduce with Axis (from Slash) 217
<<=2># Relational Functions 219
/ Replicate (from Slash) 220
/[1 #[] Replicate with Axis (from Slash) 222
p Reshape 225
| Residue 227
deReverse 228
dL1 e[]1Reversewith AXis 229

Contents V

Vi

2 Roll o 231

¢ Rotate 232
&[] Rotate with Axis 235
\ Scan (from Backslash) 239
\[] X[] Scan with Axis (from Backslash) 240
p Shape 241
- Subtract 243
+Take ... 244
+[] Take with Axis 247
® Transpose (General) 251
& Transpose (Reversed Axes) 256
~ Without 258
Chapter 6. System Functions and Variables 259
0 Evaluated Input/Output 262
(M Character Input/Qutput 265
OAF Atomic Function 268
OAT Account Information 269
OAT Attributes 270
OAV Atomic Vector 273
OCR Character Representation 274
OCT Comparison Tolerance 275
ODL Delay 277
OFA Execute Alternate 278
OEC Execute Controlled 280
OEM Event Message 281
0OFS Event Simulate (with either Error Message or Event Type) 282
OES Event Simulate (with both Error Message and Event Type) 285
OET Event Type 287
OEX EXpUNge e 289
OFC Format Control, 291
OFX Fix (No Execution Properties) 292
OFX Fix (with Execution Properties) 294
OI0 Index Origin 297
OL Left Argument 298
OLC Line Counter 300
OLX Latent Expression 302
ONA Name Association (Inquire) 304
ONA Name Association (Set) 305
ONC Name Class 309
ONL Name List (by Alphabetand Class) 311
ONL Name List (oy Class) 313
ONLT National Language Translation 314
OPP Printing Precision 315
OPR Prompt Replacement 316
OPW Printing Width 318
OF Right Argument 319
ORL Random Link 322
OSVC Shared Variable Control (Inquire) 323
0SVC Shared Variable Control (Set) 324
OSVE Shared Variable Event 326
0SV0 Shared Variable Offer (Inquire) 328
0SVO Shared Variable Offer (Set) 329
0SVQ Shared Variable Query 331

APL2 Programming : Language Reference

OSVER Shared Variable Retraction 332

0SVS Shared Variable State 334
O7C Terminal Control Characters 335
OTF Transfer Form 336
O7S Time Stamp 340
OTZ Time Zone 341
OUCS Universal Character Set 342
OUL UserLoad 343
OwA Workspace Available 344
Chapter 7. Defined Functions and Operators 345
Structure 346
Header 347
Body 348
Time Stamp 349
Definition Contents 349
Branching 349
Structuring Ambi-valent Functions 352
Event Handling 352
Useof Local Names 353
Execution 353
Suspension of Execution 354
Calling Sequence 354
State Indicator 355
Execution Properties 360
Debug Controls 361
Trace Control 361
Stop Control 362
Chapter 8. Shared Variables 364
Shared Variable Concepts 364
APL2 Shared Variable System Functions and System Variable 364
Characteristics of Shared Variables 365
Communication Procedure 366
Degree of Coupling 366
Synchronization of Asynchronous Processors 367
Symmetry of the Access Control Mechanism 368
Access Control Vector 369
Access State Vector 370
Effect of Access Control and Access State on Communications 371
Signaling of Shared Variable Events 373
Chapter 9. The APL2 Editors 375
Editor Features 376
Characters Permitted within Statements 378
Named System Editor 380
Named APL Editor (APL/370 Only) 382
Guidelines for Writing a Processor 11 Editor 382
Editor 1 (The Line Editor) 383
Line Numbers 384
Editor 1 Commands 384
Immediate Execution with Editor 1 393
System Services and Editor 1 394
Editor 2 (Full-Screen Editor) 394

Contents Vi

viii

Information Line
Line Numbers
Editor 2 Commands
Editing Multiple Objects
Immediate Execution in Editor2

Chapter 10. System Commands
Storing and Retrieving Objects and Workspaces
Common Command Parameters—Library, Workspace
System Services and Information L
Using the Active Workspace
Common Parameters—First, Last
) CHE CK—Diagnostic Information
)CLEAR—Activate a Clear Workspace
)CONTINUE—Save Active Workspace and End Session
) COPY—Copy Obijects into the Active Workspace
) DROP—Remove a Workspace from a Library
)EDITOR—AQuery or Select Editortobe Used
) ERASE—Delete Objects from the Active Workspace
) FNS—List Indicated Objects in the Active Workspace
)HOST—Execute a Host System Command
) IN—Read a Transfer File into the Active Workspace
) LT B—List Workspace Names ina Library
) LOAD—Bring a Workspace from a Library into the Active Workspace .
)MORE—List Additional Diagnostic Information
) NMS—List Names in the Active Workspace
JOFF—ENnd APL2 Session
) OPS—List Indicated Objects in the Active Workspace
) OUT—MWrite Objects to a Transfer File
) PBS—Query or Set the Printable Backspace Character (APL2/370 Only) .
) PCOPY—Copy Objects into the Active Workspace with Protection
) PTN—Read a Transfer File into the Active Workspace with Protection . .
)QUOTA—List Workspace, Library, and Shared Variable Quotas (APL2/370
Only) . . .
)RESET—Clear the State Indicator
) SAVE—Save the Active Workspace ina Library
) SI—Display the State Indicator,
)SIC—Clear the State Indicator
) SINL—Display the State Indicator with Name List
) SIS—Display the State Indicator with Statements
) SYMBOLS—Query or Modify the Symbol Table Size
) VARS—List Indicated Objects in the Active Workspace
)WSID—Query or Assign the Active Workspace Identifier

Chapter 11. Interpreter Messages
Interrupts and Errors in APL2 Expressions
Interrupts and Errors in Defined Functions or Operators
Errors in System Commands
Messages

Appendix A. The APL2 CharacterSet
APL2 Special Characters
Explanation of Characters

APL2 Programming : Language Reference

Appendix B. APL2 Transfer Files and Extended Transfer Formats 484

Reading and Writing Transfer Files 484
Moving Transfer Files from One System to Another 484
Internal Formats of Transfer Files 485
Appendix C. System Limitations for APL2 489
Bibliography 490
APL2 Publications 490
Other Books You Might Need 490
APL2 Keycapsand Decals 490
Index 491

Contents iX

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights or other legally protectible rights may be used instead of the
IBM product, program, or service. Evaluation and verification of operation in con-
junction with other products, programs, or services, except those expressly desig-
nated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Corporation,
IBM Director of Licensing, 208 Harbor Drive, Stamford, Connecticut, United States
06904.

Programming Interface Information

This reference is intended to help programmers code APL2 applications. This ref-
erence documents General-Use Programming Interface and Associated Guidance
Information provided by APL2.

General-use programming interfaces allow the customer to write programs that
obtain the services of APL2.

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

AlX IBM

APL2 0Ss/2
APL2/6000 System/370
AIX/6000 System/390

The following terms, denoted by a double asterisk (**) in this publication, are trade-
marks of other companies:

Solaris Sun Microsystems, Inc.
Sun Sun Microsystems, Inc.

© Copyright IBM Corp. 1984, 1994

About This Book

This book defines the IBM* APL2* nested array version of the APL language as
supported on OS/2*, Sun** Solaris**, AIX/6000*, DOS, VM/CMS, and MVS/TSO.

Deviations from the language, as defined in this book, are documented in the sepa-
rate user's guides.

APL2 is used in such diverse applications as commercial data processing, system
design, scientific computation, modeling, and the teaching of mathematics and
other subjects. It has been particularly useful in database applications, where its

computational power and communication facilities combine to enhance the produc-
tivity of both application programmers and other users.

For more information about APL2 and its history, see the APL2 Programming: An
Introduction to APL2.

Who Should Read This Book

This book can be used by all APL2 users, though some chapters do assume that

the user has some familiarity with APL or APL2.

APL2 Publications

Figure 1 lists the books in the APL2 library. This table shows the books and how

they can help you with specific tasks.

Figure 1 (Page 1 of 2). APL2 Publications

Information Book Publication Number
General product APL2 Fact Sheet GH21-1090
Warranty APL2/370 Application Environment Licensed
Program Specifications GH21-1063
APL2/370 Licensed Program Specifications GH21-1070
APL2 for AIX/6000 Licensed Program Specifica-
tions GC23-3058
APL2 for Sun Solaris Licensed Program Specifica-
tions GC26-3359
Introductory language APL2 Programming: An Introduction to APL2 SH21-1073
material
Common reference APL2 Programming: Language Reference SH21-1061
material APL2 Reference Summary SX26-3999

© Copyright IBM Corp. 1984, 1994

Xi

Figure 1 (Page 2 of 2). APL2 Publications

Information

System interface

Book Publication Number
APL2/370 Programming: System Services Refer-

ence SH21-1056
APL2/370 Programming: Using the Supplied Rou-

tines SH21-1054
APL2/370 Programming: Processor Interface Ref-

erence SH21-1058

APL2 for OS/2: User's Guide SH21-1091

APL2 for Sun Solaris: User's Guide SH21-1092

APL2 for AIX/6000: User's Guide SC23-3051

APL2 GRAPHPAK: User's Guide and Reference SH21-1074
APL2 Programming: Using Structured Query Lan-

guage SH21-1057
APL2 Migration Guide SH21-1069
Mainframe system pro- APL2/370 Installation and Customization under
gramming CMS SH21-1062
APL2/370 Installation and Customization under
7SO SH21-1055
APL2/370 Messages and Codes SH21-1059
APL2/370 Diagnosis Guide LY27-9601

For the titles and order numbers of other related publications, see the

[‘Bibliography” on page 490|

Conventions Used in This Book
As you use this publication, be aware of the following:

Xii

Alphabetic APL2 characters are printed in capital italic letters.

The symbol < or <=+ is used to mean “is equivalent to.” It is not an APL2
operation. The equal sign (=) is used to mean the APL2 equal function.

In illustrations of syntax, the following arbitrary names are used:

L Left argument
R Right argument
F Function

Lo Left operand
RO Right operand

MOP Monadic operator
DoP Dyadic operator

Unless explicitly stated, the default APL2 environment is assumed. The index
origin (O 0) is 1; the printing precision (OPP) is 10; and the print width (OPW)
is 79.

In examples, user input is indented six spaces to simulate the APL2 six-blank
prompt.

To conserve space and make it easier to contrast examples, the examples are
presented in two or three columns whenever possible. Read the first column of
examples first, and then the second and third.

The term workstation refers to all platforms where APL2 is implemented except
those based on System/370* and System/390* architecture.

APL2 Programming : Language Reference

e APL2 implemented on System/370-based and System/390-based architecture
is referred to as APL2/370.

About This Book Xiil

. Summary of Changes

Products

|

| APL2/2, Version 1 Release 1

| APL2 for Sun Solaris, Version 1 Release 1
| APL2/6000*, Version 1 Release 2

| APL2/370, Version 2 Release 2

| APL2/PC, Version 1 Release 2

| Date of Publication: January 1994

| Form of Publication: Revision, SH21-1061-01

Document Changes

e Added references to the workstation products

e Updated information on the display of characters
Added mention of distinguished names
Added diamond information
Updated selective specification information
Updated figure and list of axis specification conditions
Updated precision section
Added system tolerances for the workstations
Updated binomial section
Updated compress (from slash) section
Updated compress with axis (from slash) section
Updated drop example
Updated matrix inverse example
Corrected binomial identity value in reduce (from slash)
Updated reverse example
Updated table of system functions and variables
Updated AV section
Updated event type codes
Updated OEX syntax information
Updated 0L X examples
Updated ONA examples
Updated OSVC example
Added posting rules to SV C
Updated O0SVO (inquire) example
Updated SV O (set) examples
Updated OS VR example
Added JUCS universal character set
Added shared variables chapter
Updated information for APL2 editors
Updated table of APL2 system commands
Added)CHECK
Updated) DROP information
Updated) LOAD examples
Updated character set figures
Added table listing ASCII, EBCDIC, Unicode, and symbol equivalents
» Updated system limitations appendix

Xiv © Copyright IBM Corp. 1984, 1994

Chapter 1. APL2 in Action

APL2 structures data into arrays. These data can include a mix of characters and
numbers. By means of the specification arrow (<), an array can be associated with
a name and the resulting variable can then be used in place of the array in compu-
tations.

Whereas arrays contain data, functions manipulate the structure of arrays or
perform calculations on their data. Every primitive function name is a symbol. For
example, + is the name of the primitive function divide. Operators apply to func-
tions or arrays, and produce functions called derived functions. Every primitive
operator name is a symbol. For example, ~ is the name of the primitive operator
each.

You can write your own programs or subroutines (called defined functions and
defined operators), tailoring APL2 to the specific needs of your application. You
name defined functions and operators when you define them, using one or more
alphanumeric characters.

Collectively, functions and operators are known as operations.

System functions and system variables provide information about, and permit inter-
action with, the APL2 system. Each system function and system variable is repres-
ented by a distinguished name that begins with the quad symbol (0).

Arrays, functions, and operators are the objects of APL2.

APL2 also provides a facility for using system services and other program products
through auxiliary processors. These services are accessed through shared vari-
ables and can be under the control of an APL2 defined function. A shared variable,
the interface between processors, is used to pass information between them. Any
variable can be offered as a shared variable| “Shared Variables” on page 60|
describes the system functions and variables used for sharing, and
[‘Shared Variables” on page 364] contains additional details on sharing. The APL2
auxiliary processors available are detailed in the workstation user's guides and
APL2/370 Programming: System Services Reference.

Interaction

During an APL2 session, you enter expressions for evaluation, run programs
(defined functions and operators), enter system commands, and define functions
and operators.

The form of your interaction with APL2 is a dialog. You make an entry, APL2 proc-
esses the entry and returns a response. Most of the time the cursor waits in the
seventh column for input. Displayed output usually begins in the first column.
Throughout this manual, examples follow this convention (unless otherwise noted),
as shown in Figure 2.

© Copyright IBM Corp. 1984, 1994 1

4+5 8 3 2 Input
9 12 7 6 Output

Figure 2. Input and Output of APL2 Expressions

The visual distinction between input and output is useful when you study the results
of your APL2 work.

Except when you use one of the APL2 editors to define a function or operator, your
dialog takes place in immediate execution (or calculator) mode. In definition mode,
you use one of the APL2 editors to enter programs built of APL2 statements.
These programs can be stored for later execution.

Workspaces

The common organizational unit of the APL2 system is the workspace. Part of
each workspace is set aside to serve the internal workings of the system, and the
remainder is used, as required, to store programs and pieces of (transient and per-
manent) information. When in use, a workspace is called active.

Only one workspace is active at a time. A copy of an inactive workspace can be
made active, or selected information can be copied from one or more inactive work-
spaces into the active workspace. Inactive workspaces are stored in libraries.

System commands provide information about and manage data for workspaces and
libraries. They are entered separately rather than as part of APL2 expressions.
System commands begin with a right parenthesis.

[Chapter 10, “System Commands” on page 413|contains more information about
workspaces and how to manipulate them.

Sample Use of APL2

The annotated examples shown in Figure 3 and|Figure 4 on page 4illustrate
aspects of APL2 that are described in the remainder of this publication. The com-
ments to the right of the APL2 expressions name the operation or facility being
demonstrated and the page number of its description. Comments and page refer-
ences refer to the first use of the operation or facility, not to each occurrence.

These examples assume that a shoe distributor has some basic inventory
questions. Figure 3 answers questions about the quantities of shoes in stock.
[Figure 4 on page 4] answers questions concerning the cost of the shoes.

To simplify the example, only a few styles of shoes for men, women, and children
are used; namely, oxfords, loafers, sneakers, sandals, and pumps. However, the
expressions shown are applicable to larger quantities of data; for instance, styles
can be kept by style number. Also, the examples show expressions only in imme-
diate execution mode. In practice, most of the expressions would be incorporated
into more generalized defined functions. For larger volumes of data, input and file
read/write functions can be used.

2 APL2 Programming : Language Reference

Figure 3. Expressions for Maintaining and Reporting Inventory Quantities

APL2 Expression

Comment

For each group (men, women, children), enter the number of shoes of
different styles in stock:

MEN<L45 75 15
WOMEN<35 75 15 45 95
CHILDREN<35 0 55 15

Specification of variables and use of
arrays (5).

Determine the total number of men's shoes:

+/MEN
135

Slash (/) operator with the add (+)
function as operand.

Determine totals for each group:

+/" MEN WOMEN CHILDREN
135 265 105

Vector notation and each () oper-
ator ({107) with derived function summa-
tion (+/) as operand.

Determine the total number of shoes in stock:

+/eMEN WOMEN CHILDREN
505

Enlist () function (118).

Represent stock as a single variable:
STOCK<MEN WOMEN CHILDREN

STOCK

45 75 15 35 75 15 45 95 35 0 55 15
+/78TOCK

135 265 105
+/eSTOCK

505

Nested array (8) and its display (19).

Display the inventory information as a table:

>[11STOCK
45 35 35
75 75 0
15 15 55
0 45 15
0 95 O

Disclose with axis (= []) function (96},
which fills with zeros where data was not
provided.

Describe what the numbers represent:

STYLES<«'0OXFORDS' 'LOAFERS' 'SNEAKERS'
STYLES<«STYLES,'SANDALS' 'PUMPS'
GROUPS<«'MENS' 'WOMENS' 'CHILDRENS'

Catenate (,) function and character
data (13).

Add row and column headings to the table:

(' '",GROUPS),[118STYLES,>[11STOCK
MENS WOMENS CHILDRENS

OXFORDS 45 35 35
LOAFERS 75 75 0
SNEAKERS 15 15 55
SANDALS 0 45 15
PUMPS 0 95 0

Catenate with axis (, []) function
and intermixed character and numeric
data.

Chapter 1. APL2 in Action 3

Figure 4. Expressions for Maintaining and Reporting Inventory Costs

APL2 Expression

Comment

Maintain costs for each style in each group:

C0STS«(39 19 29) (35 15 29 18 u5)

COSTS«C0STS,c25 16 21 12.5

CoSTS
39 19 29

35 15 29 18 45 25 16 21 12.5

Parentheses (B6) and Enclose (<) func-
tion ({111).

Note that the example demonstrates the
use of enclose to catenate a single
nested item to a nested vector. It is nec-
essary here because the line width of the
figure is not large enough to accommo-
date the entire specification of COST.S on
one line.

What is the cost of men's loafers?

1 2>C0S8TS
19

Pick () function (195).

Change the cost of men's loafers:

(1 22008TS)<«20
cosTs
39 20 29

35 15 29 18 45 25 16 21 12.5

Selective specification (40).

Determine retail costs if markups from wholesale costs for men's,

women's, and children's shoes are 60, 70, and 80 percent, respectively.

PRICES<«C0STSx1+.6 .7 .8
»L10]PRICES

62.4 32 46.4

59.5 25.5 49.3 30.6 76.5

45 28.8 37.8 22.5

Multiply (x) function {183}, application of
scalar function (51}, and ravel with axis
to display the prices for each group
on a separate line.

Identify the stock investment for each group:

GROUPS, C0STS+.x STOCK
MENS 3690 WOMENS 7870 CHILDRENS 2217.5

Array product (.) operator ([165) with
functions add and multiply as operands.

Determine the resulting net profit (total sales value minus total cost) for
each line in stock:

NET«STOCKxPRICES-COSTS
,[10INET
1053 900 261
857.5 787.5 304.5 567 2992.5
700 0 924 150

Subtract (-) function (243).

Determine the net profit by group and the total net profit:

+/"NET
2214 5509 1774

+/+/ NET
9gug7

Identify the group and style that has the largest net profit:

GROUP_STYLES<,(GROUPS,” ' ')eo.,STYLES
(,>NET=[/eNET)/GROUP_STYLES
WOMENS PUMPS

Array product operator (deriving outer
product) (186) and ravel (,) function
(202).

Maximum (I function as operand
to slash operator, slash operator (deriving
replicate , equal (=) function ,
and disclose () function (©4).

4 APL2 Programming : Language Reference

Chapter 2. Arrays

APL2 manipulates collections of numbers, characters, or both as single objects.
These collections are called arrays. Arrays have two properties: structure and data.
The following sections :

e Explain and illustrate the structural properties
e Describe the types of data items

e Explain the construction of arrays

e Detail the display of arrays

Structure

Rank

APL2 arrays are ordered rectangular collections of data items. There are three
measures of an array's structure:

e Rank
* Shape
e Depth

An array can have zero or more dimensions or axes. The number of axes that an
array has is called its rank. Arrays can be called one-dimensional, two-
dimensional, three-dimensional, and so forth, according to their rank. Figure 5
summarizes array structure by rank and gives sample arrays of various ranks. As
the figure shows, arrays of rank 0, 1, and 2 have special names. Any array with a
rank of two or greater is sometimes called a multidimensional array.

Figure 5. Summary of Array Structures

Name Description
Rank of Array of Array Example
0 Scalar One item arranged along 4
no axes.
1 Vector Zero or more items 12 6 N 5

arranged along one axis.

2 Matrix Zero or more items 6 8 3 1
arranged along two axes. 4 A 5 9
W X Y Z
3or no Zero or more items 9 2 3
more (as special arranged along n axes. G 7 @
many as name
the 5 8 1
system 4y 5 T
limit)

Axes: The last axis of an array of rank 2 or greater is called the column axis. The
next-to-last axis of an array of rank 2 or greater is called the row axis. There are
no established terms for the axes of arrays of rank 3 or more, although sometimes
the first axis of a three-dimensional array is called a page or a plane.

© Copyright IBM Corp. 1984, 1994 5

Shape

Each axis of an array contains zero or more items. The vector containing the
number of items along each axis is called the shape vector of the array. For
example, the shape vector of a 3-row by 4-column matrix M is 3 4. The typical
way of expressing this is to say that the shape of Mis 3 4.

The first item of the shape vector is the length or size of the first axis, the second
item of the shape vector is the length of the second axis, and so forth. The number
of items in an array is the product of the lengths of the axes. Thus, a 3-row,
4-column matrix contains 12 items (3 x4). And a two-page, two-row, three-column
array also contains 12 items (2x2x3)| Figure 5 on page 5|shows examples of
these two arrays.

The shape function (p), discussed on page [241] can be used to find the shape and
rank of an array.

Empty Arrays: If the length along one or more axes is 0, the array is empty and
the number of items in the array is 0. An empty array has a rank of 1 or greater,
because a scalar has no axes and therefore cannot have an axis of length 0.
Chapter 4, “General Information” on page 46|describes the effects of applying
operations to empty arrays and[Chapter 7, “Defined Functions and Operators” on|

explains further uses of empty arrays.

Rectangularity

All APL2 arrays are rectangular—even scalars and vectors. Rectangularity in APL2
arrays means that the position of an item along any axis is independent of its posi-

tion along the other axes. Thus, in a matrix, for example, every row has the same

length.

An item in an array is located by naming its position along each axis. For example,
in the 3 by 4 matrix MAT, shown below, each item is located by naming first its
position along the rows and then its position along the columns. In the example,
the positions appear as subscripts on each item of MAT.

A1,1 B1,2 01,3 D1,4

Eyi Fop Gog Hpy
T34 J3o Kzz Lgy

Positional notation of an item in an array is called the index of the item. The index
consists of an ordered set of integers, each of which describes the position of the
item along the corresponding axis. An index composed of subscripts {2,4}, for
example, locates the item in the second row, fourth column of a matrix. (In the
matrix MAT, this is the item H.)

In APL2, the index of an item can be denoted with square brackets surrounding the
index value. Semicolons separate the positions along each axis. For example, the
item H in the matrix MAT is selected by index as MAT[2 ;4]. (Bracket index is
fully described in [] Bracket Index” on page 701)

6 APL2 Programming : Language Reference

Row-Major Order: Selecting items from an array in row-major order means
selecting them row by row and from left to right within the row. For example, the
ravel function (,) makes any array a vector by selecting its items in row-major
order and structuring them as a vector.

M<«3 4p32 14 6 21 8 "7 12 3 9 42 27 18
M

32 14 6 21

8 7 12 3

9 42 27 18

M
2
32 14 6 21 8 "7 12 3 "9 u42 27 18

Subarrays
An array with each of its items contained in another array is a subarray of that

array. For example, the matrix 4 is a subarray of the matrix B. The shaded items

of B are found in 4, and no item of 4 is not in B.

A B
2 4 1 2 3 4
10 12 5 6 7 8
9 10 11 12

If the subarray includes all items along one or more axes of an array, it is a contig-

uous subarray of that array. For example, the shaded portion of the 3 by 5 array

shown on the left below is a contiguous column subarray because it contains all the

row positions. The shaded portion of the array on the right is a contiguous row
subarray.

In the 3 by 2 by 4 array on the left below, the shaded portion is a contiguous page

subarray because it includes all row and column positions. In the 3 by 2 by 4 array
on the right, the shaded portion is a contiguous row subarray because it includes all

page and column positions.

Chapter 2. Arrays

7

Depth

The concept of contiguous subarrays is important in understanding the application
of such functions as take, drop, grade up, and reverse. For example, take (4)
yields the intersection of contiguous subarrays selected along each axis of the right
argument. The left argument defines the number of subarrays to select along each
axis.

M< 3 5p 115
M

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

2 34+M
1 2 3
6 7 8

1 2 314 5
6 7 8] 910
11 12 13|14 15

Note: M could have been made up of characters or other arrays. However, the
result would still be the first three columns of the first two rows of M.

An item of an array is itself an array. If every item in the array is a simple scalar (a
single number or a single character), the array is called a simple array. If one or
more items in the array is not a simple scalar, the array is called a nested array. In
the examples below, for instance, the vector S on the left is a simple vector with
three items, each of which is a single number. The vector T on the right is a three-
item vector with two vector items and one item (4) that is a simple scalar.

Simple Vector Nested Vector
5«2 3 7 T«(2 3 7) 4 (8 1 3 2)
S T

2 3 7 2 3 7 L 8 1 3 2

In the nested vector example, the first item of T is the vector 2 3 7, the second
item of T is the scalar 4, and the third item of T is the vector 8 1 3 2. The
illustration below shows each vector item of T enclosed within a box. The outer
box represents the vector T in its entirety.

2374|8132

The degree of nesting of an array is called depth. A simple scalar has a depth of
0. The simple vector S has a depth of 1. This means that all its items are simple
scalars, that is, either single numbers or single characters. The depth of T is 2. A
depth of 2 means that at least one of its items has a depth of 1.

8 APL2 Programming : Language Reference

The following indicates the depths an array can have and gives the meaning of
each depth:

Depth Meaning
0 Simple scalar.

1 Simple, nonscalar array (vector, matrix, or n-dimensional array) con-
taining only simple scalars as items.

2 Array that contains at least one array of depth 1. It contains no items
with depths greater than 1.

n Array that contains, as an item, at least one array of depth n-1. For
example, an array of depth 6 contains at least one array of depth 5. It
may contain other arrays of lesser depth as well.

The depth function (=) (discussed in ['= Depth” on page 91) shows the depth of an
array.

The matrix M, below, shows the use of nested arrays to add headings to a table
and to substitute 'NONE' for items whose value is 0. The matrix has five rows
and three columns. Each item in the first row is a character vector, and each item
in the first column is a character vector. NONE in the last row, last column, is
also a character vector. The depth of ¥ is 2.

M
FOOD CALORIES PROTEIN
MILK 160 9
APPLE 60 1
BREAD 75 2
JELLY 50 NONE

Picture of an Array's Structure

Functions that illustrate the structure of an array are contained in the DISPLAY
workspace, one of the workspaces located in a public library and distributed with
the APL2 Program Product. This workspace is described in the appropriate work-
station user's guide or in APL2/370 Programming: Using the Supplied Routines for
CMS and TSO.

The result of the functions is a series of boxes that surround the array and its
items. To illustrate the array's structure, a simple scalar is shown as its value. The
top and left borders of the box display symbols that indicate the rank of the array.

If no symbol appears in either the top or left border, the array is a scalar. Informa-
tion in the lower border indicates either the data type of the array or that the array
is nested. The symbols are defined below:

Symbol Meaning

> Vector (at least)

¥ Matrix or multidimensional array

eor¢ Empty array along this axis

~ Numeric array

+ Mixed character and numeric data in array
no symbol Character data

€ Nested array

Scalar blank (also appears under a simple scalar character when the
array contains a nonscalar array)

Chapter 2. Arrays 9

When a path is traced from outside the display to an item, the number of lines
crossed is the depth of the item.

The examples below show the use of DISPLAY. The first example shows a
nested array of depth 2, and the second example shows a nested array of depth 3.

DISPLAY 1 2 'MORE' (3 'A') (2 2p14) 'B'

| R I L L |
| 1 2 |MORE| |3 Al +1 2| B |
| e e R R
| t~- |
|€ _________________________ 1
DISPLAY 1 2 '"MORE' (3 'OR') (2 2pi4) 'B'
e e e e e
e N > - e
1 2 |MORE| - v1 2| B

T~

| : : |
t----v	3 JORI	18 4] -
'		
'

Data

Numeric Data

10 APL2 Programming :

Data enters the active workspace by:

e Explicit entry at the display device

e Execution of APL2 functions and operators

e External functions

¢ Names associated with files

* Use of shared variables, system variables, system functions, and system com-
mands

An array can be composed of numbers or characters or a mixture of numbers and
characters. This section describes the characteristics and display of each type of
data.

All numbers are entered and displayed in decimal representation (base-10).
Numbers smaller or larger than the system limit cannot be used. (For the system
limits, see |Appendix C, “System Limitations for APL2” on page 489

Numeric data is complex—both real and nonreal numbers. Complex numbers are
numbers of the form a+bi, where i is the square root of ~ 1. A number is real if b is
0. A number is nonreal if b is not 0.

Real Numbers
Real numbers have the following attributes:

Attribute Meaning

Boolean Zero or one
Integer Nonfractional numbers, including zero and one
Rational Fractional numbers and integers

Language Reference

The irrational numbers pi (t) and e are available through the functions pi times (see
[‘o Pi Times” on page 194) and exponential (see[‘* Exponential’ on page 127) as
rational approximations to the extent of the numeric precision of the system. Other
irrational numbers, such as the square root of 2, are also available as approxi-
mations through the application of certain computational functions.

Real numbers can be entered and displayed in either conventional form (including a
decimal point, if appropriate) or scaled form. In conventional form, the number
twenty-five, for example, is represented as 25 and the number four and three-
tenths is represented as 4 . 3. In scaled form, the number one million is repres-
ented as 1E6.

Scaled Form: The scaled form of a number, which is also sometimes called the
exponential or scientific form, consists of three consecutive parts:

1. An integer or decimal fraction called the mantissa or multiplier.

2. The letter E, which can be read “times 10 to the power....”

3. An integer called the scale, which must not include a decimal point. The scale
specifies the power of 10 by which the mantissa is multiplied.

For example:
2.4578E6 ‘ 5.278912467E11
2457800 5.278912467E11

Negative Numbers: Negative numbers are represented by an overbar (~) imme-
diately preceding the number. In scaled form, the multiplier and the scale may both
be negative. For example:

~253 ‘ "5.1575E" 3
"0.0051575

253

Note that the overbar () used to start a negative numeric constant differs from the
bar (-) that denotes the subtract and negative functions.

Complex Numbers
Complex number constants can be represented in three forms, the last two of
which are polar notations:

1. Real and imaginary part separated by the letter & and no spaces. The number
is real if the imaginary part is 0.

2. Magnitude and angle in degrees separated by the letter D and no spaces. The
number is real if the angle is an integral multiple of 180.

3. Magnitude and angle in radians separated by the letter F and no spaces. The
number is real if the angle is an integral multiple of pi (x).

Chapter 2. Arrays 11

APL2 displays complex numbers in J notation, even though they can be entered in
any of the three forms. Defined functions FMTPR and FMTPD in the workspace
MATHFNS distributed with APL2 are available to display complex numbers in R
and D notation, respectively.

A nonreal number that has no real part is called an imaginary number. The imagi-
nary number i (the square root of ~ 1) can be written as:

0J1
1D90
1R1.5707963267948965

Either or both parts of a complex number constant can be specified in scaled form.
For example, 1.2E5J 4E 4 isthe sameas 120000J .0004, and
8E3D1FE?2 is the same as 8000D100.

Display of Numbers: Numbers can be entered in any of the forms discussed
above. The default display of numbers is governed by the printing precision (OPP,
see [[OPP Printing Precision” on page 315); possibly by the nature of other items in
the same array column (see[Display of Arrays” on page 17); and for numbers with
absolute values between 0 and 1, by the relationship of leading fractional zeros to
the number of significant digits.

The format by specification (%) function, discussed on page [143] can be used to
specify the form in which a numeric array is displayed.

Leading and Trailing Zeros: Leading zeros to the left of a decimal point and
trailing zeros to the right of a decimal point are not displayed. A single zero before
a decimal point is not considered a leading zero.

.5 .50000 000.2
0.5 0.5 0.2

oooy 4.560000 00.0123000
4 4.56 0.0123

Display Precision: The system variable OPP (printing precision) controls the pre-
cision with which numbers are displayed. The default value is 10 digits.

2.718 3.141592653589793
2.718 3.141592654

The precision with which numbers are stored internally is always the maximum that

the implementation permits. When OPP is set to its maximum, all available preci-
sion is displayed.

12 APL2 Programming: Language Reference

Display in Scaled Form: A number is displayed in scaled form when:
e The number of leading fractional zeros is greater than 5.

* The number of digits in the integer portion of a number exceeds OPP.
However, if the number is stored internally as an integer ((4+ OAT N)[21]is
less than 8), OPP is ignored and the number is not displayed in scaled form.

456789 OpPpP<«10
456789 .0000005678
OpPpP<«y 5.678E 7
456789
456789
456789.0
4.568E5

In scaled form, except for 0, the absolute value of the mantissa is greater than or
equal to 1 but less than 1 0. In scaled form, 0 is represented as 0EO.

467.34589F9 TuU56.,1793uU5EF 9
4.6734589EK11 TU4.561793uUKE 7

Display of Complex Numbers: Nonreal numbers are displayed in J notation
regardless of the notation in which they are entered. Although real numbers can be
entered in complex notation, they are always displayed in conventional form. For
example:

2J0 2J3

2 ‘ 2J3

In J notation, the real or imaginary part is not displayed if it is less than the other
by more than OPP orders of magnitude (unless PP is at its maximum). For
example:

2J3E45 3E45J2

0J3EU45 ‘ 3E45

Character Data
Character constants are created by entering a character from the keyboard within a
pair of single quotation marks. These surrounding quotation marks are not dis-
played on output. Their purpose is to identify an item as character data. For
example:

TA "TTME " 'WAO'
A TIME yAo

The leftmost example shows a single character, even though three-print positions
are necessary to create it. Likewise, V in the last example is one character, even
though an overstrike combination (V, backspace, |) is required to create it on
some display devices.

|[Appendix A, “The APL2 Character Set” on page 470| discusses the APL2 char-
acter set.

Chapter 2. Arrays 13

The single quotation mark character itself must be entered as a pair of single quo-
tation marks (without an intervening space) in a character constant:

NN VOANY YT
! CAN'T

Display of Characters

Characters are displayed exactly as they are entered, but without the surrounding
quotation marks and without double internal quotation marks. Blanks within quota-
tion marks are retained, and each blank is an item.

'3+4! 'ONE TWO THREE'
3+4 ONE TWO THREE

Note: Some characters are control characters and can cause unpredictable results
when displayed on certain devices.

Note: Characters that are not in AV cannot be displayed on most devices and
are shown as the omega (w) character. For example :

OAF 257

Construction of Arrays

Creating scalars and vectors of two or more items requires entry of only the data
that make up the items. Creating matrixes, arrays of higher rank, and zero- and
one-item vectors requires the use of functions.

Vector Notation
The juxtaposition of two or more arrays in an expression results in a vector whose
items are the arrays. Representing a vector in this manner is called vector
notation. Each of the following simple vectors is created by juxtaposing simple

scalars:
3 4 5 6 2 6 'D' 4 'y
3 4 56 2 6 D4 W
IFI IAI ICI IEI X<_6
FACE 2 3 X 36
2 3 6 36

Simple Vector: For a simple vector, either blanks or parentheses must separate
the items, unless a character item is adjacent to a numeric item or a name.
Although permitted, more than one consecutive blank or set of parentheses is
redundant. The following numeric vectors are equivalent:

1 2 <> 1(2) <> (1)2 <> (1)(2) <> 1 2
The following mixed vectors are equivalent.
2 'X'" 8 <> 2'X'8 <> 2('X')8 «»> (2('X')(8))
Characters in a vector consisting only of characters can be listed within one set of
single quotation marks:
VFACE"'" <~ (vFv YAY 'CY 'EV)

14 APL2 Programming: Language Reference

Note: When quotation marks surround each character, a space must separate the
characters.

VEY 14 g R B ARV ERNARYN-X
FACE F'A'C'E

Without the space, the inner quotation marks are interpreted as a quotation mark
character rather than as a character delimiter.

Nested Vector: Forming a nested vector with vector notation requires grouping
the items of the vector and separating the groups by parentheses or quotation
marks—or the names used must represent nonsimple scalars. Each of the fol-
lowing expressions yields a three-item nested vector:

(1 2 3)(4 5 6)(7 8)
123 456 78

'RED' 'WHITE' 'BLUE'
RED WHITE BLUFE

(9 7 4)'BOX'(7 'F' 9 'G")
9 74 BOX 7 F 9 G

('Up' 'UP'")'AND' 'AWAY'
UP UP AND AWAY

V<3 5 6
N LR /ARD'd]
0 383 56 X

The fourth example has a nested first item—the vector UP UP. The last example
is nested because the name V represents a vector. (See [‘Parentheses” on|
for more information about the use of parentheses in expressions.)

Vector notation cannot be used to construct a zero-item or one-item nested vector
because no juxtaposition takes place, and parentheses or quotation marks, if used,
do not both group and separate. You can construct a zero-item array by using
reshape (p) or one-item nested array by using the function enclose (<), as dis-
cussed in the next section.

Using Functions to Create Arrays

To create multidimensional arrays or to create vectors of zero or one item, you can
use a function. Methods of creating them include:

* Reshaping another array
e Joining arrays

» Selecting from an array
e Using table operations

Chapter 2. Arrays 15

The following examples illustrate array creation using some of the functions
described in [Chapter 5, “Primitive Functions and Operators” on page 62|

Reshaping Another Array

2 3p2 6 1 5 8 7

a1 N
@ O
~N -

3 2 Up'ABCDEFGHIJKLMNOPQRSTUVWX'
ABCD
EFGH

IJKL
MNOP

QRST
UVWX

Joining Arrays

2 4 6,[.518 10 12
2 4 6
8 10 12

'ABCD' ,[1.1]1'"WXYZ"'
AW
BX
cY
DZ

Selecting from an Array

V<'ABCDEF'
VI2 2p14]
AB
CcD

Using Table Operations

2 3 4 50,x1 2 3 4 5
4L 5
8 10
12 15
16 20
20 25

a F w N -
O oo FEN
ON O O W -

1
1 1
Although each of these examples shows the creation of a simple multidimensional

array, the functions apply in the same way when the data items are not single
numbers or characters. For example:

2 3p'ONE' 'TWO'

ONE TWO ONE
TWO ONE TWO

16 APL2 Programming: Language Reference

You can apply the function enclose (<), page [111], to create a scalar from an array
that is not a scalar. Using a nested scalar may be necessary in the construction of
certain arrays. Compare:

2 Lp'APL2' 2 Lpc'APL2'
APL?2 APL2 APL2 APL2 APL?2
APL?2 APL2 APL2 APL2 APL?2

In the example on the left, ' APL2"' is a simple four-item vector. In the example
on the right, c'APL 2" is a scalar array. The results of the 2 4 reshape of these
arguments are quite different.

Display of Arrays

[‘Display of Numbers” on page 12| and|‘Display of Characters” on page 14 discuss
the default display of numeric and character items. This section discusses the
default display of arrays. It assumes that the printing width of the display device is
wide enough to accommodate each line of data to be displayed. 0OPW (printing
width), page [318] discusses the display of lines wider than the printing width.

Simple Scalars and Vectors

Simple scalars and vectors are displayed in a single line. If an item in a simple
vector is a number, it is separated from adjacent items by one blank. Simple char-
acters are not separated from other simple characters. For example:

4 6 23 7 0 'x' 3 4 v'o' 1401 g
4 6 23 7 0 » 3 4 o4 9

If the single line is wider than the printing width (OPW), the line is continued on the
next physical line and is indented six spaces.

Simple Matrixes and Other Multidimensional Arrays

The displays of simple arrays are not indented. A simple matrix is displayed in a
rectangular plane. All items in a given column of a simple matrix are displayed in
the same format, but the columns themselves can have different formats and dif-
ferent widths.

If a column in a simple matrix contains a number, that column is separated from
adjacent columns by at least one blank. For example:

2 5p'x' '[J' 'A' 123 45 'Oo' 'V' 6 7 8

*0 A 123 45
oV 6 7 8

Chapter 2. Arrays 17

Simple multidimensional arrays are displayed in rectangular planes. Planes of a
three-dimensional array are displayed with an intervening blank line. For higher
dimensional arrays, each successive plane is separated by an additional line. For
example:

2 2 2 3p1 2 3 4 56

One line separates the planes

[ERN
N
w

Two lines separate successive planes

[ERN
N
w

1 2 3
4L 5 6

If a column in a simple multidimensional array contains a number, that column is
separated from adjacent columns in all planes by one blank. All items in corre-
sponding columns of the planes are displayed in the same format.

Simple matrixes and other multidimensional arrays containing numbers that require
scaled form are displayed with all items in a column in the same format.

OPP<«4

2 2p23 .0056 34566.0 .00000056
2.300FE1 5.6E 3
3.457E4 5.6E 7

Decimal points, the E in scaled notation, and the ¢ for complex numbers align in
columns. The columns are formatted independently. For example:

2 4p1 12.3 345 6J7 .1 .12 1J2 16J6
1 12.3 345 6J7
0.1 0.12 1J2 16J6

Some simple arrays containing nonreal numbers may be displayed in a form not

suitable for input. The separator & in each column is aligned at the possible cost
of separating paired real and imaginary parts, as in the first three columns of the

matrix shown below.

4 L4p0 1 2J3 U4J5.6 7.8J9

0 1 2 J3 L4J5.6
7.8J9 0 1 2J3

4 J5.6 7.8J9 0 1

2 J3 4 J5.6 7.8J9 O

18 APL2 Programming: Language Reference

Nested Arrays

The displays of nested arrays (and nested items within an array) are indented one
space, and they also include a trailing blank. In each of the examples below, the
first display shows the array as it is displayed. In the second display, a caret indi-
cates each displayed blank.

(1 2 3) (4 5) 6 (7 8 9 10)
123 45 6 789 10

ALA2ASAAUASAABAATASAIALIOA

Character vectors and scalar items in a column that contains numeric items are

right-justified.
4 2p'ONE' 'TWO' 1111 22 "4 5 7'2!
ONE TWO ANONEATWOA
1111 22 ALL111AA22A
i 5 AAATLAAASA
7 ? AAAATAANDA

Character scalars or vectors in a column that contains no numbers are left-justified:

3 3p'ONE' 1111 22 'TWO' "4 5 'THREE' 7 '2!

AONEAAANLLLLIA22A
ATWOAAAAA LAABA
ATHREEAANANNTANDZA

Two 45

ONE 1111 22 ‘
THREE 7 0?7

Other nested arrays are presented in a display that contains embedded blanks
according to the structures of the adjacent items. The number of embedded blanks
is one fewer for character items than for other items.

3 2p1 2 3,(c4 5 6),7,cc8 9

1 2 ALAAAAAADA
3 L 5 6 ASAALABABA
7 8 9 ATAAABATAA

The default format function (page [135) yields a simple character array whose
appearance may be the same as the display of its argument. (If they are different,
it is because of OPW.)

You can use the functions in the DTSPLAY workspace distributed with APL2 (as
discussed in [‘Picture of an Array's Structure” on page 9) to illustrate an arrays
structure.

Chapter 2. Arrays 19

Chapter 3. Syntax and Expressions

The rules for combining arrays with functions and functions with operators define
the syntax of APL2. This chapter contains:

e A summary of syntax and the evaluation of expressions.
e The details of APL2 syntax
e The syntactical evaluation of expressions

Summary of Syntax and Evaluation of Expressions
The following figures summarize the rules discussed in this chapter.

NAMES

Names for variables and for defined functions and operators are character
strings, consisting of one or more of the following:

First character A..Z,a.z, AorA
Other characters Same as first character plus 0...9, , and

Names cannot begin with SA or T'A, which are reserved for stop control and
trace control.

Names for system functions and system variables are called distinguished
names. Except for beginning with a 0, they follow the same rules as other
names.

For more information, see[‘Names” on page 24|

EVALUATION OF EXPRESSIONS

All functions execute according to their position within an expression. The right-
most function whose arguments are available is evaluated first.

For more information, see[‘Evaluating Expressions” on page 32}

20 © Copyright IBM Corp. 1984, 1994

NAME AND SYMBOL BINDING

Binding strengths of arguments, operands, and syntactic construction symbols
supplement the function evaluation rule. Binding defines how names and
symbols group for evaluation.

The hierarchy of binding strengths in descending order is:

Binding Strength What Is Bound

Brackets Brackets to what is on their left
Specification left Left arrow to what is on its left
Right operand Dyadic operator to its right operand
Vector Array to an array

Left operand Operator to its left operand

Left argument Function to its left argument

Right argument Function to its right argument
Specification right Left arrow to what is on its right

For binding, the branch arrow behaves as a monadic function. Brackets and
monadic operators have no binding strength on the right.

For more information, see|‘Name and Symbol Binding” on page 33

PARENTHESES

Parentheses are used for grouping and for changing the default binding. They
are correct if properly paired, and if the content within evaluates to an array, a
function, or an operator.

Parentheses are redundant when:

e They group a single name (primitive or constructed).
e They group an expression already within parentheses.
e In an array expression, they:
— Do not both group and separate.
— Group the right argument of a function.
— Group the vector left argument (written in vector notation) of an
expression.
¢ In a function expression, they:
— Group the left operand of an operator.
— Group the function expression, and a left parenthesis does not separate
two arrays.

For more information, see|‘Parentheses” on page 36).

Chapter 3. Syntax and Expressions 21

VECTOR NOTATION

A vector can be created by juxtaposing two or more arrays in an expression.
The items of a vector are arrays. If all items are simple scalars, the vector is
simple. If at least one item is not a simple scalar, the vector is nested. For
example, the three-item vector 5 'H' 3 is simple, and the three-item vector
(2 5 1) 5 (2 8) isnested.

For more information, see[*Vector Notation” on page 14|

SPACES

Spaces or parentheses are needed to separate constructed names if not sepa-
rating them produces a different name. Spaces or parentheses are also
needed to separate constructed names from other symbols, if not separating
them produces an invalid name. For example, 3 F U4 requires spaces
because 3F is an invalid name and F4 is a different name.

Spaces are not needed to separate primitive operations from their arguments or
operands, or to separate a primitive operation from a defined operation. Redun-
dant spaces are permitted.

For more information, see [“Syntactically Valid Expressions” on page 28|

VALENCE

All functions are ambi-valent (can be monadic or dyadic), and the definition
used in any instance is determined only by context.

Operators are not ambi-valent. A given operator is either monadic or dyadic,
determined by definition, not context.

For more information, see|‘Determining Function Valence” on page 33|

APL2 Syntax
The discussion on APL2 syntax covers:

e Arrays
e Functions and their relationship to their arguments
e Operators and their relationship to their operands

22 APL2 Programming: Language Reference

Functions

Functions apply to arrays and produce arrays as a result. The arguments of func-
tions are the arrays that functions manipulate. A function may have one or two
arguments. If the function is a defined function, it can have no arguments or can
be defined to take either one or two arguments. The number of arguments that a
function takes is called its valence. The following terms can be used to describe
the valence of a function:

Term Valence
Niladic Function No arguments
Monadic Function One argument
Dyadic Function Two arguments

A function that can take either one or two arguments is ambi-valent. For example:

-16 22 20-16 22

T16 22 b 2

If a function is monadic, the function name is placed to the left of the argument, as
in the following examples for the shape (p), depth (=), and factorial (!) functions:

p3 5 7 9
='ONE' 'TWO'
!5

If a function is dyadic, the function name is placed between the arguments, as in
the following examples for the divide (+), pick (>), and rotate (¢) functions:

L+5
3>'RED' 'WHITE' '"AND' 'BLUE'
1¢'SPIN'

Axis Specification

Some primitive functions can be applied along an indicated axis of an argument
array. This application is called axis specification. The indicated axis is enclosed
in brackets and appears to the immediate right of the function symbol. The fol-
lowing examples of axis specification use the 3-row, 4-column matrix M:

M<«3 LUp112
M

3 4

7 8
11 12

O o=
o o N

1
To append another row:

M,[1]J13 14 15 16
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Chapter 3. Syntax and Expressions 23

Operators

Names

To add .3 to the items in the first row, .2 to the items in the second row, and .1 to
the items in the third row:

.3 .2 J1+[11M
1.3 2.3 3.3 4.3
5.2 6.2 7.2 8.2
9.1 10.1 11.1 12.1

See also [‘Conditions for Axis Specification” on page 45|

Operators take functions or arrays as operands and produce functions (derived
functions) as a result. An operator can be monadic or dyadic; that is, it can take
one or two operands. Operators are never ambi-valent, but their derived functions
are.

If an operator is monadic, the operator name is placed to the right of the operand,

as in the following examples for the slash (/) and each () operators:

+/
o

If an operator is dyadic, the operator name is placed between the operands, as in
the following example for the array product (.) operator:

+ . X

o .

In this context, the jot symbol (¢) is treated syntactically as a function.

The derived function resulting from applying an operator can be monadic or dyadic.
Its valence does not depend on the valence of the operator from which it is derived.
For example, slash is a monadic operator. The derived function summation is
monadic, and the derived function n-wise summation is dyadic:

Summation +/1 2 3 U4
n-wise summation 2+/1 2 3 4

The operators / and \ can be applied along an indicated axis. The indicated axis
is enclosed in brackets and appears to the immediate right of the operator. For
example, for the 3-row, 4-column matrix » shown on page [23}

10 2/011M 102 1/021M
1 2 3 4 1 3 3 4
9 10 11 12 5 7 7 8
9 10 11 12 9 11 11 12

Names are symbolic representations of APL2 objects—arrays, functions, and oper-
ators. Some names are always associated with the same object. These are called
primitive names. Other names may be associated with different objects at different
times. These are called constructed names. The rules for writing expressions,
detailed later in this section, explain how to combine names.

24 APL2 Programming: Language Reference

Names beginning with the character 0 are called distinguished names and are
assigned fixed meanings. For more information about distinguished names, see

Chapter 6, “System Functions and Variables” on page 259|

Primitive Names

Primitive names are those that are defined as part of the definition of APL2. A
given primitive name is always associated with the same object. The primitive
names in APL2 are numbers, characters, and the primitive function and operator
symbols. For example, each of the names listed below is a single primitive name,
even though the last two occupy more than one print position.

Name Meaning

¢ o function name for rotate and reverse
b operator name for each

24,5 number

'R! character

Note that APL2 also includes special syntactic symbols that are not names. These
areoc ' [1 () « > ;3 O: a. Their uses are discussed in [Expressions” on|

Constructed Names
There are two types of constructed names:

* Names for arrays, defined functions, defined operators, and labels
 Distinguished names (prefixed by 0) for system functions and system variables

Constructed names receive values by being associated with APL2 objects. Using a
valid name that is not associated with an object results ina VALUE ERROR.

Rules for Constructed Names
Names are constructed of one or more characters with the following constraints:

* |Initial (or only) character is from the set:
ABC...XYZA
abc...xyzA

e Remaining characters (if any) are from the set:
ABC...XYZA
abc...xyzA
0123456789 _ "~

e Certain compatibility settings in APL2/370 permit, or default to, the use of
underbarred uppercase letters instead of lowercase letters. For more informa-
tion see APL2/370 Programming: System Services Reference.

e The combinations SA and T'A cannot be used as the first two characters of a
name. They are reserved for stop control and trace control, respectively.

Chapter 3. Syntax and Expressions 25

Any name constructed according to these rules is valid. The following examples
show some valid and invalid names:

Valid Names

M
STOCK
AVERAGE
LOW_BID
REGION?2
R2D2

Invalid Names

SET UP Contains a space
3PRIME Begins with a number
"ABCDE Begins with an overbar

Associating Names with Objects: A constructed name has no value (it is not
associated with a defined function, a defined operator, an array, or a label) until
some action is taken to specify the association.

Names become associated with arrays through the use of the specification arrow
(«), through parameter substitution when a defined function or operator is invoked,
or through the use of dyadic ONA. A variable is a constructed name that is associ-
ated with an array.

Labels are used in defined functions or operators to identify the target of branching.
A label is associated with the line number in the body of a defined function or oper-
ation in which it appears.

Defined functions and operators are associated with user names as an implicit
result of the OF X function, or through the use of dyadic ONA. Functions may also
be associated with user names through parameter substitution in a defined oper-
ator. Editors, system commands, and facilities outside the language can also asso-
ciate names with objects.

Distinguished Names

Distinguished names are character strings reserved for fixed uses in the language.
Distinguished names follow the rules for names except that they begin with the
character [(quad). Distinguished names associated with arrays are called system
variables; those associated with functions are called system functions. System var-
iables and system functions help manage the active workspace and APL2 facilities
and environment; for example, 0I 0 (index origin) and OPP (print precision).

Although any distinguished name constructed according to the rules for names is
valid, only a few are associated with objects. Specifying a distinguished name that
does not represent a system function or system variable generates a SYNTAX
FRROR.

26 APL2 Programming: Language Reference

Syntactic Construction Symbols
The syntactic construction symbols and their uses are listed below. The roles
these symbols play in the evaluation of expressions are discussed later in the
chapter.

Brackets []
Positioned to the right of an array name, indicate indexing; to the right of a
function or operator name, indicate axis specification.

Branch or escape arrow -~
Followed by an expression, indicates the next line, if any, in a defined func-
tion or operator to be executed. Alone, clears the state indicator of a sus-
pended operation and its entire calling sequence. (Branching is fully
discussed in[‘Branching” on page 349)

Jot o
Acts as a placeholder for the left operand of outer product.

Parentheses ()
Used for grouping; expressions within parentheses are evaluated first.

Quotation mark '
Delimits a character string.

Semicolon ;
Within brackets, separates the indexes along each axis. In the header of a
defined operation, separates list of local names from each other and from
operation syntax.

Diamond ¢
Separates multiple expressions that appear in a single line.

Specification or assignment arrow «
Associates a name with an array, or modifies the values of selected posi-
tions in an array already associated with a name.

Expressions

An expression consists of primitive and/or constructed names and possibly one or
more syntactic construction symbols. For example:

537
LIST<«'PETER' 'PAUL' 'MARY'
+/0113 2p8 9 3 2 5 7

When an expression containing a function or a derived function and its argument(s)
is evaluated, the result is an array. Such expressions—and array primitives— are
called array expressions. For example:

15 110

15 123456 789 10
Lp?2 x/2 7 5

2 2 2 2 70

An expression containing only a function or derived function and no arguments is
called a function expression, and an expression containing only an operator and no
operands is called an operator expression. Function and operator expressions can
be evaluated only in the context of an array expression. Although valid, they gen-

Chapter 3. Syntax and Expressions 27

erate a SYNTAX ERROR if entered independently. (Note that niladic functions
are treated syntactically like arrays, not functions.)

Statements

A statement is an executable unit of work. It is made up of three parts, as shown
below. Any of the three parts can be omitted but, if included, they must appear in
the order shown below.

label : expressions A comment

where:
(colon) Separates a label from the rest of the line.
expressions Can be:
e No expression
¢ One expression
e More than one expression separated by diamonds ({))

A (comment) Separates the expressions from explanatory informa-
tion. Any spaces between the end of the expression and the n
are retained.

For example:

TEST:»(X<0)/L1 ACHECK FOR NEGATIVE X
TRY:
AFUNCTION REPLACES 0'S WITH '-'

4+9x7
A<1 B<2

Syntactically Valid Expressions

The rules for writing syntactically valid expressions are few. They concern vector
notation, placement of operations, syntactic construction symbols, and spaces. An
expression written following these rules does not generate a SYNTAX ERROR,
although it can generate some other error. The quick reference section at the front
of this manual summarizes the rules.

Vector Notation: You can create a vector by writing its array items separated by
spaces, parentheses, and/or quotation marks. (See also [Vector Notation” on

lbage 14)

Placement of Operations: The following rules apply:

e A dyadic function or operator name is written between its arguments or oper-
ands.

e A monadic function name is written to the left of its argument.

* A monadic operator name is written to the right of its operand.

28 APL2 Programming: Language Reference

Syntactic Construction Symbols: The following rules apply to the use of syn-
tactic construction symbols.

» Parentheses, quotation marks, and brackets must be matched.

Examples - Valid:
(A B C)L2]
(A#2B)\[11MAT
|DON| |T|

Examples - Invalid:
(K<N/TRT Missing right parenthesis
'CAN'T! Missing single quotation mark

» Parentheses are permitted around array, function, and operator expressions.
They must not split a name or group functions or operators.

Examples - Valid:

(4-7)+6

(rsznhc

Examples - Invalid:

Q-(.%)R Splits derived function
NA(ME) Is not the same as NAME
AC11)B Groups functions
,(7/)1 2 3 Groups operators

(See also [Parentheses” on page 36})

e The expression to the right of a specification arrow must be an array. The
syntactic object to the left of the specification arrow can be the name of an
array, or a name not associated with an object, a list of names, or an
expression that selects positions from an existing named array.

Examples:

D<+110
M[2;3]1<«k

(J K)<3 4
(22X)«c'NEW'

(See also [“Specification of Variables” on page 39)

e A branch arrow either must be the leftmost symbol or must be to the immediate
right of a label. Any expression to the right of the branch must be an array
expression.

Examples:
~(M>0)/POSITIVE
L:>(M>0)/POSITIVE

>

» Semicolons are allowed only within brackets.
Example - Valid:
MAT[1 435 2 6]
Example - Invalid:
'TOTAL ' ;345 Semicolon is not within brackets

e Semicolons are used in the headers of defined operations but the header is not
an APL expression.

Chapter 3. Syntax and Expressions 29

e A colon is allowed only following a name (a label) that is the leftmost name on
the line.

Example:
POSITIVE:Z<M

Spaces: Spaces are needed to separate constructed names from other symbols if
not separating them produces an invalid name.

Examples - Valid:

3 FN15
3. FN15

Examples - Invalid:

3FN15
3.FN15

Spaces are not needed to separate primitive operations from their arguments or
operands, or from a defined operation.

DIT < D [T <> D[T <> D [T

Note that a space is also needed to maintain the meaning of adjacent constructed
names if they are not enclosed in parentheses. However, no SYNTAX ERROR is
generated if the space is omitted. For instance, AB CD is not the same as ABCD,
noris 'IN' 'OUT' thesameas 'IN''OUT'. But:

AB CD <> (AB)(CD) <> (AB)CD <> AB(CD)
VIN' '0UT' <> ('IN')('0UT') <> ('IN')'OUT'

Redundant Spaces and Parentheses: Redundant spaces and parentheses are

permitted and, in fact, are often employed to make an expression more readable.

Redundant spaces do not change the meaning of an expression and they produce
no errors.

Examples:
4 - 79 <> 4-"9

8 1 4 3(+DOP+)9 2 4 2 <> 8 1 4 3+DOP%+9 2 4 2

(See also |[‘Redundant Parentheses” on page 37})

30 APL2 Programming: Language Reference

Defined Functions and Operators

The syntax of defined functions and operators is illustrated below, using the fol-
lowing arbitrarily chosen names:

Z Result name

F Function name

L Left argument name
R Right argument name

MOP Monadic operator name
DOP Dyadic operator name

Lo Left operand name
RO Right operand name
Forms with Explicit Result Forms without Explicit Result
1. Z«F R 8.F R
2.72«L F R 9.L F R
3. 2«(L0O MOP) R 10. (LO MOP) R
4. 7«L (LO MOP) R 11.L (LO MOP) R
5.2«(L0O DOP RO) R 12. (LO DOP RO) R
6. Z«L (LO DOP RO) R 13. L (LO DOP RO) R
7. Z<«F 14. F

Forms 1 and 2 are defined functions syntactically equivalent to primitive functions.
They can be substituted wherever a primitive function is used. Forms 3 through 6
are operators syntactically equivalent to primitive operators. Note that these forms
show the arguments of the derived functions.

All syntactic rules apply to defined functions and defined operators with explicit
results in the same way that they apply to primitive operations. For example, in the
following expression the dyadic function COMPOUND is placed between its argu-
ments. The array result of COMPOUND is the right argument of the monadic func-
tion ROUND.

YEAREND<ROUND .12 COMPOUND 10000

A niladic defined function with explicit result (form 7) behaves syntactically as a
variable and can be used in the same way as a variable except that it cannot be
used to the immediate left of a specification arrow. For example:

VZ<PI
[1] 7<01V

PIx3%2 A AREFA OF A CIRCLE WITH RADIUS 3
Forms 8 through 14 do not include an explicit result. They constitute valueless

expressions. Defined operations without explicit results must be the leftmost opera-
tion in the expression and cannot be enclosed in parentheses.

System Functions and System Variables

System functions behave syntactically like primitive functions, and system variables
behave syntactically like variables.

Chapter 3. Syntax and Expressions 31

Evaluating Expressions

Expressions can be syntactically correct, yet fail to evaluate. Syntactically correct
APL2 expressions can give unexpected results or can generate errors other than
SYNTAX ERROR. For example:

e VALUE ERROR is given if a constructed name that has not been associated
with an object is used.

e LENGTH FRROR or RANK ERROR is given if the arguments are not
conformable.

e DOMAIN ERROR is given if the function is not defined for the type of argu-
ment entered.

Error messages are described in|Chapter 11, “Interpreter Messages” on page 461|

Expressions with More Than One Function and No Operators
When an expression contains only one function and its argument(s), a syntactically
correct expression is evaluated in only one way. The function, if any, is applied to
its argument(s) to yield the result. However, when an expression is written con-
taining more than one function, a rule is needed to determine which is to be evalu-
ated first. For instance, is multiplication or addition applied first in the following
expression:

2x3+U4

The evaluation of this expression—and others that contain more than one function
and no operators— follows the basic APL2 evaluation rule:

All functions execute according to their position in an expression.
The rightmost function whose arguments are available is evaluated
first.

This rule is often called the right-to-left rule. Because of the right-to-left rule, addi-
tion in the expression 2x3+U4 is executed first and then multiplication:

2x3+4
14

If 2x3 were parenthesized, the expression within parentheses would be the left
argument of +. It must be evaluated first; then its value would be available as the
left argument of +:

(2x3)+4
10

This explains the rule that the rightmost function whose arguments are available is
evaluated first.

32 APL2 Programming: Language Reference

Determining Function Valence

All functions are syntactically ambi-valent. They can take one or two arguments.
The context in which a function appears determines whether the monadic or dyadic
definition is used. If the object to its left is an array, the function is dyadic. If the
object to its left is a function or operator or derived function expression, it is
monadic. For example, 1 in the following expression is monadic (the interval func-
tion) because the name to its left is a function name:

10x110
10 20 30 40 50 60 70 80 90 100

In the next expression, however, 1 is dyadic (the function index of) because the
name to its left is an array:

8 9 715 9 6 8
4L 2 4 1

Even when the same name is used both monadically and dyadically in an
expression, its meaning is unambiguous. For example:

9 4 6116
L u 4 2 4 3

The rightmost 1 is monadic because the name to its left is a function. The next 1
is dyadic because the name to its left is an array. Its right argument is the array
16.

If a right parenthesis) is to the left of a function, the subexpression within paren-
theses must be evaluated before you can determine whether the function is
monadic or dyadic.

Function with Only Either a Monadic or Dyadic Definition: Some functions
have only a monadic definition, for example, execute (¢2). Some functions have
only a dyadic definition, for example, the relational functions. If these functions are
entered with the wrong number of arguments, a VALENCE FERROR is generated,
nota SYNTAX ERROR. ltis always syntactically correct to write a function with
one or two arguments.

Name and Symbol Binding
The right-to-left rule is the fundamental evaluation rule of APL2. However, it does
not cover all situations, such as when an array is written in vector notation or when
an expression contains operators and syntactic construction symbols. To cover all
situations, a rule of binding strengths supplements the right-to-left rule. Binding
defines how names and symbols group for evaluation. Given three names (or
symbols), binding strength determines if the center one is associated with the name
(or symbol) on the left or the right.

Chapter 3. Syntax and Expressions 33

The hierarchy of binding strengths is listed below in descending order.
Binding Strength What Is Bound

Brackets Brackets to what is on their left
Specification left Left arrow to what is on its left
Right operand Dyadic operator to its right operand
Vector Array to an array

Left operand Operator to its left operand

Left argument Function to its left argument

Right argument Function to its right argument
Specification right Left arrow to what is on its right

For binding, the branch arrow behaves as a monadic function. Brackets and
monadic operators have no binding strength on the right. Parentheses, discussed
on page [36] change the default binding.

Brackets
Brackets indicate indexing if the object to their left is an array; brackets indicate
axis specification if the object to their left is a function or operator.

Brackets have the highest binding strength. If an expression contains brackets, the
brackets bind first to the object on their left before any other binding occurs. For
example, the following expression is a three-item vector whose first item is A[11,
whose second item is B[2], and whose third item is C[3]:

A<"HAT"
B<4 8 10
C<'W' 2 'X' 7

AC1]1 BL2]1 (CL3]
H 8 X

In contrast, the following expression is a three-item vector whose first item is 4,
whose second item is B, and whose third item is C[2]:

A B C[L2]
HAT 4 8 10 2

Note: The expression 7 6 9[2] generatesa RANK ERROR because the
brackets bind to the 9 only. To select the second item of a vector, use paren-

theses:
(A B C)[2]
4 8 10
(7 6 9)[21]
6

Finally, in the following expression the brackets bind to the / to produce a new
monadic operator, which binds to + as its operand:

D<«3 2p16
+/011D

34 APL2 Programming: Language Reference

Specification—Left and Right

The specification arrow binds to the name or the expression naming array positions
on its left. Thatis, A B«C <> A (C. The expression A B<C(C has the side
effect of assigning to the name B the value of C. For example:

A<2 3 4
B<8
C<'NEW"'

A B<C
2 3 4 NEW

B

NEW
AL3]«'V!
A

2 3V

The entire expression to the right of the specification arrow is an array. That is, the
expression is evaluated before the assignment is made. Therefore, specification
right has the least binding strength.

Right Operand and Left Operand
The right operand of a dyadic operator is the function or array to its immediate
right.

(Note: No primitive dyadic operators take an array right operand.)

For example, the function expression + . x/ is a reduction by a + . x inner product
because the x binds as right operand to the array product operator (.), and not as
left operand to the slash operator (/). The + binds as left operand to the dot; then
the resulting product binds to the slash as its left operand.

t.x/ <> (+.x)/not+.(x/)

There is no binding between operators. In the expression , ~ /, catenate binds as
left operand to the each operator, and then the derived function , ™ binds as left
operand to the slash operator.

e (L))

Vector Written with Vector Notation
When two arrays are written next to each other in vector notation, there is a binding
between them. This binding is called vector binding.

Vector binding is stronger than the binding of a function to its arguments. Thus, the
expression 2 3+4 5 yields a two-item vector 6 8, not the three-item vector 2

7 5. Parentheses can be used to override the default binding. So 2 (3+4) 5,
for instance, yields the vector 2 7 5.

Vector binding is also stronger than the left operand of an operator. Thus, the

expression 2 1 3/ (which yields the derived function replicate) replicates the
subarrays of its argument 2, 1, and 3 times, respectively. It does not form a three-

Chapter 3. Syntax and Expressions 35

item vector whose first two items are 2 1 and whose last item is formed by the
3-replication of the argument of 3/.

2 1 3/4 <> (2 1 3)/4 not 2 1 (3/4)

Vector binding is not stronger than right operand binding. This is important for
defined dyadic operators, which may take an array right operand (none of the primi-
tive dyadic operators takes an array right operand). For example, if DOP is a
defined dyadic operator and LO is a function:

LO DOP A B <> (LO DOP A) B not LO DOP (A B)

Left Argument and Right Argument

Stating that left argument binding is stronger than right argument binding is another
way of stating that the evaluation of the expression begins with the rightmost func-
tion whose arguments are available.

For example, in the following expression, 3 is bound as the left argument of +
rather than as the right argument of x.

2x3+4

| Multiple Expressions in a Line

Parentheses

The diamond separator allows multiple APL expressions to appear in a single line.
The expressions are processed from left to right. For example:

A<B () B<B+1

First 4 is assigned the value of B, then B is assigned the value of B plus 1.

Parentheses are used for grouping and changing the default binding. They can be
used anywhere as long as they are properly paired and what is inside the pair eval-
uates to an array, a function, or an operator. An expression within parentheses or
one that validly can be put within parentheses is called a subexpression. Valid
subexpressions always return explicit results. If an expression that returns no
result is parenthesized, a VALUE FEREROR occurs.

36 APL2 Programming: Language Reference

To evaluate an expression containing parentheses, evaluate the subexpression
within the parentheses, substitute for the parenthesized expression the value it
produces, remove the parentheses, and continue the evaluation of the expression.
For example:

(9-4)=225 Evaluate (9-4)
(5)+25 Remove the parentheses
5+25 Continue the evaluation
0.2 Result

If an expression within parentheses contains an expression within parentheses, the
rightmost function whose arguments are available is the first evaluated. For
example:

((6<10)A620)/'DIGIT"' Evaluate 6=0
((6<10)A1)/'DIGIT' Evaluate (6<10)
((1)A1)/'DIGIT' Remove inner parentheses
(1A1)/'DIGIT' Evaluate (1a1)
(1)/'DIGIT' Remove parentheses
1/'DIGIT"' Continue the evaluation
DIGIT Result

Redundant Parentheses

Some parentheses that are correct can be removed from an expression without
affecting the result of the expression, because they do not change either the
binding of the names or the syntactic construction symbols of the expression.
These are called redundant parentheses.

Parentheses surrounding a primitive or constructed name, a character string
(enclosed in quotation marks), or an already parenthesized expression are always
redundant. For example:

2(+)3 <> 243 Primitive function name
A+(.)xB <> A+.xB Primitive operator name
(2)+1 <> 2+1 Primitive array name
(A)<3 <> A<3 Constructed array name
('ABC'") <»> '"AB(C' Character string
((2-3))+1 <> (2-3)+1 Parenthesized expression

Redundant parentheses may be added to or removed from expressions freely
without changing the value of the expression. Additional guidelines for removing
parentheses are given below.

Vector Expressions in Parentheses: In expressions of arrays, parentheses that
do not separate and group are redundant.

Examples—Redundant Parentheses:
2 (3) 4 <> 2 3 4 These separate but do not group.

(2 3 4) <> 2 3 4 These group but do not separate.

Chapter 3. Syntax and Expressions 37

Examples—Nonredundant Parentheses:

'H' (2 2p14)isnotthesameas 'H' 2 2p 14 (whichis an error).
The parentheses separate.

2 (3 u4)isnotthe same as 2 3 u. The parentheses group and separate
to create a two-item nested vector. (See also [‘Vector Notation” on page 14})

Array Expressions in Parentheses: Parentheses in an expression alter the
default binding of arguments to functions. For instance, to subtract 3 from 8 and
then divide the result by 4:

(8-3)=:u
1.25

Enclosing 8 - 3 in parentheses causes 3 and - to be bound even though the left
argument binding of + is stronger than the right argument binding of -.

Parentheses in array expressions are redundant if they group the right argument of
a function, a vector left argument of a function, or brackets to the array immediately
to their left. For example:

8-(3+4) <> 8-3%4 Groups right argument
(2 3)xL4 <> 2 3xUu Groups vector left argument
A B (C[2]) <> A B C[2]1 Groups brackets to array on their left

Function Expressions with Parentheses: Parentheses in an expression alter the
default binding of operands to operators. For instance, to express an outer product
where the function applied is an inner product:

o, (+.x%x)

Enclosing + . x in parentheses causes + to be bound to the dot on its right even
though the right operand binding of the leftmost dot is stronger.

Parentheses in function expressions are redundant if they group the left operand of
an operator or if the left parentheses does not separate two arrays. For example:

(+.x)/ <> +.x/ Groups left operand
A(+.x)B <> A+.xB Groups function expression

Operator Expressions with Parentheses: In any syntactically valid operator
expression, parentheses are redundant. For example:

+()Xx <> +.x Surrounds operator name

38 APL2 Programming: Language Reference

Specification of Variables

Specification or assignment is one way that an array associates with a name. For
example:

A<'ONE' 'TWO' B<«110
A B
ONE TWO 1 23 456 78 9 10

The explicit result of specification is the array on the right. This result does not
produce a display but is available for further computation. To see the value of the
variable, enter its name. The name, once specified or set, represents the array and
can be used in place of the data in APL2 expressions.

100,B<110
100 1 2 3 4 56 7 8 9 10

An attempt to assign a value to a function, operator, or primitive name generates a
SYNTAX ERROR.

When an expression containing a variable is evaluated, the value of the variable is
substituted for the name before the function or operator is executed. For example,
with 4 as specified above:

224 Substitute the value of 4
TWO

25'ONE' 'TWO' Evaluate the expression
TWO

Using a Variable
Use of a variable name without a specification arrow to its immediate right is a
reference or use of the variable.

D<7 C<15
D o

7 1 2 3 4 5
Dx?2 ¢oC

14 54 3 2 1
D o

7 1 2 3 4 5

Respecifying a Variable
When the variable name appears to the immediate left of the specification arrow, a
new value is assigned to it:

D<7 C<15
D C

7 1 2 3 4 5
D<Dx?2 C<dC
D C

14 54 3 2 1

Chapter 3. Syntax and Expressions 39

Multiple Specification
Several variables can be assigned on one line; for example, the expression below
initializes each of the variables E, F, G, and H with the value of 1.

FE<«F<«G<«H<1
E
1
F
1
G
1
H
1

Vector Specification
Several variables can be given values from items of a vector.

(A B C)«2 3 4
A

B
3

If a scalar is on the right, the item in the scalar is assigned to each name.

(4 B)<o0
A
0
B
0
(A B)<ch 5 6
A
L 5 6
pB
3

The list of names must be variables or names with no value. On some platforms,
shared variables, system variables, or external variables are not permitted in the
list.

Selective Specification

Note: The information in this section is based on the APL2 language definition.
Deviations exist on some platforms and are documented in the separate user's
guides.

Any expression that selects values from an array can be written on the left of an
assignment arrow to mean replacement of those values. Such replacement is
called a selective specification.

Selective specification replaces selected items of an array. In selective specifica-
tion, an array expression using one of the functions listed in [Figure 6 on page 41|
appears to the left of the specification arrow. The items in the positions selected by
the array expression are replaced by the items to the right of the specification
arrow.

40 APL2 Programming: Language Reference

Monadic Functions

(eR)<«N

(4R)<N

(,R)<N

(,[XIR)«N

(dR)<«Nor (eR)<«N
(¢LXIR)<«Nor (e[XIR)<«N
(QR)<N

Dyadic Functions
RLL]<N

(LYR)<N
(L¥[X1R)<N
(LOR)<N
(LOLX1R)<N
(LoR)<N

(LpR)<N
(LOR)<Nor (LeR)<N
(LOLXIR)<«Nor (Le[X1R)<N
(LAR)<N
(LALX1R)<N
(L]R)<N

Derived Functions

(LO\R)<Nor (LOXR)<N
(LONLX1R)<Nor (LONLX1R)<N
(LO/R)<Nor (LO#R)<N
(LO/LXIR)«Nor (LOALX]IR)<N
(LO” R)<N

(L LO™ R)<«N

Notes:

. IV is the array of new items for R.

ok wWN =

X is a scalar or vector indication of axes in R.

L and L O are simple integer arrays.

. Parentheses are necessary for all functions but bracket indexing.
. For pick (=), only one item may be selectively specified at a time.

Enlist

First

Ravel

Ravel with axis

Reverse

Reverse with axis
Transpose (reversed axes)

Bracket indexing
Drop

Drop with axis
Index

Index with axis
Pick

Reshape

Rotate

Rotate with axis
Take

Take with axis
Transpose (general)

Expand

Expand wit axis
Replicate
Replicate with axis
Each (monadic)
Each (dyadic)

. R is the name of the array being selectively specified.

Figure 6. Selective Specification Functions

Selective specification is used to replace whole arrays or subsets of arrays. When
a whole array is replaced, the structure of the replaced array is not relevant. When
a subset of an array is replaced, the shape of the replaced array does not change

but the structure of the items replaced is not relevant.

Chapter 3. Syntax and Expressions

In ordinary cases, selective specification can be understood if you understand how
the selection expression works when it is not on the left of an assignment. For
example:

V< 10 20 30 40
(247)<«100 200
14

100 200 30 40

The function take does not select the first two items of V; instead, it selects the
locations of the first two items of V7. This resulting vector of locations is considered
a simple vector even if the items at those locations are deeply nested. The data on
the right of the assignment then replaces data at those locations.

As with ordinary specification, the explicit result of a selective assignment is the
array on the right that does not produce a display but is available for further compu-
tation.

More complicated cases can be tricky because the selection does not operate on
the values in an array but rather on the positions of values.

Any selection expression begins by identifying an array whose value will be modi-
fied. Initially, the whole array is subject to replacement. Functions in the selection
expression serve to limit the part of the array that is actually modified:

1. The rightmost name in the expression, ignoring brackets used for indexing, is
the name whose value is set or altered. Call it the assigned name. The whole
array named is subject to modification.

If no function appears in the selection expression, then the value on the right of
the left arrow becomes the value of the assigned name and selective specifica-
tion degenerates into ordinary specification :

A<'"ABCD'
(A)«10 20 30
A

10 20 30

Thus, in some sense, specification is a special case of selective specification.

If any functions appear in the selection expression, then the name being
assigned must have a value.

2. Pick with an empty left argument is the only function that returns the whole
array to which it is applied. Thus, pick with an empty left argument as the only
function in a selection expression causes the whole array associated with the
assigned name to be replaced.

A<'ABCD'
((10)24)«10 20 30
A

10 20 30

This is equivalent to a specification except that the assigned name must have a
value.

3. First selects the whole array that is the first item of its right argument.

A<'"ABCD"
(+4)<«10 20 30

42 APL2 Programming: Language Reference

A
10 20 30 BCD

4. Pick selects the whole array that is at the end of a specified path through its
right argument.

A<'"ABCD'
(224)<«10 20 30
A

A 10 20 30 (D

5. Any selection function other than first or pick selects a subset of an array.

A<(2 3)(2 3 4 5)(10 20)
(34224)<«'"ABC!
A

2 3 ABC 5 10 20

B<«(2 3)(2 3 4 5)(10 20)
(eB)=<0
B

0 0 0 0 0O 0 0

Once the selection expression has been evaluated, the following rules govern the
replacement of values. Apply the first rule that holds:

1. If the left is a whole array, the right array replaces it.

2. If the right is a scalar (or an array with empty shape when ones are removed),
then the right is paired with each item from the left and these rules are applied
recursively.

3. If the left and the right have the same shape (when ones in the shapes are
ignored), then corresponding items from the left and from the right are paired
and these rules apply recursively.

While any expression following the above rules is a legal assignment, not all are
currently supported. The following restrictions apply:

1. The result of the select expression must be simple. Given that the structure of
the items selected is ignored, the only way the result of the selection
expression can be nested is if some function that increases depth is applied
(for example, enclose, partition, or some operator expressions) and this struc-
ture is not removed (for example, by enlist).

2. Disclose is not supported.

For additional restrictions, see the appropriate workstation user's guide.

Chapter 3. Syntax and Expressions 43

Various selections and replacements are shown below for the matrix ¥. The exam-
ples assume that each selective specification expression uses the original specifica-

tion of M.
M<«3 Up'ABCDEFGHIJKL'
M
ABCD
FFGH
IJKL
M[13;2 L]<'Vo!
M[2;3]1<'0" M
M AVCo
ABCD FFGH
FFOH IJKL
IJKL
(2 14M)<'of" (M)«<112
M M
eBCD 1 2 3 4
BFGH 5 6 7 8
IJKL 9 10 11 12
(4+,8M)«'o*:[" ML1 331 LJ<'x!
M M
odcCD *B(C*
*FGH FEFGH
+JKL * o K*

The last example in the left column demonstrates the application of several func-
tions in selective specification. The positions replaced were the first four taken in
row-major order after ¥ was transposed (its rows and columns interchanged).
These are the characters AE I B, which are then replaced with the o=* +[, respec-
tively.

The last example in the right column shows that scalars being selectively assigned
to a nonscalar array of locations are replicated as necessary.

The value of the variable being altered by a selective specification cannot be
replaced to effect before the specification is complete.

A<110
((A<2)+4)=<0
A

0034586 789 10

If B is a shared variable, then
((B=' '")/B)<'*"

is an error because the leftmost mention of B is a reference of the shared variable
and causes B to receive a new value.

For each function that permits selective specification, the description in|Chapter 5
[‘Primitive Functions and Operators” on page 62 jshows examples of the function
applied in selective specification.

44 APL2 Programming: Language Reference

Conditions for Axis Specification

Functions

U O o= > +

n <« o

— % N < H TP XTTOIANAINV I

or ©

==

4|\
Operators
\ or X
/or#

Add

And

Binomial

Circular

Disclose

Divide

Drop

Enclose

Equal

Greater than
Greater than or equal
Less than

Less than or equal
Logarithm
Maximum
Minimum

Multiply

Nand

Nor

Not equal

Or

Partition

Power

Residue

Ravel, Catenate, Laminate
Reverse, Rotate
Index

Subtract

Take

Backslash
Slash

Figure 7. Functions and Operators That Allow Axis Specification

For axis specification, writing brackets next to a function or operator is always syn-
tactically correct, but evaluation of the related function succeeds only when the fol-
lowing specific conditions are true:

* The bracket expression contains no semicolons

e The data in brackets is the proper type

e The data in brackets is the proper rank

e The function or operator is one of those shown in Figure 7

e The data in brackets is within the range defined by the function or operator

Otherwise, an AXIS ERROR occurs.

Chapter 3. Syntax and Expressions 45

Chapter 4. General Information

The topics discussed in this chapter pertain to functions, operators, variables, and
commands in general. They are discussed here because they affect the entire
system and not just a single function or variable.

The descriptions of the APL2 functions, operators, variables, and commands
require an understanding of the following topics:

» Types and prototypes

e Fill items

e Empty arrays

e Scalar and nonscalar functions

¢ Fill functions

e System effects on evaluation

e Errors and interrupts in immediate execution
e Shared variables

Type and Prototype

Note: The information in this section is based on the APL2 language definition.
Deviations exist on some platforms and are documented in the separate user's
guides.

The type of array yields a zero for each number in the array and a blank for each
character. The type of array has the same structure as the array. Type can be
determined by the expression:

Type <« +0pcF

In this expression:
c makes R into a scalar that contains B.
Op turns the scalar into an empty vector.

4 selects the first item.

The prototype of an array is defined as the type of its first item:

Prototype <« 40pc4PR
For example, for the three-item vector R:
R<(2 3p1 '4' 2 3 'B' 'C') '"WORD' (9 10 11)

R
1 4 2 WORD 9 10 11
3 B C

46 © Copyright IBM Corp. 1984, 1994

Type Prototype
DISPLAY +40pcR DISPLAY +40pc+R

T o e . T - m—

[T | ¥0 0]

| 40 ol | | 1o o ol | [0 I

| |0 | | S | Ve — - — ' | LR

BRESEERL !

l€ _______________________]

Fill Item

Note: The information in this section is based on the APL2 language definition.
Deviations exist on some platforms and are documented in the separate user's
guides.

The prototype of an argument is used as a fill item when the operations take,
expand, replicate, and disclose apply to certain arguments, as described below:

* Take (L+R), page P44} and take with axis (L4 [X 1R), page[247} use a fill item
when the left argument specifies more items than the right argument contains.
This application is called an overtake.

e Expand (L\R or L\R), page|122] and expand with axis (L\[X]R or
LX[X1R), page[124} use a fill item to fill the expanded structure.

» Replicate (L/R or L#R), page [220] and replicate with axis (L /[X 1R or
L#LX1R), page[222 insert | L [T] fill items to correspond to a negative Ith
item in the left argument.

« Disclose (), page [94] and disclose with axis (= [X 1R), page [96] expand
smaller items to the structure of the largest item in the array by padding with
the fill item.

As an example, take the following assignment and display of a four-item nested
vector N:

N«((2 3)(4 5(6 7)))(8 9 10)11 12

olN
i

=N
n

DISPLAY N
e .
I N . |
I .| 18 9 10| 11 12 |
112 3] | el R ' |
| | t~--r w5 g6 7] | |
| | ot]| |
| te---m-oo--- ' |
I ' |
|€ _______________________________________ '

Chapter 4. General Information 47

Note how the prototype fills the result on an overtake of the nested vector N:

Z<54N
DISPLAY 7
> o e
i e e e>--—--—-—-- . i e
I i | 18 9 10| 11 12 I R e it
|2 3] e | t~----- ! o o] e
I
I
I

Prototypes are used to complete the definitions of functions and make them work in
expected ways even at limiting cases. For example, the use of the prototype as
the fill item causes the following to be true after application of take, expand, repli-
cate, and disclose:

e Simple arguments give simple results.
e All numeric arguments give all numeric results.
» All character arguments give all character results.

» Uniformly nested arrays (each of whose items have the same structure) give
uniformly nested results.

Empty Arrays
An array is empty when the length of one or more of its axes is 0. There is no
empty scalar, but empty arrays may be of any other rank. Empty arrays have type
and prototype. Figure 8 illustrates four empty arrays and explains how they are
created.
Uses of Empty Arrays: The following are common uses of an empty array:

* As right argument of the branch arrow (=) to resume execution of an
expression in immediate execution (page[59) or within a defined function or
defined operator to continue evaluation with the next line (page [349).

» As left argument of reshape (p) to create a scalar from an array (page [225).
 In variable specification to initialize a variable.

» As the value for a trace or stop control vector (7Aname and S Aname) to turn
off the trace or stop (pages and 362).

48 APL2 Programming: Language Reference

Simple, empty numeric vector.

Empty vector displays as blank line.

Shape of array shows that it
is a vector of length 0.
Picture display shows the vector.

Simple empty 2-row numeric matrix.

Displays as two blank lines.
Shape of matrix is 2 0.

Picture display shows the matrix.

Empty character vector.

Vector displays as a blank line.
Shape is 0 for the empty vector.

Picture display shows the vector.

Simple empty 4-column character
matrix does not display as blank

line(s) because its row-axis has length 0.

Picture display shows the matrix.

Figure 8. Creating Simple Empty Arrays
MTN1<10
MTN1
pMTN1
0
DISPLAY MTN1
.9,
|0
1~
MTN?2<2 0p5
MTN?2
pMTN2
20
DISPLAY MTN?2
.9,
+0 |
|0
1~
MTC1<""
MTC1
pMTC1
0
DISPLAY MTC1
.9,
|
L |
MTC2«0 Lp''
MTC?2
oMTC2
0 4
DISPLAY MTC2
¢_>___ .
¢ |
L]

Prototypes of Empty Arrays

As does any other array, an empty array has a depth and a prototype. The proto-

type of an empty array T is +T.
410

42 0p0
0

=2 0pc2 3 4

42 0pc2 3 &
000

See [‘Fill Functions” on page 56 for a discussion of the use of the prototype when

an empty array is the argument of a primitive function.

Chapter 4. General Information

49

Empty Arrays and Nesting
A nested array may have empty arrays among its items. The following expression,
for instance, creates a four-item nested vector of depth 2 that contains an empty
array as its second item:

VEC<'AGNES' (10) 'HERB' 10

VEC
AGNES HERB 10
pVEC
in
=VEC
2
DISPLAY VEC
o L ________

i I L |
|
|

|
| |AGNES| |0| |HERB| 10
|
1

Note: The DISPLAY function shows the prototype of empty arrays or items.

A nested array can contain only empty items, yet not be an empty array. Its proto-
type, however, is empty.

In contrast, the following is an empty nested array. It is nested because its proto-
type is not a simple scalar (either 0 or ' ').

T<0 2pc0 O
oT

DISPLAY T

O e e
| 1o ol o ol |
|

| | RPN | T~

Nested empty arrays are important because they allow expressions to work at the
limit. For example:

e 5pc2pX is a five-item vector of two-item vectors.

e Npc2pX is an N-item vector of two-item vectors. This is true even when NV is
0. Thatis, 0Op<c2pX is an empty vector that has a two-item prototype.

50 APL2 Programming: Language Reference

Scalar and Nonscalar Functions

According to the way they manipulate data, the primitive functions are either scalar
or nonscalar.

Scalar functions include most computational functions. Figure 9 lists the scalar
functions and|Figure 10 on page 52| lists the nonscalar functions.

Figure 9. Primitive Scalar Functions (All dyadic forms may take an axis.)

Function
Monadic Scalar Symbol Dyadic Scalar
Conjugate + Add
Negative - Subtract
Direction X Multiply
Reciprocal : Divide
Magnitude | Residue
Floor L Minimum
Ceiling [Maximum
Exponential * Power
Natural Log ® Logarithm
Pi Times o Circular
Factorial ! Binomial
Not ~ {Nonscalar Function}
Roll ? {Nonscalar Function}

A And

v Or

~ Nand

L4 Nor

< Less

< Not Greater

= Equal

2 Not Less

> Greater

z Not Equal

Formally, a function is a scalar function if indexing distributes over it. The primitive
scalar functions have the additional property that "pick" (=) distributes over them.
This property is called pervasive.

F is monadic scalar if:
(F R)LI] <= F RLI]

F is dyadic scalar if:

(L F R)LI]1 <> LLI] F RLI] (scalar extension ignored)

Chapter 4. General Informaton 51

where indexing is taken as indexing an arbitrary rank array.

F is monadic pervasive if:
(I>F R) <> F I>R

F is dyadic pervasive if:

(I>L F R) <> (I=>L) F (IoR) (scalarextension ignored)

Figure 10. Primitive Nonscalar Functions (Brackets indicate that an axis specifica-
tion is optional.)

Monadic Function Dyadic
Nonscalar Symbol Nonscalar
Shape p Reshape
Ravel [] . Catenate, Laminate []
Reverse [] ¢ o Rotate []
Transpose R Transpose
Enclose [] c Partition []
Disclose [1] > Pick

v Drop []
First 4 Take []
{Scalar Function} ~ Without
Interval 1 Index of
Enlist € Member
Grade Up A Grade Up
Grade Down v Grade Down
{Scalar Function} ? Deal

€ Find

T Encode

L Decode
Matrix Inverse & Matrix Divide
Depth = Match
Execute e
Format 3 Format

[:1] Indexing

0 Index []

Conformability of Arguments

Permissible arguments for a particular dyadic function are determined by their
structure and data and by their relationship to one another. Arguments are said to
conform when they are compatible according to the requirements of the function.

Each scalar function applies to its argument(s) in a similar way and follows the

conformability rules described below. These rules are not repeated in the
descriptions of the scalar functions.

52 APL2 Programming: Language Reference

For nonscalar functions, the conformability rules and the way arguments relate
follow no set pattern. The function descriptions explain these in detail.

Monadic Scalar Function

Monadic scalar functions are defined on a simple scalar argument, then extended
to other arguments, according to the following rules:

If the argument is a simple scalar, apply the function.

[3.6
n

If the argument is not empty, apply the function independently to each simple scalar
in its argument.

13 6 9 +2 3p16
6 720 362880 1 0.5 0.3333333333
0.25 0.2 0.1666666667
That is:

(13) ('6) (19)
6 720 362880

The result has a structure (rank, shape, and depth) identical to that of its argument.

If the argument is empty, apply the related fill function to + R (the prototype of the
argument). Fill functions are discussed on page [56]

The following example illustrates the application of a monadic scalar function to a
nested array.

D<«(2 8 6)(2 2p3 7 1)

DISPLAY D
e T T T s s s .
| o= - |
| |2 8 6| +3 7| |
| '~ 'l1 o3 |
| P~
|€ ______________]
T<-D
DISPLAY T
i i .
| e------- e o= |
| |72 78 "6 + 3 "7] |
I i L I R
| tv----t
|€ ___________________]

Chapter 4. General Information 53

Dyadic Scalar Function
Dyadic scalar functions are defined on simple arguments, then extended to other
arguments, according to the following rules.

Scalar Conformability Rules
If both arguments are simple scalars, apply the function.

2+3
5

If one or both arguments are empty arrays, apply the related fill function to 4L
and/or +R (the prototype of the empty array). Fill functions are discussed in the
next section, page

If arguments have the same shape, apply the function to corresponding items. The
result has the same shape as the arguments.

| | (1)

1 (2)

L 108)

5 6 7+10 20 30

5 6 7+10 20 30
15 26 37

That is:
(5+10) (6+20) (7+30)
15 26 37

If one argument is a scalar or a one-item vector, pair the scalar or one-item vector
with each item. The result has the same shape as the nonscalar argument.

3 4 5

That is, the scalar extends to each item:
(1+2) (1+3) (1+4)
3 L 5

This extension is called scalar extension. (Scalar extension when the nonscalar
argument is empty is discussed on page [57})

When a dyadic scalar function is applied to nested arguments, the items are paired
by the above rules. Then the rules are applied again to the resulting subex-
pressions. The shape of the result is the shape of the nonscalar argument. The
structure of the result depends on the structure of the items.

In Figure 11 on page 55, both arguments are vectors of length 3. The left argu-
ment is composed of a scalar and two vector items. The right argument is com-
posed of a nested vector, a scalar, and a vector item.

54 APL2 Programming: Language Reference

|~ T [(1)
I [|~ [(2)
I I [~ |~ |~ [(3)
I I I I I I
Z<«2 (3 4) (5 6 7)+((8 9) 10) 11 (12 13 14)
DISPLAY 7
e T T T T T T T TS TS TS TS S S mm s .
[B I e o
[T S | 1w 15| |17 19 21| |
| | 110 12| 12 | '~----v Ve~eo—o—o - U
IERETEEE | |
| 'e----------- ! |
'E __________________________________]
That is:
127 < 2+(8 9) 10 Pair the scalar with each item.
< (2+8 9) (2+10) Again, pair the scalar with
< ((2+8) (2+9)) (2+10) eachitem.
< (10 11) 12
2527 < 3 L4+11 Pair the scalar with each item.
< (3+11) (u4+11)
< 14 15
32Z « 5 6 7+12 13 14 Pair corresponding items.
< (5+12) (6+13) (7+14)
< 17 19 21

Figure 11. Application of a Dyadic Scalar Function to Nested Arguments

Axis Specification with Scalar Dyadic Functions
An axis can be specified with each scalar dyadic function, as:

Z«L FLX] R

For example:
L<«1 10 100 S<«1 10 100 1000
R«3 Lp112 Sx[21R
Lx[11R 1 20 300 4000
1 2 3 L 5 60 700 8000
50 60 70 80 9 100 1100 12000

900 1000 1100 1200

The axis indication X must be a simple scalar or vector selection of axes, not
containing repetitions, such that:

(psX) <> (ppL)LppR
A/ Xe1(ppL)lppR

Chapter 4. General Information

55

The arguments are conformable if:

(pL) <> (pR)LX] or (pR) <> (pL)[X]
when X=X[AX] (i.e., X is in ascending order)

The shape of the result is the shape of the array with greater rank.
K<«2 3p.1x16
K
0.1 0.2 0.3
O.4 0.5 0.6

J<2 3 Lpi2h

J+[1 21K
1.1 2.1 3.1
5.2 6.2 7.2
9.3 10.3 11.3 1

N oo F
« o
wWw N -

13.4 14.4 15.4 16.4
17.5 18.5 19.5 20.5
21.6 22,6 23.6 24.6

The order in which the axes appear does not affect the result. For the above
example, for instance, J+[1 2]K <> J+[2 1]K.

Fill Functions

When a primitive scalar function is presented with empty arguments or when a
function derived from the operators each (™) or array product (.) is presented with
empty arguments, the function is not executed. Instead a related fill function, if
defined, is executed with arguments 4L and/or +R (the prototypes of the empty
arguments).

Fill Function for Primitive Scalar Functions

All primitive monadic and dyadic scalar functions have the same fill function as
described below.

When the prototypes of the empty arguments are simple scalars, return a zero pro-
totype. A ramification of this rule is that empty character arrays can be arguments
to scalar functions whose range is numeric. The result has numeric type, as shown
in the following examples:

W<(10)l10 X<«trzm
DISPLAY W DISPLAY X

56 APL2 Programming: Language Reference

When prototypes of the empty arguments are not simple scalars, apply the fill func-
tion to each item recursively until simple scalars are reached.

S<«+0 2pcl 2 3
DISPLAY S

¢ rmmmml e, |
| 1o o ol |o o ol |
| "~ - - = ' "~ - - = ' |

When one argument is a scalar and the other is empty, apply the fill function
between the item of the scalar and the prototype of the empty argument.

That is:

Z<Spc(+L) fill fn (4R)

where S is the shape of the empty argument.
For example:

Z<2+0pc0 O
pZ

DISPLAY Z

Fill Functions for Primitive Nonscalar Functions

Fill functions for primitive nonscalar functions are applied when the functions
derived from the operators Each (~) and Array product (.) are presented with

empty arguments. The use of Each is discussed on pages[107and[109 For more
information on Array product, see pages and |186f Figure 20 on page 110

shows the fill function related to each function for which a fill function exists.

System Effects on Evaluation

The evaluation of expressions is affected by the limitations of the system.

Size Limitations

[Appendix_C, “System Limitations for APL2” on page 489 Jists size limitations of
APL2, such as the smallest and largest representable numbers and the maximum
rank and depth of an array.

Chapter 4. General Information 57

Precision

Calculations are carried out to 16 or 18 places depending on the hardware;
however, use of certain primitives causes increased precision in calculation. The
number of significant digits displayed depends on the setting of PP (printing preci-
sion). For more information about OPP, see [‘OPP Printing Precision” on|

Examples in this manual are shown with the default printing precision of 10, unless
noted otherwise.

Comparison Tolerance

When comparing numbers that differ by only a very small amount, the limitations of
the system can affect the results of the relational functions and the results of a few
other functions that compare arguments to determine the result. (Figure 12 lists
the affected functions.) To control these limitations, APL2 provides a comparison
tolerance that is used to determine whether two numbers are considered equal.

Comparison tolerance, whose default value is 1Z~ 1 3, can be set with the system
variable OCT, page P75 It is used to compute a relative fuzz as follows:

RFUZZ<0OCTx(|A)T |B

Then, if RFUZZ is greater than or equal to |A-B, A and B are reported equal.
For example:

A<1.0000000000000001 A<1.00000001
B«1.0000000000000009 B«1.00000009
A=B A=B

1 0

Figure 12. Functions Affected by Comparison Tolerance.

Comparison tolerance is an implicit argument of the following functions:

All relational functions, page [219]
Ceiling (T R), page [79]

Equal (L=R), page [219]

Find (L eR), page

Floor (L R), page

Greater than (L >R), page [219]
Greater than or equal (L=R), page [219]
Index of (L 1R), page[162]

Less than (L <R), pagel219]

Less than or equal (L<R), page219]
Match (=), page[173]

Member (L € R), page[181]

Not equal (L #R), page
Residue (L | B), page [227]

58 APL2 Programming: Language Reference

System Tolerance
When a nonreal number is close to being a real number, a noninteger is close to
being an integer, or a non-Boolean number is close to being Boolean, system toler-
ance or system fuzz defines how close the number must be before it is treated as
an integer, a real number, or a Boolean number.

In contrast to comparison tolerance, which is used to determine a relative fuzz,
system tolerance is an absolute fuzz.

Real: A nonreal number is treated as real if the greater of the absolute values of
the imaginary part and the tangent of the angle is less than approximately 1~ 13
for APL2/370 and 5E~ 15 for the workstation systems.

Integer: A number R is treated as an integer if it satisfies the condition above for
being treated as real (or is real) and the difference between the real part of R and
some integer is less than approximately 1E~ 13x1[| R for APL2/370 and
5E~15x1[| R for the workstation systems.

Boolean: A non-Boolean number is treated as Boolean if the distance between it
and 0 or 1 on the complex plane is less than approximately 1£~ 13 for APL2/370
and 5E 15 for the workstation systems.

System tolerance is fixed for the system and cannot be specified.

Errors and Interrupts in Immediate Execution

If either an expression in immediate execution generates an error or you have sig-
naled an interrupt, execution of the expression is suspended and a message is dis-

played:
T+4
VALUE ERROR+
T+4
AN

The first line of the message indicates the cause of the suspension. The second
line repeats the expression as entered. And the third line contains two carets. The
left caret indicates how far execution of the expression progressed before the sus-
pension occurred. The right caret indicates the likely point of the error. (On occa-
sion, the two carets overlap so that only one is displayed.)

(“Suspension of Execution” on page 354| further discusses suspension of exe-
cution.)

The state indicator (page shows that the expression is suspended. The
asterisk indicates a suspended immediate execution expression. (If a defined func-
tion or operator is suspended, its name and line number are shown in the state

indicator.)
)SIS
* T+h
AN

Chapter 4. General Information 59

Expressions should be cleared from the state indicator. Clearing the state indicator
is fully discussed in ['Clearing the State Indicator” on page 357, The example
below shows that the state indicator is cleared by correcting the error that caused
the interruption and resuming execution. T is assigned a value and then exe-
cution of the expression is resumed by +10:

T<3
>10

)SIS

If the state indicator shows several errors and you do not want to resume exe-
cution, you can use:

e Escape (+) for each suspension to be removed from the state indicator
e)RESET nto remove n lines from the state indicator
e)RESET to clear the state indicator entirely.

In the following example, for instance, the state indicator contains three suspended
immediate execution expressions. The)RESET command is used to clear the
state indicator without resumption of execution of any of them.

)SIS
* 1 2 3+2 3p16
A A
* 12.2
A
* 4+0
AA
JRESET
)SIS

Keeping the state indicator clear is good practice. This makes it easier to use the
state indicator in diagnosing problems in defined functions and operators; it can
even prevent a WS FULL condition caused by large suspensions awaiting resol-
ution.

Shared Variables

Shared variables are the means by which two processors can communicate with
each other. A processor can be an auxiliary processor, which provides system ser-
vices, or another APL2 session.

Any user-named variable can be a shared variable. System variables (which are
actually shared with the APL2 system) cannot be shared with other processors.
When the term variable is used in this chapter, it means only user-named variables.

The APL2 Program Products include auxiliary processors, which communicate with
an APL2 user through shared variables. Auxiliary processors are programs that
perform services for APL2 users, such as writing to a data file. See[Chapter 8]
[‘Shared Variables” on page 364|for a full discussion of shared variable concepts.
The workstation user's guides contain descriptions of the auxiliary processors dis-
tributed with the specific workstation platform. See APL2/370 Programming :

60 APL2 Programming: Language Reference

System Services Reference for detailed descriptions of each of the auxiliary
processors distributed with APL2/370.

Degree of Coupling: Variables used to pass data between processors are shared
by the two processor partners. Degree of coupling describes the share status and
is the explicit result of O0SV0 and OSVR. Figure 13 describes the meaning of
coupling degrees for each system function.

Figure 13. Degree of Coupling Returned from System Functions

Offer Inquire Retract
L 0O8VO R gsvo R OSVR R

0 Offer The variable is not a The variable was not a
failed—APL2 shared variable. Either no shared variable. Either no

refused your offer.

offer was made or the offer
failed.

offer was made or the offer
failed.

1 Offer is
pending—your
offer has not yet
been matched by
your partner.

Offer is pending. Your
partner has not matched
your offer.

Or, your partner has
retracted the variable or
APL2 has retracted the var-
iable as a result of an error
condition.

The variable was waiting to
be matched or it was already
retracted by your partner.

2 The offered vari-
able is fully
coupled.

The variable is fully
coupled.

The variable was fully
coupled.

Chapter 4. General Information

61

Chapter 5. Primitive Functions and Operators

This chapter describes all primitive functions and operators alphabetically. The
operators are described in the context of their derived functions. Each description
of a function or operator consists of a summary and several detailed sections.

Figure 14 shows a sample page. The callouts in the figure are explained imme-
diately following the figure.

10V

2 YV Grade Down

3 7<YR

Yields a vector of integers (a permutation of 4
111 pRJthat puts the subarrays along the

first axis of R in descending order.

R: simple nonscalar numeric array

5 |z

. Simple vector, nonnegative integers

Implicit argument: [0

6
pZ <« 1tpR
7| ez~ 1
8 Oro-1 07o-0
¥23 11 13 31 12 ¥23 11 13 31 12
41352 30241

9 To Sort the Array: R is sorted in descending order if it is indexed by the result
of grade down: R[VR].
dro<1
A«<23 11 13 31 12
ALVA]
31 23 13 12 11

Identical Subarrays: The indices of any set of identical subarrays in R occur in
7 in ascending order of their occurrence in R . In other words, their order in
relation to one another is unchanged.
V23 14 23 12 14
13254

Figure 14. Sample Page of Primitive Functions and Operators

1. The operation symbol
2. Operation symbol and name as they appear in the table of contents

3. Each primitive has a subset of the following operation syntax:

L Left argument

R Right argument
Lo Left operand
RO Right operand

Z Result

X Axis

62 © Copyright IBM Corp. 1984, 1994

4. Summary definition of the operation

5. Properties of the argument(s) or operand(s), the result, and axis. Properties
are listed on an exception-basis. The most general property is always
assumed, and only limitations are listed. For example, “RF : Numeric’ means
arrays of any rank, depth, or count (empty or nonempty) that contain real
and/or nonreal numbers.

6. Implicit argument. Those system variables, such as 0I 0 (index origin) and
OCT (comparison tolerance), that affect the result of the function.

7. Shape and rank of the result. Whenever possible, an expression for deter-
mining these characteristics of the result is given. Otherwise, the characteristic
is listed as “data-dependent.”

8. Detailed description of the function, including such topics as:

e Conformability, if the function is not a scalar function

» Behavior with various arguments, including nested arrays and edge cases
(scalar arguments for functions whose primary definition is based on
nonscalar arrays and empty arrays)

* |dentities, showing the relationship of the operation to other operations.

9. Examples. When the specification of the arguments is not shown, the values of
the arguments are shown along with their shape and depth, or the argument is
illustrated with DI SPLAY.

Most examples are shown with the default printing precision (OPP) of 10 and in
origin 1 (Z0). If an example changes either the printing precision or the
origin, the specification of the appropriate system variable is shown, and the
next example returns 070 or 0OPP to its default.

APL2 Expressions Used in the Descriptions

APL2 expressions are used in the descriptions to add precision and conciseness to
the text. The following expressions are commonly used:

Expression
pA

ppd

=4

“14p4
“1vpA
14p4
1+p4
T141,p4
1p4

0f "1+pp4d

Meaning

Shape of 4

Rank of 4

Depth of A

The last axis (columns) of 4

All but the last axis of 4

The first axis of 4

All but the first axis of 4

1 if A is a scalar; the last axis of A otherwise
The integers 1 through p4

A rank of one less than the rank of A. If 4 is a scalar or a vector,
the rank is 0.

Chapter 5. Primitive Functions and Operators 63

Meta Notation Used in Descriptions
<~ or < The expressions on each side evaluate to the same array.

Multivalued Functions

When a function mathematically has more than one value, APL2 chooses a prin-
cipal value. For example, the cube root of a negative number in APL2 is the one
with the smallest nonnegative angle in the complex plane.

64 APL2 Programming: Language Reference

+ Add

+ Add

Z<L+R Adds R to L.

L, R, and Z: Numeric

Scalar Function

Add is the arithmetic addition function.

.4+6 1J2+3J4
6.4 4J6

“5+7.3 6 3JUu 0 .3 "8+0 .3 8
T5.3 1 T2J4 0 00

Chapter 5. Primitive Functions and Operators 65

o=

Binomial

! Binomial

Z<L!R For nonnegative integer arguments, yields the number of distinct
combinations of R things taken L at a time.
In the following table, <0 means that L, R, or R-L is a negative integer and
>0 means that I, R, or R-L is a nonnegative integer. The corresponding
definition is used.
Case Definition
L R R-L
>0 =20 20 Return (!R)+(!L)x!R-L
20 =20 <0 Return 0
>0 <0 >0 (Case cannot occur.)
>0 <0 <0 Retun (T1*L)XL!L-R+1
<0 =20 20 Return 0
<0 =20 <0 (Case cannot occur.)
<0 <0 20 Return (T1*R-L)x(-R+1)!(| L+1)
<0 <0 <0 Return 0
Scalar Function
215 213dJ2
10 1J5
2 3 4!6 18 24 3!1.05 2.5 73.6
15 816 10626 0.0154375 0.3125 ~15.456

Although the domain of factorial excludes negative integers, the domain of the
binomial does not. Any implied division by zero in the numerator ! R is usually
accompanied by corresponding division by zero in the denominator. The binomial
function, therefore, extends to all numbers, except in the case where R is a nega-
tive integer and L is not an integer.

A<"6+111
A o, 14

1 Ty 6 "4 1 0 00 0O 0
0 1 -3 371000000 0
0 0 1 72 10 00 0O 0
0 0 0 1 "1 00 000 0
0 0 0 0 1 0 00 0O 0
1 1 1 1 11 1 1 11 1
5 Ty 3 72 7101 2 34 5
15 10 6 3 1 0 0 1 3 6 10
“35 20 10 "4 "1 0 0 0 1 4 10
70 35 15 5 1 0 0 0 0 1 5
126 56 21 "6 1 0 0 0 0 O 1

66 APL2 Programming: Language Reference

! Binomial

Binomial Expansion: The coefficients of the binomial expansion (X+1)*E can
be determined by this expression:

(0,1R)!R
For example, the coefficients of (X+1)*3 are:

01 2 3!3
1 3 31

Relationship to Beta Function: Binomial is related to the Beta Function as
follows:

B)(L,R) <> =Rx(L-1)!L+R-1

Chapter 5. Primitive Functions and Operators 67

Avan~ Boolean Functions

Avanv~ Boolean Functions

Z<~R Not
Z<LAR And
Z«<LvR Or
Z<«L~R Nand
Z<L~R Nor

L, R, and Z: Boolean

Scalar Functions

The monadic Boolean function Not changes its argument either from 0 to 1 or from
1 to 0.

1 0

The following tables define the dyadic Boolean functions.

And Or
Al 01 v | 01
0| 0O 0] o1
1 |1 0 1 1] 1 1
Nand Nor
¥ | 0 1
~ | 0 1 o
o1 oo
1] 00
1] 10

Relational Functions as Boolean Functions: The relational functions (< < =
> > #) (see[<<=2>># Relational Functions” on page 219), when applied to
Boolean arguments, produce only Boolean results. For example, LzR is the
exclusive-or of L and R, and L<R is material implication.

Figure 15 shows all possible Boolean results for L fn R and the functions that
produce them, where L and R are specified to produce all possible combinations of
0 and 1.

68 APL2 Programming: Language Reference

Ava~~ Boolean Functions

Figure 15. Boolean Functions

L<«0 0 1 1
RE<0 1 0 1
Name Syntax Result
0 AR 0000O0
And L A R 0001
Greater than L > R 0010
L 0011
Less than L < R 0100
R 0101
Not equal L # R 0110
Or L v R 0111
Nor L ~» R 1000
Equal L = R 1001
Not ~ R 1010
Greater than or equal L 2 R 1011
Not ~ 1100
Less than or equal <R 1101
Nand ~ R 1110
v R 1111

Chapter 5. Primitive Functions and Operators

69

[J Bracket Index

[1] Bracket Index

Z<A[I]1 Selects subarrays from A according to the index arrays I. Within
I, semicolons separate arrays that define positions along each axis.

I: Simple nonnegative integer array
A: Nonscalar array

Implicit argument: 010

pZ <> Catenated shapes of the index arrays
ppZ <> Sum of the ranks of the index arrays

In form, bracket index is similar to subscript notation. An index array defines the
positions to be selected along each axis.

For example, if 4 is a matrix, the item A; is that item which is in the ith row and jth
column of 4. In APL2, the bracket index of the item in Ith row and <th column is
denoted by A[I;J1].

Oro<1 0ro<o0
'"CURTAIL'[1 2 4] 'CURTAIL'[O 1 3]
curT curT

When a Vector Is Indexed: If A is a vector, I is a single index array and

Te1pA.
Oro<«1 B<«2 3p1 4 3 2 6 5
A<23 9 6.3 8 "3 7 B
Z<A[3] 1 4 3
Z 2 6 5
6.3 pB
pZ 2 3
(empty)
Z<AL2 5 11 Q<A[LB]
z Q
9 "3 23 23 8 6.3
pZ 9 7 73
3
P&
2 3

70 APL2 Programming: Language Reference

[J Bracket Index

When a Matrix Is Indexed: If A is a matrix, then two arrays of indexes can be
given, separated by a semicolon: [T;J] and Te1l1+pAd andJe1 14pA. The
index arrays I and J reference the rows and columns of 4, respectively.

The array of items selected represents the Jth items of the Ith rows. For
example, A[L1 2:;1 3]selects A[1:11,A01:3],4AC02:11,4A[2:37, not

just AL1:;17,A02:31].

C«'ABCDEFGHIJKLMNOPQR"'
C<«3 6pC
c
ABCDEF
GHIJKL
MNOPQR
J«C[2:;3]
J

pd
(empty)
P<C[1:;3 1 u4]
P
CAD
pP
3

AC
GI

FAC
DEB

RMO
PQN

2 23

M«C[1 2;1 3]
M

oM

N«C[1 332 3p6 1 3 4 5 2]
N

plN

Eliding Index Arrays: Index arrays may be elided to indicate all indexes for the
corresponding axes. If all indexes are elided, the result is 4.

D<«3 4pCL[1 231 DL;1]
D AET
ABCD D[331]
EFGH IJKL
IJKL

Repetitions of Index Values:
is selected repeatedly.

H<2 4p3 4 1 2 2 3 4 1

N W
w F

FEN
- N

EMIT'[H]
ITEM
MITE

BANANA

Chapter 5. Primitive Functions and Operators

Index values can be repeated. The indicated item

'"NAB'[3 2 1 2 1 2]

71

[J Bracket Index

When a Higher-Rank Array Is Indexed: The pattern of representing index arrays
established for matrixes is the same for arrays of higher rank. There must be
“1+p pA semicolons, and an index array for any axis may be elided.

U<2 3 up(,C),'STUVWX' Uls;2:4]

U HT
ABCD UlL1;1 3;2 4]
EFGH BD
IJKL JL

UL1;:;3]

MNOP CGK
QRST U211
UVWX MNOP

UL1:;2;4] UL:3:1]
H IJKL

Ul2;13;1 3 u] UVWX
MOP

When a Nested Array Is Indexed: Bracket index does not affect the depth of any
selected item. With bracket index, only an item in the outermost structure can be

selected.
V<'H' 'HI' ('HIM' 'HIS'")
Z<V[1]
Z

H
=7

0
ppZ

0
E<V[2]
E

HT
=F

2
S<V[3]
S

HIM HIS

3
ppS

0

Selective Specification: Bracket index can be used for selective specification:

For the ¥V shown above: W<2 3p'ABCDEF'
oV wWl1:;1 31«8 9
3 W
=y 8 B 9
3 D E F
B<«3 4 5
Vi3l<'d? B[1«9
14
H HI H B
=y 9 9 9
2

72 APL2 Programming: Language Reference

[J Bracket Index

Note: Bracket index does not follow the syntax of a dyadic function and is not in
the function domain of operators.

Chapter 5. Primitive Functions and Operators 73

, Catenate

, Catenate

Z<L,R Joins L and R. If L and R are nonscalar arrays, L and R are
joined along the last axis. If L and R are scalars, Z is a two-item
vector.

“14pZ <«- Case dependent; see below.
ppZ <> ,[/(ppL),(ppR),1

Z<2 4 6,1 3 5 K<2 3p16
Z K
2 46 1 3 5 1 2 3
Y/ 4 5 6
6
Q<2 2p7 8 9 10
Z<'"ABC',1 2 3 4 Q
Z 7 8
ABC 1 2 3 4 9 10
pZ
7 H<K,Q
H
1 2 3 7 8
4L 5 6 9 10

Catenate and Vector Notation: The result of catenate applied to simple scalars
or vectors is the same as a simple vector created by vector notation:

M<2,3 X<9 8 7,6 5 &
M X

2 3 987 6 5 4
V<2 3 Q«9 8 7 6 5 u
M=N X=q

1 1

Note: For vector notaton 4 B C <» (<4),(<B),c(; vector notation and
catenate cannot be used interchangeably. Compare:

E<'TO0', '"KEN' F<'TO0" '"KEN'
E F
TOKEN T0O KEN
pE pF
5 2
=F =F
1 2

74 APL2 Programming: Language Reference

, Catenate

Conformability: The arguments are conformable for catenate in one of three
ways:

e They have the same rank.
* At least one argument is a scalar.
e They differ in rank by 1.

The last two cases involve reshaping the argument of smaller rank so the argu-

ments have the same rank. After this extension, the shape of the result is
described as follows:

(pZ) <> (T1%pL),(14pL)+(14pR)
Arguments Have the Same Rank: Vectors can be of any length. For matrixes
and higher order arrays, the lengths of all axes but the last must be the same:

(T1¥pL) <> “14pR.

A<3 Yp'BLUESHOEFOOT'

A A pdis 3 L
BLUF
SHOE
FoorT
B<3 5p'BERRYLACESSTOOL"'
B A pBis 3 5
BERRY
LACES
STOOL
Z<A,B
Z A pZis 3 9
BLUEBERRY
SHOELACES
FOOTSTOOL
C<«2 1p'THOMAS' '"WILLIAM'
=C
2
D<«2 1p('AQUINAS' '"MORE')('OCKHAM' 'SHAKESPEARE')
=D
3
c,D

THOMAS AQUINAS MORE
WILLIAM OCKHAM SHAKESPEARE
=C,D

Chapter 5. Primitive Functions and Operators 75

, Catenate

If the two arguments are different types of empty arrays, the type of the result is the

type of B.
J«'',10
A

0
K«(10),"
+K

(Prototype is a character blank)

One Argument Is a Scalar: The scalar argument is reshaped with a last axis of
length 1 to match the nonscalar argument. If L, for instance, is the scalar argu-
ment, it is reshaped as follows: L<((1+pR),1)pL.

'S'",2 Lp'PRIGTRAY' (2 2 3p112),"'*"
SPRIG 1 2 3 =
STRAY 4 5 6 =*
7 8 9 *

10 11 12 =

The Arguments Differ in Rank by 1: The lengths of all axes but the last of the
array with greater rank must be the same as the array with smaller rank. If L is the
argument with greater rank, (~1+pL) <> pR.

The argument of smaller rank is augmented to conform with the argument of
greater rank by including a last axis of length 1. If, for instance, L is the argument
of smaller rank, it is reshaped as follows: L« ((pL),1)pL.

U<'SAT! W<t'1: ' '2: !
U Y«,[10]1'LOG ON' 'LOG OFF'
SAT G<W,Y
V<'TEAMMAZFERAIL"' G
4 1: LOG ON
TEAM 2: LOG OFF
MAZE
RATIL pG
u,v 2 2
STEAM =G
AMAZE 2
TRAIL

76 APL2 Programming: Language Reference

, [] Catenate with Axis

, [] Catenate with Axis

Z<L,[X]R Joins L and R along the axis indicated by X.

Z: Nonscalar
X: Simple scalar or one item vector, integer: Xe 1(ppL)l ppR

Implicit argument: 010

pZ <~ Case dependent; see below.
ppZ <> (ppL)lppR

Catenate with axis is similar to catenate except that the arrays are joined along the
indicated axis instead of along the last axis.

Catenate with axis is not defined if both arguments are scalars. If both arguments
are vectors or if one is a vector and one is a scalar, catenate with axis is equivalent
to catenate.

Conformability: The conformability requirements for catenate with axis are similar
to those for catenate. After scalar extension, the shape of the result is described
by the following formula:

(pZ)LX]1 <> (pL)[X1+(pR)LX]

One Argument Is a Scalar: The scalar argument is reshaped to have the same
shape as the nonscalar argument except that the Xth axis has length 1.

A<3 Lp'BATHBEATBIND'
A 0 0
BATH 1 2
BEAT 6 7
BIND

0
0
n
9

A,[1]1'X"
BATH
BEAT
BIND
XXXX

Chapter 5. Primitive Functions and Operators 77

, [] Catenate with Axis

Arguments Have the Same Rank: Except for the Xth axis, the lengths of all axes
must be the same. Then (pZ)[X] <> (pL)[X1+(pR)LX].

A C«2 2 3p112
BATH D<2 3 3p-118
BEAT c,[21D
BIND 1 2 3
B<2 L4p'ZOOMZERO"' 4 5 6
B 1 T2 73
Z00M 4 5 76
ZERO 7 T8 79
A,[1]B
BATH 7 8 9
BEAT 10 11 12
BIND 10 11 T12
Z00M T13 14 715
ZERO “16 17 18

The Arguments Differ in Rank by 1: Except for the Xth axis of the array of
greater rank, the lengths of all axes must be the same as the lengths of the axes of
the array of lesser rank.

The argument with the lower rank is augmented to conform with the higher rank
argument by including an Xth axis of length 1.

H<'words' ®A<3 5p115
H S«3 3 5p-145

words Z<Q,[11S
K<2 5p'STRAWBERRY' pZ
K 4 3 5

STRAW

BERRY Z<Q,[218
H,[1]K pZ

words 3 4 5

STRAW

BERRY

78 APL2 Programming: Language Reference

[Ceiling

[Ceiling

Z<[R For real numbers, yields the smallest integer that is not
less than R (within the comparison tolerance).

For complex numbers, depends on the relationship of the real
and imaginary parts of R.

R and Z: Numeric
Implicit argument: OCT

Scalar Function

Ceiling is defined in terms of floor:
[R <> -L-R

(For the determination of the result based on the relationship of the real and imagi-
nary parts of R, see page|133).

rz.3 [1.5J2.5
3 1J3

rr2.7 3 .5 [1J2 1.2J2.5 “1.2J 2.5
2 31 1J2 1J3 ~1J 2

Figure 16 illustrates the ceiling of a complex number. Any number within the rec-
tangle has point B as its ceiling.

Figure 16. The Shape of the Complex Ceiling Area

The rectangle of sides square root of 2 by square root of .5 is oriented so that the
center of one long side is coincident with a lattice point B, and with the ends of the
opposite long side coincident with the lattice points below and to the left of B. The
points within the rectangle all have B as ceiling. The two edges of the rectangle
associated with B as ceiling are the top one, on which B lies, and the one to the
right, as shown by the darker lines in the figure.

Chapter 5. Primitive Functions and Operators 79

o Circle Functions

O Circle Functions

Z<LoR L determines which of a family of circular, hyperbolic, Pythagorean,
and complex number functions to apply to R.

L: Integer such that “12<[and L<1?2
R and Z: Numeric

Scalar Function

Figure 17 lists left arguments and names the functions they generate
provides formulas for the functions ~8<L and L<8 for complex R.

Figure 17. Circular, Hyperbolic, Pythagorean, and Complex Number Functions

L L o R L L o R
0 (1-R*2)*.5
1 Arcsin R 1 Sine R
T2 Arccos R 2 Cosine R
~3 Arctan R 3 Tangent R
i (T1+R*2)*.5 L (1+R*2)*.5
5 Arcsinh R 5 Sinh R
6 Arccosh R 6 Cosh R
7 Arctanh R 7 Tanh R
~8 -(80R) 8 -(T1-Rx2)*.5 for =0
(T1-R*x2)x.5 for B<O
9 R 9 Real B
“10 +R 10 | R
11 0J1xR 11 Imaginary R
12 *0J1xR 12 Phase R

80 APL2 Programming: Language Reference

o Circle Functions

In the descriptions of the circle functions on nonreal
values, the following functions on real numbers are assumed:

SIN X <> 10X
C0S X <= 20X
SINH X <= 50X
COSH X <> 60X
TANH X <> 70X

The following variables are also assumed:
I<+0J1
R«X+0J1xY
PI<«o1

In the following formulas, redundant parentheses are
used for clarity.
00OR <> (1-R*2)*.,5

10R <> SINZ R
<> ((SIN X)x(COSH Y))+Ix(C0S X)x(SINH Y)

10R <> ASINZ R
<> -IxASINHZ (IxR)

20R <> (CO0SZ R
<> ((C0S X)x(COSH Y))-Ix(SIN X)x(SINH Y)

20R <> ACOSZ R
<+ (.5xPI)-ASINZ R

30R <> TANZ R
<> ((SIN X)+Ix(C0S X)x(TANH Y))*(C0OS X)-Ix(SIN X)x(TANH Y)

30R <> ATANZ R
<> -IxXATANHZ (IxR)

4OR <> (1+R*2)*.5

HOR <> (1+R*2)*.5 for X=0
orfor “1<X and X<0 and Y=0
<> -(T1+R*2)*.5 otherwise

50R <> SINHZ R
<> -IxSINZ (IxR)

50R <> ASINHZ R
<> -IxASINZ (IxR)

60R <> COSHZ R
«> (C0SZ IXR

"B60R <> ACOSHZ R
<> ®(R+ Uu4OR)

70R <> TANHZ R
<> -IxTANZ (IXR)

“70R <> ATANHZ R
<> -IxATANZ (IxR)

80R <+ (1-R*2)%.5 for X>0 and Y>0
or X=0and Y>1
or X<0 and Y20

<> -(71-R*2)*.5 otherwise

80R <-> -8O0OR

Figure 18. Formulas for Circular, Hyperbolic, and Pythagorean Functions Applied to Complex Arguments

Chapter 5. Primitive Functions and Operators 81

o Circle Functions

Circular Functions

82 APL2 Programming :

The circular functions sine, cosine, and tangent (10R, 20R, and 30R) require a
right argument expressed in radians.

101.570796327 201
1 0.5403023059
302 +302
72.185039863 T0.45765755L4

The last example in the right column is the cotangent of 2 radians.

Degrees can be converted to radians with the expression:
RADIANS<ODEGREFES+180

10030+180 ‘ 20045+180

0.5 0.7071067812

Inverses of Circular Functions: The inverses of the circular functions arcsine,
arccosine, and arctangent (" 10R, ~ 20R, and ~ 30R) yield their result in radians.

“101 ‘ T20.,54032023059
1.570796327 0.9999786982

Radians can be converted to degrees with the expression:
DEGREES<«180xRADIANS:01
(7301)x180+01

(T10.5)x180+01 45
30

Because sine, cosine, and tangent are cyclic, their inverses are many-valued. The
principal values for real B are chosen in the following intervals:

Arcsin 7< 10R (|1Z)<00.5
Arccos Z< " 20R (Z=20)A(Z<01)
Arctan 7« 30R (|1Z)<00.5

Language Reference

o Circle Functions

Hyperbolic Functions

The hyperbolic functions sinh and cosh (50F and 6 0R) are the odd and even
components of the exponential function; that is, 50FR is odd, 60FR is even, and the
sum (50R)+60R approximates *R. Consequently :

50 R <> .5x(*R)—(*—R) R R
e —-e
2
60 R <> . O5x(xR)+(*—R) R R
e +e
2
hol 601
1.1756201194 1.543080635

The definition of the hyperbolic tangent function tanh (7 0R) is analogous to that of
the tangent, that is:

70R <> (50R)+60R

Inverse Hyperbolic Functions: Arcsinh, arccosh, and arctanh are provided by left
arguments ~ 5, ~ 6, and ~ 7, respectively.

T501.,175201194 T601.543080635

Pythagorean Functions

The Pythagorean functions 00R, 4oR, and ~ 40OR, defined in
lbage 80, for nonnegative real R are related to the properties of a right triangle as
indicated in Figure 19. They can also be defined as follows:

0OR < 20 10R or 10 20R
LOR « 60 50FR

"JOR < 50 6OFR

B AC=1
AB=00BC
BC'=004B
AE=40DE
DE="HOAE

Figure 19. Pythagorean Functions with Real Argument

The principal values for the Pythagorean functions for real R are chosen in the
interval B>0.

Chapter 5. Primitive Functions and Operators 83

o Circle Functions

Complex Number Functions

The complex number functions (Le 12 ~11 ~10 ~9 "8andLe8 9 10
11 12) are defined in|Figure 17 on page 80|

The formulas given for “ 80FR and 80RF in Figure 17 apply only to complex
numbers with positive real and imaginary parts (the first quadrant). The phase of
the result for other arguments is adjusted for proper placement of the cuts of the
complex function.

9 10 11 1203J4 “120 o1
3 5 4 0.927295218 1
8 “800J1 8 ~802
0 O 0J 2.236067977 0J2.236067977

The following identities apply:

"80R <> -8O0FR
R <> 10 11 +.0 9 11 o,
R <~ "9 712 x,0 10 12 o,

84 APL2 Programming: Language Reference

/ Compress (from Slash)

/ Compress (from Slash)

Z<L0/R Selects subarrays along the last axis under the
control of the vector LO.

LO: Simple scalar or vector, Boolean
Z: Nonscalar array

“1¥pZ <«> " 14pR
ppZ <> ppR

This is a special case of replicate (see |/ Replicate (from Slash)” on page 220).

Compress is often used to create a conditional branch expression, where L0 is the
condition (such as X>0) and R represents a statement number—for example,
+~(X=20)/END.

11 0 0 1/'STRAY" Q<3 4p112
STY)
1 2 3 4
5 6 7 8
9 10 11 12
101 0/9
1 3
5 7
9 11

Selective Specification: Compress can be used for selective specification:

M<«3 2p16
M
1 2
3 4
5 6
(1 0/M)<'"ABC"
M
A 2
B 4
C 6

Chapter 5. Primitive Functions and Operators 85

/L1 #[] Compress with Axis (from Slash)

/L1 #[] Compress with Axis (from Slash)

Z<L0O/[X]R Selects subarrays along the X axis under the control of the
vector LO.

LO: Simple scalar or vector, Boolean
Z: Nonscalar array

“14pZ <«> " 14pR
ppZ <> ppR

This is a special case of replicate with axis (see|“/[1 #[1 Replicate with Axis|
[(from Slash)” on page 222).

N<«3 2 4p'HIGHLOW HOT COLD UP DOWN'
N

HIGH

LOW

HOT
COLD

UP
DOWN

1 0/02]N
HIGH

HOT
UP
10 1/011N
HIGH
LOW

UP
DOWN

Applied to First Axis: The symbol # is an alternate symbol for /.

86 APL2 Programming: Language Reference

/L1 #[] Compress with Axis (from Slash)

Selective Specification: Compress with axis can be used for selective specifica-
tion:

M<3 2p16
M

1 2

3 4

5 6
T<2 2p'ABCD'
(1 0 1/011M)=<T
M

A B

3 4

C D

Chapter 5. Primitive Functions and Operators 87

+ Conjugate

+ Conjugate

Z<+R Z is R with its imaginary part negated.

R and Z: Numeric

Scalar Function

For real R, conjugate returns its argument unchanged.
+ 4 +1J2

+4 2.3 3 .7 1J2x+1J2

88 APL2 Programming: Language Reference

? Deal

? Deal

Z<L?R Selects L integers at random from the population 1R without
replacement.

L and R: Simple scalar or one-item vector, nonnegative integer
Z: Simple vector, integer in set 1 R

Implicit arguments: 0I0 and ORL
pZ <~> L
ppzZ <> ,1

The value of I, must be between 0 and R, inclusive. ltems are selected without
replacement.

If L=R, Z is a random permutation of the integers 1 R.

The result depends on the value of RL. A side effect of deal is to change the
value of ORL (random link).

Both examples below show the value of ORL prior to execution of the function. To
duplicate these results, specify ORL to be this value.

010<«1 0ro<o
ORL ORL
1474833169 1474833169
5210 5210
51 2 4 6 4 0 1 3 5
ORL ORL
197493099 197493099
10210 10210
4 6 3 1 2 10 5 7 9 8 352019 46 87

Chapter 5. Primitive Functions and Operators 89

1 Decode

1 Decode

Z<L1R Yields the values of array R evaluated in a number system with
radices L.

L, R,and Z: Simple numeric array

pZ <> (“1¥pL),1%pR
ppZ <> (Ol 1+ppL)+(0T7 1+ppR)

Polynomial Evaluation: In its simplest form (with scalar L and vector R), decode
determines the value of a polynomial evaluated at . R defines the coefficients of
the polynomial arranged in descending order of powers on the powers of L. For
example, the expression 311 2 1 evaluates the polynomial x2+2x+1 at 3.

311 2 1 1J111 2 3 4
16 5J9

Base Value: |If each item of R is a nonnegative integer less than I, decode
determines the base-10 equivalent of a number stated in base-L. The digits of the
base-L number are stated as the items of F. Sometimes, therefore, decode is
referred to as the base value function. For example, the following expression
determines the base-10 equivalent of 111 1-base 2.

211 1 1 1
15

General Decode: Decode is defined in terms of the inner product for any valid
nonscalar L and R after extension of length 1 axes.

L 1 B <> ((pL)+¢1,x\¢1¥[ppLlL) +.%x R

Conformability: Scalar arguments are treated as one-item vectors.
Conformability requires that ~ 14pL <= 14pR. If either the first axis of R or the
last axis of L is 1, it is extended (by replication of the item) as necessary to match
the length of the other argument.

L<«2 1p2 10 LLR
L 5 24
2 101 432
10 24 60 6012 23 12
R«3 2p1 4 0 3 1 2 8592
R
1 4
0 3
1 2

The example in the second column shows an evaluation in a mixed radix system.
It determines the number of seconds in 2 hours, 23 minutes, and 12 seconds.

90 APL2 Programming: Language Reference

= Depth

= Depth

7Z<=R Reports levels of nesting: 0 for a simple scalar; for other arrays, 1
plus the depth of the item with the maximum depth.

Z : Simple scalar, nonnegative integers

pZ <> Empty
ppzZz <> ,0

For a nonempty array, depth shows the degree of nesting:

Depth is 0 when R is a simple scalar.

5 |
0 0

Depth is 1 when R is a simple, nonscalar array. R contains only simple scalars
as items.

=2 2p1h4 ‘ =3 2 4 5p1120
1 1
Depth is n when R contains, as an item, at least one array of depth n-1. It may
contain other arrays of lesser depths as well.

B«'JIM' 'AL' 'ET! C<'AB' 1 2 3
pB pC
3 L
=B =C
2 2
="z e
11 1 1 0 00

D<'ONE' 'TWO' ('BUCKLE' ('MY' 'SHOE'))

pD
3
DISPLAY D
N Sttt .
R e T .l
| 1ONE| | THO| | .»----- e -l
|'———"———'||BUCKLEI|. SRR NN
| | '------ "I MY | | SHOE| ||]
| | N N
| | fe--------- "I
| le-m--m-mmmmm oo - "
'6 _______________________________ '

Chapter 5. Primitive Functions and Operators 91

= Depth

For empty R, the depthis =c+R.

=10 H<«0Opcl 2 3
1 pH

+10 0
0 =H

=1 2
1 +H

4 0 00

(blank character)

Q<0p15(c1 2 3) S<«0pc(1 2 3(3 u4))5 6
pe pS
0 0
=Q =S
1 4
+Q 43
0 0 00 0 0 0 0

92 APL2 Programming: Language Reference

x Direction

x Direction

Z<+xR Yields the number of magnitude 1 with the same phase as R for
nonzero R. If Ris 0, Z is 0.

R and Z: Numeric

Scalar Function

Formally for all R: Z<R+% |R

For real R, xR is often called signum and yields the following values:

R Z
negative 1
zero 0
positive 1
x"5 x3J U
1 0.6J0.8
x4 0 Yy x0J1 0J 1
1 0 1 0J1 0J 1

Chapter 5. Primitive Functions and Operators 93

> Disclose

> Disclose

Z<>R Structures the items of R into an array, whose rightmost axes come
from the axes of the items of .

(pZ) <> (pR) AT /(p"(,R),c4tR)~c10
(ppZ) <+ (ppR)++T/p"p"(,R),c4R

All items of B must be scalars and/or arrays of the same rank. It is not necessary
that nonscalar items have the same shape.

In the identities for rank and shape, the <+ R takes care of the empty case.

Shapes of Items the Same: If all items of B have the same shape, the last
p p + B axes of the result are filled with the items of £.

V<(2 3 4) (5 6)
R4
2 3 4
56 0
In the following example, the last axis (the rank of the first item of R is 1) is filled
with the items of R, taken in row-major order.

R<2 3p(14)'"ABCD"'" '"*x*x'(5 6 7 8)'EFGH' 'AAAA?
R

4 ABCD *x*x%

8

1
5 EFGH AAAA

2 3
6 7
pR

Z<>5R

o
o N
Q w
* O F N

> &N o,
>y o

> Q3
> i ©

LI}
N

94 APL2 Programming: Language Reference

> Disclose

Shapes of Items Differ: |f items of R are scalar or have different shapes, each is
padded to a shape that represents the greatest length along each axis of all items
of R; that is, the shape of each item is padded to +I /(,p "R)~c10.

Each item's corresponding fill item is used for its new positions.

E<(2 4p18) 9 (3 2p'ABCDEF")

E

3 4 9 AB

7 8 CcD
EF

1 2
5 6

N<>E

O o
o »
o ~
o o oo F

o
o
o
o

H Q>
N O W

1L
=

1

Because of this padding, using disclose on a vector of vectors is a convenient way
to create a simple matrix without needing to know how many columns to specify.
For example:

D<'WHEEL' 'OF' 'FORTUNE'
V<>D
4

WHEEL

OF

FORTUNE

Relationship to Disclose with Axis: After padding and ignoring scalar extension,
disclose is related to disclose with axis as follows:

SR <+ >[(ppR)+1pp+RI1R

Relationship to Enclose: Disclose is the left inverse of enclose:
R <> >cR

Chapter 5. Primitive Functions and Operators 95

> [] Disclose with Axis

> [] Disclose with Axis

Z<>[X1R Structures the items of R into an array. X defines the axes of Z,
into which items of R are structured.

X : Simple scalar or vector, nonnegative integers
Implicit argument: 010

(pZ)L,X] <> 47 /(p"(,R),c4R)~c10
ppZ <> (ppR)+[/ep " p " (,R),c4R

All items of B must be scalars and/or arrays of the same rank. It is not necessary
that nonscalar items have the same shape.

X specifies the axes of the result that are filled with the disclosed items of F. The
number of items in X mustbe [/ep p R. The values of X must be contained
in 1(ppR)+l/ep " p R.

H«'ABCD' (1 2 3 4) '"WXYZ'

Z<>[1]H W<>[21H
Z 1%
A1 W A B C D
B 2 X 1 2 3 4
C 3 Y W XY Z
D u Z oW
pZ 3 4
4 3 =W
=7 1
1

The shape of the nonscalar items of R and the shape of R itself map as indicated
by X to form the shape of the result. The diagram below shows the mapping of
axes for o[1 3 1R, where R is a three-item vector whose items are matrixes of

shape 2 4.
Shape of oR
items
7
@ o ©,
¥ N
1 3><
v
ez 2 3 4

Indicates axes of Z to receive corresponding shape.

96 APL2 Programming: Language Reference

> [] Disclose with Axis

The following examples show disclose with axis for various axes applied to the
three-item vector of matrixes described below.

Z<2 Up'PA' 'MA' 'WE' 'BY' 'IT' ‘'UP' 'ON' 'HI'
R«(2 4p18) (2 4p'ABCDEFGH') (Z)
DISPLAY R

¥1 2 3 4| YABCD| ¥
|5 6 7 8| |EFGH| | |PA| |MA| |WE| |BY|
|
|
|
|
]

'~ oo - - 1 Lppp— |

-

|

|

-

-

|

|

-

-

|

|

-

-

|

|

-

—_—— e —_—— — .

—_—— e — — .

€E—-—————"—"—"—————~——-—-—-—-—- -]
€ - = — —mm e m e e e e e e e e e e e e mm— = -]
B<>[1 21R Y<>[1 31R V<>[2 31R
pB pY 4
2 4 3 2 3 4 3 24
B Y 14
1 A P4 1 2 3 4 1 2 3 'y
2 B M4 A B C D 5 6 7 8
3 C WE PA MA WE BY
4 D BY A B C D
5 6 7 8 E F G H
5 E IT E F G H
6 F UP IT UP ON HI PA MA WE BY
7 G ON IT UP ON HI
8 H

Chapter 5. Primitive Functions and Operators 97

> [] Disclose with Axis

Order of Axes: The order in which the axes are listed in X affects the shape of

the result.
N<>[2 11]R M<>[3 11R P<>[3 21R
N M P
1 A PA 1 5 1 5
5 E IT A E 2 6
PA IT 3 7
2 B MA 4 8
6 F UP 2 6
B F 4 E
3 C WE MA UP B F
7 G ON c G
3 7 D H
4 D BY c G
8 H HI WE ON PA IT
MA UP
4 8 WE ON
D H BY HI
BY HI

Shapes of Items Differ: |f items of R are scalar or have different shapes, each is
padded to a shape that represents the greatest length along each axis of all items
in R; that is, after padding the shape of each itemis +I/(,p "R)~c10.

Each item's corresponding fill item is used for its new positions.

@«(13) 'JUMP'

N<>[11]¢
N

1 J

2 U

3 M

0 P
E<(15) '"JUMP'
J<«>[11F
J

1 J

2 U

3 M

4 P

5

98 APL2 Programming: Language Reference

> [] Disclose with Axis

S<«(2 6p'ABCDEFGHIJKL') (3 4p112)

S
ABCDEF 1 2 3 4
GHIJKL 5 6 7 8
9 10 11 12
pS
2
0"
2 6 34
r/(p"8)~c10
3 6
D<>[2 318
pD
2 3 6
D
B C DEF
H I J K L

A

G

(2 rows of blanks)
1 2 3 4 00

5 6 7 8 0 0

9 10 11 12 0 O

Empty Axis Needed: |f all items of R are scalars, X must be empty.

T<«c“'ONE' 'FOUR' 'THREE'

5[101T
ONE FOUR THREE

Relationship to Enclose with Axis: Disclose with axis is the left inverse of
enclose with axis:

R <> >[X]c[X]R

Chapter 5. Primitive Functions and Operators 99

Divide

Divide

Z<L+R Divides L by B.

L, R, and Z: Numeric

Scalar Function

Divide is the arithmetic division function.

33%2 0J12+4L
1.5 0J3

9 4 7 10+.25 .3 5 1+0J1 "2 1
36 16 28 40 0J 0.3 "2.5 1

If R is 0, L must also be 0. The expression 0+ 0 is defined in APL2 to be 1.

0+5 5+0

0 DOMAIN ERROR
0:0 5+0

1 AA

100 APL2 Programming : Language Reference

+ Drop

+ Drop

pZ
pp2

L: Simple scalar or vector, integer
Z: Nonscalar array

<> O0l(pR)-1L
<> (p,L)[ppR

Z<L+¥R Removes subarrays from the beginning or end of the Ith axis of R,
according to whether L[I] is positive or negative.

Specifying the Amount to Drop: If L is a scalar, it is treated as a one-item
vector; if R is a scalar, it is treated as an array of shape (pL)p1. Then:

For LLI1>0, drop removes L[I] subarrays from the beginning of the Ith
axis of R.

For LLI1<0, drop removes | L[I] subarrays from the end of the I'th axis of

R.

For L[I J=0, no subarrays are removed from the Ith axis.

10 57

3¥12 31 45 10 57

“3+12 31 45 10 57

12 31

Nonscalar Right Argument: For nonscalar ?, L must have the same number of
ppR.

items as £ has rank:

(p,L) =

A<«3 5p'STRIPERODEPLANT'
B<'STOREFIRSTMIGHTHATER'
B«'SHEETTHEREMETROERASE"

B<3 4 5pB,'BREADOTHERANVILEVADE"

A
STRIP
ERODE
PLANT

1 244
ODE
ANT

STORE
FIRST
MIGHT
HATER

SHEET
THERE
METRO
ERASE

BREAD
OTHER
ANVIL
EVADE

B

C« 1 2 72

(means drop the
last plane and
first two rows
and last two
columns from the
remaining planes)

CYB
MIG
HAT

MET
ERA

Chapter 5. Primitive Functions and Operators

101

+ Drop

The number of subarrays dropped does not affect the rank of the result.
K«<3 2 U4p'ABCDEFGH',(18),'abcdefgh'

K 7«2 1 34K
A B C D Z
E F G H h
pZ
1 2 3 4 11 1
56 7 8

a b c d
e f g h

Dropping None: If L[I] is zero, no subarrays are removed from the Ith axis.

OY'INTACT' 0 2+3 5p115
INTACT 3 4 5
8 9 10
13 14 15

Overdrop: If L[I] equals or exceeds the length of the Ith axis, the resulting
shape has an Ith axis whose length is zero.

W<5+23 41 73 26 H<«2 3p'ABCDEF"'
oW Y<«3 1+H
0 pY
0 2
M<2 3YvH
oM
0 0

Scalar Right Argument: For scalar B, L may have any length. The length of , L
determines the rank of the result.

J<O0vh K«0 0 0+u
J K

i n
pd pK

1 111

102 APL2 Programming : Language Reference

+ Drop

Effect on Depth: Drop does not affect the depth of any selected item. The depth
of the result is less than or equal to the depth of the argument, except when the
right argument is a simple scalar.

D<'A" 'AN'('ANT' 'ANTE')

D
A AN ANT ANTE
pD
3
=D
3
S< 14D
S
A AN
=S
2
T< 2%D
T
A
pT
1
=T
1

Chapter 5. Primitive Functions and Operators 103

+ Drop

Selective Specification: Drop can be used for selective specification:

U«<'"ABCDE"
(2vU)<13
U

AB 1 2 3

104 APL2 Programming : Language Reference

ABCD
EFGH
IJKL

ISR
o N

o w QO

V<3 UYUp'ABCDEFGHIJKL'
14

1 "T14V)<2 3p16

(

14
D
H
L

+ [] Drop with Axis

+ [] Drop with Axis

Z<L+¥[X]JR Removes subarrays from the beginning or end of the X[I Jth
axis of R, according to whether L[I] is positive or negative.

L: Simple scalar or vector, integer
R and Z: Nonscalar array
X: Simple scalar or vector; nonnegative integers: Xe 1 p p F; or empty

Implicit argument: 010

(pZ)[,X1 <> Ol(pR)L,.XI-1L
ppzZ <> ppR

Drop with axis is similar to drop except that subarrays are removed only from the
axes indicated by X. The shape along axes not selected by X remains unchanged.

Drop with Axis Compared with Drop: The following identity states the relation-
ship between drop and drop with axis:

LYR <> Ly[1ppR1R

A<3 Lp'FOLDBEATRODE'
A
FOLD
BEAT
RODE
1+v[114 1 0+4
BEAT BEAT
RODE RODE
1+v[214A 0 144
OLD OLD
EAT EAT
ODE ODE

Permitted Axes: Multiple axes indicated by X need not be in ascending order;
however, no axis may be repeated. L[I] defines the number of subarrays to
drop from the X[I Jth axis.

@<3 2 L4Lp'ABCDEFGH',(18),'abcdefgh'

Q 1 T1v[2 31@
A B CD E F G
E F G H
5 6 7
1 2 3 4
5 6 7 8 e f g
abcd 1 "1+v[3 21]¢
e f g h B C D
2 3 U
b c d

Chapter 5. Primitive Functions and Operators 105

+ [] Drop with Axis

Effect on Depth: Drop with axis does not affect the depth of any selected item.
The depth of the result is less than or equal to the depth of the argument.

TV

U<2 3pT

U

U

R«1+[1]U

=q
Q
pe

WEE WEED
BEE BEEP

BEE BEEP

'"WE'('"WEE"'

'"WEED')'B' 'BE'('BEE'
M<"14[21U
=M

2
M
W WE
B BEFE
oM
2 2
N« 2+v[21U
=N
1
N
1%
B
oV
2 1

'"BEEP"')

Selective Specification: Drop with axis can be used for selective specification:

V<3 Up'ABCDEFGHIJKL'

(1+[11V)«2 4p18

14
ABCD
EFGH
IJKL

14
A B CD
1 2 3 4
56 7 8

106 APL2 Programming : Language Reference

” Each (Dyadic)

“ Each (Dyadic)

Z<L LO" R Applies the function L0 between corresponding pairs of items
of L and R.

L 0: Dyadic function

pZ <> pRorplL
ppZ <> ppRorppl

Conformability of Arguments: Either L and B must have the same shape, or
one may be a scalar or one-item vector. A scalar or a one-item vector argument is
applied against each item.

If R is not empty:

I>7 <> (I=>L) LO I>R

for every scalar I for which 7oL and I>R are defined.

Z<4 Bp 'ME' 'YOU' "SET', " 'HES'
Z SH EE TS
MEME YOUYOU
pZ
2
0" 2
4 6
=7
2

Each and a Scalar Argument: The conformability for each means that if one
argument is a scalar and the other is not, each pairs its operand (Z 0) with the item
inside the scalar and each item of the nonscalar argument. This fact can be used
to pair any array (4) with each item of another array (B) by enclosing A.

(cA)F'B
applies F with A as the left argument and each item of B, in turn, as the right
argument.

2073 4 5
5 5

Each and Primitive Dyadic Scalar Functions: Applied to the primitive dyadic
scalar functions, the operator each has no effect; that is:

L LO” R <> L LO R

The primitive scalar functions are listed in [Figure 9 on page 51|

Each Substitutes for Looping: Each has an effect similar to the DO loop in other
programming languages. It can be used to eliminate most looping in APL2 func-
tions. For an example, see[__Each (Monadic)” on page 109}

Chapter 5. Primitive Functions and Operators 107

" Each (Dyadic)

Empty Argument: If L or R is empty, the function L0 is not applied. Instead, a
related function called the fill function of L O is applied.

Either L or R or both can be empty. If one argument is not empty, it must be a
scalar item and the first (4) of that scalar is presented to the fill function as an
argument. An empty argument is presented to the fill function as +L or 4R (the
prototype). That is, if either L or R or both are empty:

For Z<L LO" R, Zis Spc(4L) FF (4R).
Where:

S is the shape of the empty argument.
FF is the fill function of LO.

For example:

7Z<54+70pc0 0 O
pZ

ptZ
5

[Figure 20 on page 110 gives all the fill functions for the primitive functions and
defined operations.

Some functions derived by inner product or reduction may not have fill functions.
An attempt to apply such a function to each item of an empty array generates a
DOMAIN ERROR.

108 APL2 Programming : Language Reference

" Each (Monadic)

“ Each (Monadic)

Z<«LO" R Applies the function L0 to each item of R.

L 0: Monadic function

pZ <> pR
ppZ <> ppR

If R is not empty:
I>7Z <> LO I>R

For every scalar I for which I>R is defined.

Z<p 'TOM' 'DICK' W<171 2 3 4
Z W
3y 1 12 123 12 34
pZ pW
2 4
=7 =W
2 2

Each and Primitive Monadic Scalar Functions: Applied to the primitive monadic
scalar functions, the operator each has no effect; that is:

LO” R <> LO R

The primitive scalar functions are listed in|[Figure 9 on page 51|

Each Substitutes for Looping: Each has an effect similar to the DO loop in other
programming languages. It can be used to eliminate most looping in APL2 func-
tions. For example, the loop shown below applies the function F to each item of a
vector V and accumulates the results in a vector. This loop can be replaced with
an application of the operator each:

Z<0pV
L1:>(0=pV)/L1X
7<7 4<cF+V

V<1+yV

+L1

L1X:

The above loop can be replaced by:
Z«F" TV

Chapter 5. Primitive Functions and Operators 109

* Each (Monadic)

Empty Argument: If R is empty, the function L0 is not applied. Instead, a
related function called the fill function of L0 is applied with argument + £ (the proto-
type of R). This result is used as a prototype of the empty array of pR .

The identity is:
LO"R <> (pR)pc fill fn +R

where:

Lo Is any function for which a fill function is defined
fill fn Is its related fill function

DISPLAY B"0pc2 3p0

|-
| v0 O |
| 1o of |
| |
| |
1

|0 0]

1~

Figure 20 gives expressions that are the fill functions. All defined fill functions are
given below. Remember that the prototypes of the arguments of the function
become the arguments of the fill function. The result of the fill function becomes
the prototype of the result of the application of the function or derived function.

Scalar Functions Z«<(R)=(L)

Matrix Inverse Z<RR

Matrix Divide Z<((14pR),1+¥pL)p0
Other Primitive Functions The function itself

Defined Operations Z<R (the identity function)

Figure 20. Fill Functions

A function derived by each or outer product has the same fill function as its
operand, if the operand has a fill function.

Some functions derived by inner product or reduction may not have fill functions.
An attempt to apply such a function to each item of an empty array generates a
DOMAIN ERROR.

110 APL2 Programming : Language Reference

c Enclose

c Enclose

Z<cR

Creates a scalar array whose only item is R.

Z: Scalar array

pZ

ppZ

<> 10
<> ,0

If B is a simple scalar, cR is R. If R is not a simple scalar, the depth of <R is
1+=R.

[&)]

13
17
21

14
18
22

A<2 3 4p12L

15 16
19 20
23 24
pA

ppd

13 14 15
17 18 19
21 22 23

pZ

(empty)

ppZ

1l
N

Compared to Vector Notation: For A, B, and C:
(A B C) <> ((cd),(cB),(<cC))

D<«'ON' 'UP!

pD

D

16
20
24

Chapter 5. Primitive Functions and Operators 111

c Enclose

Enclose is used to create a scalar whose only item is R. This scalar can replace a
scalar subarray selected by indexing. It is also subject to scalar extension as an
argument of a scalar function or of an each-derived function.

S<15 0 29 T<«3 5+c0 1
pS T

3 34 56
=S pT

1 2
S[21«'NONE"

RANK ERROR Q«'LOUIS' 'CROIX'
S[21<'NONE"' Z<(c'sST. '),"Q
A A 7
S[2]1«c'NONE"' ST. LOUIS ST. CROIX
3

15 NONE 29

pS

3
=8

2

Enclose and ravel can be used to create a nested one-item vector:

W<,c15 0 29
W

15 0 29
oW

1

Ravel and enclose can be used to create a scalar containing a one-item vector.

Y<«c,5
ppY

0
=y

2

Relationship to Disclose: Disclose is the left inverse of enclose:
R <> >cR

112 APL2 Programming : Language Reference

c[] Enclose with Axis

c[] Enclose with Axis

Z<<c[X1R Yields an array whose items are the contiguous subarrays along
the set of axes indicated by X. That is, the set of axes indicated
by X is enclosed.

X: Simple scalar or vector, nonnegative integer.

If X is nonempty, Xe 1ppB.

Implicit argument: 010

pZ <> (pR)L(1ppR)~X]1 p+Z <> (pR)IL,.X]1 ppZ =<~

(ppR)-p,X
A<2 3p16 B<+3 Up'PINEODORDATA'
A B
1 2 3 PINE
4L 5 6 ODOR
DATA
Z<c[1]4 X<«c[11B
Z X
14 25 36 POD IDA NET ERA
pZ pX
3 u
iy 0 X
2 2 2 3 3 3 3
=7 =X
2 2
Y<«c[2]4 W«cl[21B
Y W
1 23 4 56 PINE ODOR DATA
pY oW
2 3
0"y oW
3 3 L 4 L
=Y =W
2 2

Chapter 5. Primitive Functions and Operators 113

c[] Enclose with Axis

Empty Axis: An empty axis has no effect on R if R is a simple array. If R is
nested, an empty axis increases the depth of R by enclosing each item without

affecting its shape: <c[10]R <»> c R,

C<+2 3p16
V<c[10]C
4

1 2 3

4L 5 6
oV

2 3
=V

1

Q<2 3p'CAT' 'DOG' 'FOX'

Q
CAT DOG FOX
COW BAT YAK

P&
2 3
=q
2
H<c[10]Q
H
CAT DOG FOX
COw BAT YAK
pH
2 3
3

Order of Axes: The order in which the axes are listed in X affects the shape of

each item of Z.

S«2 3 Up'LESSSOMENONEMOREMANYMOST'

S
LESS
SOME
NONE
MORFE
MANY
MOST
P<c[2 318§
P
LESS MORE
SOME MANY
NONE MOST
pP
2
0P
3 4 34

114 APL2 Programming : Language Reference

c[] Enclose with Axis

=P
2

@«cl[3 2185

Q
LSN MMM
EOO 0AO
SMN RNS
SEE EYT

P&
2

o @
4y 3 u 3

=¢
2

If all the axes of E are included in X, then:
c(AX)®R <+ c[X1R
If Xis 1ppk, then:

cR <> c[X1R

T«2 3p124 c[1 3 21T
T 1 5 9
1 2 3 4 2 6 10
5 6 7 8 3 7 11
9 10 11 12 4 8 12
13 14 15 16 13 17 21
17 18 19 20 14 18 22
21 22 23 24 15 19 23
T 16 20 24
2 3 4
(cf1 3 21T)=c(h 1 3 2)RT
J<«c[1 2 31T 1
J
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
2

Relationship to Disclose with Axis: Disclose with axis is the left inverse of
enclose with axis:

R <-»> >o[X] <c[X] R

Chapter 5. Primitive Functions and Operators

115

T Encode

T Encode

Z<LTR Yields the representation of R in the number system whose radices
are L.

L, R, and Z: Simple numeric array

pZ <> (pL),pR
ppZ <> (ppL)+ppR

Representation of a Base-10 Number: For radices L having positive integer
items, encode has an inverse relationship to decode, as follows:

Li1(LTR) <> (x/L)I|R

Thus, encode can be used to determine the representation of the base-10 number
in a number system whose radices are defined by the vector L.

2 2 2 2715 24 60 60718592
1111 2 23 12

The example in the second column is a mixed radix encoding of the number of
hours, minutes, and seconds in 8592 seconds.

For L<10, 101LTR displays the base-L representation of £ as a single number.

2 2 2 2715 1012 2 2 2715

1111 ‘ 1111

The number of digits present for the encoding of R depends on the shape of L. If
L has greater shape than needed, the result has leading 0's. If L has less shape
than needed, the result is an incomplete representation.

2 2 2 2 27115

‘ 2 2 27115
01111 111

For a single-base encoding, the expression L 1+L®(| R)+E=0 can be used to
determine how many items L should contain for a complete representation of the
scalar R.

((L1+2®135)p2)T135
10000111

116 APL2 Programming : Language Reference

T Encode

No simple expression exists for predetermining the number of places in the result

for a mixed-radix encoding. However, if 14 L is zero, the first item of the result

captures any overflow if L is not long enough for a complete representation of R.

24 60 601162507

21 8 27

0 24 60 607162507
1 21 8 27

General Encode: The basic definition of L TR concerns a vector L and a scalar R
and yields a result with the shape of L. Encode is defined formally in terms of the
function residue (|) but with OCT<0, as shown in the defined function ENCODE

below:

(11
(21
31
[u1l
[51]
(61
£71
[81l
(91l

V Z<«L ENCODE R;I;0OCT

v

OdcT<o

Z<0X[

I<plL
GO:+(I=0)/0
ZLIJ<LLI]IR
+~(LL[I1=0)/0
R<(R-Z[I])+L[I]
I<I-1

>G0O

For arguments of other ranks:

a RN
o F w
~N O O

Z< o[1]1 (<c[11L)

10 10 10T1215 345 7

o .ENCODE R

L<4 2p8 2
L

8 2

8 2

8 2

8 2
LT15

0 1

0 1

11

7 1

Chapter 5. Primitive Functions and Operators

117

e Enlist

e Enlist

Z<eR Creates a simple vector whose items are the simple scalars in B.

Z: Simple vector

pZ <> Number of simple scalars in R
ppZ <> ,1

The result of enlist is always a simple vector.

C<'"ALE' 'BEER' 'STOoUT'

Z<eC
Z
ALEBEERSTOUT
pZ
12
=7
1

The example below shows how enlist selects items from a nested array to form a
simple vector.

H<(2 2p14)(2 2p(5 6(2 2p7 8 9 10)11))'ABCD"'

DISPLAY H
e .
I R e |
| ¥1 2| + 5 6 | |ABcD| |
| 13 u| | R
R L I | |
	v+7 8] 11	
	19 10]	
	t~---	
'e---------- '		
'E ___________________________]

eH
1 2 3456 7 8 9 10 11 ABCD

peH
15

=eH

1

118 APL2 Programming : Language Reference

e Enlist

Compared to Ravel: , Ravel, page 202, creates a vector from the items in R. If
R is simple, the results of enlist and ravel are equivalent:

W R <> €R

Selective Specification: Enlist can be used for selective specification.

A«<(10 20 30) 'A4B!
(ed)<15
A

1 2 3 4 5

Chapter 5. Primitive Functions and Operators 119

¢ Execute

¢ Execute

Z<eR Evaluates the statement represented by the character vector R.

R: Simple character scalar or vector

pZ <> Data dependent
ppZ <> Data dependent

R is taken to represent a valid statement which is evaluated.

o' ¢ "MATRIX<«3 3p19"
1 2 3 4 MATRIX
1 2 3
1+e' 14! 4 5 6
2 3 4 5 7 8 9
2'195+5x13"! e "' YAGNES' "
3 AGNES

The last example in the right column shows that it takes three sets of quotation
marks to specify a character vector for execution.

Valueless Expression: If R is empty or represents a defined function or operator
without explicit result, ¢R has no value.

VF X 2xe '
(1] 7<3xX VALUE ERROR+
[2] v 2xe !

A

S<e'F 2!
VALUE ERROR+

S<e'F 2!

AA

Conditional Execution: The statement E may be executed conditionally.

V<10 CTR<0
2(0=pV)/ """ "EMPTY"' " ¢(1=CTR)/"124"
EMPTY No value (i.e., not empty)
CTR<«1
2(1=CTR)/"'124"
124

Error Message: |If the statement R results in an error, the error message includes
lines showing the content of R and where the error occurred in B.

e'3 Lx!
SYNTAX ERROR+

3 Lx

A A

e'3 Lx!

A

120 APL2 Programming : Language Reference

¢ Execute

Execute with Branch Statements: Execute applies to a branch statement only if
the execute is the leftmost primitive in a statement and is applied without an oper-
ator. Here are two examples of illegal execute statements:

L1<«3

2+ '>L1" A NOT LEFTMOST PRIMITIVE
SYNTAX ERROR+

>L1

A

2+ '>L1" A NOT LEFTMOST PRIMITIVE

AA

¢ '2+42'" '">L1' a APPLIED WITH OPERATOR
DOMAIN ERROR

+>L1

A

071242 '>L1' o APPLIED WITH OPERATOR
AA

Chapter 5. Primitive Functions and Operators 121

\ Expand (from Backslash)

\ Expand (from Backslash)

Z<LO\R Expands the last axis of B under the control of the Boolean vector
Lo.

L 0: Simple Boolean scalar or vector
Z: Nonscalar array

“1¥pZ <«> " 14pR
“14pZ <> p,LO
ppZ <> ppR

Positions in Z that correspond to ones in L0 are filled with items of . Positions in
Z that correspond to 0's in L0 are filled with the fill item (+0p c+R).

1 01 0 0 1\1 2 3 1 01 0 0 1\'4ABC!
102 00 3 A B C
H<(1 2) (3 4 5) 6 K<1 (2 3) (4 5 6)
1 01 1 0\H 1 0 1 1 0\K
12 00 345 6 00 10 23 456 0

When applied to multidimensional arrays, expand treats each subarray along the
last axis as a vector and expands it with a fill item appropriate for that subarray.
For example:

Rl 2 3 4 "A' 4 'C' 2 6
R(.R, 'X' 7 'Y' 1 'D' 'E'
R<5 4pR,5 'F' 'G' 'H' 'I!

R
1 2 3 4
AL C 2
6 X 7Y
1 D E 5
F GHI

1 00 1 1 0 1\R
1 00 2 3 0 4
A b c 2
6 00X 7 0Y
10 0DE 05
F G H I

122 APL2 Programming : Language Reference

\ Expand (from Backslash)

Conformability: If ~1+pR is not 1, it must be equal to +/L0. For scalar R or if
“14+pRis 1, the following extensions are applied before the function is evaluated:

e If R is a scalar, it is treated as a one-item vector.

o If "14pRis 1, R is replicated along the last axis +/ L0 times.

1 0 0\5 S<3 1p7 8 9
500 0 1 0\S

o O O
O 0 3
o O O

Compared with Replicate: Expand is similar to replicate with negative L0O. The
following identities also exist for Boolean LO:

LO\R <«» (LO-L0O=0)/R
LO\R <» (1+2xL0O)/R

« 1 721 "1 1/W

9
1 0 1\W 7 0 0 8 09

(ool
O O
o O ©

7 0 0

Empty Arrays: If LO is empty, R must be a scalar or the shape along the last
axis (" 14+pR) must be 0 or 1. If R is empty with a zero last axis, L0 must
consist entirely of 0's. If R is empty with a nonzero last axis, +/ ,L0 must be
“14pR.

Z<(10)\2 0pO A«(10)\,[1016 7 8
pZ pA
20 30
B«1 0 1\0 2pO0 C<0 0 0\2 0pO
B pC
pB 2 3
0 3 c
0 0 O
0 0O

Selective Specification: Expand can be used for selective specification:

M<'ABC' N«<2 3p16
(1 0 1 0 1\M)+«15 N
M 1 2 3

1 35 4L 5 6

T<«2 Up'ABCDEFGH'
(1 0 1 1\N)=<T
N

ACD

EGH

Chapter 5. Primitive Functions and Operators 123

\[] \[] Expand with Axis (from Backslash)

\ [1 X[JExpand with Axis (from Backslash)

Z«LO\[LX1R Expands the Xth axis of R under the control of the Boolean
vector LO.

L O: Simple Boolean scalar or vector
R and Z: Nonscalar array
X: Simple scalar or one-item vector, integer: Xe 1ppR

Implicit Argument: 0I0

ppZ <> ppR

Expand with axis is similar to expand, except that expansion occurs along the Xth

axis.
R<2 3 Lp12Uu
((,R)[1 3 14 16]1)<«'ACDE"
R F<«2 2 2pc[218 2p116
A 2 C 4 F
5 6 7 8 1 2 3 4
9 10 11 12 5 6 7 8
13 D 15 E 9 10 11 12
17 18 19 20 13 14 15 16
21 22 23 24
1 0 1\[2]F
11 0 1\[21R 1 2 3 4
A4 2 C 4 00 00
5 6 7 8 5 6 7 8
0 0
9 10 11 12 9 10 11 12
00 00
13 D 15 E 13 14 15 16
17 18 19 20
0 0

21 22 23 24

124 APL2 Programming : Language Reference

\[] X[] Expand with Axis (from Backslash)

G«2 2 2p1 (2 3) 4 (5 6) 7 (8 9) 10 (11 12)

G
1 23
4 5 6
7 8 9
10 11 12

1
0
n

7
0
10

2
0
5

8
0

11 12

1 0 1\[2]C

3
0
6

9
0

Conformability: 1f (pR)[X] is not 1, it must be equal to +/L0. For scalar R
orif (pR)LX]is 1, the following extension is applied before the function is evalu-

ated:

If (pR)LX]is 1, R is replicated along the Xth axis +/ L0 times.

T<«2 1 3p16

Applied to First Axis: The symbol X is an alternate symbol for \[11].
However, if X is followed by an axis (A\[X]), it is treated as \[X].

M<3 Lp'A' 'B' 1 'C"

NS

w o

R
© QR

[N

0 0 1 1\M

o F O O -

» oo R
N O ON

F oo &
oo o w;

w O O w

o O oo

2 3

N
~N w

Chapter 5. Primitive Functions and Operators

o F O O

1 0 0 1\[21T

4L 5 6 7 8 9

10 0 1 1\[11M

c

125

\[] \[] Expand with Axis (from Backslash)

Selective Specification: Expand with axis (from backslash) can be used for
selective specification:

M<3 2p16
M

1 2

3 4

5 6

(1 1 0 0 2I\[1IM)<5 2p-110

M

1 T2

3 Ty

9 10

126 APL2 Programming : Language Reference

* Exponential

* Exponential

Z<*R Determines the Rth power of the base of the natural logarithms e,
where e is approximately 2.7182818284590452.

R and Z: Numeric

Scalar Function

The exponential function is equivalent to e*R.

*1 *0J1

2.718281828 0.5403023059J0.8414709848
*0 *00J1

1 1

Chapter 5. Primitive Functions and Operators 127

o=

Factorial

! Factorial

Z<«1R For positive integer R, yields the product of all positive integers
through R.

For all numbers but negative integers, factorial yields the Gamma
function of R+1.

R: Numeric, except for negative integers
Z: Numeric

Scalar Function

'y ! 3J2

24 73.01154037J1.770168194
' 2 3 4 5 !.05 7.05

1 2 6 24 120 0.9735042656 1.031453317

Gamma Function: Factorial approximates the gamma function of (n+1):

T (n+tl) = nT" (n) if n >0

128 APL2 Programming : Language Reference

€ Find

€ Find

item of Z is 0.

Z: Simple Boolean array
Implicit argument: OCT

pZ <> pR
ppZ <> ppR

Z<LeR Yields a Boolean array that maps to . An item of Z is 1, where the
pattern L begins in the corresponding position of E. Otherwise, an

Note: See the discussion of the) PBS command on page @44 for
alternate ways to enter this character.

'AB'e'"ABABABABA"'
101010100
H«4 5p'ABCABA'
H
ABCAB
AABCA
BAABC
ABAAB

BCA
ABC

o O O o
O O O

o O O

1 2 31 2 3 4 1 2 3
0100

K<2 3p'BCAABC'

K

oo oo
oo oo

Rank of I, Smaller Than Rank of R: If L has smaller rank than R, the search is
performed along the last pp L axes of R. Thatis, L is treated as being reshaped
as ((Dp1),pL)pL, where D is the difference in ranks: (ppR)-ppL.

With H specified as above:

'BA'eH
0 0 00O
0 00 0O
1 00 0O
01 000

Chapter 5. Primitive Functions and Operators 129

€ Find

Rank of I, Greater Than Rank of R: If L has larger rank than R, the pattern L
cannot be found in R and all items of Z are 0.

Q<2 3p'ABCABB'
Q

ABC

ABB
Qe'ABCABB'

0 00 O0O00O

Nested Arrays: The pattern being searched for is found only if an exact match in
structure and data (within comparison tolerance) exists:

S<«'Go' 'ON' 'GO' 'TO!
S

GO ON GO TO
pS

=S
'GO' 'TO'eS
0010

'GOTO'eS
0 00O

Deleting Multiple Blanks: ¢ can be used to delete multiple blanks as follows:
S<«'AB DEF'

(~' 1'e¢8)/S
AB DEF

130 APL2 Programming : Language Reference

4+ First

+ First

Z<+R

pZ <> Depends on shape of the first item

Selects the first item of R taken in row major order. If R is empty,
yields the prototype of R.

ppZ <> Depends on rank of the first item
A<'DO' 'RE' 'ME' B«<(2 3) ((4 5 6) 7)
Z<4+A =B
Z 3
DO J<+B
=7 J
1 2 3
pZ =J
2 1
Y<'"ABCDE" C<«$B
=Y
1 c
W<+Y 4 5 6 7 2 3
W S<«+C
A S
=W 4 5 6 7
0 pS
2
=5
2
=C[1]
3

Empty Argument: If R is empty, first yields the prototype of R; that is:

+R <> 40pc4R.

410

D<0 3p(2 3p0) O

pD

T<4D
T

o O
o O

(a blank)

;'\ll
H<0 2p(0 0) (0 0 0)
H
oH

U<+H

Chapter 5. Primitive Functions and Operators

131

4+ First

Compared with Pick and Enclose: > Pick, page[195] selects any item from an
array:

+R <> (c(ppR)pl)>R (for nonempty R)

c Enclose, page [111), creates a nested scalar whose only item is the argument
array:

R <> 4cR
Selective Specification: First can be used for selective specification:

K<'RED' 'WHITE' 'BLUE'

K

RED WHITE BLUE
pK

3
(+K)<'"YELLOW'
K

YELLOW WHITE BLUE
=K

2

132 APL2 Programming : Language Reference

L Floor

L Floor

Z<LR For real numbers, yields the largest integer that does not exceed R
(within the comparison tolerance).

For complex numbers, depends on the relationship of the real and
imaginary parts of R.

R and Z: numeric
Implicit Argument: OCT

Scalar Function

The magnitude of the difference of a number and its floor is always less than 1.
The examples below show floor applied to real R.

L2.3 L72.7 3 .5
2 "3 30

For complex R of the form A+0J1xB (where A and B are real), the result
depends on the relationship of the real (4) and imaginary parts (0J 1 xB) of R as
follows:

If Then Z Is
1>(A-LA)+B-LB (LA)+0J1xLB
1<(A-14)+(B-LB) and (1+LA4)+0J1xLB
(A-1LA)=2B-LB
1<(A-LA)+B-LB and
(A-LA)<B-LB

(LA)+0J1%x1+LB

Figure 21 illustrates the floor of a complex number. Any number within the rec-
tangle has point B as its floor.

Figure 21. The Shape of the Complex Floor Area

The rectangle of sides 2% .5 by .5* .5 is oriented so that the center of one long
side is coincident with a lattice point B, and with the ends of the opposite long side
coincident with the lattice points above and to the right of B. The points within the
rectangle all have B as floor. The two edges of the rectangle associated with B as
floor are the bottom one, on which B lies, and the one to the left, as shown by the
darker lines in the figure.

Chapter 5. Primitive Functions and Operators 133

L Floor

The examples below show floor applied to nonreal R.

L1.5J2.5 L1J2 1.2J2.5 "1.2J 2.5
2J2 1J2 1J2 ~1J 3

134 APL2 Programming : Language Reference

5 Format (Default)

% Format (Default)

Z<3%R Creates a simple character array whose appearance is the same as
the display of R (if OPW is set sufficiently wide.)

Z: Character array
Implicit argument: 0OPP

pZ <> See below
ppZ <> ,1[ppRif R is simple
ppZ <> ,1;o0r ,2if R is nested
(see below)

Z is a character array that includes the character representation of all data in R
plus all leading, intermediate, and interdimensional blanks in the display of .

R<2 3p'ONE' 1 1 'TWO' 2 22

R To illustrate the format created by s, the display
ONE 1 1 below substitutes carets for blanks in Z.
TWO 2 22
7<%R
Z AONEALAALA
ONE 1 1 ATWOA2A22A
TWO 2 22
pZ

2 10

For additional information, see[‘Display of Numbers” on page 12} [‘Display of]|
[Characters” on page 14] and fDisplay of Arrays” on page 17}

Printing Width: Numeric and character arrays are displayed differently when they
are too wide for the printing width, as shown below:

OPwW<30
T+<34559898 L4L4gouyu9LuLug 13981 93891293
T
34559898 449449449 13981
93891293

U<sT
U

34559898 449449449 13981 93891
293

Chapter 5. Primitive Functions and Operators 135

3 Format (Default)

A numeric array may not be displayed to the allowed printing width because
numbers are not usually split for display. For the vector T, the number
93891293 is too large for the line so it is displayed on the second line. A char-
acter array, such as U, is displayed to the allowed printing width.

Because of this difference in the display of numeric and character arrays, the result
of R may not appear to be the same as the display of 7.

OPW and its effect on display are discussed on page B18|

Simple Character Array Argument: If R is a simple character array, Z and R
are the same. If B is a simple numeric array, ~1¥pZ <=+ ~1+pR.

M<'3 5 SIX' S<hxih
M S
3 5 SIX 4 8 12 16
N<sM Y<«3S
N Y
3 5 SIX 4 8 12 16
N=M S=Y
1 0
pS
n
pY
9

Nested Arrays: When R is a nested array, Z is a vector if all items of R at any
depth are scalars or vectors. Otherwise, Z is a matrix. Two examples are shown.

Example 1: All items of B are scalars or vectors and the result of 3B is a vector.

B«(2 3 4) 5 (<7 8 (9 10 11))

pB
3
=B
i
C<3%B
pC
27
B
2 3 4 5 7 8 9 10 11
c

2 3 4 5 7 8 9 10 11
The display below substitutes carets for the blanks in C:

A2ASALAASAAATABSAAIALIOALIAAA

136 APL2 Programming : Language Reference

5 Format (Default)

Example 2. One item of D is a rank-3 array. The result of 3D, therefore, is a

D<(1 2) (3 4 5) 6 (2 2 3p6+112)

matrix.
D
1 2 3 4 5 6 7
10
13
16
E<3sD
pE
5 27
E
1 2 3 4 5 6 7
10
13
16

14
17

14
17

15
18

15
18

In the display below, carets are substituted for the blanks in E.

ALA2AASAUABSAABAAAAANTAABAAQA
AAAAAAAAAANAAAANAAAAATIOALLIAL2A
AAAAAANAAAAANAAAANAAAANAAAANAA
AAAAAAAAAANAAANANAAAAANTLIALIHALSA
AAAAAANAAAAANAAANANAAAANTLIDBALTALSA

Display Rules: The display that s creates follows certain rules. Generally, rows
and columns are formatted independently, and rectangular nesting and hierarchy

are displayed] Figure 22 on page 138|presents the rules formally.
e There is one column each of leading and trailing blanks.

» Character scalar and vector items in columns containing numeric scalars are

right-justified.

e Character scalar and vector items in columns not containing numeric scalars

are left-justified.

e Row and column spacing is determined by the context of adjacent items. The
spacing increases with the rank of the items. The number of embedded blanks
is one less for character items than for other items.

The definition of the default format function is applied recursively so that nested
items within a nested array appear with a leading and trailing blank.

Chapter 5. Primitive Functions and Operators 137

3 Format (Default)

The formal rules listed below for default formatting of nested arrays use the
function NOTCHAR. NOTCHAR returns a 1 if R is not a simple character
array and a 0 otherwise:

V Z«NOTCHAR R
(1] 7Z<1
[2] +(1<=R)/0
[3] Z<' 'v.,z,40pck
\Y
For Z«3 R, where R is a nested array:
e 7 has single left and right blank pad spaces.

e 7 has S intermediate blank spaces between horizontally adjacent items A
and B, where:

S<((ppA)+NOTCHAR A)T(ppB)+NOTCHAR B

e 7 has LI intermediate blank lines between vertically adjacent items C and
D, where:

LN<OT " 1+(ppC)lppD

o If the rank of R is three or more, Z can contain blank lines for the interdi-
mensional spacing.

Figure 22. Formal Rules for Default Formatting

Effect of Printing Precision: Because the result of default format has the appear-

ance of the displayed argument, the printing precision (OPP, page|315), influences
the result. For example:

OPP<5
H<«+3 6
H

0.33333 0.16667
I<sH
I

0.33333 0.16667

OPP<8
H

0.33333333 0.16666667
I

0.33333 0.16667

138 APL2 Programming : Language Reference

3 Format by Example

% Format by Example

Z<LsR Transforms R to a character array that is displayed according to
format model L. L includes control characters, which show where
digits can appear in the result, and decorators, such as $ + PAID,
which can accompany the display of a number.

L: Simple character vector
R: Simple real numeric array
Z: Simple character array

Implicit argument: OFCL15]1]

“1¥pZ <«> “1¥pR
ppZ <> ,1lppR

The left argument L provides a model for each column of Z. It consists of one or
more fields. A field is a sequence of characters containing at least one digit and
bounded by either blanks or a special field boundary mark (the digit 6). The
spaces are significant and are retained as column dividers in Z. A sequence of
characters that does not contain a digit is considered a decoration. 5's define the
numeric pattern, except where special handling is desired.

In the following example, @, $, and EA are decorators; the dot defines the position
of the decimal point; and the blanks define spaces between items. The first field
(55 @) defines the format of the first column and displays the positive numbers 0
through 99, following each number with the symbol @. The second field ($55.50
E A) defines the format of the second column and displays positive numbers in
dollars-and-cents format, following each amount with EA.

L<' 553 $55.50 EA'
R<«3 2p3 4.99 7 7.45 12 .5
R
3 4.99
7 T7.45
12 0.5
Z<LsR
Z
39 $ u4.99 EA
79 $ 7.u45 EA
122 $.50 E4

pZ

pL
15

Chapter 5. Primitive Functions and Operators 139

3 Format by Example

Conformability: For conformability, Z must have either one field, which is then
applied to each column, or as many fields as R has columns. Each field of I then
applies to a corresponding column of B.

If L has ~1+pR fields:
(" 14pZ) <> pL
If Z has one field:
("14pZ) <> (pL)x 14pR

Specifying the Left Argument: L can contain two kinds of characters:

1. Control characters—the character digits '1234567890 ', the period (.),
and the comma (,) - that specify:

e Where numbers in R can appear in Z and the display pattern for the
numbers.

* Where decimals, controlled commas (thousands indicator), and floating
decorators in L appear in Z. (Note that the display generated by ' . ' and
', ' depends on the setting of OFCL1 217).

2. Any character, including the space, that is not a control character is a
decorator. Decorators can be:

e Simple, always appearing in Z as they appear in L.

Simple decorators can be used to indicate the meaning of the number
being displayed:

EFEXPR<+234.,67 456,23 987.65 34.23
'"TOTAL ORDER COST: $5,555.50'%+/EXPR
TOTAL ORDER C0OST: $1,712.78

It is a good idea to precede each field by one or more spaces to ensure
that at least one blank separates numbers.

e Controlled, appearing in Z according to the control characters in L.
» Floating, appearing next to a number in Z, according to the control charac-
ters in the pattern for the number.
Effect of Format Control: The format control system variable (OFC), page [291}
is an implicit argument of picture format:

e OFCL 1] specifies the character for the decimal indicator. This character
prints wherever a ' . ' is specified in L. The default settingis '."'.

e OFCL 2] specifies the character used as a decorator to mark thousands. This
character prints wherever a ', ' is specified in L. The default settingis ', '.

e OFCTL 3] specifies the fill character whenever ' 8 ' is specified in L. The
defaultis ' *'.

140 APL2 Programming : Language Reference

3 Format by Example

e OFCL4] canbe '0"' or an overflow character. For OFC[4] equalto '0"',
a DOMAIN ERROR is generated if L specifies a pattern that is too small for
the corresponding column of R. If OFCL 41 isnot '0"', its value is printed in
the field having an overflow. The defaultis '0'.

' 55.55'5345 .6789

DOMAIN ERROR

' 55,55's345 ,6789

A

A

OFCL4J<«" 2"
' 55,55's345 ,6789

22227 .68

e OFCL5] specifies a “print-as-blank” character. It is used in L to specify that a
blank should separate the digits of a number. The defaultis ' _"'.

'555_555_5555'$8324632190

832 463 2190

The print-as-blank character is useful to break up a long string of numbers such
as a charge card number or to print on a form that has vertical rules.

Effects of Left Argument: The effects of the control characters and decorators
are defined and illustrated in Figure 23. In the figure, the control character '5 ',
the decorators ', ' and '. ', and the control character '0' are presented first
because they are the most commonly used. The other digits are presented in
numeric order. All examples use the default format control OF C settings.

Figure 23 (Page 1 of 2). Picture Format Control Characters

n

Effect

Example

l5l
and

Perform normal formatting, observing
APL2 rules for removing leading and
trailing 0's. Display blanks for a value
of 0. (See[Display of Numbers” on|

lpage 12))

Fractional numbers are rounded to the
specified number of decimal places.

Print OFCL[11] wherevera '."'
appears and OFC[2] wherever a
', ' appears.

Note: 5 alone does not allow display
of negative values. Use 1 and 2 to
control the display of signed numbers.

' 55,55'%.,10 1.1 1.01 10.019 .11
.1 1.1 1.01 10.02 .11

' 55,55'%2 2.2 0 2.22
2 2.2 2.22

Pad with 0's to the position of the 0. If
the value of the corresponding item of
R is 0, the position is filled with 0's.

' 055.50's.3 33.2 0 300
000.30 033.20 000.00 300.00

Float the decorator against the number
only if the value is negative.

' -55,10's 3.4 0 4.5 2,12
-3.40 .00 4.50 -2.12

' (55.10)'s 3.4 0 4.5 2,12
(3.40) .00 4.50 (2.12)

Chapter 5. Primitive Functions and Operators 141

3 Format by Example

Figure 23 (Page 2 of 2). Picture Format Control Characters

n Effect Example
120 Float the decorator against the number ' +552.,50'%s 4 40 400
only if the value is positive. 4,00 +40.00 400.00
' -551.20CR'%s 4 40 " 400
-4.00 40.00CR -400.00

'3 Float the decorator against the
number.
a number may be negative.

1 or 2 must also be used if

Note: If only one of the characters 1,

' $555,50'%3.1 32.23 324
$ 3.10 $ 32.23 $324.00

' $553.50's3.1 32.23 324

2, or 3 appears within a given pattern $3.10 $32.23 $324.00
in L, it applies to both right and left
floating decorators. If more than one
appears, each applies to its respective
side.

rty Counteract the effect of a 1, 2, or 3, ' -551,20CR's 1 10 ~100
to prevent it from affecting the other -1.00 10.00CR -100.00
side of the decimal. Any decorator on
the same side of the decimal as the 4 ' -551.,40CR's 1 10 ~100
displays as entered. -1.00CR 10.00CR -100.00CR

'6! The decorator to the right marks the

were a blank between the fields, but
display the decorator.

end of this field; treat it as though there

'0006/06/06 06:06'35407S
1991/12/17 12:35

'7 The next nonnumeric character to the
right is the symbol to be used for
scaled form (E-format).

! "1.7000E 01's 25.784 .0034

T2.5784E 01 3.4000E 03

'8! Fill empty portions of the field with the
character defined by OFC[3]. The
default character is *. This specifica-
tion is sometimes called check pro-
tection because it can be used to print
fill characters on checks.

! 85555.50's17.3 56.43
%%17.,30 **x*%¥56.43

OFCL3]«"' o
! 85555.50's17.3 56.43
-00017,30 ©00056.43

' -85555,10's 17.3 56.43
-00017,30 o00056.43

'9! Pad with 0's to the position of the 9. If

the value of the corresponding item of
R is 0, the position is all blanks.

! 9995.59's14.7 0 56.43
0014.70 0056.43

! 9995.19-'% 17.3 0 56.43
0017.30- 0056.43

142 APL2 Programming : Language Reference

5 Format by Specification

% Format by Specification

Z<LsR Transforms R to a character array that displays according to column
specifications L. Each pair of L corresponds to a column. The first
of the pair sets column width; the second sets display precision and
format — either conventional or scaled.

A single pair of integers extends the specification to all columns. A
single integer is interpreted as (0 , L).

L: Simple integer vector

R: Array of depth 2 or less, whose items are simple
real scalars or simple character scalars or vectors

Z: Simple character array

Implicit argument: OFCL1 4 6]

T1¥pZ <> “1¥pR
ppZ <> 1[ppR

L controls the column width (first integer of pair) and the precision and format of
the display of numbers in a column (second integer of pair). For example:

R<«3 2p1 .468987 2 57.276 3 27963
R

1 0.468987

2 57.276

3 27963

4 2 12 "5%R
1.00 4,6899F 1
2.00 5.7276E1
3.00 2,7963E4

4 0 10 23R
1 JL7
2 57.28
3 27963.00

Specifying the Integer Pair: The first integer of a pair specifies the width in Z of
the corresponding column of 7.
The first integer can be either:

e 0 to specify that column width should be determined automatically by the
number of positions in the largest item in the corresponding column of R,
allowing a one-column space leading each column.

Chapter 5. Primitive Functions and Operators 143

5 Format by Specification

e Positive to specify overall column width. It must be large enough to include:

The sign (if necessary)

The digits

The decimal indicator

The number of positions specified for precision

Note: If you want Z to be displayed at the left margin, use 0 to get the
minimum readable format.

The second of the pair of integers specifies the precision and format of the display
of the numeric simple scalar items in R. It can be:

e Positive to specify the number of digits to be displayed after the decimal in the
corresponding column of R. Decimal positions not filled by digits of R are
padded with O's.

If a number has more decimal positions than specified, the number is rounded
to the specified number of decimal positions.

e Zero to indicate integer formatting. No decimal point is used.
If a number of R is fractional, it is rounded to an integer.

* Negative to specify scaled form and the number of digits to be displayed in the
mantissa in the corresponding column of 7.

A number that is displayed in scaled form can be displayed by % in conventional
form by appropriate specification of L. For example:

2%70 22 0%2%70
1.180591621F21 1180591620717411303424

The character representation is an exact reflection of the numeric value to the
requested number of digits. In an implementation, not all numbers are represented
exactly.

Effect of DFCL11: [OFCL1 1] specifies the decimal position indicator to be
used. The default is the point (.).

Effect of OFCL41: [OFCL 4] specifies an overflow character to be used if the
number being formatted exceeds the column width set by L.

OFCLu4J<«" 2"
10 0%2%70
2002022292999

Note: The default for OFCL 41 is '0 "', which causes a DOMAIN EREROR to be
generated in overflow cases.

Effect of DFC[61: [OFCL6 1] specifies the negative number indicator to be
used. The defaultis ' '.

144 APL2 Programming : Language Reference

5 Format by Specification

Conformability: L can have one of the following forms:

1. Pair of integers for each column of R, thatis, (pL) <=+ 2x 14pR (as
shown in previous examples).

2. Single pair of integers, applying to all columns of R:

S«3 2p16

7 238
1.00 2.00
3.00 4,00
5.00 6.00

3. Single integer, interpreted as the single pair (0 ,) and applying to all columns
of R:

335
1.000 2.000
3.000 4,000
5.000 6.000

Alignment of Data: All columns are right-justified and numbers are aligned on the
decimal point. If a column of R contains character data only, the corresponding
column in Z is left-justified.

A<L4 2p'AMT' '"PERCENT' 5 26.31 6 31.5 8 42.11

A
AMT PERCENT
5 26.31
6 31.5
8 n2.11
3 0 9 234
AMT PERCENT
5 26.31
6 31.50
8 42,11
034
AMT PERCENT
5 26
6 32
8 n2
D<«'ITEM' '"PENS' 'BOOKS' 'PAPER',A
D
ITEM AMT PERCENT
PENS 5 26.31
BOOKS 6 31.5
PAPER 8 u2.11

Chapter 5. Primitive Functions and Operators 145

5 Format by Specification

5 0 5 0 9 23D
ITEM AMT PERCENT

PENS 5 26.31
BOOKS 6 31.50
PAPER 8 42.11

Nested Arrays: With format by specification, each item of F must be a simple
numeric scalar or simple character scalar or vector. Thus, R may have a depth no
greater than 2. The precision setting applies only to simple numeric scalars of B.

2%1(2 3)

DOMAIN ERROR
2%1(2 3)
AA

Use the each operator () to extend precision and format display to vector items.

B«3 2p(1 2) (3 4 5) 6 7 (8 9) 10

2% B

1.00 2.00 3.00 4.00 5.00

6.00 7.00
8.00 9.00 10.00

146 APL2 Programming : Language Reference

¥ Grade Down

Y Grade Down

7<VR Yields a vector of integers (a permutation of 11+ pR) that puts the
subarrays along the first axis of R in descending order.

R: Simple nonscalar numeric array
Z: Simple vector, nonnegative integers

Implicit argument: 010

pZ <> 14pR
ppZ <> ,1

0ro<«1 0ro<o
¥23 11 13 31 12 ¥23 11 13 31 12
4L 1 3 5 2 3 0 241

To Sort the Array: R is sorted in descending order if it is indexed by the result of
grade down: R[LVR].

0ro<«1
A<23 11 13 31 12
ALVA]

31 23 13 12 11

Identical Subarrays: The indexes of any set of identical subarrays in R occur in
Z in ascending order of their occurrence in E. In other words, their order in relation
to one another is unchanged.

¥23 14 23 12 14
1 3 2 5 4

Chapter 5. Primitive Functions and Operators 147

¥ Grade Down

Rank of Right Argument Is Two or More: If R is not a vector, the subarrays are
ordered with the first position being the high-order position.

B<«5 3p 4 16 37 2 9 26 5 11 63 3 18 45 5 11 54
B

16 37

9 26

11 63

18 45

11 54

aw N F

VB
3 514 2

BLVB:]
11 63
11 54
16 37
18 45
9 26

N W F oo

C<«4 23 54 28 2 11 51 26
C<«C,4 29 17 43 3 19 32 41
C<«3 2 Y4pC,4 23 54 28 1 25 31 16
C
4 23 54 28
2 11 51 26

4 29 17 43
3 19 32 41

4 23 54 28
1 25 31 16

ve
CLYC; ;1]
4 29 17 43

3 19 32 41

4 23 54 28
2 11 51 26

4 23 54 28
1 25 31 16

148 APL2 Programming : Language Reference

V¥ Grade Down (with Collating Sequence)

V Grade Down (with Collating Sequence)

7Z<LVYR Yields a vector of integers (a permutation of 11 +p R) that puts the
subarrays along the first axis of R in descending order according to
the collating sequence L.

L: Simple nonempty nonscalar character array
R: Simple nonscalar character array
Z: Simple vector nonnegative integers

Implicit argument: 010

pZ <> 14pR
ppZ <> ,1

Collation works by searching in L (in row-major order) for each item in £ and then
attaching a significance to each according to where the item was first found.

0ro<«1 0ro<o
"ABCDE'V'BEAD' "ABCDE'V'BEAD'
2 4 1 3 1 3 0 2

The significance depends on both the location and the rank of L. The last axis of
L is the most significant for collating, and the first axis of L is the least significant.

0ro<«1
A<5 Up'DEADBADECEDEBEADDEED'
A

DEAD

BADE

CEDE

BEAD

DEED
"ABCDE'VA

51 3 4 2
C<'FACES$'
B<'3$&ABCDEF"
BYC

1 4 3 25
CLBYC]

FECA$

Chapter 5. Primitive Functions and Operators 149

V¥ Grade Down (with Collating Sequence)

In the following example, differences in spelling have higher significance than differ-
ences in case, and lowercase letters have more significance than their uppercase
counterparts.

K<«5 Up'dealDealdeadDeadDFFED'

K

deal

Deal

dead

Dead

DEED
H<2 12p‘'abcdefghijkl1ABCDEFGHIJKL'
H

abcdefghijkl

ABCDEFGHIJKL
Z<HVK
K[Z;]

DEED

Deal

deal

Dead

dead

A collating sequence is provided as the variable DCS in the EXAMPLES work-
space distributed with APL2.

DCS is discussed on page [156, and shown in[Figure 24 on page 157}

DCSV'AVENUE"
2 54361

H<'YZOMMXA"
DCSVH
216 3457

HLDCSVH]
ZYXOMMA

Q<5 Up'SENT ZAPDOWNALSOBOA'

Q
SENT
ZAP
DOWN
ALSO
BOA
DCSYQ
1 3 5 4 2

150 APL2 Programming : Language Reference

V¥ Grade Down (with Collating Sequence)

QLDCSVQ;]
SENT
DOWN
BOA
ALSO
ZAP

deal
Deal
dead
Dead
DEED

DCSVK
51 2 3 4

K[DCSVK;]
DEED
deal
Deal
dead
Dead

S<>'X1' 'X10' 'X2' 'X21' 'X3' 'X9' 'X11' 'x3'
S

X1

X10

X21

SL[DCSVS ;]
X21
X11
X10
x3
X9
X3
X2
X1

Identical Subarrays: The indexes of any set of identical subarrays in R occur in
Z in ascending order (according to collating sequence L) of their occurrence in R.
In other words, their order in relation to one another is unchanged.

"ABCDE'V'DABBED'
516 3 4 2

Chapter 5. Primitive Functions and Operators 151

¥ Grade Down (with Collating Sequence)

Items Not in Collating Sequence: Items of R not found in L have collating
sequence as if they were found immediately past the end of L. They are assigned
indexes in ascending order of their occurrence in 7.

Q<«'BLEAT"
W«'ABCDE'VQ
W

2 53 14
QLW]

LTEBA

152 APL2 Programming : Language Reference

A Grade Up

A Grade Up

7<AR Yields a vector of integers (a permutation of 11+ pR) that puts the
subarrays along the first axis of R in ascending order.

R: Simple nonscalar numeric array
Z: Simple vector nonnegative integers

Implicit argument: 010

pZ <> 14pR
ppZ <> ,1

0ro<«1 0ro<«o
A23 11 13 31 12 A23 11 13 31 12
2 5 3 1 4 1 4 2 0 3

To Sort Right Argument: R is sorted in ascending order if it is indexed by the
result of grade up: RLAR].

0ro<«1
A<23 11 13 31 12
ALAA]

11 12 13 23 31

Identical Subarrays: The indexes of any set of identical subarrays in E occur in
Z in ascending order of their occurrence in E. In other words, their order in relation
to one another is unchanged.

A23 14 23 12 14
4L 2 5 1 3

Chapter 5. Primitive Functions and Operators 153

A Grade Up

Rank of R is Two or More: If R is not a vector, the subarrays are ordered with
the first position being the most significant position

B«<5 3p4 16 37 2 9 26 5 11 63 3 18 45 5 11 54
B

16 37

9 26

11 63

18 L5

11 54

aw N F

AB
2 4 1 5 3

BLAB:]
9 26
18 145
16 37
11 54
11 63

g g F wN

C<4 23 54 28 2 11 51 26
C<«C,4 29 17 43 3 19 32 41
C<«3 2 Y4pC,4 23 54 28 1 25 31 16
C
4 23 54 28
2 11 51 26

4 29 17 43
3 19 32 41

4 23 54 28
1 25 31 16

Ac
CLAC; ;1]
4 23 54 28

1 25 31 16

4 23 54 28
2 11 51 26

4 29 17 43
3 19 32 41

154 APL2 Programming : Language Reference

A Grade Up (with Collating Sequence)

A Grade Up (with Collating Sequence)

Z<LAR Yields a vector of integers (a permutation of 11 +p R) that puts the
subarrays along the first axis of R in ascending order according to
the collating sequence L.

L: Simple nonempty nonscalar character array
R: Simple nonscalar character array
Z: Simple vector, nonnegative integers

Implicit argument: 010

pZ <> 14pR
ppZ <> ,1

Collation works by searching in L (in row-major order) for each item in £ and then
attaching a significance to each according to where it was first found.

0ro<«1 0ro<o
"ABCDE'A'BEAD' "ABCDE'A'BEAD'
3 1 4 2 2 031

The significance depends on both the location and rank of L. The last axis of L is
the most significant for collating, and the first axis of L is the least significant.

0ro<«1
A<5 Up'DEADBADECEDEBEADDEED'
A

DEAD

BADE

CEDE

BEAD

DEED
"ABCDE' AA

2 4 3 15
Q<'FACE$"
S<'2$&ABCDEF"
SAQ

5 2 3 4 1
QLSAQ]

$ACEF

Chapter 5. Primitive Functions and Operators 155

A Grade Up (with Collating Sequence)

In the following example, differences in spelling have higher significance than differ-
ences in case, and lowercase letters have more significance than uppercase letters.

K<«5 Up'dealDealdeadDeadDFFED'

K

deal

Deal

dead

Dead

DEED
H<2 12p'abcdefghijklABCDEFGHIJKL"
H

abcdefghijkl

ABCDEFGHIJKL
Z<HAK
Z

3 41 25
K[Z:]

dead

Dead

deal

Deal

DEED

A collating sequence is provided as the variable DCS in the EXAMPLES work-
space distributed with APL2.

DCS, which is shown in [Figure 24 on page 157 sorts an alphanumeric array in the
following order:

' AAaBBbCCcDDAEEeFFfGGgHHERIT iJdJ jKKKLL IMMm
000PPpQQgRRrSSsTTtUUuVVVWWWXXxYYy 7220123456789

As a result of the structure of DC'S, numeric integer suffixes in rows of a matrix can
be sorted in numeric order.

DCS has a shape of 10 2 28. The first column of each row is a blank. Each
plane is a matrix of shape 2 28, where all nonprintable characters are blanks.

156 APL2 Programming : Language Reference

A Grade Up (with Collating Sequence)

ABCDEFGHIJKLMNOPQRSTUVWXYZO

1
abcdefghijkImnopqgrstuvwxyz

Figure 24. Collating Sequence Array

DCSA'AVENUE"
136 4 5 2

H<«'"LWLOIBY'
DCSAH
6 51 3 4 27

HLDCSAH]
BILLOWY

K<5 4p'SENT ZAPDOWNALSOBOA
K

SENT

ZAP

DOWN

ALSO

BOA
DCSAK

2 4 5 3 1

KIDCSAK;]
ZAP
ALSO
BOA
DOWN
SENT

Chapter 5. Primitive Functions and Operators 157

A Grade Up (with Collating Sequence)

K<5 UYUp'dealDealdeadDeadDEED'
K

deal

Deal

dead

Dead

DEED
DCSAK

4 3 2 1 5

K[DCSAK;]
Dead
dead
Deal
deal
DEED

S<>'X1' 'X10' 'X2' 'X21' 'X3' 'X9' 'X11' 'x3!
S

X1

X10

X21

S[DCSAS;]
X1
X2
X3
X9
x3
X10
X11
X21

Identical Subarrays: The indexes of any set of identical subarrays in R occur in
Z in ascending order (according to collating sequence L) of their occurrence in R.
In other words, their order in relation to one another is unchanged.

"ABCDE'A'DABBED'
234165

158 APL2 Programming : Language Reference

A Grade Up (with Collating Sequence)

Items Not in Collating Sequence: Any items of R not found in L have collating
sequence as if they were found immediately past the end of L. They are assigned
indexes in ascending order of their occurrence in R:

W<'ABCDE'A'EXACT'
W

3 41 25
VEXACT'[W]

ACEXT

Chapter 5. Primitive Functions and Operators 159

[Index

0 Index

Z<L{R This function selects cross-sections of R using a list of index arrays
L.

Note: See the discussion of the) PBS command in
[or Set the Printable Backspace Character (APL2/370 Only)” on

[page 444] for alternate ways to enter this character.

L: Scalar or vector of nonnegative integers of depth no greater than 2
R: Any array
Z: An array cross-section of R

Implicit Argument: 010

pZ <> 3,/p”L
ppZ <> ,+/ep p’ L

Index is similar in function to bracket index. For example, to index a 3-dimensional
array A with page, row, and column index arrays I, J, and K:

I J K0 A <> A[I;J;:;K]

The length of the left argument must be equal to the rank of the right argument.
poL <> ppR

Index, unlike bracket index, can be used to index a scalar with an empty left argu-
ment.

(10) 0 Scalar <> Scalar

When a Vector Is Indexed: If V is a vector, a single-item vector or scalar left
argument is required.

0ro<«1
V<2 2.3 75 999 .01
30V
5
(3 4)0v
5 999
(c2 3p1 2 1 4 1 2)0V
2 2.3 2
999 2 2.3

160 APL2 Programming : Language Reference

0 Index

When a Matrix Is Indexed: If M is a matrix, a two-item vector left argument is
required.

0ro<«1
M<«3 LUp112
M
1 2 3 L
5 6 7 8
9 10 11 12
3 10M
9
3(1 3)0IM
9 11
(2 3)ulM
8 12
(2 3)(,4)0M
8
12
p(1 2)(3 up3)IM
2 3 4
p(10)(10)0M
0 0

Chapter 5. Primitive Functions and Operators 161

1 Index of

1 Index Of

Z<L1R Yields the first occurrence in L of items in R.

L: Vector
Z: Nonnegative integers

Implicit arguments: 00, OCT

pZ <> pR
ppZ <> ppR

The following expression is equivalent to index of:
L1R <> OIO++/A\~Ro.=L

0ro<1 0ro<o0
8 4 2 7 313 8 4 8 4 2 7 313 8 4
51 2 4L 0 1
'SPORT'"1'TOP" 'SPORT'"1'TOP'
5 3 2 L 2 1
0ro<«1
A«(2 3) (10) '"ME'
A1"ME' (10)
3 2

Item Not Found: If an item of R is not found in L, the corresponding item in Z is

O01r0+pL.
010«1 'WIZARD'1'0Z"'
8 9 512 5 8 7 3

4 3 1
L<«'OH' 'NO' 'I! 6 7 414 7 (10)
Li'NO' 'ON' 3 2 4

2 4
'OHNOI'1'NO' 'ON!

6 6

Item Recurs: |If an item of R occurs several times in L, the corresponding item in
Z is the index of its first occurrence.

55 8 8 918 9 5 'BANANA'1'BANANA"
3 51 1 23 2 3 2

162 APL2 Programming : Language Reference

0 [J Index with Axis

0[] Index with Axis

Z<«LOLX]1R This function selects cross-sections of R using a list of index
arrays L, which correspond to axes X.

Note: See the discussion of the) PBS command in

“) PBS—Query or Set the Printable Backspace Character|
(APL2/370 Only)” on page 444]for alternate ways to enter

this character.

L: Scalar or vector of nonnegative integers of depth no greater than 2.
R: Any array.

X: Simple scalar or vector; nonnegative integers: Xe1ppFR

Z: An array cross-section of R.

Implicit Argument: 0OI0

Index with axis is similar in function to bracket index with elided positions. For
example, to index a 3-dimensional array 4 with page and column index arrays I
and J and select all rows:

I J 0CO10+0 21 A <= AlI;;Jd]

The length of the left argument must be equal to the number of axes mentioned.
poL <> p,X

Chapter 5. Primitive Functions and Operators 163

0 [J Index with Axis

Index with axis compared with bracket index:

0ro<«1
A<2 3 Hp124
A

(6]
(o))
~

8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

20C1]4
13 14 15 16
17 18 19 20
21 22 23 24

AL235]
13 14 15 16
17 18 19 20
21 22 23 24

(1 3)u0l2 314
4 12
16 24

Al 31 3347

4 12
16 24

164 APL2 Programming : Language Reference

. Inner Product (from Array Product)

. Inner Product (from Array Product)

Z<L LO.RO R Combines the subarrays along the last axis of L with subar-
rays along the first axis of R by applying an RO outer
product. An L O-reduction is then applied to each item of
that result.

L 0: Dyadic function
RO: Dyadic function

pZ <> (" 1¥pL),1%pR
ppZ <> ,00 2+(ppL)+ppR

Formally, for nonscalar arguments, inner product is defined in origin 1 as:
L0/" (clppLlL)e.RO <[11R

For a scalar argument, the enclose with axis (<[]) in the above expression is
replaced by enclose.

The primary definition of inner product is in terms of matrix arguments. For
matrixes L and R and result Z:

Z[I3;J] <> cLO/LLI;] RO R[;J]

Figure 25, for example, depicts the calculation of a + . x inner product.

L+ . xR

90 120 150
190 260 330

Figure 25. Calculation of an Inner Product

The + . x inner product is the same function as the matrix product used in matrix
algebra.

Chapter 5. Primitive Functions and Operators 165

. Inner Product (from Array Product)

Informally, for matrix arguments, inner product is defined in terms of reduction and
outer product as:

LO/ " (rows of L) o . RO (columns of R .)

M«4 4p1 1 1 1 01 1 1 0011 0001

o o or
o o kR KR
o r KR K
S

Mn.=M

o O O o
o O O o
o O O o
o O O

K<«3 8p'SATURDAY7/04/99 JULY 4 !
K

SATURDAY

7/04/99

JULY 4

K+.€'0123456789"

(2 3p16)L.T3 Up112

2 3 U4
44 4oy

J«3 2p16
J

w
=

P<2 2p(.1xdJ)

o O
.
w =

o O
o

.
o F oY

o e
W W w e
g ow -

o e
NN

.

o F N
F F F

g w R
.
N

166 APL2 Programming : Language Reference

. Inner Product (from Array Product)

S<«3 5p'SANDYBETTYGRACE"

S
SANDY
BETTY
GRACE

SA.='"SANDY'
1 00

'SANDY'A.=RS
1 00

Empty Argument(s): If an empty argument is presented to the outer product
portion of the inner product calculation, the related fill function is applied as dis-
cussed in|‘e . Quter Product (from Array Product)” on page 186} If an empty argu-
ment is presented to the reduction portion of the inner product calculation, the
related identity function is applied as discussed in “Reduce (from Slash)”, on page
209

U<(0 2p0)+.x2 0pO0 Q<(2 0p0)+.x0 Up5
pU

0 00
0 00

T O OO

2 4

Derived Functions of Special Interest: The following functions derived from the
inner product operator have wide application:

e Matrix product (+ . x)

e Count (+.¢)

e Quter product of vectors (requires simple array arguments) (, . 0)
e Match two lists (A . =)

Chapter 5. Primitive Functions and Operators 167

1 Interval

1 Interval

Z<1R Produces R consecutive ascending integers, beginning with 0I0.

R: Simple scalar or one-item vector, nonnegative integer
Z: Simple vector, nonnegative integers

Implicit argument: 010

pZ <> R
ppZ <> ,1

Oro<«1 010<«0
16 16
1 2 3 4 5 6 01 2 3 4 5

Zero Argument: The expression 10 produces an empty vector and is a common
method of creating or indicating an empty vector.

Z<10
Z
(empty)
pZ
0

Arithmetic Progressions: Interval is used to create arithmetic progressions.

010<«0
15
01 2 3 4
10+15
10 11 12 13 14
.1x10+15
1 1.1 1.2 1.3 1.4

168 APL2 Programming : Language Reference

, [1 Laminate

, [] Laminate

Z«L,[X]1R Joins L and R by forming a new axis of length 2, which is filled
with L and R.

Z: Nonscalar
X: Simple scalar fraction between ~1+070 and 0I0+(ppL)lppR

Implicit argument: 0I0

pZ <~ Case dependent; see below.
ppZ <> 1+(ppL)lppR

X defines the position of the new axis: between two existing axes, before the first
or after the last, as follows:

X <0OIO—-creates a new first axis
X>0I0+(ppL)I ppR—creates a new last axis
For other X—creates a new axis between the L Xth and the [Xth axes.

If both arguments are scalars, L ,[X]1R <+ L ,R where X<0I0 and
X>0r10-1.

A<'"FOR' H«<(1 2) (3 4)
B<'AXE" K<«'"AB' 'CD'
Y<«H,[.51K
Z«<A,[.51B Y
Z 1 2 3 4
FOR AB CD
AXE pY
pZ 2 2
2 3 =Y
=7 2
1
W<«<A,[1.11B V<H,[1.1]1K
W 14
FA 1 2 AB
0X 3 4 (D
RE oV
oW 2 2
3 2 =V
=W 2
1

Chapter 5. Primitive Functions and Operators 169

, [] Laminate

Conformability: The arguments of laminate must have the same shape and rank
or one must be a scalar.

If one argument is a scalar, it is reshaped to match the nonscalar argument. After
scalar extension, the shape of the result is:

pZ <+ (2,pL) [AX,1ppL]

Q<3 3p'STYHIMRED' '4',[1.11¢Q
) AAA
STY STY
HIM
RED AAA
"A40,0.119 HIM
AAA
AAA AAA
AAA RED
'A',[2.17¢Q
STY AS
HIM AT
RED AY
AH
AT
AM
AR
AE
AD

170 APL2 Programming : Language Reference

® Logarithm

® Logarithm

Z<LeR Determines the base L logarithm of A.

L and R: Numeric, nonzero
Z: Numeric

Scalar Function

Logarithm is defined in terms of the natural logarithm:
LeR <« (®R):e®L

Because @1 is 0, this definition implies that if L is 1, R must also be 1.

2©256 200J2

8 1J2.266180071
10100 500 1000 11

2 2.698970004 3 1

Chapter 5. Primitive Functions and Operators 171

| Magnitude

| Magnitude

Z<|R Yields the distance between 0 and E.

E: Numeric
Z: Numeric, real

Scalar Function

Forreal R, |R <> RI[-R.

For complex R of the form A+0J1xB (where A and B are real):
|R <> (+/A Bx2)x.5

Forall B, |R <> (Rx+R)=*.5.

[4.2 | 2073
4.2 3.605551275

|2 72 .3 7.3 |[0J1 2972 u4J3
2 2 0.3 0.3 1 2.828427125 5

172 APL2 Programming : Language Reference

= Match

= Match

Z<L=R Yields a 1 if the arguments are the same in structure and data, and
a 0 otherwise.

Note: See[) PBS—Query or Set the Printable Backspace Char-|

acter (APL2/370 Only)” on page 444|for alternate ways to enter this
character.

Z: Boolean
Implicit argument: OCT

pzZ <> 10
ppz <> ,0

'TO' '"ME'='TO ME! ‘7o' '"ME'='TO' 'ME!
0 1

1 2 3 4=1 2 3 4 1 2 3 4=1 2 3 4
1 1111

Empty Arrays: Empty arrays are the same if they have the same structure and

prototype.

'1=10 tr=11
0 1

(0 2p0)=(0 2p"' ') (0 2p0)=(0 2p0)
0 1

Chapter 5. Primitive Functions and Operators 173

B Matrix Divide

B Matrix Divide

Z<LER Yields the solution of a system of linear equations or other algebraic
or geometric results, according to the values and shapes of L and B.

L and R: Simple numeric array of rank 2 or less
Z: Simple numeric

pZ <> (1¥pR),1v¥pL
ppZ <> L1 2+(ppL)+ppR

Conformability: The definition of matrix divide assumes that L and R are
matrixes. If either L or R is a vector, it is treated as a one-column matrix. If either
L or R is a scalar, it is treated as a matrix of shape 1 1.

After these extensions, I and R must have the same number of nonzero rows.
LER is executed only if all the following are true:

e [and R have the same number of rows
e The columns of R are linearly independent
e R does not have more columns than rows.

If Z«LER is executable, Z is determined to minimize the value of the least squares
expression:

+/s(L-R+.%xZ)*2
Various interpretations of the results for different arguments are discussed below.

Solving Systems of Linear Equations: If R is a nonsingular matrix and L is a

vector, Z is the solution of the system of linear equations expressed conventionally
as Ax=b, where A(R) represents the coefficients of variables in a system of linear
equations in several variables, and b(L) is a constant, and x(Z) is the unknown.

174 APL2 Programming : Language Reference

B Matrix Divide

If I is a matrix, Z is the solution of the system of linear equations for each column
of L. For either a vector or matrix L:

L <> R+.X%X7Z

R<«2 3p1 0 0 2 R<«2 2p 0J1 0 0 2
R R
1 0 0J1 0
0 2 0 2
L<«2 2p1 2 4 8
L 1 uER
1 2 0J 1 2
L 8
1 u4LHER LBR
1 2 0J 1 0J 2
2 4
LBR
1 2
2 4

Geometrically, if R is a matrix and L is a vector, B+ . xLER is a point closest to
the point L in the space spanned by the column vectors of . Thatis, B+ . xLER
is the projection of L on the space spanned by the columns of R.

Curve Fitting: The least squares approximation to a numeric function F can be
determined as follows. If X is a vector and Y<F X is executed,
P<$YBXo.*0,1D is the vector of the coefficients of the polynomial of degree D
(constant term last) which best fits the function F at points 7.

For example, the sequence in Figure 26 computes and evaluates successively
close polynomial approximations to the gamma function where X L P evaluates
polynomial P at point X.

OPpP<s8

V<1 1.2 1.4 1.6 1.8 2

L=<V

L
1 1.1018025 1.2421693 1.4296246 1.6764908 2

1.610LEVe . .*x0,12
1.434011

1.61LPLEVo.*0,13
1.4289585

1.61L0LEVe . *x0, 14
1.4295805

1.61LPLEVo.*0,15
1.4296246

Figure 26. Polynomial Approximations of the Gamma Function

Chapter 5. Primitive Functions and Operators 175

B Matrix Divide

Compared to Matrix Inverse: For all nonsingular matrixes, ITEHR <~ HR, where
T is the (pR) identity matrix.

Algorithm for Matrix Divide: Matrix divide (as well as matrix inverse) uses the
Lawson and Hanson Algorithm’, which is an extension of the Golub and Businger

Algorithm2, to handle undetermined cases.

1 C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (New Jersey: Prentice-Hall, 1974).
2 G.H. Golub and P. Businger, “Linearly Least Squares Solutions by Householder Transformations” Numerische Mathematik, Vol. 7,
(1965) : pp. 269-276.

176 APL2 Programming : Language Reference

B Matrix Inverse

B Matrix Inverse

Z<HR Yields the inverse of a nonsingular matrix. Results for other
matrixes, vectors, and scalar £ are discussed below.

R and Z: Simple numeric array of rank 2 or less

pZ <> OpR
ppZ <> ppR

The result of R depends on the nature of R as follows:

If Ris Then BR is

Nonsingular matrix Inverse of R

Matrix such that ® has more Pseudo-inverse of R, in the least
rows than columns squares sense

R cannot have more columns than rows.

Nonsingular Matrix: If R is a nonsingular matrix, Z is the matrix inverse of F and:
I <> R+.xBR

where I is a p R identity matrix:

(I <> (14pR)o.=14pR)

Note: Rounded off and poorly conditioned arguments can cause inaccurate

results.
RE<«3 3p1 0 0 0 2 0 2 0O 4
R
1 0 0
0 2 0
2 0 4
Z<HBR
Z
1 0 0
0 0.5 0
0.5 0 0.25
Z+ xR
1 00
01 0
0 0 1

Chapter 5. Primitive Functions and Operators 177

B Matrix Inverse

OPP<«L

R<«3 3p1 2 3 2 4 5 3 5 6
R

w N -
g F N
> 01w

Z<HR
7z
1 "3 2.000E0
3 3 "1.000F0
2 "1 T1.604E 16

R+.x7Z
1.000F0 2.22E 16 0.00E0
"8.882F 16 1.00E0 2.22E 16

"1.554F 15 2.224E 16 1.00E0

Numbers that are smaller than 1E~ 15 in the result array can be considered as
approximating 0.

Matrix with More Rows Than Columns: If E is a matrix with more rows than
columns (>/pR), Z is a pseudo-inverse of R that minimizes the expression:

+/(,I-R+.xZ)*2
where T is the (2p1+pR) identity matrix.

The matrix Z is a left inverse of R;thatis, Z+.xR producesa (2p 14pR)
identity matrix.

R«4 3p1 0 0O 0 2 0202014
R

O N O -
= O N O
NN O O

OpPP<5
Z<HR
Z
0.24706 0.094118 0.37647 ~0.18824
0.047059 0.49412 0.023529 0.011765
“0.058824 T0.,11765 0.029412 0.23529

Z+ .%xR
1.0000F0 "5.5511EF 17 8.3267E 17
“7.8063E 18 1.0000FE0 0.0000F0
5.2042F 18 ~1.3878E 17 1.0000E0

178 APL2 Programming : Language Reference

B Matrix Inverse

Vector: If R is a vector, Z is its image obtained by inversion in the unit circle (or
sphere).

H3 4
0.12 0.16

Scalar: If R is a scalar, Z is +R.

B3
0.3333333333

Compared to Matrix Divide: For all nonsingular matrixes, B <«- IHER, where
I is the (pR) identity matrix.

Algorithm for Matrix Inverse: Matrix inverse (as well as matrix divide) uses the
Lawson and Hanson Algorithm?, which is an extension of the Golub and Businger
Algorithm#, to handle undetermined cases.

3 C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (New Jersey: Prentice-Hall, 1974).
4 G.H. Golub and P. Businger, “Linearly Least Squares Solutions by Householder Transformations” Numerische Mathematik, Vol. 7,

(1965) : pp. 269-276.

Chapter 5. Primitive Functions and Operators 179

[Maximum

[Maximum

L, R, and Z: Numeric, real

Scalar Function

Z<L[R Returns the larger of L and R.

180 APL2 Programming : Language Reference

¢ Member

e Member

Z: Simple Boolean array
Implicit argument: OCT

pZ <> plL
ppZ <> ppl

Z<LeR Yields a Boolean array Z with the same shape as L. An item of Z is
1 if the corresponding item of L can be found anywhere in R. An
item of Z is 0 otherwise.

The Boolean array Z maps to L, following this identity:

Z <> Vv/Lo ,=,R

'BANANA'e "AN'
011111

51 26 5 4 1 9

8

1
1

w

n

1
0

A<«2 3p8 3 5 8 4 8

1

Nested Arrays: An item of L is found in R only if an item in B matches that item
exactly in structure and data (within comparison tolerance):

B<'"AH' '"HA' 'AH'

B
AH HA AH NO
pB
i
=B
2
Be'AH"
0 00O
Bec'AH"
1 010

VNOV

C«<(1 2) (10) (38 &)

Ce(1 2) (3 5) (10)

Empty Right Argument: If R is empty, Z is (pL)pO.

8 9 7 3€10
0 0 0O

Mathematical Membership: The expression (<L) e R determines whether L as

a unit is contained in R.

Chapter 5. Primitive Functions and Operators

181

L Minimum

L Minimum

Z<L|l R Returns the smaller of L and B.

L, R and Z: Numeric, real

Scalar Function

182 APL2 Programming : Language Reference

x Multiply

x Multiply

Z<LxR Multiplies L by R.

L, R, and Z: Numeric

Scalar Function

Multiply is the arithmetic multiplication function.

3xL 1J2x3J4
12 “5J10

3x0 "2 5 .7 1 73 .8x1 .5 7.2
0 "6 15 2.1 1 1.5 70.16

Chapter 5. Primitive Functions and Operators 183

@ Natural Logarithm

® Natural Logarithm

7<®R Determines the logarithm of R to the base of the natural logarithms
e, where e is approximately 2.7182818284590452.

R: Numeric, nonzero
Z: Numeric

Scalar Function

®1 ®2,718281828%4
0 1

® 1 ®0J1
0J3.141592654 0J1.570796327

184 APL2 Programming : Language Reference

- Negative

- Negative

Z<-R Reverses the sign of A.

R and Z: Numeric

Scalar Function

If R is positive, Z is negative. If R is negative, Z is positive. If R is 0, Z is 0. For
complex numbers, the signs of both the real and imaginary parts are changed.

Subtract and negative are related as follows:

-R <+ 0-FR

-5 -2J 4
”5 T2 4

-3 71 .6 7 -0J1 “3J4 "T2J 1
"3 1 0.6 "7 0J 1 3J 4 2J1

Chapter 5. Primitive Functions and Operators 185

o, Outer Product (from Array Product)

 © . Outer Product (from Array Product)

RO: Dyadic function
LO: The left operand must be the jot symbol (°)

pZ <> (pL),pR
ppZ <> (ppL)+tppR

Z<L o .RO R Applies the function RO between pairs of items, one from L
and one from R, in all combinations.

For any scalar I and J for which 7> and J>oF is defined:

(I,7J)27Z <> (I>L) RO JoR

This identity defines the way the familiar addition and multiplication tables of ele-
mentary arithmetic are built. The column and row headings are added to demon-
strate the operation.

(110)0.x110

O W 0030 0o F wN -
O W 0030 0o F wN -
[N
o

[N
[N

12
15
18
21
24
27
30

12
16
20
24
28
32
36
40

15
20
25
30
35
40
45
50

18
24
30
36
L2
48
54
60

7
14
21
28
35
42
49
56
63
70

24
32
40
48
56
64
72
80

9 10
9 10
18 20
27 30
36 40
45 50
54 60
63 70
72 80
81 90
90 100

Outer product can be used to construct such a table for any dyadic function.

(14)o.+15
2 3 4 56
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

10 200.,1
10 1 10 2 10
20 1 20 2 20

186 APL2 Programming : Language Reference

W W N

O O O -

O O~ O

O = O O

aoo
oooad

(
0
0
0
1

14)o. =1l

R<'0000" rAAAAAT

3

ho . 4+R

AAA
AAAA

o, Outer Product (from Array Product)

If L or R or both are matrixes or arrays of higher rank, each item in L is still
matched with each item of .

S<3 Up'THEYWANTRAIN'
S

THEY

WANT

RAIN

o
[IRN
o
o

1 0 00
0 0 01
0 000

Empty Argument(s): If either argument is empty, RO is not applied. Instead, the
related fill function is applied as described with “Each (dyadic)”, page Fill
functions for the primitive functions are given in [Figure 20 on page 110}

Chapter 5. Primitive Functions and Operators 187

c Partition

c Partition

Z<LcR Partitions R into an array of vectors specified by L.

L : Simple scalar or vector of nonnegative integers
R : Nonscalar
Z : Array of vectors

pZ <> (1+¥pR),+/2</0,L (after left scalar extended)
ppZ <> ppkR
=7 <> 1+=R

This function partitions its right argument at break points specified by its left argu-
ment. The result is an array of vectors made up of non-overlapping contiguous
segments taken from vectors of the right argument along the last axis. The left
argument is a simple vector or scalar of nonnegative integers. New items are
created in the result whenever the corresponding item in L is greater than the pre-
vious item in L. If an item from L is 0 then the corresponding items from R are not
included in the result. The first items in the result are created when the first
nonzero in L is encountered.

The length of the left argument and the size of the last axis of the right argument
must match, unless the left argument is a scalar or one-item vector, in which case it
is extended. For empty arrays the prototype is +R.

For Boolean vector or scalar B :

B/R <» >,/BcR

For L containing no zeroes:

R <> o,/LcR

For any appropriate Z, and R :

(02L)/R <> >,/LcR

188 APL2 Programming : Language Reference

c Partition

The following is an annotated set of examples.
Partition a string into substrings :
DISPLAY 1 1 2c'ABC'

.+_. .+.

I I
| 1AB| |Cl |
| |
1

L | LI |

Partition and delete :

DISPLAY 1 0 1c'ABC'

Lengths of the arguments must match:

DISPLAY 1 0 1c'ABCD'
LENGTH ERROR

DISPLAY 1 0 1c'ABCD'

A A
Partition a numeric vector into pieces:

DISPLAY 2 1 2<10 20 30

l+____

| e e
| |10 20| |30 |
| |
]

LRy . | '~

Chapter 5. Primitive Functions and Operators 189

c Partition

Partition adds a level of nesting :

OTB<«'ONE' 'TWO' 'BUCKLE MY SHOE'
DISPLAY OTB
.+__

>-- e

I . I
| |ONE| |TWO| |BUCKLE MY SHOE| |
| |
'

| I | IS ! e e e e e e e - - - '

Examples with blank delimiters between words :

X<' A STITCH IN TIME !
DISPLAY X

Partition and discard blank delimiters :
DISPLAY (' '2X)cX

- >---=-- >- - --

|
| 14l |srIrcH| |IN| |TIME|
|
1

"1 " - 1 | | Lp— |

Keep delimiters on the ends:
DISPLAY (1+' 'zX)cX

S R S .

|
| I | 1A | |srrrcH | |IN | |TIME |
I
'

| | | | " - 1 | | ' - - 1

Keep delimiters on the beginnings :

DISPLAY (1+~' '2X)cX

| Ipp— | | ' | JSR—] | [, ' | I

190 APL2 Programming : Language Reference

c Partition

Partition a matrix at blank columns :

M<«3 12p'1 10 3.1422 100 6.2833 1000 9.u425"
DISPLAY M

v1 10 3.142]|
|2 100 6.283]
|3 1000 9.u425]

TS e
| 2] | 10| [|38.1u42]| |
| [] | IR | | B ' |
I b
| 121 | 100] |6.283] |
| " | BSRR | | I, ' |
| e e ool
| 3] |[12000] |9.u425] |
| " | IS | | B ' |
'

Chapter 5. Primitive Functions and Operators 191

c [] Partition with Axis

c [] Partition with Axis

Z<Lc[X]R Partitions R into an array of vectors specified by L along axis
X.

L : Simple scalar or vector of nonnegative integers
R : Nonscalar
Z : Array of vectors
X : Simple scalar or one-item vector;
nonnegative integer: Xe1ppQR

Implicit argument: 010
XopZ <> +/2</0,L

ppZ <> ppR
=7 “«> 1+=R

Partition with axis is similar to partition except that the vectors are selected along
axis X. The shape of the result is the same as the shape of the right argument
except for axis X.

For Boolean vector or scalar B:

B/LX1R <~ >[X1,/[X1B<c[X1R

For L containing no zeroes:

R <> o[X1,/[X1L<c[X]1R

For any appropriate L and R :

(02L)/[X1R <> o[X1,/[X]1L<[X1R

192 APL2 Programming : Language Reference

c [] Partition with Axis

Partition with axis for a high rank R is based on partition defined on a vector R as
follows :

L <[I1 R <> »>[I] (<L) <" <c[IIR

DISPLAY N<4 3p112

l+ _______ .
vy 1 2 3]
| 4 5 6 |
| 7 8 9]
|10 11 12]
"~ oo - o '
DISPLAY 1 0 1 1c[1]1N
l+ _____________________ .
¥ > > |
|11 | 2| |31 |
| 1~ 1~ 1~ |
I T e
| |7 10| |8 11| |9 12| |
| | RPN | | RPN | | RPN | |
L '

Chapter 5. Primitive Functions and Operators 193

o Pi Times

O Pi Times

7<OR Multiplies any number by =t (approximately
3.1415926535897933).

R and Z: Numeric

Scalar Function

o1 o 2
3.141592654 “6.283185307

03J2 02,75%2
9.424777961J6.283185307 23.7582944Y

Note: The last expression in the right column calculates the area of a circle whose
radius is 2.75 by using the formula nr?

194 APL2 Programming : Language Reference

> Pick

> Pick

Z<L>R Selects an item of R as specified by the path indexes L.

L: Scalar or vector whose depth is <2; integer or empty
Implicit argument: 010

pZ <> Depends on the shape of the selected item
ppZ <= Depends on the rank of the selected item

Pick enables you to select any item at any depth from an array. The Nth item of L
specifies an index to one item at depth ¥V in R. The depth at which the selection is
made depends on L, as explained in the following sections.

Scalar or One-ltem Left Argument: |If L is a scalar or one-item vector, the item
selected is from the outermost structure.

Example 1:
R<«'FOQUR' 'TOo' 'GO"
=R
2
0ro<«1 010<«0
Z<2>5R 15R
Z TO
TO
pZ 0ro<«1
2
=7
1
Example 2:
A<'S 'S1' ('SIR' 'SIRE')
=4
3
W<224 X<«324
W X
SI SIR SIRE
oW oX
2 2
=W =X
1 2

To select from the outermost structure of a matrix or higher rank array, I must be a
one-item vector or scalar whose only item is a vector. Each item of the vector in L
corresponds to an axis of B.

Chapter 5. Primitive Functions and Operators 195

> Pick

196 APL2 Programming : Language Reference

C<2 2p'ONE' 'TWO' 'BUCKLE' ('MY' 'SHOE')
DISPLAY C
o+ _________________________ .
Yoo e
| |ONE| | TWO | |
| | | | | |
| >----- e o —m————-—--- o
| |BUCKLE| | .»-. .»>---. | |
| - "I Myl |SHOE| | |
| R
| e U
|€ _________________________]
oC Y<(c2 2)>C
2 2
Y
=C MY SHOE
3 pY
2
=Y
2
D<C,[.512 2p'THREE' 'FOUR' 'SHUT' ('THE' 'DOOR')
DISPLAY D
P .
v oo--. I |
|| |OoNE| | TWO | |
|| | | | | |
[o= e ermmmmm—m----- <
| I IBUCKLE| | .»-. .»---. | |
|- "' | Myl |SHOE| | |
| | L R B
| R ittt v
| |
	ol -			
		THREE		FOUR
		I,]	S	
[o»---. N .				
		SHUT	N	
-		THE		DOOR
	L			
R v				
"E __________________________ '
pD Q«(c2 1 2)>D
2 2 2 [
FOUR
=D
3 pe
in
=4
1

> Pick

Specifying the Left Argument: The shape of L can be no greater than the depth
of the item from which the selection is being made. Successive items of L pene-
trate deeper into the structure. For example:

@«'FLY' 'PAPER'
2 4>¢

T—Se]ects 'E' from 'PAPER'

Selects '"PAPER' from 'FLY' 'PAPER'

If the right argument is a multidimensional array, the first item of L must be a
vector whose length is the rank of the right argument. For example:

S<«2 3p'AB' 'CD' 'EF' 'GH' 'IJ' 'KL'
S
AB CD EF
GH IJ KL
(1 3) 2>8
(2)—Selects '"F' from '"EF'
(1 3)—Selects "EF"' (first row, third column) from S

If L is empty, selection is from R at depth 0. Therefore, all of R is selected:
L>R <> R

M«'B' 'BA' ('BAT' 'BATH')

M A<(10)>0 2p0
B BA BAT BATH pA
=M 0 2
3 =4
N<(10)>M 1
N
B BA BAT BATH
=N
3

Chapter 5. Primitive Functions and Operators 197

> Pick

Some additional examples follow. Each uses the DI SPLAY function to show the
structure of the array from which the selection is being made.

H<2 2p'BUCKS' 'TWANG' 'LYMPH' 'FROZE'
DISPLAY H

> — -

¥

| |BUCKS| |TWANG]|
| '

|

|

I

'

>---- >----

| LYMPH| |FROZE |

|

|

|

|

|

-
—_—— e —— —

G«<'I'" '"AM' ('FOR' 'APL2')
DISPLAY G

€-——--—"—-"—-"—"—-"—-"—-—--- 1
€E———————mmmm e m -~ '
=G
3
T<3 255G
T
APL?2
pT
n
=T
1
3 2 156G
A

198 APL2 Programming : Language Reference

> Pick

E<2 3p'CRY' 'VOX' '"KID' 'JAB' (2 3p16) ('LEG' 'NTH')

DISPLAY FE
+ ______________________________
l+ _l l+__l l+ _l
|CRY| |VOX| | KID |

¥
I
I
I
I
I
I
I
I
I
I
I
I

€-—---—--------- 1]
e e]
(2 2) (2 3)>E
6
pE
2 3
=F
3
U<(2 3) 2>F J<(2 3) 2 3oF
U J
NTH H
=U =J
1 0

Chapter 5. Primitive Functions and Operators 199

> Pick

K«<'ELM' 'TAX' 'SPY' 'JOB' 'WIN'
K<2 3pK,(2 2p'QUE' 'ZiG' 'HaD' 'FoR')
DISPLAY K

-

> - -

|ELM| |TAX| |SPY|

| | | | | |

l+__l .+__

¥
|
|
|
| |JOB| |WIN]|
|
|
|
|
|
|
1

¥
-t v | |QUE| |ZiG]|
|
|
|
|
]

.+ T e .+ T e
|HaD| | FoR|
| | I
€-———=—=———-=-=--- 1]
€E—-————mmmm e e e e e e e e mmmmm— - = -]
pK
2 3
=K
3
P<(2 3)(1 2)>K I<(2 3)(1 2) 32K
P I
ZIG G
=P =7
1 0

Compared with First: + First, page [131] selects the first item of R taken in row
major order:

+R <> (<(ppR)pl)>F (for nonempty R)
Selective Specification: Pick can be used for selective specification:

B<'P' 'PI' ('PIE' 'PIER')
(2>B)<«'MY"

B
P MY PIFE PIER

(2 1>B)<«'TR'
B
P TR Y PIE PIER

(3 2 12B)<'T!

B
P TR Y PIE TIER

200 APL2 Programming: Language Reference

* Power

* Power

Z<L*R Raises the base L to the Rth power.
L, R and Z: Numeric

Scalar Function

Power is the algebraic exponentiation function. L and R may be any number;
however, if L is 0, R must be a nonnegative real number.

If R is a nonnegative integer, Z <> x/RpL. This identity has two implications:
fRis 0, Zis1;ifRis1, Zis L.

L4=x3 2x0 1 2 3 4 5
6u4 1 2 4 8 16 32

10%0 10*1
1 10

Power is generalized to nonpositive, noninteger, and nonreal numbers in order to
preserve the relation:

L*A+B <> (L*A)xL*B

Familiar consequences of this extension are that:
e L=*-Ris the reciprocal of L*R.

e L=*%R is the Rth root of L. In particular, the square root of L is L*+2 or
L+ .5. In cases where there are multiple roots, the result is the one with the
smallest nonnegative angle in the complex plane. The odd root of a nonreal
number is a nonreal number.

5% 2 16*%%2
0.0k 4

T16%x%2 125%+3
0J 4 5

T125%+3 0J2%3
2.5J4.330127019 0J" 8

Chapter 5. Primitive Functions and Operators 201

, Ravel

., Ravel

Z<,R Creates a vector from the items in R, taken
in row-major order.

Z: Vector

pZ «~> ,X/pR
ppzZ <> ,1

Ravel is related to reshape (p), page |225} as follows: ,R <> (x/pR)pR

A<3 3p19
A
1 2 3 B<2 2 U4p'BAD FOG GO SLOW'
4 5 6 B
7 8 9 BAD
7<,A FOG
Z
12 3 456 7829 GO
pZ SLOW
9 pB
2 2 4
M<«,B
M
BAD FOG GO SLOW
oM
16

Ensure Vector Argument: Ravel can be used to ensure that an argument is a

vector.
C<u W<,C
pC oW
(empty) 1
=C =W
0 1

202 APL2 Programming: Language Reference

, Ravel

Compared with Enlist: < Enlist, page [[18], creates a simple vector whose items
are the simple scalars in R. If all items of R are simple scalars, ,R <> €R.

Selective Specification: Ravel can be used for selective specification:

S<«2 2p(1 2) (3 4) (5 6) (7 8)

S
1 2 3 L
5 6 7 8
=S
2
(,8)<«'"ABCD!
S
AB
CcD
pS
2 2
=S
1

Chapter 5. Primitive Functions and Operators 203

, [1 Ravel with Axis

, [1 Ravel with Axis

Z<,[X1R Creates an array that contains the items of R
reshaped according to axes X: If X is a fraction,
a new axis of length 1 is formed; if X is an integer,
the X axes of R are combined.

X: Simple scalar fraction or simple scalar or vector of
nonnegative integers or empty

Implicit argument: 0I0

pZ <> Depends on the value of X
ppZ <= Depends on the value of X

Ravel with axis has three cases, based on the value of X: fractional, integer, or
empty.

When X Is a Fraction: [X is at least one, but less than or equalto 1+ppR. A
new axis of length 1 is created before the [Xth axis. The rank of the result is one
greater than the rank of R:

ppZ <> 1+ppR

The shape of the result is:

pZ <> (1,pR)[AX,1ppR]
Z <> (pZ)pR

A<2 3p'TENSIX' W<«,[2.1]4
A W
TEN T
SIX E
Z<,[.1]4 N
Z
TEN S
SIX I
pZ X
1 2 3 oW
Y«,[1.114 2 31
Y
TEN B<10 15 20
V<,[1.11B
SIX 14
pY 10
2 1 3 15
20
oV
3 1

204 APL2 Programming: Language Reference

, [1 Ravel with Axis

When X Is an Integer. X must be a simple scalar or vector of nonnegative inte-
gers. If X is a scalar, Z is R.

If X is a vector, it must contain contiguous axes in ascending order of R. For
example, for a rank-3 array, X may be 1 2 or2 3 or1 2 3. The axes indicated by
X are combined to form a new array whose rankis 1+(ppE)-p ,X.

17
21

10
14

18
22

10
18

10
14
18
22

ANT
DOG

GNU

JIRD

MICE

PIG

SEAL

WOLF

C<«3 2 Y4p124
C

3 4

7 8

11 12
15 16

19 20
23 24

P«<,[2 31]C

3 4 5 6 7 8
11 12 13 14 15 16
19 20 21 22 23 24
pP

J<,[1 21C
J
3 L
7 8
11 12
15 16
19 20
23 24
pd

A<'"ANT'" '"BOAR' 'CAT' 'DOG' 'ELK' 'FOX' 'GNU'
B<'HEN' 'IBEX' 'JIRD' 'KITE' 'LAMB' 'MICE'
C<'NENE' '0X' '"PIG' 'QUAIL' 'RAT' 'SFEAL'

D«4 38 2p4,B,C,'TITI'" 'VIPER' 'WOLF' 'YAK' 'ZEBRA'
D

BOAR CAT
ELK FOX
HEN IBEX
KITE LAMB
NENE 0X

QUAIL RAT

TITI VIPER
YAK ZEBRA

Chapter 5. Primitive Functions and Operators 205

, [1 Ravel with Axis

pD
L 2 3
=D
2
M<,[1 21D
M

ANT BOAR CAT
DOG ELK FOX
GNU HEN IBEX
JIRD KITE LAMB
MICE NENE 0X
PIG QUAIL RAT
SEAL TITI VIPER
WOLF YAK ZEBRA
oM

=M
2

Ravel, page [202] is equivalent to ravel with axis when X includes all axes of R :
R <> ,[1ppRIR.

When X Is Empty: When X is empty, a new last axis (columns) of length 1 is
created. The rank of the result is one greater than the rank of R, and the shape of
the resultis (pR), 1.

For vectors only:

s[10]R <> ,[1.1]FR

H<2 3p16 K<'PRUNE' '"PEAR' 'FIG'
N«,[10]H oK
N 3
1 =K
2 2
3 I<,[10]K
I
L PRUNE
5 PEAR
6 FIG
ol
=N 3 1
1 =7
2

Turning an Array into a Matrix: The following expression can be used to turn
any array R into a matrix:

sL1ppRI,[.5]1R

206 APL2 Programming: Language Reference

For example:

1
6
11
16
21
26

2
7
12
17
22
27

EF<3 2 5p130
sL1ppE],[.51F

3
8
13
18
23
28

I
9
14
19
24
29

5
10
15
20
25
30

1

, [1 Ravel with Axis

G<'JIM' '"ED' 'MIKE'

pG
F<,[1ppGl,[.5]C
F
JIM ED MIKE
pF
3

Selective Specification: Ravel with axis can be used for selective specification.

13
17
21

2

3

<2 3 Lp12h
(,[2 31Q)«2 12p-12k

10

T1uy
18
22

n

P&

15
“19
23

16
“20
T2y

Chapter 5. Primitive Functions and Operators 207

Reciprocal

Reciprocal

Z<%R Divides 1 by B.

R and Z: Numeric, nonzero

Scalar Function

Reciprocal is the arithmetic reciprocal function:

+R <> 1%R

4 +2J2
0.25 0.25J 0.25

+1 .2 "3 :0J1 0J 1
1 5 70.3333333333 0J 1 0J1

208 APL2 Programming: Language Reference

/ Reduce (from Slash)

/ Reduce (from Slash)

Z<L0/ R Has the effect of placing the function L0 between
adjacent pairs of items along the last axis of R and
evaluating the resulting expression for each subarray.

L 0: Dyadic function

pZ <> “1¥pR
ppZ <> O 1+ppR

If R is the vector A B (, the LO-reduction is defined as follows:

LO/A B C <> < A LO B LO C

If LO is a scalar function, the reduction of a simple vector is a simple scalar. If the
right argument is nested, the depth of the result is the same as that of the right

argument.

+/1 2 3 4 5
15

Z<+/(1 2)(3 4)(5 6)
Z

9 12
pZ

(empty)

V/
2

v/0 01 1 0

W<,/'"AB' 'CD' '"EF'

W

ABCDEF

(empty)

2

oW

W

If R is a matrix or array of higher rank, the subarrays along the last axis are treated
as vectors, and the function is applied between adjacent items along the last axis,

so that for a matrix R:
ZLI1<LO/RLI:]

For a rank-3 array:
ZLI3;J1<«LO/RLI:ds]

Chapter 5. Primitive Functions and Operators 209

/ Reduce (from Slash)

Higher-rank arrays follow a similar pattern. In general for all nonscalars:
LO/R <> 2L0/ " clppRIR

M<3 4p112 R<3 2p'ACEGIK', 'BDFHJL'
M R
1 2 3 14 AB CD
5 6 7 8 EF GH
9 10 11 12 IJ KL
+/M Y<,/R
10 26 u42 pY
3
=y
2

R Is a Scalar or Its Last Axis Is One: If R is a scalar, Z is R. If the last axis of
("14pR)isone, Zis (" 1+pR)pR. The function L0 is not applied in either
case.

15 /N

=/15 ‘ N<«4 1p2 4 6 8

2 4 6 8
Empty R: If the last axis of R is 0, the function L0 is not applied. Instead, a
related function called the identity function is applied with argument 4 R (prototype
of B). The result returnedis (~ 1+pR)pcI, where I is the value produced by
the identity function for the function L 0| Figure 27 on page 211|and [Figure 28 on|
page 212 khow the identity function for each primitive function that has one.

+/10 x/2 3 0pc0O O
0 11 11 11
11 11 11

The identity function related to a defined function cannot be specified, and an
attempt to reduce an empty argument with a defined function generates a
DOMAIN ERROR.

210 APL2 Programming: Language Reference

/ Reduce (from Slash)

Dyadic Scalar Function Identities:: The identity function for each dyadic scalar
function is defined as:

Z<SRpcR+F/10

where R is the prototype of the right argument and SR is the shape of the result.

Note: In Figure 27, A is the array satisfying the identity and M is
7.2370055773322621E75.

Figure 27. Identity ltems for Dyadic Scalar Functions

Identity Left/ Identity
Function F F/10 Right Restriction
Add 0 LR
Subtract - 0 R
Multiply X 1 LR
Divide + 1 R
Residue | 0 L
Minimum L M L R
Maximum [-M L R
Power * 1 R
Logarithm ® none
Circular o none
Binomial ! 1 L
And A 1 L R A/eldel 1
Or v 0 LR A/edeO 1
Less < 0 L A/edelO 1
Not Greater < 1 L A/edeO 1
Equal = 1 L R AN/ehAeO 1
Not Less > 1 R A/edelO 1
Greater > 0 R A/eldel 1
Not Equal z 0 L R AeAeO 1
Nand ~ none
Nor w none

Chapter 5. Primitive Functions and Operators 211

/ Reduce (from Slash)

Dyadic Nonscalar Function Identities: In the definitions of the identity functions
in Figure 28, R is the prototype of the right argument and SZE is the shape of the
result. 4 in the Identity Restriction column is the array satisfying the identity.

Figure 28. Identity Functions for Primitive Dyadic Nonscalar Functions

Identity Function Left/ Identity
Function F Z<SREpc.... Right Restriction
Reshape o oR L
Catenate . ((T1%pR),0)pc((1¥pR),0)pR LR 1<pp4
Rotate ¢ (-1vpR)pO0 L
Rotate e (1+pR)p0 L
Transpose ® 1ppR L
Pick > 10 L
Drop ¥ (ppR)pO L
Take 4 PR L
Without Matrix ~ 10 R 1=pp4d
Divide 5] (14pR)e.=14pR R 1<ppd

Derived Functions of Special Interest: The following reduction functions derived
from the slash operator have wide application:

e Summation (3) (+/)

 Alternating Sum (- /)

» Product () (x/)

* Alternating product (+ /)

e Smallest (L /)

e Largest ([/)

* Boolean vector contains at least one 1 (v /)
» Boolean vector contains all 1s (A /)

The last two reductions are useful in determining the truth of various statements
about a simple vector . For instance:

e Every item of R is positive: A /R>0
» Everyitem of Risodd: A/2|R
» At least one item of R is even: v/~2 | R

212 APL2 Programming: Language Reference

/ Reduce N-Wise (from Slash)

/ Reduce N-Wise (from Slash)

Z<L L0/ R Similar to reduce, except that L defines the
number of items along the last axis to be
considered in each application of the function
to the subarrays along the last axis of R.

L 0: Dyadic function
L: Simple scalar or one-item vector, integer

pZ <> (T1¥pR),1+(14pR)-|L
ppZ <> ppR

The absolute value of I may be no more than one plus the length of the last axis
of R:

(|L)<1+ 14pR
L can be considered as a moving window for determining successive items of Z.
Positive Left Argument: |f L is positive, the window starts at the left of the sub-
array along the last axis and moves right. At each item of R, the window stops and

the L O-reduction of the items in the window is taken.

To demonstrate, the examples below vary L for the vector R:

R<1 2 3 4 5 6

6+/R 5+/R
21 15 20

L|,+/R 3+/R
10 14 18 6 9 12 15

2+/R 1+/R
3 57 9 11 1 2 3 4 5 6

Chapter 5. Primitive Functions and Operators 213

/ Reduce N-Wise (from Slash)

Additional examples are shown below, including one with a nested right argument.

2+/(1 2)(3 u)(5 6) 2,/"ABCDEF"

4 6 8 10 AB BC CD DE EF
M<3 L4p112 B<3 3p'ABCDEFGHI'
M B

1 2 3 4 ABC

5 6 7 8 DEF

9 10 11 12 GHI
2+/M 2,/B

3 5 7 AB BC

11 13 15 DE EF

19 21 23 GH HI

Negative Left Argument: If L is negative, the contents of the window are
reversed just before the reduction.

“2-/1 4 9 16 25 2-/1 4 9 16 25
3 579 "3 75 77 79
"2,/'"ABCDEF" 2,/"ABCDEF"'
BA CB DC ED FE AB BC CD DE EF

If O is commutative (thatis, A LO B <> B LO A), the sign of L does not
affect the result.

3x/16 “3x/16
6 24 60 120 6 24 60 120

Zero Left Argument: |If L is 0, the identity function of L O is applied instead. See
the discussion under “Reduce (from Slash)”, on page @ The result is a
(pR)+(ppR)=1ppR array of identity items for the primitive function 0. Iden-
tity items are listed in [Figure 27 on page 211 jand [Figure 28 on page 212

0x/15
111 1 1 1

R may be empty only if L is 0.

Derived Functions of Special Interest: The following functions derived from
reduce n-wise have wide application:

« First difference (" 2-/R)
e Yearly running total (12+/R)

214 APL2 Programming: Language Reference

/[1 #[] Reduce N-Wise with Axis (from Slash)

/L] #[] Reduce N-Wise with Axis (from Slash)

(pZ)[X]
ppZ

L 0: Dyadic function
L: Simple scalar or one-item vector, integer
X: Simple scalar or one-item vector, integer: Xe 1ppR

Implicit argument: 0OI0

<> 1+(pR)[,X]1-|L
<~ ppR

Z<L LO/LXJR Similar to reduce with axis except that L defines
the number of items along the Xth axis to be
considered in each application of the function

to the subarrays along the Xth axis.

The absolute value of L can be no more than one plus the length of the Xth axis of

R:

(1L)<1+(pR)LX]

L can be considered as a moving window for determining successive items of Z.

Positive Left Argument: |If L is positive, the window starts at the front of the sub-
array along the Xth axis and moves backward. At each item of R, the window
stops, and the L O-reduction of the items in the window is taken.

To demonstrate, the examples below vary L for the matrix R:

o F R

22

11
17

= 0o G0N

26

13
19

R<3 4p112
R

N O O W

1

4+/[11R
30

2+/[11R
9

15

21

12
21

o3 F -

15

= o 0N

3+/[11R
18
27
1+/011R
3
6
9
12

Chapter 5. Primitive Functions and Operators 215

/[1 #[] Reduce N-Wise with Axis (from Slash)

The example below shows the application of n-wise reduce to a nested right argu-

ment.
C<3 2p(1 2)(3 u)(5 6)(7 8)(9 10)(11 12)
c
1 2 3 4
5 6 7 8
9 10 11 12
pC
3 2
2x/[11C

5 12 21 32
45 60 77 96

Negative Left Argument: If L is negative, the contents of the window are
reversed just before the reduction is applied.

"2-/10 20 30 40

10 10 10
"2-/10 8 20 3
T2 12 723

If LO is commutative (thatis, 4 LO B <= B L0 A),the sign of L does not
affect the result.

Zero Left Argument: |If L is 0, the identity function of L0 is applied instead. See
the discussion under “Reduce (from Slash),” on page 209 Identity items are listed

in|Figure 27 on page 211|and [Figure 28 on page 212|

0x/[11R

N = =S
N = =S
N = =S

R may be empty only if L is 0.

Derived Functions of Special Interest: The derived functions listed under reduce
n-wise (see [[/_Reduce N-Wise (from Slash)” on page 213) apply to reduce n-wise
with axis.

216 APL2 Programming: Language Reference

/L1 #L1 Reduce with Axis (from Slash)

/L] #C1 Reduce with Axis (from Slash)

Z<LO/[X] R Similar to reduce, except that the function
L O is placed between adjacent pairs of
items along the Xth axis of R.

L 0: Dyadic function
X: Simple scalar or one-item vector, integer: Xe 1ppR.

Implicit argument: 010

pZ <> (pR)[(1ppR)~X]
ppZ <> O 1+ppR

Reduce with axis is similar to reduce except that any axis, instead of only the last,
may be specified:

LO/LX]R <+ oL0/ " c[X1R

and
LO/[LppRI1R <> LO/R

M<3 Lp112 N<«2 3 Lpi12Y4
M N
1 2 3 L 1 2 3 L
5 6 7 8 5 6 7 8
9 10 11 12 9 10 11 12
+/011M
15 18 21 24 13 14 15 16
17 18 19 20
21 22 23 24
+/L[11N
14 16 18 20
22 24 26 28
30 32 34 36
,/[1]2 3p16 +/021N
1 4 2 5 3 6 15 18 21 24
51 54 57 60

Chapter 5. Primitive Functions and Operators 217

/L1 #L] Reduce with Axis (from Slash)

Applied to First Axis: The symbol # is an alternate symbol for /[11].
However, if # is followed by an axis (#[X]), it is treated as /[X].

x/[11M X+ M
45 120 231 384 45 120 231 384

Xth Axis of R Has Length One: If the Xth axis of B (" 14 pR) has length one, Z
is:

(pR)L(1ppR)~X1pR

N<2 1 4p2x18
/021N

2 4 6 8

10 12 14 16

Empty R: If the Xth axis of R is 0 (0="1+4pR), the function L0 is not applied.
Instead a related function called the identity function is applied with argument + R
(prototype of R). The result is:

(pR)L1(ppR)~X]pcT

where I is the value returned from the identity function for the function L 0.
[Figure 27 on page 211|and [Figure 28 on page 212 show the identity items for
each primitive function.

:/[212 0 3p0
111
111

The identity function related to a defined function cannot be specified, and an
attempt to reduce an empty argument with a defined function generates a
DOMAIN ERROR.

Derived Functions of Special Interest: All the derived functions listed under
reduce (from slash) (see|‘/ Reduce (from Slash)” on page 209) apply to reduce
with axis.

218 APL2 Programming: Language Reference

<<=2>># Relational Functions

<<=2>># Relational Functions

<

L and R Numeric real for <
Z: Boolean

Implicit Argument: OCT

Scalar Functions

Z<L<R Lessthan

Z<L<R Less than or equal
Z«L=R Equal

Z<L2R Greater than or equal
Z<L>R Greater than

Z<LzR Not equal

> >

Each relational function determines whether corresponding items of the arguments
satisfy the relationship. The result is 1 if the relationship for corresponding items is
true (within the comparison tolerance OCT), and 0 otherwise.

'"TRIAL'="TRAIL"'
11001

8 "2 6 "4 0<0

01010

Like other scalar functions, the relational functions apply corresponding items of an
array throughout the entire structure. Scalar extension is performed as necessary
for conformability. The example below uses the defined function DI SPLAY to
illustrate the result of a relational function.

L<«('IN'
R«('IT!

DISPLAY L=R

e e e e e e e e e — = =
e e o> - -
| o>==..>----.110 0 1
|11 0110 1 2]]r~-=---
|v~__vv _____ v|

" gm e o = '

'oUT') (9 5 6) (<2 2p1l)
'BUT') 6 (2 2p1 8 5 4)

"|¥1 0]v0 0]
1o oflo O]
|v~__vv~__v
| o>-m -

|+0 0]+0 ©
1o ollo 1

|v~__v "~ =

- —_—

219

Chapter 5. Primitive Functions and Operators

/ Replicate (from Slash)

/ Replicate (from Slash)

Z<L0O/R Repeats each subarray along the last axis under the
control of the vector LO.

L O: Simple scalar or vector, integer
Z: Nonscalar array

“1¥pZ <«> " 14pR
ppZ <> ppR

L O determines the pattern and type of replication of subarrays of R, as follows:

If LOLI] (an item of LO) is positive, the corresponding subarray of R is repli-
cated LOL[I] times.

If LOLI] is zero, the corresponding subarray is dropped from the result. (If
A/L0O=0, Z has a zero shape for the last axis.)

If LLI1] is negative, the fill item of the corresponding subarray of R is repli-
cated | L[I1] fill items. The fill item is determined by the type of the first item
in the I'th subarray along the last axis.

1 2 3 4/'"ABCD! 12 713 "2/6 7 8

ABBCCCDDDD 6 77 0 8 8 8 0O
R<3 2p'A' 8 7 6 5 4 0 2 0 1/'S0AP!
R 0O0P

A 8

7 6

5 4
2 11 "2/R

A A 8

7 7 0 6 00

55 04 00

Conformability: If ~1+pR is not 1, it must be equal to +/L0>0. For scalar LO
or Rorif “14pRis 1, the following extensions are applied before the replication is
evaluated:

e If LO is a scalar or one-item vector, it is extendedto ~ 141, pE.
e If B is a scalar, it is treated as a one-item vector.

e If "14pRis 1, R is replicated along the last axis +/L0=0 times.

220 APL2 Programming: Language Reference

/ Replicate (from Slash)

If ZO is not extended, " 14pZis +/|LO.

2/4% 5 1 72 3/6
4 4 5 5 6 0 0 6 6 6

S<«,[w0]1'TON"

1 72 2/8
T rT
0 00
N NN

Effect on Depth: Replicate does not change the depth of any item; however, the
depth of the result may be different from that of R if LOL I 1=0 should eliminate a
nested item.

W<'I' 'ID' ('IDE' 'IDEA')

W P«1 2 0/W
I ID IDE IDFA P
=W I ID ID
3 =P
X«3 2 1/W 2
X
II1I ID ID IDE IDFA
=X
3

Chapter 5. Primitive Functions and Operators 221

/L1 #L 1 Replicate with Axis (from Slash)

/[] #[] Replicate with Axis (from Slash)

Z<L0O/[X1R Repeats each subarray along the X axis
under the control of the vector LO.

LO: Simple scalar or vector, integer or empty
R and Z: Nonscalar array
X: Simple scalar or one-item vector, integer: Xe 1ppR

Implicit Argument: 0I0

(pZ)I[XI«>+/|LO
ppzZ <> ppR

Replicate with axis is similar to replicate, except that replication occurs along the

Xth axis.
R«3 2 Lpi2h 2 "1 1/[21R
R 1 2 3 4
1 2 3 L 1 2 3 4
5 6 7 8 0 0 0 0
5 6 7 8
9 10 11 12
13 14 15 16 9 10 11 12
9 10 11 12
17 18 19 20 0 0 0 0
21 22 23 24 13 14 15 16
17 18 19 20
17 18 19 20
0 0 0 0
21 22 23 24

Conformability: The shape of R along the Xth axis mustbe 1 or +/L0>0. For
scalar L0 and R with a shape of 1 along the Xth axis, the following extensions
are applied before the function is evaluated:

e If LO is a scalar or one-item vector, it is extended to (p £) [X] items.
e If (pR)LX]is 1, R is replicated along the Xth axis +/L0=0 times.

222 APL2 Programming: Language Reference

If LO is

(SRS T e

13
13

17
17
21
21

D OoONN

10
10
14
14

18
18
22
22

/L1 #L1 Replicate with Axis (from Slash)

not extended, (pZ)[X1is +/|LO times.

S<3 2 upi2h
2/[218
3 u

3 4
7 8
7 8

11 12
11 12
15 16
15 16

19 20
19 20
23 24
23 24

T<3 1 4p'ABCDEFGHIJKL'
T
ABCD
EFGH
IJKL
oT
3 1 4
T1 1/[021T
ABCD
EFGH
IJKL
p 1 1/021T
3 2 4

The symbol # is an alternative symbol for /[1]. However, if # is followed by an
axis (#[X1), itis treatedas /[X].

O o

O O O -

M<3 4p112
M
2 3 4
6 7 8
10 11 12
10 2 1/M
2 3 4
10 11 12
10 11 12
0O 0 O

O O O -

102 "1/011M
2 3 4
10 11 12
10 11 12
0 0 O

Chapter 5. Primitive Functions and Operators

223

/L1 #L 1 Replicate with Axis (from Slash)

Effect on Nested Arrays: Replicate with axis does not change the depth of any
item; however, the depth of the result may be different from that of R if LO[I]1=0
eliminates a nested item.

D<2 2 2p'HE' 'ME' 'WE' 'US' 'I' 'A' '0' 'E!
D

HE ME

WE US

I A

0 FE

1
=]

J<0 2/[11D
J

IA

OF

IA
OF

W<2 ~1 1/[21D

HE ME
HE ME

WE US

224 APL2 Programming: Language Reference

o Reshape

o Reshape

Z<LpR Structures the items of R into an array of shape L.

L: Simple scalar or vector, not negative integers.

pZ <> L
ppzZ <> p,L

Items are selected from R in row-major order and placed into the result in row-
major order.

7Z<2 3 Lpi12h4 X<3 8p7

Z X
1 2 3 4 1 2 3 4 5 6 7 8
5 6 7 8 9 10 11 12 13 14 15 16
9 10 11 12 17 18 19 20 21 22 23 24
13 14 15 16 pX
17 18 19 20 3 8
21 22 23 2y ppX

2

pZ
2 3 4

ppZ
3

If (x/pR) = x/L,the first x/L items are used.

3 5p124
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

If (x/pR) < x/L,items from E are repeated cyclically.

B<'UP' 'ON' 'TO' 'BY'
Y<2 3pB
Y

UP ON TO

BY UP ON

5pB
UP ON TO BY UP

Chapter 5. Primitive Functions and Operators 225

o Reshape

Empty Argument: If R is empty, L must contain at least one zero. If L is empty,
the result is a scalar whose only item is the first item of Z. An empty character
vector is treated like an empty numeric vector.

S<0 2p10 V<5 6 7
S oV
(empty) 3
pS ppV
0 2 1
H<«(10)pVor
H<''poV
H
5
pH
(empty)
ppH
0

Zero in L: If L contains at least one zero, Z is an empty array whose prototype is
the prototype of R.

M<«3 0p0 N<2 0 6p5 3 2 1
pM ol

30 2 0 6
ppM ppl

2 3

Selective Specification: Reshape can be used for selective specification:

T<'GROWTH" (4pT)<'ABCD'
T
(2 3pT)«2 3p-16 ABCD ~5 "6
T
"1 T2 73 Tu "5 s (8pT)<«18
T
78 3456

226 APL2 Programming: Language Reference

| Residue

| Residue

7Z<L|R For real positive I, and R, the remainder
from dividing R by L. For all numbers,
Zis R-LxLR+L+L=0.

Note: | is computed with a comparison tolerance of zero.

L, R, and Z: Numeric
Implicit Argument: OCT

Scalar Function

For real L and R:

If L is zero, Z is R.

If R is zero, Z is zero.

If L is positive, Z20 and Z<L.
If L is negative, 2<0 and Z>L.

101]17 UJ6|7J10
7 3J 4

1018 10 "4 4J3 “10 7J10 .3[|17 5 10
8 0 6 4J3 "3 T5J7 0.1

Chapter 5. Primitive Functions and Operators 227

¢ e Reverse

¢ © Reverse

7<oR Creates an array with the items of R
reversed along the last axis.
pZ <> pR
ppZ <> ppR

A<'DESSERTS" B<(1 2) (3 u4) (5 6)
4 ¢B
STRESSED 56 34 1 2

C<+3 5p'EMIT REGALTIDE !
C

EMIT

REGAL

TIDE
$C

TIME

LAGER

EDIT

Selective Specification: Reverse can be used for selective specification.

D«3 4p112 (¢D)«3 up'STOPSPINODER'
D D

1 2 3 4 POTS

5 6 7 8 NIPS

9 10 11 12 REDO

© means that reverse is applied along the first axis. For example:

e(C
TIDE
REGAL
EMIT

228 APL2 Programming: Language Reference

o[] e[] Reverse with Axis

o[] o[] Reverse with Axis

Z<$d[X]R Creates an array with items reversed along the
Xth axis.

X: Simple scalar or one-item vector, integer: Xe 1ppR
Implicit argument: 0OI0

pZ <> pR
ppZ <> ppR

Reverse with axis is similar to reverse, except that reversal of items is done along
the Xth axis instead of along the last axis.

A<2 3 1p'IN' 'OUT' 'UP' '"RIGHT' 'LEFT' 'DOWN'
A

IN

ouT

UP

RIGHT
LEFT
DOWN

dL2]4
UP
ourT
IN

DOWN
LEFT
RIGHT

dL1]14
RIGHT
LEFT
DOWN

IN
ourT
UP

Applied to First Axis: The symbol e is an alternate symbol for [1]. If e is
followed by an axis (e[X]), it is treated as ¢ [X].

Chapter 5. Primitive Functions and Operators 229

o[] e[] Reverse with Axis

Selective Specification: Reverse with axis can be used for selective specifica-

tion:
B<+3 Lp112 (¢[11B)<«3 Up-112
B B

1 2 3 4 "9 710 T11 "12

5 6 7 8 5 6 7 8

9 10 11 12 "1 2 3 n

230 APL2 Programming: Language Reference

? Roll

? Roll

Z<?R Selects an integer at random from the population 1 R.

R: Positive integer
Z: Integer in the set 1R

Implicit arguments: 0I0 and ORL

Scalar Function

Each integer in the population 1R has an equal chance of being selected.

The result depends on the value of ORL. A side effect of roll is to change the
value of ORL (random link).

Both examples below show the value of ORL prior to execution of the function. To
duplicate these results, specify ORL to be this value.

010<«1 0ro<o
ORL ORL
16807 16807
210 210
2 1
ORL ORL
282475249 282475249
210 10 10 10 10 10 210 10 10 10 10 10
8 56 317 7 4 5 2 0 6

Chapter 5. Primitive Functions and Operators 231

¢ Rotate

¢ Rotate

7Z<L$R Creates an array with items of R rotated
| L positions along the last axis.

The sign of L determines the direction of
the rotation.

L: Simple integer, either scalar or rank ~ 1+ppRE
pZ <> pR
ppZ <> ppR

If L is a nonnegative scalar or one-item vector, L items are removed from the
beginning of each vector along the last axis of R and appended to the same
vector.

A<«1 2 3 4 5 6 7 B«2 5p'ANGLEASIDE'
164 B
23 456 71 ANGLE
ASIDE
20B
GLEAN
IDEAS

If L is a negative scalar or one-item vector, L items are removed from the end of
each vector along the last axis of £ and prefixed to the same vector.

264 D«2 YUp'ACHEINKS'
6 7 1 2 3 4 5 D
ACHE
INKS
16D
EACH
SINK

If L is not a scalar or one-item vector, the rows of R are treated independently
according to the corresponding items of L. To conform, (pZ) mustbe ~1+vpR.

H<3 3p'ATEEATTEA"'
H

ATE

EAT

TEA

"1 0 1¢H
EAT
EAT
EAT

232 APL2 Programming: Language Reference

¢ Rotate

K<2 3p'CAT' 'BEAR' 'PONY' 'GNU' 'BIRD' 'FOX'
K

CAT BEAR PONY

GNU BIRD FOX

pK
=K

1 260K
BEAR PONY CAT
FOX GNU BIRD

The example below demonstrates how the left argument is formed for three-
dimensional arrays. The rows of L correspond to the planes of R and the columns
of L correspond to the rows of R. For example, L[2 ; 3] specifies the rotation for
the second plane, third row of R.

5«2 3 5p'TARESSMARTEARTHSETONLAGERSHEAR'
S

TARES

SMART

EARTH

SETON
LAGER
SHEAR

pS

Q<2 3p4 0 "1 "2 5 1
Q

L 0 "1

"2 5 1
Qs

STARE

SMART
HEART

ONSET

LAGER
HEARS

Chapter 5. Primitive Functions and Operators 233

¢ Rotate

Selective Specification: Rotate can be used for selective specification:

W<'STRIPE"
20w

RIPEST
(2¢W)«'THERMO'
W

MOTHER

234 APL2 Programming: Language Reference

o[] Rotate with Axis

¢ [1 Rotate with Axis

7Z<LS[X]IR Creates an array with items of R rotated
| I positions along the Xth axis.

The sign of L determines the direction
of the rotation.

L: Simple integer, scalar, or vector
X: Simple scalar or one-item vector, integer: Xe 1ppR

Implicit argument: 0I0

pZ <> pR
ppZ <> ppR

Rotate with axis is similar to rotate, except that removing items and appending or
prefixing them is done along the Xth axis instead of along the last axis.

A<«'BETTA' 'CARP' 'EEL' 'LOACH'
B«'BAY' 'CEDAR' 'ELM' 'LARCH'
C<3 4 1p4A,B,'BOA'" '"CAVY' '"ELAND' 'LION'
C
BETTA
CARP
EEL
LOACH

BAY
CEDAR
ELM
LARCH

BOA
CAVY
ELAND
LION

Chapter 5. Primitive Functions and Operators 235

o[] Rotate with Axis

1¢L11C
BAY
CEDAR
ELM
LARCH

BOA
CAVY
ELAND
LION
BETTA
CARP
EEL
LOACH

16[2]C
CARP
EEL
LOACH
BETTA

CEDAR
ELM
LARCH
BAY

CAVY
ELAND
LION
BOA

Applied to the First Axis: The symbol e is an alternate symbol for ¢$[1].
However, if is followed by an axis (e[X]), it is treated as ¢ [X].

U<3 1p'ALFRED' 'THINK' 'QUICK'
U

ALFRED

THINK

QUICK

10U
THINK
QUICK
ALFRED
120
QUICK
ALFRED
THINK

236 APL2 Programming: Language Reference

o[] Rotate with Axis

If L is not a scalar or one-item vector, (pL) mustbe (pR)[(1ppE)~X].

W<'abcdefghijklmnopgrst'
W<W,(120)

W<«3 4 5poW,"'"ABCDEFGHIJKLMNOPQRST'
W

T X Mo
Q ~Q &
K 8 >0
nis ok Q
t+ 0 W O

H
)
w
=
o

16 17 18 19 20

A B C D FE
F G H I J
K L M N O
P @ R S T
oW
3 4 5

V<2 500 1 "1 2 "2 "3 1130102 713

oW
o r
N
oW
w o

T Ao
o ~Q

(o))
[EEN
~
(00]
[EEN
©
(6]

11 2 13 4 10
16 7 18 9 15
1 12 3 14 20
F B M S T
K G R D F
p L C I J
A @ H N 0

Chapter 5. Primitive Functions and Operators 237

o[] Rotate with Axis

Selective Specification: Rotate with axis can be used for selective specification.

Y<3 Lp112
(1 1 2 "2¢[1]1Y)<«3 Up'ABCDEFGHIJKL'
Y

IFGL

AJKD

EBCH

238 APL2 Programming: Language Reference

\ Scan (from Backslash)

\ Scan (from Backslash)

Z<LO\ R The Ithitem along the last axis is determined
by the LO-reduction of I+[ppR]R.

L 0: Dyadic function

pZ <> pR
ppZ <> ppR

If the length of the last axis is greater than 0, the result is determined by:
(14LppRI1R),(LO/[X]124[ppRIR), ... L(LO/R)

+\1 2 3 4 5 vi0 01 1 0
1 3 6 10 15 001 1 1
+\(1 2)(3 4)(5 6) s\'"AB' 'CD' '"EF'
1 2 4 6 9 12 AB ABCD ABCDEF
,\2 3p16
1 1 2 1 2 3
4 4 5 4 5 6

If the length along the last axis is zero, the result is 7.

Chapter 5. Primitive Functions and Operators 239

\[] X[] Scan with Axis (from Backslash)

\[] X[] Scan with Axis (from Backslash)

Z<LO\[X] R The Ithitem along the Xth axis is
determined by the L 0-reduction of 7+ [X]R.

L 0: Dyadic function
X: Simple scalar or one-item vector, integer: Xe1ppR
Implicit argument: 010

pZ <> pR
ppZ <> ppR

If the length of the last axis is greater than 0, the result is determined by:
(1+4[X1R),(LO/24[XIR)y ... L(LO/LX1R)

M<3 Lp112 N<«2 3 Lpi12Y4
+\[1]1M +\[11N

1 2 3 4 1 2 3 4

6 8 10 12 5 6 7 8

15 18 21 24 9 10 11 12

14 16 18 20
22 24 26 28
30 32 34 36

o,\[112 3p16 +\[21N
1 2 3 1 2 3 L
1 4 2 5 3 6 6 8 10 12

15 18 21 24

13 14 15 16
30 32 34 36
51 54 57 60

Applied to First Axis: The symbol X is an alternative symbol for \[1].
However, if X is followed by an axis (A\[X]), it is treated as \[X].

x\[11M x\M
1 2 3 4 1 2 3 4
5 12 21 32 5 12 21 32
45 120 231 384 45 120 231 384

If the length along the Xth axis is 0, the result is 7.

240 APL2 Programming: Language Reference

o Shape

o Shape

Z<pR Yields the size of each axis of R.

Z: Simple nonnegative integer vector.

pZ <> ppk
ppzZ <> ,1

In a character array, blanks (within quotation marks) are items:

A<1 2 3 'A' 'B' y B<'STAND UP'
pA pB

6 8
ppd

As the last example in the first column shows, applying p twice yields the rank of

an array.

The high-order axis is the first item of the shape vector.

C<«3 Up112 D<2 3 Up(112),-112
c D
1 2 3 L 1 2 3 L
5 6 7 8 5 6 7 8
9 10 11 12 9 10 11 12
pC 1 2 3 L
3 4 5 6 7 8
ppC 9 T10 T11 T12
2
pD
2 3 4
ppD
3

Chapter 5. Primitive Functions and Operators 241

o Shape

H<«'ToM' '"ED' 'HANK'

Q<('ELSIE' 'TOM') 'HANK' ('ED' 'BOB' 'KIM')

=H
2

pH
3

o H
3 2 u

=¢
3

P&
3

PP&
1

o @
2 4 3

P @

5 3

These four items are empty because the items of ' HANK ' are scalars.

Scalar Argument: The shape of a scalar is empty and its rank is 0 because
scalars have no axes. Shape demonstrates the difference between a scalar and a

one-item vector.

Scalar

p YA]
(empty)

p p YA]
0

S<«c?2 3p16
S

3
6

(empty)

242 APL2 Programming: Language Reference

One-ltem Vector

p’lAl
1
pp,'A"
1
T<,c2 3p16
T
1 2 3
4 5 6
=T
2
oT
1

- Subtract

- Subtract

Z<L-R Subtracts E from L.

L, R, and Z: Numeric

Scalar Function

Subtract is the arithmetic subtraction function.

5-3 3JU-1J2
2 2J2

6-8 .2 4J3 4.5 0-"2 1.2 1J2
"2 5.8 2J°3 T2 0.7 T1J72

Chapter 5. Primitive Functions and Operators 243

4+ Take

+ Take

Z<L+R Selects subarrays from the beginning or end of the
Ith axis of R, according to whether L[I]
is positive or negative.

L: Simple scalar or vector, integer
pZ > |,L
ppzZ <> p,L

Specifying the Amount to Take: |If L is a scalar, it is treated as being a one-item
vector; and if R is a scalar, it is treated as being an array of shape (pLZ)p1.
Then:

For LLI]>0, take selects [T] subarrays from the beginning of the I'th axis
of R.

For LLI1<0, take selects | L[I] subarrays from the end of the I'th axis of
R.

For L[I]=0, no items are selected, and the resulting shape has an Ith axis
of length 0.

3434 12 73 53 41 “3434 12 73 53 41
34 12 73 73 53 41

Nonscalar Right Argument: For nonscalar ?, L must have the same number of
items as R has rank:

(poL) = ppR

Y<«4 S5p'TRIADFIELDMOOSEDINER'
Y

TRIAD

FIFELD

MOOSE

DINER
T2 34Y

MOO

DIN
W«3 3 Lp'BEATMYTHANTETONEMEANHEREUPONWEEKDOES'
W

BEAT

MYTH

ANTE

TONE
MEAN
HERE

UPON
WEEK
DOES

244 APL2 Programming: Language Reference

V< 1 "2 2

(means take the
last plane, last
two rows, first
two columns)

Z<VAW
Z

WE

DO
pZ

1 2 2

4+ Take

Overtake: If | L[I] is greater than the length of the Ith axis, the extra positions
in the result are filled with the fill item (the prototype of R<>+0pc+R).

5421 33 52
21 33 52 0 O

54'RED!
RED
+
Two blank characters
U<2 3p16
U
1 2 3
4L 5 6
H<l4 44U
pH
T
H
1 2 30
4L 5 6 0
0 0 0 O
0 0 0 O

N<(1 2) (3 u4)
44N
12 34 00 00

5421 33 52
0 0 21 33 52
“54'RED'
RED
,f
Two blank characters
TB4'A' 1 'B' 2
A 1 B 2

“641 'A' 2 'B!
0 014 2B

3410
0 0 O

2 340 2pc0 0 0
0 0 O 0 0 O 0 0 O
0 0O 0 0 O 0 0 O

The last two examples in the right column show the effect of take with an empty
right argument. A nonempty left argument results in an overtake, using +£ as the

fill item. The result is not empty.

Scalar Right Argument: For scalar B, L may have any length. The length of , L

determines the rank of the result.

EF<142
pFE
1
F
2
G<1 1 142
G
2
pG
111

F<(10)42
F

2
pF

(empty)

2 342

2 00

0 00

Chapter 5. Primitive Functions and Operators 245

4+ Take

Effect on Depth: Take does not affect the depth of any selected item. The depth
of the result is less than or equal to the depth of the argument, except when the

right argument is a simple scalar.

T<'T' *70" ('TOT' '"TOTE"')
J<14T K<«24T
J K

T T TO
=J =K

1 2

Recall that the fill item is determined by the first item.

S«8 ((6 5) (4 3)) Q<0s
S Q
8 6 5 4 3 6 5 4 3 8
349
=S 5 4 3 8 0 0 O
3
345

8 6 5 4 3 0

Selective Specification: Take can be used for selective specification:

P<'ABCDE" KY<3 Up'ABCDEFGHIJKL'
(24P)<«1 2 KY
P ABCD
1 2 CDE EFGH
IJKL
(72 14KY)<1 2
KY
A BCD
1 FGH
2 JKI

246 APL2 Programming: Language Reference

4+ [] Take with Axis

4+ [] Take with Axis

Z<L+[X]R Selects subarrays from the beginning or end of
the X[I 1th axis of R, according to whether
L[I1] is positive or negative.

L: Simple scalar or vector, integer
R and Z: Nonscalar array
X: Simple scalar or vector; nonnegative integers: Xe 1 p p F; or empty

Implicit argument: 010

(pZ)L[,X] == |,L
ppZ <> ppR

Take with axis is similar to take except that the subarrays are selected only from
the axes indicated by X. The shape along axes not selected by X remains
unchanged.

Take with Axis Compared to Take: The following identity states the relationship
between take and take with axis:

L4AR <> L+[1ppRIR

A<3 5p'GIANTSTORETRAIL'
A

GIANT

STORE

TRATL

240114
GIANT
STORE

2 544
GIANT
STORE

“3+4[2]4
ANT
ORE
ATL

3 "344
ANT
ORE
ATL

Chapter 5. Primitive Functions and Operators 247

4+ [] Take with Axis

Overtake: If | L[I] is greater than the length of the X[I 1th axis, the extra posi-
tions in the result are filled with the fill item. The fill item depends on the subarray
selected:

LA[XIR <> o[X1(<L)+ " c[X1R

B«2 3p16 C<2 3p1'4A' 3 4 5 6
B o
1 2 3 1 4 3
4 5 6 4 5 6
3+L11B Lef11C
1 2 3 1 4 3
4 5 6 4 5 6
0 00 0 0
0 0

H<«2 3p'ABCDEF'

H
ABC
DEF
Z< 44[11H
Z
ABC
DEF
pZ
b 3

Permitted Axes: Multiple axes indicated by X need not be in ascending order;
however, no axis may be repeated. L[I] defines the number of subarrays to
take from the X[I Jth axis.

K<3 3 Yp'HEROSHEDDIMESODABOARPARTLAMBTOTODAMP'
K

HERO

SHED

DIME

SODA
BOAR
PART

LAMB

TOTO
DAMP

248 APL2 Programming: Language Reference

LAM
TorTr
DAM

SRS

B
0
P

"1 34[1 31K

"1 34[3 11K

4+ [] Take with Axis

Effect on Depth: Take with axis does not affect the depth of any selected item.
The depth of the result is less than or equal to the depth of the argument, except
when the right argument is a simple scalar.

T<'D"
S<«2 3pT

S

'DO'('DON?

DON DONE
MEN MENE

=S

'"DONE')'M' 'ME'('MEN' 'MENE')

H<24[2]S
H

=H

J<«1+4[11]18
J

D DO DON DONE
=J

3

Recall that the fill item is the type of the first item (prototype) of each subarray
along the Xth axis.

(o]

M<«2 3p1(2 3)((4 5)(6 7))8(9 1)((2 3)(H 5))

M
2 3 4 5
9 1 2 3
oM
3+[11M
2 3 4 5
9 1 2 3
00 00

=

a

T<«16[21M
T
2 3 4 5 6 7 1
g 1 2 3 4 5 8
340117
2 3 4 5 6 7 1
g 1 2 3 4 5 8
00 00 00 0

Chapter 5. Primitive Functions and Operators 249

4+ [] Take with Axis

Selective Specification: Take with axis can be used for selective specification:

U«3 UYp'ABCDEFGHIJKL'
U

ABCD

EFGH

IJKL

(724[2]U)<+3 2p16
U

AB 1 2

EF 3 4

IJ 5 6

250 APL2 Programming: Language Reference

® Transpose (General)

® Transpose (General)

Z<LQ®R Case 1: L selects all axes of B. Creates an
array similar to R but with the axes permuted
according to L.

Case 2: L includes repetitions of axes. Creates
an array with two or more axes of R mapped
into a single axis of Z, which is then a diagonal
cross section of A.

L: Simple scalar or vector, nonnegative integer

Implicit Argument: 0I0

Case 1
pZ <> (pR)LAL]
ppZ <> ppR

Case 2

I>pZ <> L/(L=I)/pR
(foreach Te1ppZ)

ppZ <> ,+/(L1L)=1pL

L Selects All Axes of R: All axes of B must be represented in L:
A/(1ppR)eL. The axes of B map by position to axes of Z according to L.
The diagram below shows the mapping of axesfor 1 3 2&4 5 6p1120:

oR 4 5 6
v N v

PO
4 4 6 5

The Ith axis of R becomes the L[I Jth axis of Z.

Chapter 5. Primitive Functions and Operators 251

® Transpose (General)

A<2 3 Yp'BEARLYNXDUCKPONYBIRDOXEN'
A

BEAR

LYNX

DUCK

PONY
BIRD
OXEN

pA

Z<1 3 284
pZ

BLD
EYU
ANC
RXK

PBO
01X
NRE
YDN

W<2 1 384
oW

3 2 4
W

BEAR

PONY

LYNX
BIRD

DUCK
OXEN

252 APL2 Programming: Language Reference

® Transpose (General)

Y<3 1 284
pY

Y
BP
EO
AN
RY

LB
Y1r
NR
XD
DO
UX
CE
KN

& Transpose (reversed axes), page , reverses the order of the axes for the
transposition:

®R <> (b1ppR)AR

Diagonal Cross Section of F: When there are repetitions in L, a diagonal cross
section of R is selected. L must be constructed such that A/ (1 /0,L)elL.
For a matrix, 1 1&ZF selects those items whose row and column indexes are the
same and creates a vector from those items.

B<4 Lp116
B
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1 18B
1 6 11 16
C<«+3 Lp112
C
1 2 3 4
5 6 7 8
9 10 11 12
1 1_C
16 11

Chapter 5. Primitive Functions and Operators 253

® Transpose (General)

D<'ONE' 'FOR' 'ALL' 'HEAD' 'TO'
D<3 3pD,'TOE' 'READY' 'SET' 'GO'
D

ONE FOR ALL

HEAD TO TOF

READY SET GO

V<1 18D
14
ONE TO GO
oV
3
=V
2

For higher rank arrays, the result is determined first by a selection of items whose
indexes are the same in the duplicated axes indicated by L. For example, 2 1
28R selects all items whose first and third indexes are the same: R[1:1;11],
R[1:;2;17], and so forth. The selected items are then transposed by
((L1vL)=1pL)/L. The transpose for items selected for the 2 1 2&R, for
example, is 2 1.

H<2 3 U4p'ABCDEFGHIJKL"', 112

RS
oy W
N QQ

D
H
L

(&)
(o))
~
(00]

9 10 11 12
1 1 184
4 6
1 1 28K
A B CD
56 7 8
2 2 18H
4 5
B 6
c 7
D 8

254 APL2 Programming: Language Reference

® Transpose (General)

1 2 18H

N i
Oy
~

2 1 2%H

NNCES
(o))

1 2 28H

o
o N
[
S

2 1 1%H
A 1
F ©
K 11

Effect of Index Origin: The index origin affects permissible values of L. For
either origin: A/ (1ppR)elL.

010<«o0 1 0 28K
K<3 2 Yp124 o 1 2 3
K 8 9 10 11
o 1 2 3 16 17 18 19
4 5 6 7
4 5 6 7
8 9 10 11 12 13 14 15
12 13 14 15 20 21 22 23

16 17 18 19
20 21 22 23

Selective Specification: Either case of transpose can be used for selective spec-
ification.

0I0<«1
P<«3 3p19
(1 18P)<«10 20 30
P
10 2 3
4 20 6
7 8 30

Chapter 5. Primitive Functions and Operators 255

® Transpose (Reversed Axes)

® Transpose (Reversed Axes)

Z<QR Creates an array similar to R but with the order
of the axes of R reversed.
o 7 <> d) pR
ppZ <> ppR

A<4 3p'RAMONEATENET'

A
RAM
ONE
ATE
NET
pA
4 3
AR Y
Z
ROAN
ANTE
MEET
pZ
3 4
B<2 3p(1 1)(1 2)(1 3)(2 1)(2 2)(2 3)
B
11 1 2 1 3
21 22 23
pB
2 3
=B
2
X<QB
X
11 21
1 2 2 2
1 3 2 3
pX
3 2

256 APL2 Programming: Language Reference

& Transpose (Reversed Axes)

C<2 3 Up12lL

(6]
(o))
~
(00]

13 14 15 16
17 18 19 20
21 22 23 24

W<&C

5 17
9 21

2 14
6 18
10 22

3 15
7 19
11 23

4 16
8 20
12 24

oW
4L 3 2

Selective Specification: Transpose with reversed axes can be used in selective
specification:

R<+3 3p'STYPIEANT' (®R)«3 3p19
R R

STY 1 47

PIE 2 5 8

ANT 3 6 9

Chapter 5. Primitive Functions and Operators 257

~ Without

~ Without

Z<L~R Yields the items in L that do not occur in 7.

L: Scalar or vector
Z: Vector

Implicit argument: OCT

pZ <> Depends on the contents of Z and R
ppZ <> ,1

The following identity holds:
L~R <> (~LeR)/L

1 2 3 4 5~2 3 4 '"RHYME'~'"MYTH'
15 RE

Effect with Nested Arrays: An item of L is included in Z if an exact match (within
the comparison tolerance) in structure and data does not exist in R.

'Go' 'To' 'IT7T'~'GOTO' 'IT!
GO TO

Z<4 5 (10) 6 7~9 5 3 7
Z

L 6
pZ

W<4 5 (10) 6 7~9 5 3 7(10)
W

4 6
pW

2

Intersection of Two Vectors: The intersection of two vectors L and R (including
any replication in L) may be obtained by the expression L~L~R.

31 415 5~3 1 4 1 5 5~4 2 5 2 6

258 APL2 Programming: Language Reference

Chapter 6. System Functions and Variables

This chapter describes all system functions and variables alphabetically. Each
system function and variable description consists of a summary and several
detailed sections. The organization of a system function description is similar to
that of the primitive functions.

Figure 29 shows a sample page for a system variable description. The information
in the summary at the top of the page is somewhat different from that in the
summary for system functions and is discussed following the figure. The callouts
on the figure correspond to that discussion.

1 [pp

2 DPP Printing Precision

3 UPP<4 Specifies or references
the number of significant digits in the display 4
of numbers.

A Positive integer scalar
5 Default value: 10
Variable type: Implicit argument

The minimum value for [IPPis 1. 1t[JPP is specified at or above the maximum
precision displayed by the system, all available precision is displayed.

2:3 [PP<200
0.6666666667 7:9
0.777777777777777778
Opp
18
However, in some cases, [JPP does not influence the display of integers.
OrPpP<1
333

333

1t (PP is assigned an invalid value or erased and then implicity used by format a

PP ERROR results.

A reference of [IPP yields its current setting.

Implicit Argument: [IPP is an implicit argument of default format (7).

Figure 29. Sample Page of System Variables

1. Variable name.
2. Variable name and description as it appears in the table of contents.

3. Variable syntax. If specifying the variable has an effect on its value, a specifi-
cation is shown: name<A. If specifying or localizing the variable has no effect,
only the name is shown.

4. Summary definition of the variable.

© Copyright IBM Corp. 1984, 1994 259

5. Properties of the variable:

e Data. If specifying the variable has an effect, the type of data that is mean-
ingful for the variable is listed.

e Default value. The value the variable has ina CLEAR WS or the value it
takes if you have not specified it. Note that the values you specify for
OnvLT, OPW, and OTZ persist overa)CLEAR ora)LOAD.

e Variable type. A classification of the variable by its general characteristics.
Any of four characteristics of the variable can be highlighted.

Session variable, if the variable is one of the three listed above as per-
sisting over a)CLEAR ora)LOAD.

Debug variable, if the variable is assigned by the system when an exe-
cution error occurs.

Implicit argument, if the variable is used by a primitive function during the
course of its execution.

Localizing or assigning a value has no effect if the variable is respecified by
the system.

Figure 30 displays the APL2 system functions and system variables.

Figure 30 (Page 1 of 2). APL2 System Functions and System Variables

Control and Execution 0 Evaluated Input/Output
These functions and variables control M Character Input/Output
execution and session I/O. 0oL Delay
Oex Expunge
OrLx Latent Expression
On4 Name Association
onvLrT National Language Translation
OpPR Prompt Replacement
apPw Printing Width
Event Handling and Debugging OEA Execute Alternate
These functions and variables provide for Oec Execute Controlled
error handling and testing of conditions OEM Event Message
during an error situation. Oes Event Simulation
0T Event Type
0L Left Argument
orLc Line Counter
Or Right Argument
Workspace and System Information O4fF Atomic Function
These functions and variables provide 04ar Account Information
information about APL2 variables, OAT Attributes
functions and operators. 04v Atomic Vector
They provide general system awnc Name Class
information such as system time, user ONL Name List
load, and available working space. arc Terminal Control Characters
ars Time Stamp
Orz Time Zone
Qucs Universal Character Set
ouvL User Load
aOwA Workspace Available

260 APL2 Programming: Language Reference

Figure 30 (Page 2 of 2). APL2 System Functions and System Variables

Implicit Arguments acr Comparison Tolerance
These variables allow the user to alter Orc Format Control
the results returned by certain APL2 0ro Index Origin
primitive functions. Opp Printing Precision
ORL Random Link
Transforming Data and Expressions Ocr Character Representation
These functions allow a user to convert Orx Fix
character data to or from executable Orr Transfer Form
form.
Sharing asve Shared Variable Control
These functions and variables allow a OSVE Shared Variable Event
user to share variables with other gsvo Shared Variable Offer
APL2 users and other auxiliary 0sve Shared Variable Query
processors. OsVR Shared Variable Retraction
gsvs Shared Variable State

Chapter 6. System Functions and Variables

261

0 Evaluated Input/Output

0 Input: O presents a prompt for input (O:). The value of the
expression entered replaces the quad, and the resulting
expression is evaluated.

0«4 Output: 0 displays the value of the expression to the right of the
specification arrow.

A: Any valid expression
Default value: None

The behavior of 0 is dependent on whether data is assigned to it (output), or it is
referenced (input).

Assignment
When 0 appears to the left of the specification arrow (the left arrow), the value of
the expression to the right of the arrow is displayed.

O<«4+6x5
34

Assignment of [allows the display of interim results, or the display of a variable's
value in the expression in which it is specified.

pd<«13 A<«4+[0<«5+6 O<«B<2+3
1 2 3 11 0.6666666667
3 A B
15 0.6666666667
Reference

When [0 appears and is not on the left of the specification arrow, a prompt (O:) is
displayed, and the system waits for input under the control of default error or inter-
rupt handling.

After the requested input is supplied and evaluated (by producing an array), error
and interrupt handling reverts to whatever it was prior to the reference of 0.

L+[0x5 A<u+[0x5
O O:
11 13
59 A
9 14 19

262 APL2 Programming: Language Reference

Error in Expression: If the evaluation of the expression in the response to 00 :
generates an error, the error appears as it does in immediate execution mode.

When the expression in response to the prompt is in error, the prompt 0O is pre-
sented again. When, however, the error occurs after the value of the expression is
substituted for [, execution of the expression is suspended, no prompt is displayed,
and the expression appears in the state indicator. Clearing the state indicator is
discussed in [‘Clearing the State Indicator’ on page 357}

1+0
0.
2 3x4 5 6
LENGTH ERROR
2 3x4 5 6
A A
O:
|A|
DOMAIN ERROR
1+0
AA
)SIS
* 1+0

AA

Multiple Quads: More than one reference of quad can occur in an expression.
The usual evaluation rules apply (see [‘Evaluating Expressions” on page 32).

0-0
O:

8
O:

3
5

Escape: |If the response to [: is the escape (=), execution ends and no result is
returned.

L+0+5+6 FNLO]

- -

A situation such as that shown in the right column occurs if you forget to enter a
beginning del (V) when trying to display a function or operator definition.

A system command can be entered when a [0: is displayed. The system
command and the system's response are not treated as responses to 0 : .

Chapter 6. System Functions and Variables 263

The following system commands end execution of the expression that referenced
0:

e)CLEAR

e YLOAD

JRESET

Some)HOST commands
e)JOFF

For example:

4+0+5+6
O:

YWSID WORKOUT
WAS CLEAR WS
0:

JRESET

264 APL2 Programming: Language Reference

[Character Input/Output

] Input: The system waits for a response and treats the input as a
character string.

(<A Output: Displays the value of the expression to the right of the
specification arrow. The position of the cursor or print element
carrier after output or before input depends on the situation, as
described below.

A: Any valid expression
Default value: None

The behavior of [1 is dependent on whether either data is assigned to it (output) or
it is referenced (input).

Assignment

When [appears to the left of the specification arrow (the left arrow), the value of
the expression to the right of the arrow is displayed. The normal ending new line
character is always suppressed.

2 3 4,M«'4A HA ! vV G
A HA 2 3 4 A HA [1] f«2 3p16
[2] f«' IS A MATRIX'
V F X [3] \%

(1] O«'x !

G
[2] f<'I15" 1 2 3
[31] O« 4 5 6 IS A MATRIX
[u4] UE¢
[5] v
F 13
X IS 13

Successive assignments of vectors to [1 without any other intervening session input
or output can cause attempts to display the arrays on the same output line.
Because of this, the sum of the lengths of the vectors should be less than the width
of the session display line. Otherwise, unpredictable results can occur.

Chapter 6. System Functions and Variables 265

Reference
When [0 is referenced, session input is requested. The input is returned as a char-
acter vector.

RESULT+[

WHAT IS 3+u47? Typed by the user.
oRESULT

12
RESULT

WHAT IS 3+47?
Quotation marks entered on a reference to [are characters. For example:

X<
'DON''T STOP!
X
'DON''T STOP'

pX
13

Prompts and Responses: A reference to [1 preceded by an assignment without
any intervening session input or output creates a prompt/response interaction. The
last (or only) row of the assignment is called the prompt, and the result of the refer-
ence is called the response. The response is a vector composed of:

¢ A transformation of the unchanged characters in the prompt, as determined by
the prompt replacement system variable OPR (see page .

e Session input, including changed characters in the prompt.
For example:

dpr<' !
V Z<«XPRMPT
[1] (l«<'SUPPLY X: '

[2] Z<M

[3] v
RESULT<XPREMPT

SUPPLY X: 19 19 is entered by the user.
RESULT

19 Result includes blanks that replace

PpRESULT the prompt of line 1.

12

The sum of the lengths of the prompt and the expected session input should be
less than the width of the display area; otherwise, the result may be unpredictable.

266 APL2 Programming: Language Reference

On most devices, the prompt can be changed before it is reentered. If OPR is
assigned the empty vector (' '), the result of the expression that includes [is the
vector in the display area when it is returned to the system.

VZ<FN2
[1] M<«'CHANGE THE PROMPT: !
[2] Z<M
[3] %
OPR<""
RESULT<FN2
CHANGE THE ENTRY 45 The word PROMPT is
PRESULT changed to ENTRY and 45 entered.
21
RESULT

CHANGE THE ENTRY 45

In contrast, if PR is not ' ', characters not changed are replaced with OPR.
However, anything entered in response to [1 is not replaced by OPR. No replace-
ment occurs even if the response is typed in the prompt display area.

OPR<" "

FN2
CHANGE THE PROMPT: _
ENTRY : 45

CHANGE THE ENTRY: n5
kxkkxkxxkx*FNTRY : 45

OPR« 1 %
FN?2

CHANGE THE ENTRY: n5

kxkkxkhkxxkx*ENTRY : 45

Interrupting Quote-Quad Input: If an interrupt is signaled while the system is
waiting for input to a reference of (1, the INTERRUPT message is displayed and
execution is suspended. If execution is resumed (by -1 0), the result of the
expression does not include the prompt.

RESULT<XPRMPT
SUPPLY X :(interrupt signaled)
INTERRUPT
XPRMPT[2] Z<[
A
>10
19 Cursor or carrier waits at left
PRESULT margin for input.

Chapter 6. System Functions and Variables 267

UAF

0JA4F Atomic Function

Z<[0AF R Maps integers to characters and characters to integers.

R and Z: A simple numeric integer array or a simple character array

pZ <> pR
ppZ <> ppR

Integers in R must be nonnegative and less than 2+31.

OAF Rislike OAV1R or HAVLR], except that it is origin independent (always
uses an origin of 0 value) and works on all characters, including those not in OAV.

04 F depends on the current internal encoding of data, which can vary among plat-
forms, as well as at different times on the same platform, depending on how the
data has been created or manipulated. See [0UCS Universal Character Set” on|

for a platform-independent character mapping.

268 APL2 Programming: Language Reference

U4r1

04 I Account Information

UAT Provides user identification and compute, connect, and user
response times in milliseconds.

Variable type: Localizing or specifying AT has no effect.

0AT is a four-item numeric vector that provides the following information :

OATC1]1 User identification
0OArCL2]1 Compute time
OAIC3]1 Connecttime
OAIC4]1 User response time

All times are in milliseconds and are cumulative during the APL2 session.

OAT
1001 185 53942 30029

Chapter 6. System Functions and Variables 269

UAT

OAT Attributes

Z<L 0OAT R Returns an attribute vector selected by the integer specified

in L for each object named in R.

L: Integer scalar
R: Simple character scalar, vector, or matrix
Z: Integer vector or matrix

pZ <> (1¥pR),(3 7 4 2)[L]
ppZ <> ,1[ppR

Each row of R is interpreted as a constructed name. Each row of Z is an attribute
vector specified by the integer L for the corresponding name in B.

The items in an attribute vector are described for the various values of L as shown
in Figure 31.

Figure 31 (Page 1 of 2). Description of the Attribute Vector for Various Values of L

Contents of

Value Attribute Description How
of L Vector of Each ltem Reported
1 Valences [1] Explicit result Z[11is 1, if the object has an
(length 3) [2] Function valence explicit result or is a variable.
[3] Operator valence Z[11 is 0, if otherwise.
Z[21] is 0, if the object is a
niladic function or not a func-
tion. Z[21]is 1, if the object
is a monadic function. Z[2]
is 2, if the object is an ambi-
valent function.
Z[31] is 0, if the object is not
an operator. Z[31]is 1,if
the object is a monadic oper-
ator. Z[31]is 2, if the object
is a dyadic operator.
2 Fix time, [1] Year Digits are shown for each item.
which is the L2 Month If % is not a defined function or
time the defi- [31 Day .
" operator, the corresponding
nition of the L4] Hour row of Z is all 0's (70 0).
corresponding [51 Minute
operation [61 Second
named in B [7 1 Millisecond
was last
updated
(length 7)

270 APL2 Programming: Language Reference

UAT

Figure 31 (Page 2 of 2). Description of the Attribute Vector for Various Values of L

Contents of

Value Attribute Description How
of L Vector of Each ltem Reported
3 Execution [1] Nondisplayable A 1 indicates that the corre-
properties [2] Nonsuspendable sponding property is set; a 0
(length 4) [317 Ignores weak indicates that it is not set.
interrupts

The execution properties for a

L4 Converts non- variable are 0's (4p 0).

resource errors

to DOMAIN The execution properties for

ERROR primitive and system functions
arel 1 1 0. (Parameter
substitution can cause a primi-
tive function to have a con-
structed name.)

y Object Size [1] Bytes CDR CDR is the common data rep-
(length 2) requires resentation of APL2 objects
[21 Bytes data used for shared variables. It
portion of CDR consists of structure informa-
requires tion and data.

Object size for a function or
operator is reported as 0 0.

Chapter 6. System Functions and Variables 271

UAT

Example with L<1:

OFX 'TOTAL R' '0O<«''TOTAL IS'',+/R'
TOTAL

1 0OAT 'TOTAL!
OrFX 'Z<TOTAL R' 'Z<«+/R'
TOTAL
1 0AT 'TOTAL'
ANSWER<«TOTAL 1 9 3
1 0OAT 2 6p'TOTAL ANSWER'
11 0
100
Example with L<2:

2 OAT 'TOTAL'
1991 12 19 17 38 18 286

Example with L<3:

3 OAT 'TOTAL®
0 0 0O

1 0 0 0 OFX OCR 'TOTAL'

TOTAL

3 OAT 'TOTAL®
1 000

3 0AT 'grFx!
1110

Example with L<}4:

4 0AT 'TOTAL'

VARTABLE<10 20 30
4 0AT 'VARIABLE'
19 3

272 APL2 Programming: Language Reference

OAav

04V Atomic Vector

OAvV Contains 256 characters of the defined character set.

Variable type: localizing or specifying AV has no effect.

0AV is a simple character vector. The results of displaying or printing certain of its
items can depend on the type of display device or printer being used.

APL2 supports 2 * 31 different characters. [AT is a selection of 256 commonly-
used characters, including the characters primitive to the APL2 language. The
ordering of AV is selected to match the principle character set of the platform
(ASCII or EBCDIC).

See also [Appendix A, “The APL2 Character Set” on page 470]

047 determines the order in which objects are displayed as a result of the system
commands)NMS,)OPS,)FNS, and)VARS.

Note: Some characters are terminal control characters and can cause unpredict-
able results when sent to certain devices.

Chapter 6. System Functions and Variables 273

OCR

OCR Character Representation

Z<[0OCR R Returns the character representation of the displayable defined
function or defined operator named in B.

R: Simple character scalar or vector
Z: Simple character matrix

R is the name of one defined operation.

The first row of Z is the function or operator header, as described in

Each remaining row of Z is a line of the function or operator. The rows contain no
unnecessary blanks, except for trailing blanks that pad the row and the blanks in
comments (including those immediately preceding the a). Trailing blanks in a
comment line may or may not be included, depending on the length of the other
rows.

VZ<«TOTAL R
(11 Z<+/R
[2] v

JCr 'TOTAL'
Z<TOTAL R
Z<+/R

The character representation of a defined function or operator may contain entirely
blank lines. An entirely blank row represents an empty expression in the function.
However, the last column of a character representation is not entirely blank.

If R is a variable name, the name of a nondisplayable defined function or operator,
the name of an external variable, function or operator, or an illegal APL name, the
result is an empty matrix.

A<89 34 4
Z<0OCR '4"
Z
pZ

1 0 0 0 OFX 'Z<«TOTAL R' 'Z<+/R'

TOTAL
Z<0CR 'TOTAL'
Z
pZ

274 APL2 Programming: Language Reference

acr

0CT Comparison Tolerance

OCT<A Contains the quantity used by some primitive functions to determine
equality.

A: Simple, real scalar greater than or equal to 0, but less than 1
Default value: 1E 13
Variable Type: Implicit argument

Real numbers L and R are considered equal if:

(|L-R) isless than or equal to OCTx(| L)T |R.

acr acr
1E713 1E713
L<466.7 L<u466.7
R<466.6999 R<466.69999999999
acrx(C|L)HT IR aecrx(C|lL)T IR
4.667E 11 4.667E 11
|L-R |L-FR
0.00009999999997 1.000444172E" 11
L=R L=R
0 1

Complex numbers L and R are considered equal if both their real and imaginary
parts are equal. For comparison purposes, a nonreal number is considered to be
real if the greater of the absolute values of its imaginary part and the tangent of the
angle is much less than OCT.

Computations of JCT are approximated for efficiency. For this reason, using
values of OCT>1E" 9 is discouraged.

If OCT is assigned an invalid value or erased and then implicitly used by a primitive
function, a OCT ERROR results.

A reference of OCT yields its current value.

System tolerance, which cannot be set, is different from OCT. See
[Tolerance” on page 59

No number is within OCT of zero.

Chapter 6. System Functions and Variables 275

acr

Primitive Functions That Use OCT: OCT is an implicit argument of the fol-
lowing primitive functions :

Ceiling R page [79]
Find LeR page [129
Floor LR page (133 |
Index of L1R page [162]
Match L=R page [91 |
Member LeR page [181
Relational functions L<R page 219

L<R

L=R

LzR

L>R

L#R
Residue LIR page P27 |
Without L~R page 58]

276 APL2 Programming: Language Reference

ODL

ODL Delay

Z<[ODL R Causes a pause of approximately R seconds.

R: Scalar nonnegative number
7Z: Scalar real number

Z contains the actual number of seconds in the pause. The actual number of
seconds varies from execution to execution.

The pause can be interrupted by signaling an interrupt.

0oL 2 OpL u
2.,010658 4,008428

0oL 2 0oL u
2.010006 4.006799

Chapter 6. System Functions and Variables 277

OFA

OFA Execute Alternate

Z<L 0OEA R Executes R. If R fails or is interrupted, executes L.

L and R: Simple character vector or scalar

The expression represented by R is executed. If an error occurs during its exe-
cution or R is interrupted (interrupt signaled), OEM and OET are set, execution of R
is abandoned without an error message, and the expression represented by L is
executed. Execution of L is subject to normal error handling.

'13' OE4 '"14.5" '13' OEA "4
1 2 3 1 2 3 4

'13.3' OJEA '1u4.5"! VYU'ERR''Y JEA '14.5!
DOMAIN ERROR ERR

13.3

A

'13.3'" OF4A '"14.5"

A A

Effect of Assigning Result: |If R does not return an explicit result, the attempt to
assign the result to Z can generate an immediate VALUE ERROR or may gen-
erate an error that causes L to be executed.

Z<«'3x2"'" [JEA '~>0'
Z

Z«'3x2'" [OEA 'DESCRIBE'
THE XY7Z WORKSPACE
PROVIDES SEVERAL . . .
VALUE ERROR

Z«'3x2'" [OEA 'DESCRIBE'

A A

278 APL2 Programming: Language Reference

OFA

If I is executed and does not return an explicit result, a SYNTAX ERROR results.

7Z<'DESCRIBE' OEA '! 3!
THE XY7Z WORKSPACE
PROVIDES SEVERAL . . .
VALUE ERROR

7Z<'DESCRIBE' OEA '! 3!

A A

Z<'>0' QOEA '! 3!
SYNTAX ERROR
>0
A
Z<'>0' QOEA '! 3!
A A

Assigning the results of R and L separately prevents this problem.

'Z«18"'" OFA '"Z+<13!
Z

"Z<18' OFA '"Z<«! 3"
Z
1 23 4 56 78

'>0' OEA 'Zz<! 3!
'"DESCRIBE' OEA 'Z<! 3"
THE XYZ WORKSPACE
PROVIDES SEVERAL . . .
Defined Function Invoked by R: If R calls defined function F, the statements

executed by F are also under the control of the error trap. In particular, R can call
a long running function, and L can be a recovery function.

Chapter 6. System Functions and Variables 279

Uec

0JFC Execute Controlled

Z<0FEC R Executes . Returns a return code, OE T, and the expression
result.

R: Simple character vector or scalar

The expression represented by R is executed. The first item of the result is a
return code as follows:

Error (2+'4")

Expression with a result which would display (2 + 3)
Expression with a result which would not display (4«2 +3)
Expression with no explicit result (F X where F' has no result)
Branch to a line (-3)

Branch escape (+)

g F w NP O

The second item of the result is the value OET would have. Thisis 0 0 unless an
error occurs. The current value of JE T is not affected.

The third item is the result of the expression if the return code is 1 or 2; 0 0pO0 if
the return code is 3 or 5; the argument to branch if return code is 4; and OEM if
the return code is 0.

Stops (SA. . .) are ignored when executing under OEC. Errors or keyboard inter-
rupts are trapped and produce a zero return code (4 Z), a nonzero OET (+1+7),
and a OEM (4 2+ Z) that details the event. This implies that settings of SA are
ignored. Quad input is permitted if it returns a value. For example, branch escape
(=) and)CLEAR are not permitted.

OEC '2+3"

1 0 0 5
(RC ET R)<0OEC '
RC

(RC ET R)<0OEC 'a1u.5!
RC
0
ET
5 4
R
DOMAIN ERROR
14.5
A

280 APL2 Programming: Language Reference

OEM

OEM Event Message

OeM Text of the error or event message associated with the first line of
the state indicator.

Default value: 3 0p ' !
Variable type: Debug variable; specifying or localizing DEM has no effect.

When execution of an expression generates an error message, JEM contains all
lines of the message as displayed, even when the left argument of OFS (event
simulate) was used to specify the first row of OEM as part of event handling.
(APL2 error messages are described in|[Chapter 11, “Interpreter Messages” on|

page 461})

The following example shows the message and the value of OEM for a LENGTH
FRROR.

2+3 4 5=6 3
LENGTH ERROR

2+3 4 5=6 3

A A

pOEM
3 17
OEM
LENGTH ERROR
2+3 4 5=6 3
A A

If there is not enough room in the workspace to form [OEM at the time of the error,
OFM is a matrix of shape 3 0, but the event type code OF T is not affected.

If there is not enough room in the workspace to suspend the statement in error, V.S
FULL is reported and OEM is set to a matrix of shape 3 0. [OEM is automat-
ically local to a function called by a line entered in immediate execution.

OFM and the State Indicator: [FEM contains the event message associated with
the top line of the state indicator. As the stack is cleared (with > or)RESET n),
OFEM is reset to the event message associated with the current top line of the state
indicator.

If the state indicator is clear, EM is setto 3 0p' '.

Chapter 6. System Functions and Variables 281

ares

 OES Event Simulate (with either Error Message or Event Type)

OesS R Simulates an event and returns an error report for the event based
on the value of &.

R : Simple character scalar or vector; simple two-item vector of integers
between ~ 32767 and 3276 7; or empty vector.

When 0ES is executed from within a defined function or operator and R is not
empty, the event action is generated as though the function were primitive or
locked (by # or by setting all execution properties using OFX to 1). Suspension
occurs at the calling point, not within the defined operation. The message dis-
played and the setting of OET and OEM depend on the value of R, as described
below.

When R Is a Character Scalar or Vector: Normal APL2 error handling is initiated.
R is displayed as the error message and set in OEM (error message). OET
(event type) is setto 0 1.

VZI<EXPO A
[1] OES(0=A)/'ZERO INVALID'
[2] Z<*A
[3] v

EXPO 3

20.08553692

EXPO O
ZERO INVALID

EXPO 0
A

OEM
ZERO INVALID

EXPO 0
A

aer

282 APL2 Programming: Language Reference

ares

When R Is an Error Code Defined for ET: The error message associated with
that event type code is reported as the first row of the message matrix in the
current national language.

VZ<FACTR A
[11] OES(0=4)/5 4
[2] 7<VA
[3] Y

FACTR 3
6

FACTR O
DOMAIN ERROR

FACTR O

A

OEM
DOMAIN ERROR

FACTR O

A

OrET
5 4

When R Is 0 0: In immediate execution, JES 0 0 has no effect. In a defined
operation, JES 0 O setsdETto 0 O0,0FEMto 3 Op' ' butdoes not
simulate an event.

VEN
(1] '2+43" OEA'(A<B)<2)"' A Causes a syntax error.
[2] OrT A Reports 2 4 as the event

A type.

[3] OES 0 0 A Resets OEM and OET.
[4] OeT A Shows OET reset to 0 0.
(5] v

FN

o N O
o F

Chapter 6. System Functions and Variables 283

ares

When R Is a Simple, Two-ltem Integer Vector which is not a defined error
code: The value of R is assigned to OET. An event simulation is generated in the
expression that invoked the function, but no message is reported.

VZ<RECIP A
[1] OES(0=4)/13 17
[2] Z<+A
[3] Y

RECIP 3

0.3333333333
RECIP O

RECIP O
A

OEM

RECIP O
A

OET
13 17

When R Is Empty: No action is taken. This gives you the ability to signal an
event conditionally:

OES (cond)/R
If the condition is true, the event is simulated. [f the condition is not true, no action

is taken. The functions EXPO, FACTR, and RECIP used in earlier examples
each signal an event conditionally.

284 APL2 Programming: Language Reference

ares

 OES Event Simulate (with both Error Message and Event Type)

L 0OES R Simulates an error, generates an error report, and returns the left
argument as the first row of the error message matrix (OEM).

L: Simple character scalar or vector
R : Simple character scalar or vector; simple two-item vector of integers
between 32767 and 3276 7; or empty vector.

When OES is executed and if R is not empty, an error condition is simulated, £ is
assigned to OET, and an APL2 error message matrix is generated with the fol-
lowing contents:

e First row is L.

e Second row is the expression or the name of the function within which 0OES
was executed.

e Third row contains the carets marking the error.

'ERROR SIMULATION' OES 101 9
ERROR SIMULATION

'"ERROR SIMULATION' OES 101 9

A A

OEM

ERROR SIMULATION
'"ERROR SIMULATION' OES 101 9
A A

0T
101 9

If OFS is executed from within a defined function or operator, the event action is

generated as though the function were locked or primitive. Suspension occurs at
the calling point, not within the defined operation.

Chapter 6. System Functions and Variables 285

ares

Unlike a monadic event simulate, even though R is an error code defined for OET,
the normally associated error message is not displayed. The character scalar or
vector L is always displayed.

VZ<FACTR A
[1] "ZERO INVALID' 0OFES(0=4)/5 4
[2] 7<'A
[3] v
FACTR &
24
FACTR O
ZERO INVALID
FACTR O
A
OEM
ZERO INVALID
FACTR O
A
QT
5 4

When R is 0 0: The left argument is ignored and the behavior of monadic OE S
is seen.

When R Is Empty: No action is taken. This gives you the ability to signal an
event conditionally:

L OES (cond)/R
If the condition is true, the event is simulated. [f the condition is not true, no action

is taken. The functions FACTR and FMT shown earlier are examples of functions
that signal an event conditionally.

286 APL2 Programming: Language Reference

aerT

OET Event Type

OerT Two-integer code indicating the type of the event (error) associated
with the first line of the state indicator.

Default value: 0 0
Variable type: Debug variable; assigning or localizing OET has no
effect.

The first item of OE T indicates the major classification of the event; the second
indicates a more specific category. As a debug variable, ET can be used to dis-
cover the possible source of an error. Figure 32 lists the major classes, the spe-
cific event type codes, and their meanings.

Figure 32. Event Type Codes

Major
Class Event Type Code and Description
0 0 0 - No error
Defaults 0 1 - Unclassified event (OES 'message"')
1 1 1-INTERRUPT
Resource 1 2-SYSTEM ERROR
Errors 1 3-WS FULL
1 4-SYSTEM LIMIT - symbol table
1 5-SYSTEM LIMIT - interface unavailable
1 6-SYSTEM LIMIT - interface quota
1 7-SYSTEM LIMIT - interface capacity
1 8-SYSTEM LIMIT - array rank
1 9-SYSTEM LIMIT - array size
1 10-SYSTEM LIMIT - array depth
1 11-SYSTEM LIMIT - prompt length
1 12-SYSTEM LIMIT - interface representation
1 13-SYSTEM LIMIT -implementation restriction
2 2 1 - Required operand or right argument omitted (2 x)
SYNTAX 2 2 - lll-formed line (L (1)
ERROR 2 3 - Name class (3<«2)
2 4 - Invalid operation in context ((A«B)<«2)
2 5 - Compatibility setting prohibits this syntax
3 3 1 - Name with no value
VALUE 3 2 - Function with no result
FRROR
4 4 1 - 0OPP ERROR
Implicit 4 2 - 0I0 ERROR
Argument 4 3 - 0OCT ERROR
Errors 4 4 - 0OFC ERROR
4 5 - 0ORL ERROR
4 7 - 0OPR ERROR
5 5 1 - VALENCE ERROR
Explicit 5 2 - RANK ERROR
Argument 5 3 - LENGTH ERROR
Errors 5 4 - DOMAIN ERROR
5 5 - INDEX ERROR
5 6 - AXIS ERROR

Chapter 6. System Functions and Variables 287

aerT

All undefined major event classifications numbered 0 through 99 are reserved.
Note that processor 11 external functions, and APL functions (through 0OES), can
signal events with arbitrary numbers. For more information about particular errors,
see|Chapter 11, “Interpreter Messages” on page 461}

The following examples show a reference of OET after an error.

(A<B)<2) (168)p15
SYNTAX ERROR+ SYSTEM LIMIT+
(A<B)<2) (168)p15
A A A
ger 0T
2 u 1 8

OET is automatically local to a function called by a line entered in immediate exe-
cution. If there is not enough room in the workspace to suspend the statement in
error, WS FULL is reported, OEM is set to a character matrix of shape 3 0, and
0L and OF are not set.

OES can set JET as part of event handling within a defined function.

OET and the State Indicator. [ET contains the event type associated with the
top line of the state indicator. As the stack is cleared (with ~ or)RESET n),
OET is reset to the event type associated with the current top line of the state

indicator.

If the state indicator is clear, the value of OEFT is 0 0.

288 APL2 Programming: Language Reference

dex

OFX Expunge

Z<[0EX R Returns a 1 if the object is disassociated, and returns a 0 if it
cannot be disassociated. An object cannot be disassociated for
the following reasons:

e The object is a system function.

e The name is not valid.

e The object is an external object and cannot be disassociated
at this time.

R: Simple character scalar, vector, or matrix
Z: Simple Boolean scalar or vector

pZ <> “14pR
ppZ <> ,0[1+ppR

Each row of R is interpreted as a constructed name. Currently active user names
are disassociated from their values, and if they represent shared variables, the
shares are retracted. The following system variables can be disassociated from
their values: 0OcT, OFC, 010, OLX, OPP, OPR, and ORL. The remaining
system variables and system functions cannot be disassociated from their values.

RUNS<3 RUNS<+1
OEX 'RUNS' OFX '"Z<HITS X' '"Z<«+/X'
1 HITS
RUNS ERRS<«2
VALUE FERROR+ OEX 3 4p'HITSRUNSERRS'
RUNS 111
A
SCORE<43 ONLT<'SVENSKA'
Onc 'SCORE! Ogx 'OnLT!
2 1
Ox 'Onc: avrr
0 SVENSKA
anc 'SCORE!
2

If an implicit argument system variable is expunged, a primitive function that
depends on it as an implicit argument generates an error.

gro
1

Orx 'gro:
1

110
0JI0 FRROR

110

A

Chapter 6. System Functions and Variables 289

dex

Suspended or pendent defined functions can be expunged. However, expunging
such functions does not affect their definitions in the state indicator. Until they are
cleared from the state indicator, these functions exist only in the state indicator and
cannot be edited. See [‘Clearing the State Indicator” on page 357|for information
on clearing the state indicator.

V Z<«SQUARE R
[1] Z<R*2
[2] v

R<'T1

SQUARE R
DOMAIN ERROR
SQUARE[1] Z<«R*2

A A

OEX 'SQUARE'

)SIS
SQUARE[1] Z<Rx2
A A
* SQUARE R
A

SQUARE 5
VALUE ERROR+

SQUARE 5
A

R<5

=~QrLc
25

SQUARF 5
VALUF FRROR+

SQUARE 5
A

Relationship to)ERASE:)ERASE (page|428) removes global variables,
defined functions, and defined operators from the active workspace.

290 APL2 Programming: Language Reference

arc

OFC Format Control

OFCc<A Specifies or references characters for decimal point, thousands
indicator, fill character, overflow indicator, print-as-blank character,
and negative number indicator. It is used by format by example
and format by specification (L s R).

A: Simple character vector

Default value: . , *0_
Variable type: Implicit argument

Although O0FC may be a character vector of any length, only the first six characters
are used. If fewer than six characters are specified, the defaults for the missing
characters are used. Figure 33 gives the meaning of each of the first six items.

Figure 33. Format Control Items

Item Default Meaning

OrFcl1] . Character for decimal point

Orcr2] . Character for thousands indicator

OrFcr3] * Fill for blanks indicated by the digit 8 in
format by example

OrFciu] 0 Fill for overflows that otherwise cause a
DOMAIN ERROR

OFCcC5] _ Print-as-blank (cannot be

,.0123456789)

Orclse] Negative number indicator

All items of OFC except OFCL 6] are used as implicit arguments to format by
example, page[139. Items OFC[1 4 6] are used as implicit arguments to
format by specification.

If OFC is assigned an invalid value or erased and then implicitly used by format, a
OFC ERROR results.

A reference of OFC yields its last specified value.

Chapter 6. System Functions and Variables 291

arx

OFX Fix (No Execution Properties)

Z<[0FX R Establishes in the active workspace the defined function or oper-
ator represented in character form by R.

R: Simple character matrix or a vector whose items are character vectors or
character scalars.
Z: Character vector or integer scalar

Implicit argument: 010

R represents the definition, in character form, of a function or operator. If the defi-
nition is valid, the function or operator is established in the workspace, and the

name of the object is returned as the result. Thus, OFX is an alternative to using
an editor to define a function or operator. (See [Chapter 9, “The APL2 Editors” on|

page 375})

OFX 'Z<«FMT R' 'Z<3R'

FMT
FMT '"ABCDEF'
ABCDEF
OFX '"Z<«FACTR R' '"''0ET'' OEA ''Z<!R'"
FACTR
FACTR 5
120

R must be a name unassociated with an object or the name of an existing defined
function or operator.

Invalid Definition: If the definition is not valid, Z is a scalar integer indicating the
first row of the function or operator line in error. This integer is dependent on 07 0.

OFX 'Z<FN R' 'Z<1+Rx2' [0OAVL1]

0ro<o
OFX '"Z<«FN R' '"Z<1+FEx2' [QAV[1]

292 APL2 Programming: Language Reference

arx

Acceptable Variations in Format of R: [JFX accepts a character form with the
following variations from that form produced by applying OCR to a definition estab-
lished in the workspace:

e R may contain unnecessary blanks.
e The header may have blanks instead of semicolons between local names.

* R may be a vector of character scalars and/or vectors instead of a character
matrix.

e R may have trailing blanks on comments.

Changing the Definition of a Suspended or Pendent Operation: Suspended or
pendent defined functions and operators can be changed by using 0FX to estab-
lish a new definition. Establishing a new definition for the object in the workspace,
does not, however, change the definition of the function or operator in the state
indicator. The previously invoked definition is retained until it completes execution
or is cleared from the state indicator.

After the application of OF X, the previously invoked definition in the state indicator
and the current definition can differ.

OFX '"FUNC' '1' '2' 11731 1y
FUNC

FUNC
1
2
DOMAIN ERROR
FUNCL3] '173
A

)ST
FUNCL3]

*

drFx 'FUNC' '22' '23"' '24' 125"
FUNC

>4
i

FUNC
22
23
24
25

Chapter 6. System Functions and Variables 293

arx

OFX Fix (with Execution Properties)

Z<L 0OFX R Establishes in the active workspace the defined function or oper-
ator represented in character form by R with execution proper-
ties specified by L.

L: Simple four-item Boolean vector or a Boolean scalar

R: Simple character matrix or a vector whose items are character vectors or
character scalars.

Z: Name of the established object or integer scalar

Implicit argument: 010

As with OFX (with no execution properties), R represents the definition, in char-
acter form, of a function or operator.

If I is a four-item Boolean vector, each item of L turns on (1) or off (0) one of four
independent execution properties:

L[1] Cannot be displayed

LL2] Cannot be suspended

LL[3] Ignores attention signal

LL41 Converts any nonresource error to DOMAIN ERROR

If I is a Boolean scalar, it is used to turn on or off all the above properties.

The function or operator named in R must be either undefined or the name of an
existing defined function or operator. If the definition is valid, the function or oper-
ator is established in the workspace with the execution properties specified, and the
name of the object is returned as the result.

If R is not a valid function or operator definition, Z is a scalar integer that indicates
the row of the function or operator line in error. This integer is dependent on 0I0.

Execution Properties: Each property can be set independently. If all four exe-
cution properties are set, the defined function or operator is locked, as it is with %
when you use an APL2 editor.

294 APL2 Programming: Language Reference

arx

If LL1] is 1, the defined function or operator cannot be displayed—not through
OcCR, OTF, or the APL2 editors. Also, the object cannot be traced or edited. An
attempt to display it generates a DEFN ERROR.

1 0 0 0 OFX '"Z<«FACTR R' 'Z<«!R'

FACTR
VFACTRLOIV
DEFN FERROR
VFACTRLOIV

A

If LL21] is 1, the defined function or operator cannot be suspended by an error or
an interrupt. The error or interrupt message is displayed, but the operation is not
suspended. The state indicator shows the error or interrupt as occurring during the
invocation of the operation.

0 1 0 0 OFX '"Z<«FACTR R' 'Z<«!R'

FACTR
FACTR 3
DOMAIN ERROR
FACTR "3
A
)SIS

* FACTR "3
A

If LL31] is 1, the defined function or operator ignores the attention signal and stop
control settings.

0 0 1 0 OFX '"Z<«FACTR R' '"Z<«!R'
FACTR

SAFACTR+«1
FACTR U4
24

If LL4] is 1, an error other than a resource error is converted into a DOMAIN
ERROR. Resource errors are listed in [Figure 32 on page 287

0 0 0 1 OFX 'Z<«L INDEX R' 'Z<RLL]
INDEX

3 INDEX 3 4
DOMAIN ERROR
INDEX[1]1 Z<R[L]

AA

Chapter 6. System Functions and Variables 295

arx

Changing Execution Properties: |f a defined function or operator can be dis-
played, its execution properties can be changed by executing an expression in the
following format:

L OFX OCR 'name
For example:

0 OFX OCR 'INDEX'
INDEX

3 INDEX 3 4
INDEX ERROR
INDEX[11 Z<R[L]

AA

296 APL2 Programming: Language Reference

dro

070 Index Origin

OI0<A

A:0or1
Default value: 1
Variable Type: Implicit argument

Contains the index of the first item of a nonempty vector.

34

18

34

gro

R<34 18 24
R[11]

0ro<o

R[1]

R[O]

010+«1
R<«34 18 24
AR

0ro<o
AR

If 0I0 is assigned an invalid value or erased and then implicitly used by another

function, a 0I0 FERROR results.

A reference of 010 yields its current value.

Primitive Functions That Use (0I0: 0IO0 is an implicit argument of the fol-
lowing functions :

Bracket indexing

Deal
Grade do

Grade down (with collating

wn

sequence)

Grade up

Grade up (with collating sequence)

Index of
Interval
Pick

Roll
Transpos

e (general)

ALTI]
L?R
VR
LVER

AR
LAR
LR
1R
L>R
’R
L8R

page ‘231
page [51 |

Index origin also affects axis specification, page and 0OFX Fix, pages and

294

Chapter 6. System Functions and Variables 297

0L

0L Left Argument

OL<«A If the first line of the state indicator contains a dyadic function
whose execution was suspended by an error or an interrupt, 0L is
the array value of its left argument. L can be respecified and
execution resumed at the point of the error or interrupt by »10.

A: New left argument
Default value: None
Variable type: Debug

0L is set when an error occurs in a primitive dyadic function. Effectively, it is auto-
matically local to a function called by a line entered in immediate execution and
exists only while the statement in error is suspended.

V Z<F A
[11] Z<(2x4)+3 4 5
[2] v

F 6 7 10
15 18 25

F 6 7

LENGTH ERROR
F[1] Z<«(2%x4)+3 4 5

A A
0L

12 14
Or<12 14 20
>10

15 18 25

If there is not enough room in the workspace to suspend the statement in error, V.S
FULL is reported. [EM is set to a character matrix of shape 3 0, and 0L and
OR are not set.

With VALENCE ERROR: If the primitive function fails because of a VALENCE
ERROR, 0L can be respecified only if it is not referenced first. In this situation, if
0L is referenced first, a VALUE ERROR results.

Assignment First Reference First
V Z<FDROP R FDROP 8
[1] Z<¥1R VALENCE ERROR
[2] v FDROP[1] Z<¥ 1R
FDROP 8 AN
VALENCE FERROR 0L
FDROP[1]1 Z<«+¥1R VALUE ERROR+
AA 0L
OL<"3 A
0L OL<«"3
3 +10
>10 VALUE ERROR+
1 2 3 45 arn
A

298 APL2 Programming: Language Reference

s

With VALUE ERROR or SYNTAX ERROR: If the primitive function fails
because of a VALUE ERROR ora SYNTAX ERROR, any respecification of 0L
is ignored, and a reference to 0L generates a VALUE ERROR.

1(2(3)x10+4(5 6)
SYNTAX ERROR+
1(2(3)x10+4(5 6)
A
OL<«5
>10
SYNTAX ERROR+
1(2(3)x10+u4(5 6)
A
0L
VALUE ERROR+
0oL

A

Effect of Resuming Execution: Note that the branch expression »~1 0 causes the
suspended function to resume at the point of the error with the new value of the left
argument. Everything in the statement to the right of the leftmost caret was evalu-
ated prior to the error; only the function indicated by the rightmost caret is reevalu-
ated when execution begins.

V Z<FL A
[11 Z<(Ax1 2 3):p4
[2] v
FL 4 5 6
1.333333333 3.333333333 6
FL 4 5

LENGTH ERROR
FLL1] Z<(Ax1 2 3):p4

AN A
ar
L 5
OL<«4 5 6
>10
2 5 9

Because the final result can be misleading, it is important to know where execution
resumes after respecification of L. It can be especially important if the statement
in error contains shared variables or defined functions or operators.

0L and the State Indicator. As the state indicator is cleared (with - or

JRESET n), OL is reset to the left argument of the primitive function associated
with the current first line of the state indicator, if its execution was suspended by an
error or an interrupt.

If the state indicator is clear or if the error associated with the first line in the state
indicator is not in a primitive function, OZ has no value.

Chapter 6. System Functions and Variables 299

aLc

0L C Line Counter

Default value: Empty vector
Variable type: Debug variable; specifying or localizing 0L C has no effect.

arc Contains the line numbers of defined functions and operators in exe-
cution or halted (suspended or pendent), with the most recently acti-
vated line number first.

If displayed from within a defined function or operator, L C contains:

¢ Line number where L C appears

e Number of the last line executed in each pendent defined function or operator.

e Number of the last line executed in each suspended defined function or oper-

ator.
v G
[11] 'G LINE 1!
[2] 'G: ', dLc
[3] H
[ul \Y

(11
[2]
[3]
[u]
[5]
[6]
(7]

vV H

'H LINE 1"
'H LINE 2!
'H LINE 3!
‘He ' ,0OLC
J

'H LINE 6"
v

[11
[2]
[3]
[u]
[5]
[6]
[71
[8]

v
'
'
'
'
'
'J:
'

v

J

LINE
LINE
LINE
LINE
LINE

11
21
3!
L
51

',OLC

LINE

7

During the execution sequence entered by invoking G, notice how the value of the

line counter changes:

G
LINE 1
2
LINE 1
LINE 2
LINE 3

4 3
LINE
LINE
LINE
LINE
LINE

6 5 3
LINE 7
LINE ©

WYYy RN aOQ
aOF W R

300 APL2 Programming: Language Reference

aLc

If referenced while execution is halted, L C contains the number of the last line

activated for each suspended and pendent function, with the most recently acti-

vated line first. Each item of 0L C corresponds to a line of the state indicator that

contains a name, as reported by)SI,)SIS,or)SINL.

VJ[6.1] ocococo0o0oV

V Z<FACTR A
[1] 7<'4
v
FACTR ~3
DOMAIN ERROR
FACTR[1] YARY.
AA
OrLc
1
FACTR "6
DOMAIN ERROR
FACTR[11] Z< 1A
AA

arc

[ERN

1
G

LINE 1

2 11
LINE 1
LINE 2
LINE 3

4L 3 1 1
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5

6 53 11
SYNTAX FERROR+
JL7] 0cooo0o0o0
A

LYy R QO

grc
75 3 11
)SIS
J[7] ooco0ooo
A
HL5]1 J
A
GL3]1 H
A
* G
A
FACTR[1] Z<«!A
AN
* FACTR 6
A
FACTR[1] Z<«!A
AN

*x FACTR ~3
A

During debugging, a branch to the line counter (=0LC) resumes execution with the
line number that is the first item of OLC.

VJLAT]V
SI WARNING
gLc
7 5 3 11
~0LC
J LINE 7
H LINFE 6
grLc

Or

Chapter 6. System Functions and Variables

301

arLx

0L X Latent Expression

OLX<A Specifies or references the APL2 statement that is automatically
executed (by 2L X) whenever the workspace is loaded.

A: Simple character scalar or vector
Default value: '

0L X can be used to display a message, invoke an operation, or resume an inter-
rupted operation. For example, to put the copyright notice into the workspaces dis-
tributed with APL2, the developer loaded the workspace, defined a variable named
COIBM and then set OLX:

OLX<'COIBM'

JSAVE 1 EXAMPLES
1993-05-21 13.59.50 (GMT-7)

When the workspace is loaded, the latent expression is executed automatically.

JLOAD 1 EXAMPLES
Saved 1993-05-21 13.59.50 (GMT-7)
LICENSED MATERIALS - PROPERTY OF IBM
5688-228 (C) COPYRIGHT IBM CORP. 1984, 1994,

A reference of 0L X yields its current value.

arx
COIBM

If single quotation marks enclose a name of a variable, the value of the variable is
displayed. And, if single quotation marks enclose an expression, the expression is
evaluated. In other words, when the workspace is loaded, the execute function is
applied to OLX:

o[LX

For a character vector to be printed when the workspace is loaded, the string must
be enclosed within three sets of quotation marks. One set encloses the data speci-
fied to 0L X, and the other two sets indicate quotation mark characters. See also
[Fe Execute” on page 120

OLX<«'''USE THE XYZ GUIDE WITH THIS WS'"'

arLx
'USE THE XYZ GUIDE WITH THIS WS'

)SAVE COURSE
10.17.24% 1993-05-21 (GMT-7)

302 APL2 Programming: Language Reference

arLx

JLOAD COURSE
SAVED 10.17.24 1993-05-21 (GMT-7)
USE THE XYZ7Z GUIDE WITH THIS WS

Chapter 6. System Functions and Variables 303

anvA

ONA Name Association (Inquire)

Z< 0ONA R Queries the associations of the objects named in B.
R: Simple character scalar, vector, or matrix of names
Z: Two item vector or two-column matrix

pZ <> (“1¥pR),2
ppZ <> ,0[1+ppR

Each row of Z corresponds to a row of B and provides:

Z[11 The array that was passed to the processor when the name was activated.
Z[21 The processor with which the name is associated.

Names in the APL workspace not otherwise associated are associated with

processor 0 (APL itself). For such names, the name class is returned as the first
item of Z. Invalid names in R return 1 0 in Z.

3 11 ONA 'PFA!

1

Onva 'PFA?
3 11

'"(AP2VNO11)' 11 ONA 'OPTION'
1

Ov4a 'opPTION!
(AP2VNO11) 11

OEX 'DATA:
1

DATA<'STUFF"

ONA 'DATA!
20

A surrogate name can be specified but must match the original surrogate name.
3 11 ONA 'PATTERN PFA'

ONA '"PATTERN NEWNAME'

304 APL2 Programming: Language Reference

anvA

ONA Name Association (Set)

Z<L 0ONA R Associates names R with external objects that are accessed
through associated processors. L identifies the external
processors and contains information passed to them. The result
is 1 if the specified association is active, or 0 if it is not.

L: Two-item vector or a two-column matrix
R: Simple character scalar, vector, or matrix of names
Z: Boolean scalar or vector

pZ <> “1vypR
ppZ <> ,0[1+ppR

Each row of R is interpreted as a name or a name and a surrogate name. Each
row of L corresponds to a row of kF and provides:

LL11 An array which is passed to the processor when the name is activated.
The content and use of this array is determined by the processor to which
it is passed.

LL2] A nonnegative integer used to identify the processor. The integer zero
refers to APL itself. Positive integers refer to other associated processors.

The result Z is a Boolean scalar or vector containing items corresponding to the
rows of L and E. A 1 in the result indicates that the corresponding name was
successfully associated with the specified processor and accepted, or activated, by
that processor. A 0 in the result indicates that the corresponding name cannot be
associated with the specified processor or has not been accepted (activated) by
that processor.

Names can be associated through a processor with routines written in languages
other than APL, with values that exist outside the workspace, or with APL objects in
namespaces. Once a name has been successfully associated with a processor
and activated, it behaves like other APL names, except that its value or definition
does not exist in the user's active workspace.

0 11 ONA 'DISPLAY'

ONC 'DISPLAY'

1 OAT 'DISPLAY'

DISPLAY 'NOW' 'IS' 'THE' 'TIME'

N S I

NOW Is THE TIME

| " ___ 1 " ___ | IS | |

Chapter 6. System Functions and Variables 305

anvA

If the processor specified in the left argument of ONVA does not exist or if it cannot
satisfy the request to activate a name, or if it returns invalid information when con-
tacted, a 0 is returned as the result of ¥4, and the name class of the specified
object does not change.)MORE can provide additional information about the
failure.

If the processor specified in the left argument of VA does activate the specified
name, it must assign name class and attributes to that name if the name did not
exist previously in the APL workspace. If the name did exist before ONA was
issued, its name class and valence (1 0AT) are not changed as a result of ONVA.

OEX 'PFA'
1
0 11 0ONA 'PFA"
1
ayc 'PFA!
3
1 0OAT 'PFA?
1 20

An attempt to activate a name that already exists is only successful if the left argu-
ment of 0N A matches the original left argument of ONA specified when the name
was originally activated. This original left argument of ONA can be obtained by
issuing monadic (N A for the specified name.

0 11 0ONA 'PFA"

1
OnvAa 'PFA?
0 11
3 11 ONA 'PFA!
0
0 11 ONA 'PFA"
1
(ONA 'PFA') ONA 'PFA!
1

306 APL2 Programming: Language Reference

anvA

Processor 0 is APL itself and allows names in the active workspace to be specified
in the left argument of ONA. Processor 0 expects a valid name class (a digit
between 1 and U4) as the first item of the left argument of N4 and returns a 1 if:

* the named object exists
e the named object is not associated with another processor
e the named object has a name class which matches that specified.

A<«'"THIS IS A VARIABLE'

awc 4
2

2 0 Ova 4
1

3 0 Onvd 4
0

Processor 0 does not establish names that did not previously exist in the work-
space.

Conformability: If R is a scalar or vector, L must be a two-item vector. If R is a
matrix, L must be a two-column matrix with the same number of rows as R, or a
two-item vector, in which case it is reshaped to (~ 1+pR) , 2 before attempting to
contact the processor.

The following two expressions are equivalent:
(2 2p3 11) ONA 2 3p'ATRRTA'

3 11 ONA 2 3p'ATRRTA!

Persistence of Associated Names: Once a name has been associated with a
processor and activated (a result of 1 from [ONA4), that name retains its name
class, valence and association with the processor until explicitly removed by OEX,
JERASE, YCOPY,or)IN. In particular, the association is retained if the work-
space is saved and subsequently reloaded. Associated names can be copied with
)COPY and)PCOPY and retain their name class, valence, and association. An
attempt to establish an associated name with)TN or 2 [OTF, fails unless the
specified processor activates the name.)IN returns a NOT COPIED message
for such failures.

When an associated name is erased, the object and storage with which it is associ-
ated is retained until all references to the association are discarded. The other
references could arise because of partially executed expressions on the execution
stack. The command)RESET can be used to discard partially executed
expressions.

Surrogate Names: APL2 permits the use of an alias name for associated names
(except those associated with Processor 0). This alias is called the surrogate name
and can be used to avoid name conflicts. The associated processor recognizes the
surrogate name as the name of the object.

Chapter 6. System Functions and Variables 307

anvA

When a row of R contains a pair of names (separated by spaces), the first name in
the pair represents the name of the object to be associated and the second is the
name by which the object is known to the associated processor. For example, the
following expression associates a function which is referred to as B1d_Struct
in the workspace, but known as ATR by the associated processor:

3 11 0ONA 'Bld_Struct ATR'

If a surrogate is specified for a name already associated with a processor, it must
be the same as the one originally used.

3 11 0ONA 'Bld_Struct ATR'

1

3 11 0ONA 'Bld_Struct XXX'
0

3 11 0ON4 'Bld_Struct'
1

The surrogate name, if one exists, can be determined through the use of 2 [TF:

2 OTF 'Bld_Struct'
3 11 ONA 'Bld_Struct ATR'

308 APL2 Programming: Language Reference

amvc

ONC Name Class

Z<[ONC R Returns the name class of objects named in R.
R: Simple character scalar, vector, or matrix
Z: Simple integer scalar or vector

pZ <> “14pR
ppZ <> ,0[1+ppR

R is taken to represent constructed names—either user or distinguished. If more
than one name is specified in E, R must be a matrix, with each row representing a
constructed name.

Each item of Z is the name class of the corresponding name in R. The items in Z
have the following meanings:

1 Invalid name or unused distinguished name
Unused but validly constructed user name
Label

Variable

Function

Operator

F wnNBER O

The following examples use the workspace DUMMY whose contents are shown in
the figure below.

CONTENTS OF THE WORKSPACE DUMMY
Functions
C F G HI ROD

Variables
DRY FAT I0D ME PRO SALT

Operators
HEX MOP TRI

Labels
FLAB X

Figure 34. Sample Workspace for Name List and Name Class System Functions

Chapter 6. System Functions and Variables 309

amvc

ane 2 3p'DRYC

gnc »'ROD' 'PRO' '"MOP'
3 2 4

Symbols representing primitive functions and operators are classified as invalid
names. Distinguished names are treated like functions and variables. A distin-
guished name unassociated with a value is considered invalid.

Onve 4 1p'*<5[" avc 3 3p'OFAOTSOKZ!

1 1 1 1 3 2 1

Onvc 2 1p'Xx' '2°
0 O

An undefined name is classified as a variable if it has been shared but not yet
assigned.

102 0O8VO™ 'CTL102' 'DAT102!'

anec -[2] 'Crr102' 'DAT102!
2 2

Name Class of Local Names: |f ONC is used during the execution of a defined
operation or if execution is suspended or stopped, the name class of labels, param-
eters, and other local names can be queried. The name class is given for local
objects, not for similarly named global objects, which are shadowed by the local

objects.
VZ<L F R
[1] Z<0ONC 2 1p'LR'
[2] v
F 2
0 2
L F 2
2 2

VZ<L(F OP G)R;V X
[1] TAG:V<1
[2] gnNc 8 3p'L F OP G R V X TAG!
[3] v
3 +0Px 6
2 3 4 32201

(+0P 2)6
0 3 4 2 2 2 01

310 APL2 Programming: Language Reference

OnL

ONLZ Name List (by Alphabet and Class)

Z<L 0ONL R Lists labels, variables, functions, and defined operators in the
active workspace whose name class is R and whose first char-
acterisin L.

L: Simple character scalar or vector
R: Simple positive integer scalar or vector, Fe 1 4
Z: Simple character or empty matrix

The values of R have the following meanings:

1 Label

2 Variable

3 Function

4 Defined operator

The examples in this discussion refer to the workspace DUMMY shown in
[Figure 34 on page 309}

'H' ONL 3 '"H' ONL 4
HT HEX

If L is a vector, Z contains all objects in the name class R whose names begin
with an item of L.

'CF' ONL 3 '"HMT' 0ONL 4
c HEX
F MOP
TRI

If R is a vector, Z is a list of all objects in the name classes F whose names begin
with an item of L.

'F' ONL 2 3 '"FH' ONL 2 3
F F
FAT FAT
HI

Chapter 6. System Functions and Variables 311

0Nz

If executed while a defined function or operator is halted, L ONL R returns a list
of objects that includes labels and local names. The name class of local objects
shadows the name class of global objects of the same name.

'FX' ONL 1 2 3

FAT

312 APL2 Programming: Language Reference

SAF<1
F 3
FL1]
'FX' ONL 1 2 3
F
FAT
FLAB
X

OnL

ONL Name List (by Class)

Z<[0ONL R Lists labels, variables, functions, and defined operators

in the active workspace whose name class is B.

R: Simple positive integer scalar or vector, Re 1 4
Z: Simple character or empty matrix

The values of R have the following meanings:

1

2
3
n

The examples in this discussion refer to the workspace DUMMY shown in

Label
Variable
Function

Defined operator

[Figure 34 on page 309

HEX
MOP
TRI

OvL &

c
F
G
HI

ROD

anvr 3

ONL 3 4

c

F

G

HEX

HI

MOP

ROD

TRI

If B is a vector, Z is a list of all objects in the name classes R.

If executed while a defined function or operator is halted, ONL R returns a list of

objects that includes labels and local names. Within a class, local objects are
listed. Any similarly named global objects are shadowed by the local objects.

DRY
FAT
10D
ME
PRO
SALT

Ove 1 2

F[1]

DRY
FAT
FLAB
I0D
ME
PRO
SALT
X

Chapter 6. System Functions and Variables

SAF<«1
F 3

ayve 1 2

313

aNLrT

ONLT National Language Translation

ONLT<«A Specifies or references the name of the national language in which
system messages are reported and system commands can be
entered. (System commands can also be entered in American
English regardless of the current language. Any messages not
defined in the current language are displayed in uppercase Amer-
ican English.)

A: Simple character vector
Default value: Installation-dependent
Variable type: Session

When associated with a value available to the system, ONLT sets the corre-
sponding language as the language for the text of system commands and mes-
sages. If ONLT is set to be empty or blank, uppercase American English is used
(though commands can still be entered in mixed case). Any other assignment to
ONLT is ignored, and its last valid value is retained. Leading and trailing blanks in
the value assigned to ONLT are ignored.

In most cases, either the spelled-out language name, or a three-character abbrevi-
ation adopted across IBM products can be assigned to ONL T, but the three-
character abbreviation is never returned when ONLT is referenced.

The initial value of ONLT at the beginning of each session is an installation attri-
bute. The system is shipped with a default of mixed-case English, but that default
can be changed for any installation.

If the installation-specified language is not available in the system, ONL T is initial-
ized to an empty character vector, yielding uppercase English.

If an invalid value is assigned to ONL T during the APL2 session (the language is
not available, or the language file contains formatting errors), it remains set to its
last valid value.

ONLT<'NOR'
YAOID
ER AO NULLSTILT
anvcr
NORSK
ONLT<«'MARTIAN'
anvrnrt
NORSK
ONLT<"!
YWSID
IS CLEAR WS

Note: If ONLT is set to a value for which a user-defined language table exists,
and there is an error in that table, the previous value of ONLT is restored.
This is treated like an implicit error, so normally no error message is dis-
played. One or more messages describing the problem have been queued,
though, and can be displayed using)XORE.

314 APL2 Programming: Language Reference

app

OPP Printing Precision

OprPP<4A Specifies or references the number of significant digits in the
display of numbers.

A: Positive integer scalar
Default value: 10
Variable type: Implicit argument

The minimum value for PP is 1. If OPP is specified at or above the maximum
precision displayed by the system, all available precision is displayed.

2+3 OPP<«200
0.6666666667 7+9
0.77777777777777778
gpp
18

However, in some cases, PP does not influence the display of integers.
OPpP<«1
333

333

If OPP is assigned an invalid value or erased and then implicitly used by format, a
OPP ERROR results.

A reference of OPP yields its current setting.

Implicit Argument: OPP is an implicit argument of default format (¥), page
and output of numbers.

Chapter 6. System Functions and Variables 315

OPR

OPF Prompt Replacement

OPR<A Controls the interaction between an assignment (the prompt) and
a successive reference (the reference) of the character
input/output system variable ([1).

A: Character scalar or vector of length 1 or empty vector
Default value: 1p' ' (character blank)
Variable type: Implicit argument

The character assigned to PR replaces the unchanged characters in the prompt

(last row of character array assigned to [1), becoming the first part of the response
vector. The remainder of the response vector contains data that was changed or

added by the session manager.

All the examples below use the following defined function:

VZ<F

[1] M«'ENTER NAME:

[2] z<[

[3] v
OPR<«' OPR<"'*!
RESULT<F RESULT<F

ENTER NAME: MCMILLAN ENTER NAME: MCMILLAN
pRESULT oRESULT

20 20
RESULT RESULT

MCMILLAN kkKkxkxxxxx*k*k*MCMILLAN

Any part of the prompt that is changed by session input is not affected by the value
of OPR.

OPR<«"
RESULT<F

ENTMCMILLAN User input replaces

part of the prompt.

PpRESULT

12
RESULT

MCMILLAN

316 APL2 Programming: Language Reference

OPR

If PR is an empty vector, unchanged characters in the prompt are not replaced,
and the response vector contains unchanged prompt characters and the session
input.

OPR<«"" RESULT<F
RESULT<F ENTER MCMILLAN
ENTER NAME: MCMILLAN PRESULT
PpRESULT 14
20 RESULT
RESULT ENTER MCMILLAN
ENTER NAME: MCMILLAN

A reference of PR returns its current value.

If PR is assigned an invalid value or erased and then implicitly used by format, a
OPR FRROR results.

Chapter 6. System Functions and Variables 317

0Pw

OPW Printing Width

OPW<A Specifies or references the number of characters displayed per
line of output.

A: Positive integer scalar
Default value: System and device dependent
Variable type: Session

The minimum value that can be assigned to OPW is 30. If an invalid value is speci-
fied, it is ignored. Display of an array R wider than the value of OPW is folded at or
just before the column specified by OPW. The folded portions are indented six
spaces and are separated from the first part by N blank lines, where N is

0l "1+ppR.

W<'SUPERCALIFRAGILISTIC-EXPIALIDOCIOUS'

pW
35
OPW<30
W
SUPERCALIFRAGILISTIC-EXPIALIDO
TI0US

The rows of a matrix are folded together and the pages of a multidimensional array
are folded together.

aprPw
30

2 36p'AAaBBbCCcDDAEFeFFfGGgHHhITiJdJ jJKKKLL 1"
AAaBBbCCcDDAEEeFFfGGgHHhITIidJJ j
AAaBBbCCcDDAEEeFFfGGgHHhITIiJJ j

KKKLL1
KKkLL 1

The display of a simple array containing numbers may be folded at a width less
than OPW so that individual numbers are not split.

2 30,810 20 30
3.321928095 4.321928095
2.095903274 2,726833028

4,906890596
3.095903274

If OPW is small and PP is large, the display of some complex numbers in a
simple array may extend beyond OPW. If OPW is at least 13+ 2 =[PP, individual
numbers in a simple array do not exceed OPW. Numbers in a nested array may be
split with any value of OPP.

A reference of OPW yields its current value.

318 APL2 Programming: Language Reference

Or

0OF Right Argument

OR<A If the first line of the state indicator contains a function whose exe-
cution was suspended by an error or an interrupt, 0ZF is the array
value of its right argument. R can be respecified and execution
resumed at the point of the error or the interrupt by +-1 0.

A: New right argument
Default value: None
Variable Type: Debug

OF is set when an error or interrupt occurs in a primitive function. Effectively, it is
automatically local to a function called by a line entered in immediate execution and
exists only while the statement in error is suspended.

VZ<F R
[11] Z<(RBx1 2)+3 4 5
[2] v

F 10

LENGTH ERROR
F[1]1 Z<(Rx1 2)+3 4 5

A A
Or

3 4 5
OR<3 4
>10

13 24

If there is not enough room in the workspace to suspend the statement in error, .S
FULL is reported. [EM is set to a character matrix of shape 3 0, and R and
0L are not set.

With VALUE ERROR or SYNTAX ERROR: Ifthe errorisa VALUE ERROR
ora SYNTAX ERROR, any respecification of R is ignored. If R has not been
set by the system, a subsequent reference to F results ina VALUE ERROR.

Chapter 6. System Functions and Variables 319

Or

a OFR ASSIGNMENT IGNORED

VZ<FA R
[11] Z<(RBx1 2)+3(u(5)
[2] v

FA 1

SYNTAX ERROR+
FAT1] Z<«(Rx1 2)+3(u4(5)
A
VFALO11]

[11] Z<(RBx1 2)+3(u4(5)
[11 Z<(Rx1 2)+3(4 5)
[2] v

SI WARNING+

Or
T
Jr<+88 89
>10
SYNTAX FRROR+
FAL 11
-1
4 6 7
a OFR VALUE ERROR
VZ<FB R
[1] Z<(Rx1 2)+
[2] v
FB 3

SYNTAX FRROR+
FBL1]1 Z<(Ex1 2)+
A A
ORrR<u4 5
>10
SYNTAX FRROR+
FBL1]1 Z<(Ex1 2)+
A A
Or
VALUE ERROR+
Or

A

320 APL2 Programming: Language Reference

Or

Effect of Resuming Execution: Note that the branch expression »~1 0 causes the
suspended function to restart at the point of the error with the new value of the right
argument. Everything in the statement to the right of the leftmost caret was evalu-
ated prior to the error; only the function indicated by the rightmost caret is re-
evaluated when execution begins.

FR 4 5 6
1.333333333 3.333333333 6
FR 4 5
LENGTH ERROR
FR[1]1 Z<(1 2 3x4)+p4

A A
ar

4 5
OR<4 5 6
>10

2 59

Because the final result can be misleading, it is important to know where execution
resumes after respecification of . It can be especially important if the statement
in error contains shared variables or defined functions or operators.

OF and the State Indicator. As the state indicator is cleared (with > or)RESET
n), OR is reset to the right argument of the primitive function associated with the
current first line of the state indicator, if its execution was suspended by an error or
an interrupt.

If the state indicator is clear or if the error associated with the first line in the state
indicator is not in a primitive function, O has no value.

Chapter 6. System Functions and Variables 321

ORL

0OFL Random Link

ORL<A Used or set to establish a basis for calculating random numbers.

Data: Simple positive integer scalar less than or equalto = 2+2*31
Default value: 16807
Variable type: Implicit argument

The random number algorithm uses the value of ORL in its calculation of a random
number and sets OFL to a new value after the random number is calculated.

ORL ORL
16807 282475249

?5 ?5
1 4

Because the random numbers selected by roll and deal are determined by an algo-
rithm, they are not truly random numbers, but rather are pseudo-random numbers.
A collection of them, however, satisfies many tests for randomness.

Repeatable results can be obtained from the functions roll (?R) and deal (Z ? R) if
ORL is first set to a particular value : For example, setting JRLZ to 16807 and
then entering ? 5 returns a 1, as in the previous example.

ORL<+16807
?5
1

If ORL is assigned an invalid value and then implicitly used by roll or deal, a ORL
ERROR results.

A reference of ORL yields its current value.

322 APL2 Programming: Language Reference

asve

0S5V C Shared Variable Control (Inquire)

Z<[0S8VC R Returns the access control vectors imposed on the variables
named in R.

R: Simple character scalar, vector, or matrix
Z: Simple Boolean vector or matrix

pZ <> (1¥pR).,u
ppZ <> ,1lppR

Each row of R is interpreted as a variable name. Z contains a four-item access
control vector for each corresponding variable name in E. The meaning of the
items is given with DSV C, shared variable control (set), page

gsve 'crri1o2!
0 0 0O
102 0OSvo 'CcrLi1o02!

asve 'crri1o02!
0 0 01

The access control vector 0 0 0 0 denotes either that no access control was
set by either partner or that the variable has not been offered.

Chapter 6. System Functions and Variables 323

asve

OS5V C Shared Variable Control (Set)

Z<L 0OSVC R Sets the protocol (access control vector L) regulating the
sequences for the setting and use of the variable(s) R by the
two partners and returns the resulting access control vector.

L: Simple Boolean scalar, vector, or matrix
R: Simple character scalar, vector, or matrix
Z: Simple Boolean vector or matrix

pZ <> (T 1¥pR),u4
ppZ <> ,1lppR

Each row of R is interpreted as a variable name. Each row of L is interpreted as
the corresponding access control vector for the name or names in . The access
control vector indicates whether repeated attempts to set or use a variable by one
partner require an intervening use or set by the other.

2001 Osvo 'X!

0 1 0 1 0Osve 'X!
0101

Z contains the resulting access control vectors imposed on each variable name in
R. The resulting access control for each variable may be more restrictive than
specified by L because a processor can only increase the degree of control
imposed by the other processor.

gsve 'crrLs:
0 0 01

101 0 0OSve 'CTL3!
1011

324 APL2 Programming: Language Reference

asve

Zeros in the access control vector are interpreted as no control imposed. Ones in
the access control vector are interpreted as follows (the first processor refers to the
user's processor; the second processor refers to the processor with which sharing
is taking place).

First Item Two successive sets by the first processor require an intervening set
or use by the second processor.

Second ltem Two successive sets by the second processor require an intervening
set or use by the first processor.

Third Item Two successive uses by the first processor require an intervening set
by the second processor.

Fourth Item Two successive uses by the second processor require an intervening
set by the first processor.

If a variable has a degree of coupling of 0, any specified access control vector
results in an imposed access control vectorof 0 0 0 O.

Posting Rules: A partner in sharing is not notified of your use of a shared vari-
able unless that use is regulated.

Conformability: L must be a matrix of shape ((~1vpR), 4), a vector of
length 4, or a scalar. If L is a scalar or a vector, it is reshaped to
(("1+¥pR),u) before access control vectors are applied to & :

1 4asve 'crn!
1111

1 01 0 0OSVC 2 4p'CTL CTL3!
1011
1011

L<2 Lpl 1 0
L

110 1

101 1

L OSVC 2 4p'CTL CTL3!

1101
1011

Chapter 6. System Functions and Variables 325

OSVE

O0SVE Shared Variable Event

OSVE<A Specifies the amount of time in seconds to be used in a wait for a
shared variable event and starts the timer.

X<0OSVE Suspends execution until the specified number of seconds has
elapsed or a shared variable event occurs, as described below.
When an event occurs, returns the time remaining in the timer.

A: Simple nonnegative scalar
Default value: 0
Variable type: Localizing OSVE has no effect.

Assignment—Start the Timer: When OSVE is assigned a positive value n, a
countdown from n seconds begins.

Use—Check for Events or Wait for One: If an event does not exist, execution is
suspended until one occurs. The next section lists shared variable events.

If an event exists or if an event occurs during the suspension period:

e The use of OSVE completes and the value of the timer is returned.
¢ All events are cleared, even those on shadowed variables.

For example, the function SHR waits for up to 5 seconds for an offer to be
matched.

VZ<«AP SHR SHRVAR
[11 OSVE<«5
[2] af EXIT IF REJECT OR MATCH
[31] TRY :»(1#2Z<«AP 0OSVO SHRVAR)/O
[4] p WAIT FOR SHARED VARIABLE EVENT
[5] +~(020SVE)/TRY
(6] v

Shared Variable Events: A shared variable event occurs when one of the fol-
lowing happens:

e An incoming offer to share a variable does not match a pending offer (made by
you).

e Your partner matches a pending (or outstanding) offer from you or retracts a
variable already shared.

e Your partner sets the access control vector (any dyadic SV C) on a fully-
shared variable.

e The OSVE timer expires.

e Your partner attempts to access a variable under the situations shown in
[Figure 35 on page 3271 ACYV used in the figure represents the left argument
of OSVC. Note that the access state vector may or may not change.

326 APL2 Programming: Language Reference

OSVE

Figure 35. Accesses to Variable That Signal a Shared Variable Event

Constraints
(Per ACV Settings)

Event Occurs If

ACVI1] <> 1

(Two successive sets by me require an
intervening set or use by my partner.)

My partner uses the variable, causing a
change to the access state vector.

ACVL2] <> 1

(Two successive sets by my partner require
an intervening set or use by me.)

My partner attempts to set the variable, but
the specification cannot be completed
because of access control constraint. This
does not cause a change to the access
state vector.

ACVL3] <> 1

(Two successive uses by me require an
intervening set by my partner.)

My partner sets the variable, causing a
change to the access state vector.

ACVI4] <> 1

(Two successive uses by my partner require
an intervening set by me.)

My partner attempts to use the variable, but
the use cannot be completed because of
access control vector constraint. This does
not cause a change to the access state
vector.

A shared variable event does not occur if:

* You specify OSVE.

e Your partner uses one of the following inquiry system functions:

osvo Rr,0S8vc R, OSVE R, OSVS.

Other Circumstances That Clear Events: In addition to all events being cleared
when reference to OSVE is completed, events for all variables are cleared when
the active workspace is replaced using the commands)CLEAR,)LOAD, or
)OFF.
Also an event for a single variable is cleared when:

* You set or use the variable.

e Your attempt to access the variable is unsuccessful because of something
other than access constraints (for example, ¥S FULL).

e The variable is retracted (explicitly or implicitly).
You can explicitly clear all events by setting OSVE to 0 and then using it:

OSVE<0
OSVE

Chapter 6. System Functions and Variables 327

asvo

0S70 Shared Variable Offer (Inquire)

Z<[0S8V0 R Returns the degree of coupling for the variables named in E.

R: Simple character scalar, vector, or matrix

Z: Integer scalar or vector intheset 0 1 2
pZ <> “14pR

ppZ <> ,0[1+ppR

Each row of R is interpreted as a variable name.

Z contains the degree of coupling for each corresponding variable name in R, as
described in [Figure 13 on page 61}

211 QOsvo 'X!

1
gsvo 'x¢

2
R <« 2 3p'CTLDAT'
124 0OSVO R

11
0svo R

2 2

328 APL2 Programming: Language Reference

asvo

0SV0O Shared Variable Offer (Set)

Z<L 0SVO0 R Offers variables named in R to processors identified in L.
The result is the degree of coupling, indicating whether the
attempt to share was successful:

0 - Unshared
1 - Offered
2 - Shared (coupled)

L: Simple integer scalar or vector
R: Simple character scalar, vector, or matrix of names
Z: Integer scalar or vectorinset 0 1 2

pZ <> “1%pR
ppZ <> ,0[1+ppR

Each row of R is interpreted as a variable name. Each integer in L identifies the
corresponding processor for a variable name in R.

127 0OSvo 'CTL!

Note: The variable is not fully coupled until the processor with whom you have
offered to share counters your offer with an offer of a variable of the same
name.

If the degree of coupling is 1 or 2, a repeated offer has no further implicit
result and either monadic or dyadic SV 0 can be used for inquiry.

Conformability: L must have the same number of items as R has rows (pL <~

“14¥pR) or L can be a scalar, in which case it is reshaped to ~ 1 ¥ p R before the

shared variable offer is attempted. The following offers two variables to AP 211:
211 0OSVO 'VAR1!

211 0OSVO 'VAR2!

Chapter 6. System Functions and Variables 329

asvo

The same offers can also be made with the expression:

211 0OSVO 2 Lp'VAR1VAR2'
11

Or with:
211 OSVO™ 'VAR1' 'VAR2'

Surrogate Names: To maintain compatibility between two independent
processors, APL2 permits the use of an alias name for a shared variable. This
alias is called the surrogate name. The surrogate name is the name by which the
variable is known to the processor to which the offer is being made.

When a row of R contains a pair of names (separated by a space), the first name
in the pair represents the name of the variable to be shared and the second is the
name by which the variable is known by your partner. For example :

124 0OSVO 'MYCNTL C124!

AP 124 (the APL2 text display auxiliary processor) requires its control variable to
start with C. The variable name used in the APL2 operation that offers the variable
to AP 124, however, is MYCNTL.

(The name of a variable may be its own surrogate, which is the default when no
surrogate name is specified.)

General Share Offer: A share offer to processor 0 is interpreted as a general
share offer to any available processor. A general offer is coupled by the first spe-
cific offer to the caller from any processor of a variable with the same name.
General offers are not coupled with general offers, and a general offer does not
cause a shared variable event to occur.

330 APL2 Programming: Language Reference

asve

05V¢ Shared Variable Query

Z<0SVg R Identifies processors making share offers or returns the names
of variables being offered by an identified processor but not yet
matched by you.

R: Simple integer scalar or one-item vector or empty vector
Z: Integer vector or a character matrix

pZ <~ unpredictable
ppZ <> ,1if Ris empty; otherwise , 2

R is an empty vector or contains the identification of a processor.

If R is an empty vector, Z is an integer vector of identifications for processors
making share offers to you. For example:

126 0OSVO 'CTL126'

gsve 10
126

If B is not empty, Z is a character matrix containing the names of variables not yet
shared but being offered by the processor identified in R. For example:

Osve 126
DAT126

Chapter 6. System Functions and Variables 331

OSVR

0S VR Shared Variable Retraction

Z«0OSVR R Requests retraction of each shared variable named in R and
returns its prior degree of coupling.

R: Simple character scalar, vector, or matrix
Z: Simple integer scalar or vector

pZ <> ~14pR
ppZ <> ,0[1+ppR

Each row of R is interpreted as a variable name. Z contains the degree of cou-
pling prior to the retraction for each corresponding variable name in R
lon page 61]defines each degree of coupling. After a variable is retracted, it is no
longer shared. (lts degree of coupling is less than 2.) For example:

CTL<"'"

gsvo 'crrn
2

asver 'CcrL!
2

gsvo 'crrn
0

Multiple variables can be retracted in the same statement using the each () oper-
ator or a character matrix. For example, the following two retractions have the
same effect:

OSVR™ 'CTL123' 'DAT123!

OSVR 2 6p'CTL123DAT123"
2 2

All shared variables can be retracted using the system function ONL (name list),

page B13}

OnL 2
A
B
c
CTL124
DAT124

Osver ONL 2
00122

A and B in the example are not shared variables. Variable C had been shared, but
the share had not been matched by the partner at the time of the retract.
CTL124 and DAT124 had been fully-coupled shares.

332 APL2 Programming: Language Reference

OSVR

If a shared variable has no value when retracted, it does not persist in the work-
space after retraction.

Implicit Retraction of a Shared Variable: A variable may be retracted implicitly
by any of the means listed below:

* You use)ERASE or OEX (expunge) to delete a shared variable from your
active workspace.

¢ You exit from a defined function that has the shared variable declared as a
local variable.

* You use)COPY to copy a variable with the same name as a currently shared
variable.

* You use)IN or OTF (transfer form) to establish a variable or function with the
same name as a currently shared variable.

* You use one of the following system commands:

JCLEAR
JLOAD
JOFF
JCONTINUE

Chapter 6. System Functions and Variables 333

asvs

0SVS Shared Variable State

Z<0S8SVS R Returns the access states of each variable named in 7.
R: Simple character scalar, vector, or matrix
Z: Simple Boolean vector or matrix

pZ <> (T 1¥pR),u4
ppZ <> ,1lppR

The access state vector indicates which partner knows the current value and which
partner last set a value unknown to the other partner.

Each row of R is interpreted as an APL2 name (variable name). Z contains a
four-item vector of access states for each corresponding variable name in R.

A vector of access states may have one of the following four values. (First
processor refers to the user's processor. Second processor refers to the processor
with which sharing is taking place.)

0 00O Not a shared variable.

0 011 Set by one of the processors and used by the
other. Also signifies the initial state before
either partner sets a value.

1010 Set by the first processor, not yet used by the
second.
0101 Set by the second processor, not yet used by
the first.
For example:
gsvo 'crrn
2
1 0 0 1 0OsSve 'CTL!
1 0 0 1
CTL<'SOMETHING'
gsvs 'cri
01 0 1
RETURN<CTL
gsvs 'crrn
00 1 1

334 APL2 Programming: Language Reference

arc

O07C Terminal Control Characters

Od7cC Contains a three-item character vector of terminal control characters:

07rCL11—backspace
O7CL 2 J—new line (return)
07rcl 3 1—line feed

Variable type: Specifying or localizing 07'C has no effect.

References of items of 07 C cause the terminal to display the corresponding char-
acter. Use OTC rather than OJAV to avoid system dependencies (because the
order of AV is different in different APL implementations).

Backspace: On display terminals, the character specified after O7C[1]
replaces the character specified before it. On typewriter-like terminals, the second
character overstrikes the first character.

Display Typewriter

'V',DTC[l],'|' 'V',DTC[l],'|'
| i

New Line: After OTCL[21, the cursor or print element carrier is positioned at the
left margin of the next line.

'"NEW' ,07CC21,'LINE' ,O07CL2],'CHARACTER'
NEW
LINE
CHARACTER

Line Feed: After OTC[31, the cursor or print element carrier is positioned on the
next line at the same column position.

'"LINE' ,07CL31,'FEED' ,07CL3]1,'CHARACTER"
LINE
FEED
CHARACTER

Chapter 6. System Functions and Variables 335

arr

OTF Transfer Form

Z<L 0OTF R Creates the transfer form as specified in L of a variable, dis-
playable defined operation, or external object named in 7.

Or can establish an object in the active workspace from R,
which is of transfer form L.

L: Simple integer scalar or one-item integer vector
R: Simple character scalar or vector
Z: Simple character vector

L contains an integer (1 or 2) that specifies either the migration transfer form or
the extended transfer form:

The migration transfer form (L is 1) represents the name and value of a simple and
nonmixed variable or a displayable defined function. It is not permitted for nested
or mixed variables or defined operators.

The migration form vector consists of four parts:

1. A data type code header character:

' F' for a function
"N for a simple numeric array
' ¢ for a simple character array

2. The object name, followed by a blank.

3. A character representation of the rank and shape of the array, followed by a
blank.

4. A character representation of the array items in row-major order (any numeric
conversions are carried to 18 digits).

The extended transfer form (L is 2) is a simple character vector that represents the
name and value of a variable, a displayable defined function or operator, or an
external object. It is permitted for any variable and displayable defined operation.

Creating the Extended or Migration Transfer Form
See|Appendix B, “APL2 Transfer Files and Extended Transfer Formats” on|
for further details about transfer form.

Of a Variable or Defined Operation: If R is the name of a variable or displayable
defined operation, Z is a character vector that is the transfer form specified in L
for that object.

336 APL2 Programming: Language Reference

Example 1: Transfer Forms of a Function

VZ<ITEMS R
[1] Z<1
[2] +(0epR)/0
[3] Z<x/pR
[4] v

p MIGRATION TRANSFER FORM

Z<1 0OTF 'ITEMS'
pZ
49
Z
FITEMS 2 4 9 Z<ITEMS Rz<1 +(0epR)/0Z<x/pR

p EXTENDED TRANSFER FORM

Z<2 0OTF 'ITEMS'
pZ
L2
Z
OFX 'Z<ITEMS R' 'Z<1' '>(0e€pR)/0' 'Z<x/pR'

Example 2: Transfer Forms of a Simple Variable

A< A<2 3p1¢16
1 OTF '4° 1 OTF '4°

c4A 1 0 NA 2 2 3 2 3 4 5 6 1
2 OdrrF A 2 0OdrF A

A< A<2 3p2 3 4 5 6 1
A<"' Don''t ! A<.000000000001
1 0OTF '4¢ 1 0TF '4¢

CA 1 7 Don't N4 0 1E 12
2 QdrF A 2 QdrF A

A<"'" Don''t ! A<«1E 12

Example 3: Transfer Forms of an APL2 Variable

A<('' (10))('Q" 3.2)(2+3x14) 'Don''t'
B<c(c1 0 1) (2 3pk4 6)
C<0AF 2561 (<300 66), OAF 'AB' a Kanji

DISPLAY A
e T T T T T T T T T T T T T T T T T T ST S S S S S S S S S s s s s .
.+ ________ . .+____. .+ ________ . .+____.
| .6. .o. Q 3.2 5 8 11 14 pon't| |
| | 0 | L["~ - ' | IR ' |
R |
| remoeoo- ' |
L '
2 OTF 'A"

A<(''(0p0))('Q' 3.2)(5-3xOI0-14)'Don''t!

Chapter 6. System Functions and Variables

arr

337

arr

DISPLAY B
.+ ____________________ .
| emm - . e
|| I i Y4 6 4| |
| | [20 1] | |6 4 6] |
AL Pl '
| | 'e-------- ' |
|'€ ____________________ '
'E ________________________
2 OTF 'B!
B<c(c1 0 1)(2 3p4 6 4 6 4
DISPLAY C
o_)o
ww
| I)
2 OTF 'C!

C<0AF 19677889 19677890

Note:
result.

6)

1 0OTF is not supported for any of these cases, and returns an empty

Example 4: Transfer Form of an External Object

000 11.0 [ONA'see DISPLAY'

1
1 OTF 'see'
2 OTF 'see!
0 11 ONA 'see DISPLAY'

A No migration form

A Extended transfer form

Of a System Variable: If R contains the name of a system variable, Z contains
the transfer form specified by L of the variable at its current value :

2 Qrr 'grs:
075«<1992 3 27 14 34 4 724

Of a System Function: If R contains the name of a system function, Z is an
empty character vector. (System functions are not displayable.)

Z<2 0OTF
pZ

'DDL'

0

Of a Shared Variable: If R is the name of a shared variable, creating its transfer
form constitutes a reference of the variable. The value of Z depends upon the
value of L and the value of the variable at the time of the reference :

101 OSvo 'CcrL

2 QrrF 'CcrL!

CTL<0

338 APL2 Programming: Language Reference

arr

Creating the Inverse Transfer Form

If R is the transfer form specified by L of a variable or defined operation, that vari-
able or defined operation is established in the active workspace. Z is a simple
character vector containing the object's name. Such use of OTF is known as the
inverse transfer form.

JCLEAR

CLEAR WS
SCORES<«34 18 20
R«1 0OTF 'SCORES'

JVARS
R SCORES
JERASE SCORES
JVARS
R
1 0TF R
SCORES
JVARS
R SCORES

If the transfer form in R is invalid, Z is an empty character vector (' ').

Chapter 6. System Functions and Variables 339

ars

O7S Time Stamp

ars Contains the current system date and time.

Variable type: Localizing or specifying 0TS has no effect.

The time stamp 0TS is a simple integer vector composed of the following seven
items :

O07rsC11 Current year
O7rsC2] Current month
O7sC31 Current day
O7rsCu]1 Current hour
O7SC5]1 Current minute
Orsctel] Current second
O7SC71 Current millisecond

The value of TS is offset from Greenwich Mean Time (GMT) according to the
value of the Time Zone system variable (07 Z), page

grs
1992 3 27 21 6 43 251
Orz
Ty
07z« 10
grs

1992 3 27 15 6 48 247

Use format by example (%), page|139} to display the date and time in different
formats.

'0006/06/00 06:06:06:000'307TS
1992/03/27 08:12:30:548

'06/06/00 06:00's100|07SCL2 3 1 4 5]
03/27/92 08:12

340 APL2 Programming: Language Reference

a7z

O7Z Time Zone

OTZ<«A Specifies or references the offset in hours between local time and
Greenwich Mean Time (GMT).

A: Simple real scalar
Variable type: Session
Default value: Installation-dependent

The value of OTZ affects the current hour reported by O7S (page B40). 0772
must be intherange ~12 0OTZ and OTZ 12. For example, ~ 5 is Eastern
Standard Time, and 1 is Central European Standard Time. Although usually an
integer, the value associated with TZ may be a fraction.

Orz
e
grs
1992 3 27 8 35 53 829
0TZ<5
grs

1992 3 27 17 35 56 926

077 affects the time stamp reported by the system commands)CONTINUE,
)JCOPY,)DROP,)LOAD,)PCOPY,)SAVE,and)TIME; it also affects the
time stamp reported for defined functions and operators in 3 0OAT R or when
displayed.

An invalid value assigned to 0T Z is ignored.
0772<«12.5

ars
1992 6 28 17 36 11 931

Chapter 6. System Functions and Variables 341

gucs

, 0UCS Universal Character Set

| Z<[0UCS R Converts integers to characters and characters to integers using
| the ISO 10646 standard, which includes the Unicode subset.

| R and Z: A simple numeric integer array or a simple character array

| Integers in R must be nonnegative and less than 2+31.

| 0ucs on characters produces the integer that specifies the character position in
| the universal character set given in [Figure 71 on page 475 These numbers are
| platform independent.

| ducCs on numbers produces the corresponding character.

| gucs 'pd B!
| 9076 65 32 66

342 APL2 Programming: Language Reference

0uL

OUL User Load

auvrL Contains the number of users on a system where that number can
be determined.

Variable type: Localizing or specifying UL has no effect.

OUL is a simple nonnegative integer scalar. lts value is 0 on systems in which the
number of users cannot be determined.

Chapter 6. System Functions and Variables 343

awA

OwA Workspace Available

OwA Contains the number of available bytes in the active workspace.

Variable type: Localizing or specifying OWA has no effect.

OwA is a simple nonzero integer scalar. Depending on the APL2 implementation,
the value of OWA can vary between two situations that appear to be the same.

344 APL2 Programming: Language Reference

Chapter 7. Defined Functions and Operators

This chapter discusses functions and operators in terms of :

e Structure

¢ Definition contents
e Execution

e Debug controls

Many problems can be solved by merely entering APL2 expressions in immediate
execution mode. However, when a series of expressions needs to be entered
repeatedly in different situations, when a general solution can be applied to several
similar problems, or when expressions should be executed based on certain condi-
tions, you may prefer to define an operation (a function or operator) to hold the
necessary code.

A defined function or operator is fixed or established in the active workspace in one
of the following ways:

e Defined, using one of the APL2 editors. (The editors are discussed in
[Chapter 9, “The APL2 Editors” on page 375})

e Fixed, using the system function OFX or OTF, which changes a character
representation of the operation to an executable form. (OFX is discussed in
[‘OF X Fix (No Execution Properties)” on page 292 jand [‘0OF X Fix (with Exe-|
lcution Properties)” on page 294} and OTF is discussed in[[OTF Transfer]
[Form” on page 336])

» Copied, using one of the copy system commands—) COPY or
) PCOPY—brought into the active workspace as a result of the system
command)LOAD, or retrieved from a transfer file using the system commands
)IN or)PIN. (These system commands are discussed in
Retrieving Objects and Workspaces” on page 414l)

When a defined function or operator is invoked, the statements in it are executed.
For example, the defined function ROUND shown below rounds a number to a
specified number of decimal places. If no number of places is indicated, two places
are assumed.

3 ROUND 45.678235 ROUND 45.678235
45.678 45.68

The syntax and execution of ROUND are similar to those of a primitive function.
The definition of ROUND is shown and commented upon in

© Copyright IBM Corp. 1984, 1994 345

VROUNDLOIV

v
(0] Z<Y ROUND X
(11 ~(0=z0NC 'Y')/RN A GO TO RN IF Y HAS VALUE
[2] Y<2 a SET A VALUE FOR Y

[3] RN:Z2<«(10%*-Y)x|L.5+Xx10%*Y a ROUND X TO Y PLACES
v 1993-03-27 7.47.10 (GMT-14)

When a definition is displayed using)EDITOR 1, the display begins and ends with a del
(V) and includes line numbers. Alternatively, a definition can be listed using the system
function OCR (character representation), which does not show line numbers or dels
(OCR is discussed on page [74).

L01 The header establishes the syntax of the function. It shows the number of arguments
the function takes and the parameter names of the arguments and result within the definition.

[1]1 The branch statement directs the flow of control to statement [3]
(label RN) if a left argument is entered when ROUND is invoked.

[2] Statement sets the left argument to 2 if FOUND is invoked without a left
argument. Statements [1] and [2] are defined so that ROUND is
ambi-valent.

[31 Rounds the argument as specified. It begins with a /abel to identify the statement.

Note: The defined function ROUND shows no validity checking to ensure that conformable
numeric arguments are entered. Additional statements to handle these checks can be added.

Figure 36. An Example of a Defined Function

Structure
Defined functions and operators have three parts, as illustrated in Figure 36 for the
ROUND function.
v Header
—"
[oJ & Y ROUND X
[1] >(0z0Ne vyt) /RN m GO TO RN IF Y HAS VALUE
[2] ¥ 2 m SET A VALUE FOR Y Body
[3] RN:% (10%-Y)xL.5+Xx10+«Y & ROUND X TO Y PLACES
v 1993-03-27 7.47.10 (GMT-4)
Time Stamp

Figure 37. The three parts of defined functions and operators

Each of these parts is explained in this section.

346 APL2 Programming: Language Reference

Header

The operation header is the first line of a defined operation. The header estab-
lishes the syntax for the defined operation, including:

e Name of the operation

» Valence of the operation, and in the case of defined operators, also the valence
of the derived function

e Parameter names
* Nature of the result—explicit or not explicit

e Local names

[Defined Functions and Operators” on page 31]shows the possible types of
headers for defined functions and operators and discusses how defined functions
and operators are used in expressions.

Name of Operation

The name of the defined function or operator is a user name and follows the rules
for constructing names (see |‘Rules for Constructed Names” on page 25). If a
name is already in use as a variable name, an attempt at operation definition gen-
erates a DEFN ERROR. An attempt to specify as a variable a name already in
use as the name of a defined operation generates a SYNTAX ERROR.

Valence

A defined function can have two, one, or no arguments. A defined operator can
have two or one operands, and its derived function can have two or one argu-
ments. If two arguments are shown in a defined function, the function is ambi-
valent (it can be invoked with either one or two arguments), and the possibility of
receiving only a right argument should be accounted for in its definition. Defined
operators, like primitive operators, are never ambi-valent with respect to their oper-
ands.

Parameter Names

The result, right argument, left argument, right operand, and left operand named in
the header are parameters, used in the body of the definition. When the operation
is invoked, the values entered as arguments and/or operands are associated with
the parameter names. This is how the parameter names are first associated with
values. During the course of execution of the operation, the parameter names can
be associated with other values.

When execution of the operation is completed, the value of the result parameter is
returned as the result of the function.

Local Names

The argument, operand, and result parameters have value only within the context
of the defined operation. When execution of the operation is completed, the
parameter names are no longer associated with the values they had during exe-
cution. Thus, they are called local names because their values are local to—exist
only within—the defined operation.

In addition to parameter names, you can declare other constructed names to be
local to the operation. These can be names that hold intermediate values, set

Chapter 7. Defined Functions and Operators 347

counters, set system variables especially for the operation, or are otherwise not
needed after the operation has been executed. Labels are also local names.

All other names identify global objects in the workspace and are called global
names. The value associated with a global name is not available during execution
of the operation if the same name is local to that operation. Only the local value is
available, and the global name is said to be shadowed. After the operation has
been executed, however, only the global value exists in the workspace. For

example:
Z<'TEST"
X<«2000
VZ<FN X
[1] X
[2] Z<«Xx3
[3] v
FN 5
5
15
Z
TEST
X
2000

In the operation header, a semicolon separates local names from the operation
syntax and from each other. For example, to declare 010, I, and CNT local to
the monadic function FN:

VZ<FN X;0I0;I;CNT

Separating local names by semicolons is optional on input. On display, semicolons
are always included in the operation header.

Objects identified by global names are available to a called operation if they are not
shadowed by the local names in it.

[‘Use of Local Names” on page 353 further discusses the use of local names in the
operation definition.

Body

The definition body is made up of statements, which, as described in[‘Expressions]]
on page 27} can include any of the following:

e Label
e Expressions
e Comment

These take the form:

label : expressions A comment

The ROUND function in [Figure 36 on page 346 shows various forms of state-
ments.

348 APL2 Programming: Language Reference

Time Stamp
Each defined operation is associated with a time stamp that identifies when the
operation was last fixed in the workspace. An operation is fixed in the active work-
space by using the system function OFX or OTF or by using one of the APL2
editors to create or modify an operation. When the defined operation is displayed
with)EDITOR 1, its time stamp and the offset from Greenwich Mean Time (of the
current session) are also displayed.

The system function DA T (attributes), page [270} can be used to determine the time
stamp of an object without displaying it.

Definition Contents

Within the body of a defined operation, you can use any APL2 statement. Direct
entry of system commands or editor commands to be executed as part of the
defined operation is not permitted. Flow of control within a defined operation is
sequential, from the first statement to the last, except as altered by branching.

A defined operation may invoke another defined operation. It is thus possible to
write modular applications and easily reuse defined functions and operators in dif-
ferent applications. A defined operation may also invoke itself. This is called
recursion.

Defined or primitive operators may be combined with defined or primitive functions
to produce derived functions.

Branching

A branch expression explicitly determines the next line of a defined function or
operator to be executed. It consists of a branch arrow () and an expression:

>rexpression

Figure 38 shows the possible branch actions according to the value of the branch
expression.

Figure 38. Action Based on Value of Branch Expression within Defined Functions

If Value of Branch

Expression ls... Then Next Action Is...

Line number & within the Line I of the function or operator is executed.

function or operator

0 or any other line number Flow of execution returns to the invoking expression.

not within the function or

operator

Empty vector Next sequential expression (either the next expression to

the right of a diamond in the same line, or else to the next
line, if there is one, of the function or operator).

Vector of numbers The first number determines the branch action.

Chapter 7. Defined Functions and Operators 349

For example, the ROUND function, shown earlier, contains the branch statement:
[1] ~(o0=z0NC 'Y')/REN nGO TO RN IF Y HAS VALUE

The result of executing this statement is to branch to the line labeled RN if a
parameter Y has been associated with a value. Otherwise, function execution con-
tinues with the next sequential statement.

Branching is also used in immediate execution to resume execution of a suspended
immediate execution statement, defined function, or defined operator. This use of
branching is discussed in [‘Errors and Interrupts in Immediate Execution” on|

lbage 59 and fClearing the State Indicator” on page 357]

Note: Executed branches are discussed under the heading

Labels

If you branch to explicit line numbers, you have to review the branch expressions
and edit them every time you make a change to a function or operator. Using
labels avoids these steps. A label is a name that precedes an expression:

[3] RN:Z«(10*-Y)x|L .5+Xx10*Y

A label is a local constant; that is, it has meaning only within the context of the
function or operator. The value of the label is the line number with which it is cur-
rently associated. If the line number changes, so does the value of the label.

Any branch expression whose result is expressed as a label takes the value of the
label—the line number currently associated with the label. Thus, when you edit a
defined function or operator and add or delete lines, your branch expressions
always point to the correct line. If you use line numbers instead of labels in branch
expressions, you must check every branching expression to ensure that it still
points to the correct line.

Always use labels when branching to a line in the operation.

Conditional Branch

When a branch expression takes different values depending on relationships or
conditions, the branch is called a conditional branch. It is constructed by using -~
with relational and selection operations.

The statement ~(0z0ONC 'Y') /RN is a conditional branch statement because
its value may be RN or the empty vector, depending on the value of the relation-
ship in parentheses.

Conditions for branch expressions evaluate to 0 or 1. The relational functions (<
< = 2 > =z) are often used to express simple conditions.

Figure 39 shows three frequently used conditional branch expressions. In each
case, the condition evaluates to 0 or 1.

350 APL2 Programming: Language Reference

Figure 39. Frequently Used Branch Statements

Form Description

~(condition) / 0 End the function or operator execution if the
relationship is true.

Execute the next sequential expression if the
relationship is false.

~(condition(s)) / label(s) Continue execution at the labeled line if the
relationship is true.

Execute the next sequential expression if the
relationship is false.

Any number of conditional expressions can
be used as long as there are the same
number of labels.

~labelx condition Execute the labeled line if the relationship is
true.

End the function or operator execution if the
relationship is false.

Note: Compression is the most commonly used operation in constructing branch
expressions. It works equally well for a one- or several-way branch. It is not origin
dependent.

Unconditional Branch
When the branch expression contains a single constant or label name, it is called
an unconditional branch.

Unconditional branches have two main uses:

e End the function execution by branching to line zero (--0), a line outside the
function.

» Create a branch back to the beginning of a loop.

Branch to Escape

A branch arrow with no expression on the right causes the defined operation to
immediately terminate. Any functions pendent on this one are also terminated.
See[‘DEC Execute Controlled” on page 280 for an exception.

Branch in a Line with Diamonds
When a branch expression is one of several expressions separated by diamonds
the following possibilities exist :

 If the branch is taken, expressions to the right of the branch expression are not
evaluated.

 If the branch is not taken, execution continues with the expression to the right
of the branch expression.

Chapter 7. Defined Functions and Operators 351

Looping Is Rarely Needed

Many programmers who come to APL2 after using other languages structure their
function and operator definitions with the equivalent of DO loops, working with data
an item at a time. This approach is expensive in performance and introduces the
likelihood of programming errors.

Looping requires APL2 to interpret each expression in the loop each time it is eval-
uated. For efficient use of system resources and programs that are easier to
debug and maintain, looping should be avoided whenever possible.

APL2's array processing and operators help you avoid most looping. Array oper-
ations are entirely data-driven. They allow computations to be performed where the
data itself controls the limits of the operation. Summation (+/), for instance, is
controlled only by the data being summed. Loop control statements such as DO
and IF THEN ELSE are not needed. You can do arithmetic on entire collections of
numbers in a single operation.

In a practical sense, the operator each (), pages and|107] is the equivalent of
a DO loop, except that the loop limits are not explicitly mentioned, but instead are
implicit in the data.

Structuring Ambi-valent Functions

Primitive, defined, and derived functions may be called with either one or two argu-
ments. (Defined functions may also be called with no arguments.) If a primitive
function or a derived function does not have a monadic definition, a VALENCE
ERROR is generated if it is used without a left argument. If a dyadic defined func-
tion or a function derived from a defined operator has not accounted for the possi-
bility of a monadic call in its definition and subsequently references the missing
argument, a VALUE ERROR is generated.

To define an ambi-valent function or derived function, you can define a conditional
branch to the code that executes the appropriate version of the program. Or you
can define a default value for an argument when one is not supplied. For example,
the function ROUND, shown in [Figure 36 on page 346l supplies a default value to
take effect if no left argument is entered.

If you do not want the function to have a monadic definition, you can give a
VALENCE ERROR message by using OES| Figure 40 on page 353 shows a
way of providing such a message.

Event Handling
APL2 provides two system functions and two system variables that allow user han-
dling of error conditions:

e System functions

0EA—Execute alternate, page
0F C—Execute controlled, page
0ES—Event simulate, pages and

e System variables

OEM—Event message, page
OE T—Event type, page

352 APL2 Programming: Language Reference

For example, when you simulate an error with 0FS, the defined function performs
as if it were a primitive function. An APL2 error report is generated and the
message displays a caret (A) to mark the error. Suspension then occurs at the
calling point, not within the defined function. Figure 40 shows how [JES can be
used to simulate a VALENCE ERROR inthe ROUND function.

VZ<Y ROUND2 X
(1] dgs(2=z0NC 'Y')/5 1 nAaSIGNAL VALENCE ERROR
[2] Z<(10*-Y)xL.5+Xx10*xY aROUND X TO Y PLACES
[3] %

3 ROUND2 4.5677887
4.568

ROUND2 4.5677887
VALENCE ERROR

ROUND2 4.5677887
A

Figure 40. Example Use of Event Simulation

Use of Local Names

Localizing names is a way of controlling the value of those names. They can have
no values other than those assigned within the defined operation. For example, if a
defined function depends on particular settings of system variables, such as OFC
(format control) for reports, I 0 (index origin), or OCT (comparison tolerance) for
data analysis, then these variables can be declared as local. Execution of the
operation is not affected by their global values, and the global values are not
affected by execution of the operation.

Names that are needed within a defined operation but have no importance after the
operation is executed should be localized. These names appear as global to oper-
ations called from this one. If they are not, execution of the operation creates them
as global names whose values persist in the workspace and take up space until
they are explicitly erased. Specification of values may destroy the values of global
objects with the same name.

Execution

When a defined operation appears in an expression, it is evaluated in the context of
that expression following the evaluation rules in [‘Evaluating Expressions” on|

[bage 33 The execution of the operation is controlled by its definition and its exe-
cution properties, which affect the operation's behavior in error or interrupt situ-

ations (see [Execution Properties” on page 360).

Each statement in the definition is executed in sequence or as directed by
branching statements. If the function has been defined with an explicit result, the
last specification of the result parameter name is returned as the result of executing
the operation. This result is then available for further evaluation of the expression
in which the defined operation appears.

Chapter 7. Defined Functions and Operators 353

Suspension of Execution
Execution of a defined operation may be suspended in either of two ways:

e By an attention
e By an interrupt or an error

You can suspend execution of a defined operation (or an expression) through the
keyboard in one of two ways: attention or interrupt. An attention suspends exe-
cution at the end of the current statement being executed. An interrupt causes the
system to behave as though an error were encountered; it suspends execution
immediately. All discussions concerning the effects of errors and their handling
apply to interrupts as well.

Attention signals and interrupts differ among input devices and host systems. For
information on attention and interrupt for your system, see the appropriate work-
station user's guide or APL2/370 Programming: System Services Reference.

If an error is encountered in a statement during execution of the defined operation
or if an interrupt is signaled, execution of the operation is suspended, and a
message and the suspended operation are displayed. For example:

VZ<«F X
[1] Z<10+X
[2] v

F 0

DOMAIN ERROR
FL1] Z<«10:X
AA

Calling Sequence

If a statement in a defined operation contains the name of a defined function or
operator, that operation is called and flow of control passes to it. While the called
operation is executing, the calling operation is said to be pendent, waiting to com-
plete execution. If the called function or operator, in turn, calls another, it is
pendent along with the original calling operation] Figure 41 on page 355|illustrates
this flow of control from one operation to another for the calling sequence beginning
with FUNCTIONA.

354 APL2 Programming: Language Reference

State Indicator

FUNCTIONA Original function begins executing.

LAN] FUNCTIONB FUNCTIONB called.
FUNCTIONA is pendent.

[BN] OPERATORA OPERATORA called.
FUNCTIONB is pendent.

OPERATORA completes execution.
Control returns to FUNCTIONB.

[BN] FUNCTIONB FUNCTIONB resumes execution at the
expression immediately after where it.
was called. When FUNCTIONB completes,
control returns to FUNCTIONA.

CLAN] FUNCTIONA FUNCTIONA resumes and completes execution.

Figure 41. Flow of Control of Calling and Called Operations

As each operation (or immediate execution expression) is invoked, it is placed in
the execution stack, and the line currently being executed is placed in the state
indicator. When the line completes, it is removed from the state indicator. When
execution of an operation or expression completes, it is removed from the exe-
cution stack.

The number of called functions or operators is not limited except as constrained by
the space available within the workspace. Pendent operations take up space; a
sequence of called and calling operations may create a WS FULL condition if
there is a large number of them or if any of them requires a sizable work area for
calculation.

A function that calls itself is recursive. Local copies of the function behave as sep-
arate functions in the execution stack. When a recursive function is called from an
operator, its name may be shadowed by local names.

When an operation is suspended, the suspended statement and its calling
sequence are found in the state indicator. The state indicator is a list of:

e The calling sequence of defined functions and operators along with their calling
line numbers and associated statements (see Figure 41).

e Asterisk(s) and the associated expression for all immediate execution
expressions that did not complete, either because of an error in the expression
or because the function invoked by the expression is pendent or suspended.

» Defined functions or operators that are in definition mode, with the statement
currently being defined.

Chapter 7. Defined Functions and Operators 355

The system commands) SIS (page[d53),)SI (page [)SIS—Display the State]

[Indicator with Statements” on page 457 form=pageonly), and)SINL (page
[).SINL—Display the State Indicator with Name List’ on page 456] form=pageonly)

display the state indicator and information about its contents :

e)SIS displays each statement in the state indicator with one or two carets to
indicate how far evaluation of the statement proceeded before it was stopped.

e)ST displays statement numbers and asterisks.

e)SINL displays local names for each defined operation in the state indicator.

For example:
)SIS)SI)SINL

FL1] Z«10:X FL11 F[1] Z X
A A * *

* F O

A

While an operation is suspended, local names are available for inspection.
However, any global values associated with those names are shadowed.

You can also use the system variables 0L (left argument) and OR (right argument)
to help determine the source of the error.

[Figure 42 on page 357 shows an example of actions that add to the state indicator
and the resulting response to the)SI.S command.

356 APL2 Programming: Language Reference

)SIS

31
SYNTAX ERROR
31
AA
)SIS
* 31
AA
VZ<FN
[1] 'LINE 1!
[2] Z<GNx2
[3] '"LINE 3'V
VZ<GN

(1] Z<«3+0V

FN
LINE 1
DOMAIN ERROR
GN[1] Z<3%0

A A
)SIS
GN[1] Z<3=:0
A A
FN[2] Z<«GNx2
A
* FN
A
* 31
AN

State indicator is empty.
Error adds statement to
state indicator.

Asterisk indicates immediate
execution expression that did
not complete.

Function definition. Note call
of function GN at line 2.

Function definition. Note error.

Function invoked.
First line of function executes.
Error in the called function.

First entry in the state indicator
is last expression that did not
complete.

Figure 42. Actions That Add to the State Indicator

Clearing the State Indicator
Statements remain in the state indicator until they have been cleared. If a work-

space that has items in the state indicator is saved, the state indicator is also

saved. There are several ways, discussed below, to clear the state indicator. The
one you use depends on what you are trying to accomplish and the situation that
caused statements to be put in the state indicator.

Chapter 7. Defined Functions and Operators

357

Escape: Escape (), a branch arrow with no expression to its right, abandons
further attempts to execute the suspended function and the calling sequence that
led to its being invoked. Escape clears the state indicator down to and including
the next . For example:

)ST
F[1]

*
>

)ST
You can then correct the error and recall the function.

VF[1] '"Z<''CANNOT DIVIDE BY O0''' [EA 'Z<«103X'V
F O
CANNOT DIVIDE BY O

Because only one calling sequence was in the state indicator, a single + cleared it.
This is not the case in the following example:

)ST
DL1]
*
BL2]
*
>
)ST
BL2]
*
>
)ST

To clear the state indicator, one - is needed for each asterisk in the state indicator.
As the calling sequence is removed from the state indicator, OEM and OET are
set to values appropriate to the statement at the top of the state indicator.

)JRESET: The system command)RESET clears the state indicator entirely.
JRESET nclears n lines from the display of the state indicator. (See)RESET,

page j49))

)SI D[11 =
B[2] =
JRESET
)ST

As with escape, 0FM and OET are set appropriately for the first entry in the state
indicator after the reset.

358 APL2 Programming: Language Reference

Resume or Restart Execution You may be able to respecify 0L or R to a suit-
able value and resume execution from the point at which it was halted by entering
+10. Execution can always be resumed by -1 0 if the state indicator shows

F O
DOMAIN ERROR
F[1]1 Z7Z<10:X

A A

OR<«1

>10
10

)ST

Alternatively, you can correct the line in error and redirect execution to begin at that
line or some other line by entering +~0L C to restart execution with the current line
(see page|300) or +~n, where nis a line number.

F 0
DOMAIN FERROR
F[11 Z<«10:=X
AA
VF[1] '"Z<''CANNOT DIVIDE BY O0''' [EA 'Z<«103X'V
SI WARNING
>1
CANNOT DIVIDE BY O

The message SI WARNING is displayed when editing affects a line of an opera-
tion appearing in the state indicator (if you edit the line or delete or insert lines
before it). In these cases, a negative sign precedes the line number in the state
indicator, and no statement is shown.

)SIS
FL 1]
* F O
A

Note: If a line has been edited, you cannot use 10 to resume execution at the
point where it halted. You can, however, restart execution by branching to a line
number. If no number is shown within brackets, the operation can be neither
resumed nor restarted.

Chapter 7. Defined Functions and Operators 359

Do Not Resume Execution by Invoking the Operation Again: |f you correct the
error in the operation and then invoke the operation again, the state indicator is not
cleared. After the operation has executed, the earlier uncorrected version remains
in the state indicator.

F 0
DOMAIN ERROR
F[11 Z<«10:%X

AA
VF[11 '"Z<«''CANNOT DIVIDE BY 0''' OEA 'Z2<103:X'V
SI WARNING
F 0
CANNOT DIVIDE BY O
)SIS
FL 1]
* F O

A

Use > or)RESET to clear the state indicator before invoking the operation a
second time.

When a Called Operation Is Suspended

Sometimes, a defined operation which has been called by another defined opera-
tion is suspended. The state indicator shows the entire calling sequence. The
values associated with local names in the operation at the top of the state indicator
are the only accessible values for those names. However, you can use the editor
to display calling operations. You cannot restart execution after correcting the error
unless the corrected defined operation is the first in the state indicator.

Execution Properties
A defined operation has four execution properties, which can be set independently

with OFX (fix with execution properties) in [‘0F X Fix (with Execution Properties)’|
lon page 294l The following describes the execution effect of setting each property.

e The defined function or operator may not be displayed or edited through the
APL2 editors, through the system function OCR (character representation), or
through OTF (transfer form); and it may not be traced.

e The defined function or operator is not suspended by an error or an interrupt
and it may not be stopped.

e The defined function or operator ignores attentions and stop control settings
during its execution. (Interrupts are never ignored.)

Suspension of defined functions and operators and interrupts are discussed in
[‘Suspension of Execution” on page 354}

e The defined function or operator converts any error other than a resource error
intoa DOMAIN ERROR. (INTERRUPT,SYSTEM ERROR, WS FULL,
and SYSTEM LIMIT are classified as resource errors.)

360 APL2 Programming: Language Reference

The execution properties of a called function or operator during an execution
sequence are determined by “or-ing” its properties with those of the calling function
or operator. For example, suppose function ¥ has the nonsuspendable property (0
1 0 0) and function G has the error conversion property (0 0 0 1). If F calls
G, both the nonsuspendable property and the error conversion property are
imposedon G (0 1 0 1). Because execution properties are inherited by called
functions and operators, if a locked function calls an unlocked function, the
unlocked function behaves as though it were locked.

Execution properties can be changed only by using OFX and only if the operation
can be displayed. The execution properties of a defined operation can be deter-
mined by using OAT (attributes), page

The default function or operator definition provided by the APL2 editors has none of
these properties. If an operation is locked during editing (with %), all the execution
properties are set.

Debug Controls

APL2 includes two facilities for analyzing the behavior of defined functions and
operators: trace control and stop control.

Trace Control

A trace is an automatic display of information generated by the execution of each
selected line of a defined function or operator. When a statement is traced, the
following information is displayed whenever the statement is executed:

e Function or operator name
e Line number in brackets
e Final array value (or branch) produced by that statement

The trace control for a defined operation is designated by prefixing T A to its name.
For example, a trace may be set on lines 1, 3, and 6 of a defined operation B S
by executing:

TARS<«1 3 6
A trace may be set on all lines by executing:
T ARS<1number of lines in the operation (or more)

A trace is turned off by setting the trace control to 1 0.
TARS<10

Global names beginning with 7A may not be used for any purpose other than trace
control.

Chapter 7. Defined Functions and Operators 361

Stop Control

VZ<«(F XEACH)STACK:X
[11 Z<'"
[2] APROCESS FIRST ITEM; EXIT IF ERROR
[3]1 L1:'+0' OE4A 'X<F4STACK'

[4] <7 ,cX RAPPEND RESULT
[5] >(02pSTACK«1+¥STACK)/L1 REXIT IF STACK EMPTY
(6] v

For example, the function derived by the operator XEACH processes each item in
its argument until an error occurs.

1XEACH 2 4 6 No error, so each item is proc-
12 1 234 1 2 3 4 56 essed.

Error in the third item, so proc-
1XEACH 2 4 ~2 6 essing stops after the second item.
1 2 1 2 3 4

Tracing lines 1 3 4 5 shows the behavior of the operator:

TAXEACH<«1 3 4 5
+XEACH 1 0 7
XEACH[1]
XEACHL3] 1
XEACHIL4] 1
XEACHL5] »3
XEACH[3] -0
1
TAXEACH<10

Trace on a line containing multiple expressions separated by diamonds causes
trace output for each expression evaluated.

Trace controls can be both set and referenced. A reference to a trace control
vector returns only valid line numbers (in increasing order) upon which a trace has
been set.

Settings of trace controls are relocated as a result of line insertion or deletion by
the APL2 editors.

Trace settings are ignored if the execution property 'nondisplayable’ is set.

A defined operation can be made to stop before a selected line is executed. When
a statement is assigned a stop control, execution stops just before the statement is
to be executed, and the following information is displayed:

e QOperation name
¢ Line number in brackets

Execution may be resumed by entering a branch statement.

362 APL2 Programming: Language Reference

The stop control for a defined operation is designated by prefixing SA to its name.
For example, a stop may be set on lines 1, 3, and 6 of a defined operation RS by
executing:

SARS<«1 3 6
A stop may be set on all lines by executing:
S ARS<1number of lines in the operation (or more)

A stop is turned off by specifying the stop control to 1 0.
SARS<«10

For example, with the operator XEACH shown in the previous section (page [361):

SAXEACH<Y

AXEACH (9 44 23) (10 11)
XEACH[4]

X
1 3 2

-
XEACH[4]

132 1 2

Global names beginning with SA may not be used for any purpose other than stop
control.

Stop controls may be both set and referenced. A reference to a stop control vector
returns only valid line numbers (in increasing order) upon which a stop has been
set.

Settings of stop controls are relocated as a result of line insertion or deletion by the
APL2 editors.

Stop control settings are ignored if the execution property 'ignore weak interrupt' is
set.

Chapter 7. Defined Functions and Operators 363

, Chapter 8. Shared Variables

Shared variables constitute an interface through which information is passed
between two processors—information to be used by each for its own purpose. The
two processors can consist of many possible combinations, including two APL2
users, two auxiliary processors, one auxiliary processor and one user, one user and
an APL2 interpreter using the shared variable interface, and so on.

The next sections discuss the concepts and usage requirements of shared vari-
ables.

Shared Variable Concepts

A variable becomes shared when one processor has offered to share it and a
second processor has accepted the offer (made a counter offer for a variable with
the same name). The variable is then fully-coupled between the two partners and
data communication can take place.

The two processors are called share partners.

A given processor can simultaneously share variables with any number of other
processors. However, each sharing is bilateral; that is, each shared variable has
only two partners. For example, a shared data file can be made directly accessible
to a single control processor. That processor can share variables bilaterally with
each of several other processors, controlling their individual access to the data, as
required.

Either partner can set a value for the variable and also use the value. At any one
time, a shared variable has only one value—the value most recently set by either
partner.

The communication protocol is controlled by the setting of the access control vector
(ACV), which is defined by either or both partners. The access state vector (ASV),
which is set by the system, indicates the current state of the shared variable so that
you can execute requests appropriate to the state. For a discussion of the access
control mechanism provided by the shared variable facility, see ["Synchronization of
[Asynchronous Processors” on page 367]

APL2 Shared Variable System Functions and System Variable

364

There are five system functions and one system variable that can be used to estab-
lish, query, and maintain proper communication between an APL2 user and a share
partner| Chapter 6, “System Functions and Variables” on page 259 describes the
syntax and results of the system functions and the setting and use of the system
variable. Figure 43 summarizes the results of the monadic and dyadic forms of the
functions, and [Figure 44 on page 365 summarizes the setting and use of the vari-
able.

© Copyright IBM Corp. 1984, 1994

Figure 43. System Functions Used with Shared Variables

System
Function

Monadic

Dyadic

asvo

Shared
Variable
Offer

Obtain the current degree of coupling
of the variable(s) entered as the right
argument.

Offer the right-argument variable(s) to
the processor(s) identified in the left
argument.

asve

Shared
Variable
Control

Query the setting of the access control
vector (ACV) for the variable(s)
entered as the right argument.

Set your contribution to the ACV (the
Boolean vector(s) entered as the left
argument) of the variable(s) entered as
the right argument.

asvs

Shared
Variable
State

Query the access state vector(s)
(ASVs) for the variable(s) entered as
the right argument.

Not applicable.

Osve

Shared
Variable
Retraction

Retract the shared variable(s) entered
as the right argument.

Not applicable.

asve

Shared
Variable
Query

Obtain a list of unmatched variables
offered by the processor entered as
the right argument.

If the right argument is an empty
vector (OSV@ 10), the function
returns a list of processors that have
made an unmatched offer to you.

Not applicable.

Figure 44. System Variable Used with Shared Variables

System
Variable

Set

Use

OSVE

Shared
Variable
Event

Specifies the amount of time in
seconds to be used in a wait for a
shared variable event and starts the
timer.

Suspends execution until either the speci-
fied number of seconds has elapsed or a
shared variable event occurs. When an
event occurs, returns the time remaining
in the timer.

Characteristics of Shared Variables

Syntactically, a shared variable is indistinguishable from any other variable. The

only reliable way of knowing whether a variable is shared is to know its degree of
coupling. The degree of coupling is a scalar integer maintained for each variable.
It indicates the number of partners with whom it is shared (0, 1, or 2). It is the
explicit result of both monadic and dyadic 0.SV0 and OSVR. For detailed informa-
tion, see fDegree of Coupling” on page 366

Number of Shared Variables: Some auxiliary processors distributed with APL2
require a single variable to accomplish a user request; some accept one variable
under some conditions and two variables under other conditions; others require a
pair of variables matched either by name or by initial value.

Shared Variable Names: The maximum length of a shared variable name cannot

exceed 255 characters. Auxiliary processors can restrict the length of the name to
less than 255, or can require special naming conventions.

Chapter 8. Shared Variables 365

For a variable to be shared, two partners must offer the same name for the vari-
able. To maintain the independence between two autonomous processors, APL2
permits the use of an alias or surrogate name to be shared when one partner
requires a certain naming convention that is inconvenient for the other partner to
comply with. For the general syntax of offering surrogate names, see the dis-
cussion of OSVO0 in|Chapter 6, “System Functions and Variables” on page 259}

Shared Variable Values: The value associated with a variable at the time it is
offered to a partner is the initial value. Some auxiliary processors require an initial
value; some ignore an initial value. With others, an initial value is optional. After
sharing has been established, the values you subsequently set or use in a shared
variable depend on the function and requirements of the processor with which you
are communicating. Some processors restrict the type of data that can be shared.
For requirements for shared variable values, see the appropriate associated
processor in the workstation user's guides or APL2/370 Programming: System
Services Reference.

Communication Procedure

The following general procedure is used to communicate using shared variables.
1. Offer to share the variable(s).
2. Ensure the degree of coupling is 2.
3. Set access control for each variable offered.

4. Access the variable(s) by following the protocol established for them and the
requirements for their values.

5. Retract the variable(s).

Retracting a variable withdraws your share offer with your partner. After
retraction, the variable can be offered to another processor or reoffered to the
same processor. A variable can be explicitly retracted using OSVR, or it can
be implicitly retracted when the variable no longer exists in your workspace or
the workspace no longer exists. For a description of STVR and a list of condi-
tions when a variable is implicitly retracted, see [0SVR Shared Variable]
[Retraction” on page 332]

Degree of Coupling

The degree of coupling is the explicit result of offering a shared variable (dyadic
0SV0) or inquiring about a variable's share status (monadic or dyadic OS5V 0).
Explicitly retracting a variable (0SVR) returns the degree of coupling the variable
had immediately before it was retracted.

The degree of coupling is a scalar integer that indicates the number of partners that
share or have shared the variable. The possible values are 0, 1, or 2. The
meaning of each value is described below.

Degree of Coupling = 0: Either you have made no offer, or the offer failed.
Reasons for a failed offer include:

e The name you have specified as a shared variable is in use as the name of a
function, an operator, or a label.

366 APL2 Programming: Language Reference

* The name contains invalid characters (including names that begin with the
quad, 0).

e The variable is already shared with, or has been offered to, another processor
(a variable can be shared by only two partners).
Degree of Coupling = 1: Your offer is pending. It may or may not be matched in

the near future. Reasons for a pending offer include:

e Unacceptable variable name specified in the offer when the specified partner
requires a certain naming convention.

» The processor needs a pair of variables to communicate, but only one has
been offered.

* A nonexistent processor ID was specified in the offer.
e The processor has already accepted its maximum number of shared variables.
e Your partner has not yet matched your offer.

This is typical with the asynchronous behavior of the APL2 auxiliary processors.
Use the system variable 0STVE to explicitly wait a reasonable amount of time
for your offer to be matched. See [‘Signaling of Shared Variable Events” on|

Degree of Coupling = 2: Sharing is complete; the variable is fully coupled. Each
partner has offered the variable to the other.

Synchronization of Asynchronous Processors

In most practical applications it is important to know that a new value has been
assigned by your partner between your successive uses of a shared variable, or
that use has been made of a value before you set a new one. The shared variable
facility embodies an access control mechanism to help ensure proper communi-
cation.

The access control operates by inhibiting the setting or use of a shared variable by
either or both owners, depending on the values of two Boolean vectors maintained
for each shared variable. The vectors are the access control vector (ACV) and the
access state vector (ASV).

The access control vector, queried by monadic 0S5V and set by dyadic SV C,
contains the protocol that regulates the sequences for access of the variable by the
two partners. It indicates whether repeated attempts to set or to use a variable by
one partner require either a use or a set by the other.

The access state vector, which is set by the system and can only be queried by
you (using [0SVS), indicates two things:
* Which partner(s) have used (know) the current value of the variable

e Which partner, if any, has set a value in the variable that has not yet been
used by (is unknown to) the other partner.

Chapter 8. Shared Variables 367

Symmetry of the Access Control Mechanism
Although each item of the access control and access state vectors has its own
meaning, the relative positions of each item in the vectors relate to each other.
Your view of the vectors is:

e The first and third items refer to you

e The second and fourth items refer to your partner
» The first and second items refer to sets

e The third and fourth items refer to uses

Figure 45 shows the meaning of each item in the vectors.

%AAAAAVYOURACCESS ——————{

SETS USES

[1] [2] [3] [4]

SETS USES
PARTNER ACCESS

Figure 45. Items in the Access Control and Access State Vectors

The view your partner has of the access vectors is the mirror image of yours. To
clarify the symmetry of the vectors and to help you remember which items are
which, reshape the vector to a 2 by 2 Boolean matrix.

Qsvec 'SHARED'
0110
O<«ACV<2 2p0SVC 'SHARED'

0 1
1 0
Reverse the matrix to see your partner's point of view:
dACT
1 0
0 1
In matrix form, column one refers to the viewer, and column two refers to the view-

er's partner. Row one refers to sets, and row two refers to uses. Figure 46 illus-
trates the control mechanism in matrix form.

YOUR ACCESS PARTNER ACCESS
SETS [1] (2]
USES [3] (4]

Figure 46. Access Control or Access State Vectors as a Matrix

368 APL2 Programming: Language Reference

. Access Control Vector

| The settings in the access control vector indicate any constraints on the partners

| for access to a shared variable. A 1 indicates a constraint on the partner and type
| of access represented for each position of the vector. A 0 places no constraints on
| access. The constraints placed for each item are:

| ACV[11 You cannot set the variable two times in a row without an intervening
| access by your partner. (An access is either a set or a use.)

| ACVL 217 Your partner cannot set the variable two times in a row without an inter-
| vening access by you.

| ACVL[31 You cannot use the variable two times in a row without an intervening set
| by your partner.

| ACVL 41 Your partner cannot use the variable two times in a row without an inter-
| vening set by you.

| Figure 47 illustrates, in matrix form, the constraints imposed for each position of
| the access control vector.

CONSTRAINT

ACVL1] ACVL2]
Successive Require an Require an Successive
SETS by ME intervening access intervening access SETS by my
by MY PARTNER by ME PARTNER
ACVL3] ACTIH]
Successive Require an Require an Successive
USES by ME intervening set intervening set USES by my
by MY PARTNER by ME PARTNER

Figure 47. Access Control Matrix

| Setting the Access Control Vector

| You set access control when you want to synchronize your access of a variable

| with your partner's access of that same variable. For example, to make sure your
| partner always has a chance to set new data in the variable each time you use it,
| you can place a constraint on yourself that inhibits your use until your partner sets
| the variable. By setting the appropriate constraints on yourself and your partner,

| you can impose an orderly dialog between you both.

| Below are examples of access control vectors and their meanings.
| Note: Any combination of the four items in the vector is valid.

0000 No constraints. Regardless of which partner set the last value and
regardless of which partners know or do not know the current value,
either partner can both set and use the value. Sharing can be com-
pletely asynchronous.

1111 Maximum constraint. Neither partner can set the variable two times in a
row without an intervening access by the other partner. In addition,
neither partner can use the variable two times in a row without an inter-
vening set by the other partner.

Chapter 8. Shared Variables 369

1010 Constraint on both your set and your use of the variable, but no con-
straint on your partner's access.

0011 Constraint on both your use and your partner's use of the variable.
Allows either partner to set the variable. This setting ensures that
neither partner will see the value more than once.

0010 Constraint on your use of the variable without an intervening set by your
partner.

Access control should be set immediately after you offer a shared variable. If you
set it before the offer, it is ignored. After it is established, the ACV remains in
effect until you or your partner changes it.

The access control vector (ACV) can be set by either partner. Typically, auxiliary
processors set appropriate access control vectors for the services provided. You
should generally set the access control vector to prevent accidental loss of data.

Your setting of an access control vector results in the OR (V) of your setting and
the setting established by your partner. You can contribute only to the setting (that
is, impose additional constraints), and you can decrease only the constraints you
yourself have imposed. You are not allowed to decrease the control established by
your partner.

Use monadic SV C to query the current ACV setting for a variable. Use dyadic
0S¥V C to impose additional constraints on the access control set by your partner or
to reduce your contribution to the constraints. For example:

asve 'CcMS100!
0 001

1 0 0 0 OSVC 'CMS100"
1 0 0 1

0 0 0 0 OSVvC 'CcMS100"
0 0 01

Access State Vector

The settings in the access state vector indicate which partner(s) knows the current
value, and which partner, if any, last set a value unknown to the other partner. The
items in the vector have the same relationship to the partners and the access of the
variable as the access control vector does.

Use OSVS to see the access state vector. A 1 in an item of the access state
vector (ASV) has the following meaning:

ASVL 11 You have set a value which your partner has not yet used.

ASVL 217 Your partner has set a value which you have not yet used.

ASVL[31 You know the current value of the variable.

ASVL4] Your partner knows the current value of the variable.

To illustrate its symmetry, [Figure 48 on page 371 shows the meanings of the
items in the access state vector in terms of a matrix.

370 APL2 Programming: Language Reference

ASV[1] ASVI2]

| have set the variable, My partner has set the

but my partner has not yet variable, but | have not

used it. yet used it.

MY PARTNER DOES NOT HAVE THE I DO NOT HAVE THE CURRENT VALUE

CURRENT VALUE

| know the current value of My partner knows the current

the variable. | have either value of the variable. My partner

set it or used it. has either set it or used it.

| HAVE THE CURRENT VALUE MY PARTNER HAS THE CURRENT
VALUE

Figure 48. Access State Matrix

Access State Values
The access state vector can contain only one of four possible values:

0000 Not a shared variable.

0011 The current value is known by both partners. This is also the setting
when a variable is first offered.

1010 You have set a value your partner has not yet used. You know what
the value is, but your partner does not.

0101 Your partner has set a value you have not yet used. Your partner
knows what the value is, but you do not.

Like the access control vector, the access state vector can be viewed from the per-
spective of each partner. If your use of the ASVis 1 0 1 0, the ASV is seen by
your partneras 0 1 0 1.

Effect of Access Control and Access State on Communications

[Figure 49 on page 372 illustrates the permissible and non-permissible actions that
can be taken by two share partners under the possible combinations of settings of
the access control and access state vectors. Lines around the perimeter are per-
missible actions in all cases. Lines around the inside are constrained or inhibited
by ACV and ASV values.

Chapter 8. Shared Variables 371

01
01
ASM
SET BY

Legend:

SA SB UA UB: Denote set oruse by A or B.
ACM: Access Control Matrix
ASM: Access State Matrix

A one in an element of ACM inhibits the associated access. Allowable accesses are given
by the zeros in ACMAASM . Access control vectors as seen by A and B, respectively, are

,ACM and , PACM .

The access state matrix represents the last access: ones occur in the last row if it is not a set,
and in a column if it is, the first column if set by A and the last if set by B.

Figure 49. Access Control of a Shared Variable

Shared Variable Interlock

Execution is suspended if you attempt to access a shared variable twice in a row
when its ACV is set to prevent your successive set or use of the variable. When
this occurs, you are interlocked. Waiting for an access of the variable by your
partner, execution is suspended for an indefinite amount of time. Enter an interrupt
to release the suspension and raise an 'INTERRUPT' signal.

For details on entering an interrupt under a particular system, see the appropriate
workstation user's guide or APL2/370 Programming: System Services Reference.
When an interrupt is entered, the INTERRUPT message appears in the session
output.

Over Specification

No access control can be set that can prevent you or your partner from ignoring
(not using) the value the other partner has set in a variable. When one partner
sets a new value over the other's set without first using the value, it is called
overset or overspecification.

372 APL2 Programming: Language Reference

Typically, auxiliary processors supplied with APL2 specify a return code indicating
success or failure from the most recent operation requested of the processor.
Because there is no requirement for you to use a variable your partner has set, you
are not required to obtain the return code your partner sets. However, you could
lose important diagnostic information if a problem should arise while communicating
with an auxiliary processor. It is recommended that you always check the return
code from every auxiliary processor operation.

Signaling of Shared Variable Events

The system variable 0 SVE, shared variable event, gives you the ability to suspend
execution until a shared variable event occurs.

A shared variable event occurs when one of the following happens:

e An incoming offer to share a variable does not match a pending offer (made by
you)

e Your partner matches a pending (or outstanding) offer from you

* Your partner retracts a variable you share

* Your partner sets the access control vector (any dyadic 0SVC) on a fully-
shared variable

e Your partner attempts to access a variable under the situations shown in
[Figure 50 on page 373

Note: The access state vector may or may not change.

The OSTVE timer expires before some other shared variable event occurs.

ACVIL] <— 1 ACVI2] — 1

My SETs are constrained. My partner's SETs are
constrained.

Signal if Partner USEs.
(Change to ASV.) Signal if partner tries to SET
but becomes interlocked.
(No change to ASV.)

ACVE3] <— 1 ACVIH] < 1

My USEs are constrained. My partner's USEs are
constrained.

Signal if partner SETs.
(Change to ASV.) Signal if partner tries to

USE but becomes interlocked.
(No change to ASV.)

Figure 50. Shared Variable Accesses that Signal a Shared Variable Event

Chapter 8. Shared Variables 373

The specification of OSVE sets and starts a timer for n seconds. A use of OSVE
delays execution until either the specified number of seconds elapses or one of the

shared variable events listed above occurs.

Use of OSVE gives you a means of determining when to take another action. For

example, you can use OSVE to:

» Wait for your share offer to be matched
e Wait for offers to be made to you

* Wait for reference or specification of shared variables.

Regardless of the use, the structure of the code to establish a wait is similar to and

may be a variation of the following:

(1] OSVE<N a SET THE TIMER

[2]1 TRY: ~(condition)/0 A EXIT IF FUNCTION SUCCESSFUL

[31 ~»(0=0SVE)/TRY A WAIT FOR A SHARED VARIABLE EVENT
(4] '"FAILURE' A MESSAGE IF TIME EXHAUSTED

The condition in line 2 depends on the shared variable function being used. For

example, to wait for an appropriate access state:

v
[o1] Z<«N WAITSET VAR
[1] OSVE<N
[21 TRY: >(Z<«0 1 0 1=0SVS VAR)/0
[3] +>(020SVE)/TRY
[u4] '"EVENT DIDN''T HAPPEN'

374 APL2 Programming: Language Reference

D D D D

START TIMER

EXIT IF I CAN USE VARIABLE

WAIT FOR A SHARED VARIABLE EVENT
TIME EXHAUSTED

Chapter 9. The APL2 Editors

APL2 supports a number of editors for creating and modifying defined functions and
operators. Most of the editor facilities described in this chapter are available on all
APL2 platforms, though there are some differences, especially in the techniques
used for invoking the editors. The following types of editors are supported:

¢ A traditional line editor.

This editor can be used with all types of session input devices. It can also be
used effectively for interactive processing when combined with the line reuse
facilities of the APL session manager.

e An APL full-screen (or windowed) editor.

This editor, often called Editor 2, deals with pages of text and has no
command line. It depends on function keys or other special control keys for
actions such as scrolling. It supports concurrent editing of multiple objects.

A simpler full-screen editor is available on some platforms, but does not support
concurrent editing or have as many editing features, and can be used only to
edit programs, not arrays.

e An interface to system editors.

This interface passes an APL object from the active workspace to some editor
independent of APL, and that is available on the system. Typically, any editor
can be used, though with some it is difficult or impossible to handle APL char-
acters. In most cases only a single object can be edited at a time.

¢ An interface to user-written APL editors.

Installations or users can provide their own editors written in APL, or written
specifically to meet APL2 interfaces.

There are two groups of platforms, with somewhat different characteristics:

Workstation Platforms: The line editor and named system editors can be
invoked using V followed by an object name or program header. The editor to be
invoked by V is the one that was last specified using the)EDITOR system
command. The supported choices are:

JEDITOR 1

for the line editor (this is the default)
JEDITOR name

for a system editor

Two other editors are provided in the EDIT workspace:

¢ The APL full-screen editor can be accessed as follows:

JPCOPY 1 EDIT EDITOR_?2
EDITOR_2 'object_name'

* A smaller and faster, but limited function, APL full-screen editor for defined
functions and operators can be accessed in a similar way:

JPCOPY 1 EDIT EDIT
EDIT 'program_name'

© Copyright IBM Corp. 1984, 1994 375

Users can write their own editors in APL2, and can access them as described in
the example above.

APL2/370 Platforms: All editors can be invoked using V followed by an object
name or program header. The editor to be invoked by V is the one that was last
specified using the YEDITOR system command. The supported choices are:

JEDITOR 1
for the line editor (this is the default)

YEDITOR 2
for the APL full-screen editor

JEDITOR name
for a system editor, where name can be any command or command pro-
cedure that could be invoked directly from a CMS or TSO command
line.

JEDITOR 2 name
for a user-provided editor. The name provided must be one that is
defined as a processor 11 entry point, and can be either a compiled
program or an APL program in a namespace. For further information
about processor 11, see the APL2 Programming: System Services Ref-
erence.

User-written APL editors can also be accessed using) PCOPY as described for
the workstation platforms.

Unless explicitly changed, the selected editor remains available throughout the
session. System commands, including)CLEAR and) LOAD, do not alter the
editor setting.

In this chapter, the word object refers to an array, a function, or an operator.

Editor Features

Editors 1 and 2 provide similar functions, although the provision for these functions
and their scope differ occasionally. Whenever possible, similar commands are
used; you need not learn two different sets of commands.

Figure 51 lists the major features of each editor. Some features are available only
when the session manager is used. Editor 2 provides extended capabilities.

376 APL2 Programming: Language Reference

Figure 51. Features of the APL2 Editors

Editor 2
Editor 1 Full- Named Named
Line Screen System APL

Feature Editor Editor Editor? Editor2
Define a function or operator yes yes yes yes
Receive line number prompts yes no no yes
Lock a function or operator yes yes yes yes
Abandon editing of an object yes yes yes yes
Edit a function or operator:

Add lines yes yes yes yes

Replace lines yes yes yes yes

Insert lines yes yes yes yes

Insert or delete characters in a line yes yes yes yes

Copy lines from current object yes3 yes yes yes

Copy lines from another object yes3 yes no yes

Move a line yes3 yes yes yes
Globally change text or names in an object yes yes yes yes
Locate occurrences of text or names in an object no yes yes yes
Display object or selected portions yes yes yes yes
Scroll through the display of an object yes3 yes yes yes
Delete object body or selected portions yes yes yes yes
Edit multiple objects yes yes no yes
Execute expression while in definition mode yes yes no yes
Edit simple character vector or matrix no yes yes yes
Enter system commands while in definition mode yes no no yes
Record display and editing of object in the session log yes3 no no yes
Renumber lines no yes no yes
Establish object in the workspace without exiting editing no yes no yes
Rename a function yes yes yes yes
Edit arrays

Simple character array no yes4 yes yes

Numeric array no no yes yes

Nested array no no yes yes

Mixed array no no yes yes
Notes:

1. The APL2 interface to the named system editor allows all of the features marked “yes.” Particular host editors can

restrict some of these features.

2. The named APL editor interface provides full access to APL2 facilities. A given editor can restrict access to APL2

facilities.

3. These features are available only when the session manager is used.

4. This cannot edit simple scalars.

Chapter 9. The APL2 Editors

377

Characters Permitted within Statements

For statements containing characters that are elements of 07C, the following
restrictions apply:

If the statement is displayed by Editor 1 or an error display, or if the OCR or
OEM of the statement is displayed, the 0T C characters are interpreted as
control characters. In the case of backspace, one or more characters pre-
ceding the backspace in the line is overstruck or overlaid.

If the statement is displayed with Editor 2, the 0T C characters are displayed as
blots or blanks.

Statements containing 07T C characters cannot be entered with Editor 1 or 2.
They can be introduced into objects being edited with Editor 2 with the com-
mands [A]and [¢].

Statements containing 007 C characters can be modified by Editor 1 but those
modifications cause loss of the 07 C characters and possibly characters fol-
lowing the 07 C characters, since Editor 1 accepts the modified line as dis-
played.

Statements containing 07 C characters can be modified by Editor 2, but those
modifications can cause the T C characters to be converted to blanks or
deleted.

When named editors are used, 07T C characters are handled as defined by the
named editor. Many named editors provide for hexadecimal display, modifica-
tion, and entry, and thus support the editing of these characters.

For statements containing other characters that are contained in AV, but cannot
be displayed on the display device in use, the following restrictions apply:

If the statement is displayed by Editor 1 or 2, or an error display, or if the OCR
or JEM of the statement is displayed, the characters are displayed as blots or
blanks.

Statements containing nondisplayable characters cannot be entered with Editor
1 or 2. They can be introduced into objects being edited with Editor 2 with the
commands [A]and [21].

Statements containing nondisplayable characters can be modified with Editor 1
or 2, but modifications can cause those characters to be converted to blanks or
lost, or can cause an ENTRY ERROR ora DEFN ERROR to be generated.

When named editors are used, all characters are handled as defined by the
named editor. Many named editors provide for hexadecimal display, modifica-
tion, and entry.

378 APL2 Programming: Language Reference

Characters that are not contained in AV are referred to as extended characters.
Some APL environments can provide a character set identification that defines a
range of extended characters that can be correctly handled. (See the description of
the DBCS invocation option in APL2/370 Programming: System Services Refer-
ence.) For a given character set identification, N, an extended character, C, is
defined to be within the range if

N=256124(4p256)TOAF C

For objects containing extended characters that are outside the range, the following
considerations apply if a character set identification is not provided by the APL
environment:

e Extended characters are displayed as omegas (w) by Editor 1. Modification of
statements so displayed causes the extended characters to be converted to
omegas.

e Editor 2 and named system editors produce a DEFN ERROR when editing is
requested.

« If the object to be edited contains extended characters outside the range
defined by the character set identification, Editor 2 and named system editors
produce a DEFN ERROR when editing is requested. Editor 2 also produces a
DEFN ERROR if such characters are introduced into the object being edited
with [~] or [¢] commands. Editor 1 causes such characters to be con-
verted to omega (w) prior to display.

e Named APL editors are responsible for prompting their users for input and
establishing any changes made to objects in the workspace. Some of these
editors can support extended characters on suitably-equipped devices.

For objects containing extended characters within the range, the following consider-
ations apply if a character set identification is provided by the APL environment:

« If the object to be edited contains shift-in or shift-out characters (DAF 14 or
OAF 15), Editor 2 and named editors produce a DEFN ERROR when editing
is requested. Editor 2 also produces a DEFN ERROR if shift-in or shift-out
characters are introduced into the object being edited with [AJ or [2] com-
mands. Editor 1 treats shift-in and shift-out characters as nondisplayable char-
acters as described above.

e Objects containing extended characters within the range defined by the char-
acter set identification are correctly displayed and can be entered and modified
with Editors 1 and 2 and certain named editors on suitably-equipped devices.

For additional information concerning display and entry of extended characters, see

the appropriate workstation user's guide or APL2/370 Programming: System Ser-
vices Reference.

Chapter 9. The APL2 Editors 379

Named System Editor

APL objects can be passed to a specified named system editor in response to V.
Unlocked functions and operators and arrays of rank 0, 1, and 2 can be edited. An
attempt to edit an array that is not a scalar, vector, or matrix results in a DEFN
ERROR report.

The named system editor is set with) EDTTOR name and persists for the entire
session unless changed. It can refer to an EXEC or a MODULE in CMS, a CLIST
in TSO, a shell script in AIX* and Solaris, or an executable file in OS/2 (for
example, a .CMD file).

The editor converts the APL object in your active workspace to a character matrix
form, writes a temporary file, and then invokes the named system editor, passing it
the name of the temporary file.

With array editing, the rank of the array is preserved unless additional items or
rows are added. A scalar can be coerced to a vector if it is changed to a nonsingle
or a matrix, if other than one row is created. A vector can be coerced to a matrix if
additional rows are appended. Array rank never decreases, so a matrix edited to
one row results in a 1 by n matrix and not a vector.

When given a name to edit that does not currently exist, it is assumed to be the
name of a program. To initialize a variable to be edited as a simple character
array, NAME<0 0Op'"' . (Seel[‘Editing Simple Character Arrays’l) To initialize a
variable to be edited in evaluated form NAME<O 0p0 . (See[Editing Evaluated|
[Arrays (APL2/370 Only)” on page 381})

To lock a program, you must begin or end with ¥. You cannot lock the program
during editing.

Exiting the Editor

To exit the editor, simply exit as indicated by your named system editor. If there is
an error in a temporary file you have altered, and you want to exit without saving
that file, you must either erase the temporary file or change the file to consist of a
single line containing a blank character. Then, you exit.

Editing a Program

The text of the program being edited is displayed in the same form used by Editor
1 or Editor 2, except that line numbers are omitted. On exit, the program is re-fixed
if there were any changes. Any currently suspended version of the same program
is replaced by the new version.

Editing Simple Character Arrays
Simple character arrays of rank 0, 1, and 2 are displayed in their default display
form, one record of the file per row of the variable.

The file built for editing a rank 0 or 1 array has variable record length. The file built
for editing a rank 2 array has fixed record length equal to which ever is larger, the
width of the array or the variable name.

Upon exit from the editor, trailing blank columns are deleted from rank 0 and 1
arrays. Trailing blank columns are not deleted from rank 2 arrays. Some system

380 APL2 Programming: Language Reference

editors support commands which can be used to change the file's record format
and length. The editors may then strip trailing blanks if the data is saved.

To exit the editor without changing rank 0 or 1 arrays, make the file consist of a
single line with a blank character, then exit. To exit the editor without changing
rank 2 arrays, simply exit.

Editing Evaluated Arrays (APL2/370 Only)

All arrays that are not simple character arrays are edited in an evaluated form. On
exit, each record is evaluated in the user's workspace. Since the records are eval-
uated, they may contain any APL expression that returns an array result. The
resulting array is reconstructed by combining the evaluated records using disclose

(2)-

If an error occurs during evaluation or reconstruction, a DEFN ERROR message
is displayed briefly, possibly followed by a specific APL error report and the first
offending record. The editor is then re-entered after a short delay.

Under CMS, the name of the temporary edit file used is n AP2EDEVL, where n is
the first counting number of a currently unused file name.

For example : Suppose a record was changed from 12 (345)to12+(345). A
new screen would appear showing :

DEFN ERROR
LENGTH ERROR
1 2+(3 4 5)
A A

Then, the editor is re-entered after a short delay. To exit the editor without
changing the array, make the file consist of a single line with a blank character,
then exit.

Note: The display of an array can include APL2 characters that define the array's
structure. Most commonly usedare p (), c,and '.

Chapter 9. The APL2 Editors 381

For example :
A<1p71 2 3
would be displayed as

A
(,1) (,2) (,3)

Named APL Editor (APL/370 Only)

User requests to edit APL objects can be passed to a named APL editor. In
response to a V, APL2 uses [NA and processor 11 to create an association to
and call the named APL editor to handle the edit request.

The named APL editor is identified with)EDITOR 2 name and persists for the
entire session unless changed. The named APL editor can reside in an APL2
namespace or be a non-APL program.

The named APL editor is executed as if it had been called directly from the user's
current namescope. However, it is not associated in the current namescope so its
association does not cause name conflicts.

Guidelines for Writing a Processor 11 Editor

When the user enters an expression with a leading V, APL2 attempts to establish
an association with the name specified in the)EDITOR 2 name command.
APL2 uses 3 11 as the left argument to ONA. If the association fails, APL2 then
uses name 11 as the left argument to ONA. APL2 then calls the function.

The named APL editor function is passed a character vector containing the user's
V expression. It is the function's responsibility to parse the vector, interpret the
user's request, invoke an editor or provide editing capabilities, and reestablish the
object's definition. APL2 does not ensure that the V expression's syntax is valid.
It is the responsibility of the processor 11 function to interpret the expression.

Note: There is one exception to this. If the expression indicates a valid request
for display of all or part of a function's or operator's definition using)EDITOR 1
rules, the request is answered by APL2; the named APL editor is not called.

If the function resides in a namespace, it can use the EXP function to reach back
into the user's current namescope to reference or specify object definition(s). If the
function is a non-APL program, it may use processor 11 external services (XE, XF,
and so on) to access the user's namescope.

382 APL2 Programming: Language Reference

Editor 1 (The Line Editor)

Some editing features of Editor 1 are illustrated in Figure 52, which assumes that a
function PTGLAT has been defined to convert a word, phrase, or sentence into
Pig Latin. Editing of PTGLAT is shown.

The current version of PIGLAT prompts for an entry:
PIGLAT
ENTER A WORD, PHRASE, OR SENTENCE:
HAPPY BIRTHDAY
YOUR ENTRY IN PIG LATIN IS:
APPYHAY IRTHDAYBAY

The following sequence illustrates some editing of

PIGLAT: aline is inserted to enter an expression

containing quotation marks; the header is modified; and two
lines are deleted to allow a word, phrase, or sentence to serve
as an argument to a function instead of a response to a prompt.

VPIGLATLO] Display the function and keep the definition open
v for editing (page [388)
(0] PIGLAT
(1] '"ENTER A WORD, PHRASE, OR SENTENCE:'
[2] X<
[3] A REMOVE DUPLICATE BLANKS
Cu] X«(~' 1'eX)/X

[5]1 e REPLACE BLANKS WITH QUOTE-BLANK-QUOTE
[6] ((' ':X)/X)<_C"' L B
[7]1 o REMOVE NESTING AND EXECUTE
[8] X<1ve'0 '"'',(eXx),"'' "
[9] "YOUR ENTRY IN PIG LATIN IS:'
[10] (1¢7X), crAY"
V 10.17.51 11/06/83 (GMT-5)
[11]1 [2.1]1 a DOUBLE ANY QUOTES Insertlines (page[390)

[2.2] X<(1+''''=X)/X

[2.3] [A1 2] Delete lines (page

[2.01] [0] 7<«PIGLAT X Replace a line (page [390)
[o0.1]C100101] Insert characters in line10

[10] Z<(1¢7X), cr4Y" Insert characters in a line

[11] V Close the function definition (page [388)

Figure 52. Editing with Editor 1 (The Line Editor)

Chapter 9. The APL2 Editors 383

Line Numbers

Each line of text in the definition of an object begins with a bracketed line number,
which is displayed to the left of the line. After a definition is opened for editing,
either the bracketed line number is supplied as a prompt by the system or you must
type the bracketed line number itself.

The objects header line number is always [0]. When the object is first dis-
played, the statements are assigned consecutive positive integers, beginning with
[11. Most editing uses these line numbers as references.

To insert a new line in a definition, number the new line with a fractional number
(between brackets) to indicate its position relative to the existing lines. For
example, a line inserted between lines [3] and [41 may be given the fractional
number [3.17]. Aline inserted between [3] and [3.1] may be given the
number [3.01]. When a definition is closed, the system renumbers all lines to
sequential positive integers.

Line Number Prompts
Editor 1 displays a bracketed line number as a prompt in the form:

[n]

In response, you can do one of the following:

e Enter text for the line
¢ Change the line number and enter text
» Enter a command

The line number may be an integer or a fraction, depending on which commands
for display, deletion, and insertion have been issued previously. For example:

Prompting for an insert following the Prompting for an additional
display of line 1: line following the display of
line 2:
ENTER[O1
[1] ;<—¥A31£DN31ME VENTERL[D2]
’ [2] TAB<TAB,(I>pTAB)/c,NAME
[1.11] [3]

The system attempts to avoid prompting with an existing line number. If unavoid-
able, the next line is displayed with text. Up to four places after the decimal can be
used to specify an added line.

Editor 1 Commands

Except for the opening and closing V and # (lock) commands, all Editor 1 com-
mands are entered in brackets.

Editing commands may be entered on any line of a displayed object or may be
entered in response to a line number prompt. For example:

[3] [~>] Abandon editing of the object

[5] [(01-3] Display lines 1 through 3

384 APL2 Programming: Language Reference

No text should appear to the left of the left bracket. If several bracketed line
numbers or edit commands appear on the same line, only the rightmost is exe-
cuted. For example:

[3] [+-1[1.5]1 '"INSERT AFTER 1!
[1.6] Only the insert is made

Editor 1 commands are described in the following sections.

Opening a Definition
To open a definition of an object, use the V (del) command:

V option
To open a locked definition of an object, use the % (del tilde) command:
¥ option

The locked function cannot be displayed or edited after the definition is closed. For
a description of locked definitions, see ['The Effect of Locking” on page 388}

Options for Opening a Definition: The following options for opening a definition
allow you to define and name an object, rename the object, and add lines or insert
lines to an existing object.

To Define a New Object
V header

The header defines the syntax of the defined function or operator. At the minimum,
the header must contain the name of the object] “Defined Functions and
[Operators” on page 31|describes the various forms of headers.

After you type a del, the header, and press the Enter key, the line prompt [117 is
displayed and the cursor or carrier is positioned in column 7, indicated by an
underbar (_) in the examples. For example:

VZ<MEAN X
[11]

If the header name is that of a variable or a locked function or operator, a DEFN
ERROR is generated. If the header consists of only a name and that name already
exists in the workspace as a defined operation, a prompt for the next available
numbered line is displayed. If the header consists of more than a name (argu-
ments, operands, explicit result, and/or local names) and the name already exists in
the workspace as a defined operation, a DEFN FERROR is generated.

The header can be edited and the name of the object can be changed. However, if
the name is changed, a new object is opened. The definition associated with the
former name remains unless the object is explicitly erased with)ERASE or OFX.

To Add to the End of an Existing Object
V name

Chapter 9. The APL2 Editors 385

The line prompt [n+11] is displayed, where n is the last line of the object. For
example:

VXEACH
[61]

If the name has not been established, the definition is opened for a niladic defined
function without a result and a prompt for line 1 is displayed. The header may be
changed by editing line 0.

To Edit an Existing Object
V name [command]

Editing an existing defined function or operator begins by executing the given
command. For example:

VXEACHLO4]
4] <7 ,<cX
[u4.1]

If only a line number is included within the brackets, a prompt is displayed with that
line number.

VXFACHL4]
[4]

If a closing del (V) follows the command, the edit command is executed and the
definition is closed. For example:

VXEACHLO41V
Y] <7 ,cX

Suspended operations may be edited. When the definition is closed, the message
SI WARNING is displayed. Do not reexecute the operation until you have
cleared the suspension from the state indicator. See [‘Clearing the State Indicator’]

fon page 357

386 APL2 Programming: Language Reference

Opening More Than One Object for Editing

More than one object can be opened for editing at the same time. After a definition
is closed, the next previous definition is available for editing. For example, function
B is opened during the definition of A. When the definition of B is closed, editing of
A resumes.

VA
[1] 41!
[2] 42!
[3] '43!
VB Second function definition is opened.
[1] 'B1!
[2] 'B2'V
Cu] [0o1 When definition of B is
[0] A closed, editing of 4 resumes.
(0.1 V

If there are intervening suspensions of execution, previous definitions cannot be
resumed until the suspensions are cleared from the state indicator. For example,
an intervening suspension of execution prevents the definition of function F from
being resumed after the definition of G is closed.

VF
[11] 'F1!
[2] 'F2!
)ST State indicator shows that
FL31 V is being edited.
*
[3] 'F3! Definition of F continues.
11.2
DOMAIN ERROR Error in an immediate execution expression.
11.2
A
VG New object is defined.
[1] 61!
[2] 'G2'V
)ST Editing of F will not continue
* because editing is not at the top
FLu4l V. of the execution stack.
*
>
C4] 'FLu'v After the top item in the stack is cleared

F can be edited.

Caution: An operation already opened for editing should not be opened for editing
again. Unexpected results can occur.

Chapter 9. The APL2 Editors 387

Closing a Definition
To close a definition, enter either the del (V) or the del tilde (%).
The closing V (or ¥ to lock the object) may appear in the following contexts:

* At the end of any line of text that does not include a comment (a). For
example:

[2] Z<(+/X)+pXV
e Oron aline by itself. For example:
[3.1]1 V
e At the end of any editing command. For example:
VFLOIV
Closing the definition establishes the object in the workspace and ends the editing
of it. Use)SAVE to store the updated workspace. (See[‘Abandoning Editing of|

an Object” on page 392 to learn how to quit definition mode without establishing
the object in the workspace.)

If more than one object is opened for editing, the closing del for one object is fol-
lowed by a line number prompt for the next open definition in LIFO order (unless
there are intervening suspensions of execution on the execution stack, as dis-
cussed in[[Opening More Than One Object for Editing” on page 387]) The closing
del on the only remaining open object ends the editing session and returns you to
immediate execution mode.

The Effect of Locking: An object whose definition is locked cannot be displayed
or edited; it can only be erased and re-created, if it is necessary to change the
definition. If you want to lock a function when it is used in a production application,
you should keep an unlocked version of the function as an aid to maintenance of
the application. (See also JFX, page for setting execution properties of a
defined operation.)

Changing the Name of an Object

You can change the name of an object by editing the name in line 0. If the object
is subsequently saved, it is saved under the new name. The original definition
(under the original name) will not be affected. An attempt to change the name of
an object to one that already exists in the workspace is rejected with a DEFN
FRROR.

Displaying an Object
To display an object, enter:
L O option]

All display commands include a 0O (quad) to indicate display. Display commands
may be entered when a definition is opened, or at any time during the editing
session as a response to a line number prompt.

Display Options: The following options allow you to display either the entire defi-

nition or only a range of lines. Line numbers specified as endpoints of display
ranges need not exist. Lines falling within the range are displayed.

388 APL2 Programming: Language Reference

To Display a Definition
O3

The object is displayed beginning with line 0. For example:
VHEXDEC[O]

(o] Z<HEXDEC X
[1] ~a CONVERTS X IN HEXADECIMAL TO DECIMAL
[2] 7Z<161 1+'0123456789ABCDEF'1X
V 1993-05-21 14.45,24 (GMT-5)
[31]

To Display Specific Lines
COntn2 n3...]

The lines specified by the vector of line numbers are displayed. These line
numbers may be listed in the command in any order and may contain repetitions
and redundant blanks. APL2 expressions to define the line numbers are not per-
mitted. For example:

VDUMPLO1 2 3 71

(1] a DUMP DEFINITIONS IN THE WORKSPACE

(2] an USES FUNCTIONS: DISP, SHOW

(3] = DUMP, DISP, SHOW, NL , AND X ARE NOT DUMPED
L7] = DISP MAY BE MODIFIED FOR A FILE OR A PRINTER
[7.1]

To Display a Range of Lines
[On1-n2]

The lines specified from n? through n2 are displayed. For example:

VDUMP[O4-6]
v
[4] NL <0ONL 3 U4
[5] X" <3 Up'DISPDUMPSHOW'
[6] NL <(A/NL™v.28(1ypNL)AL0OI0+11X)#NL™
[6.1]

Chapter 9. The APL2 Editors 389

To Display from the Beginning Line to Line n
(O0-n1]

The object is displayed from line 0 through line n. For example:

VDUMPLO-21
v
(o] DUMP;NL™ X~
(1] a DUMP DEFINITIONS IN THE WORKSPACE
(2] a USES FUNCTIONS: DISP, SHOW
[2.1]

To Display from Line n through the End Line
[On-1

The object is displayed from line n through the end. For example:

VDUMPLO7-1V
v
[7] e DISP MAY BE MODIFIED FOR A FILE OR A PRINTER
[8] DISP c[OIO+11NL™

Replacing or Inserting Lines

To replace or insert lines in a definition, enter:
[n] text

where n may be a whole or fractional number:

e If n is an existing line number, the existing line is replaced.

e If n does not exist, the new line is inserted.

For example:

(4] [2.1] X<«eX Insert a line
[2.2]1 [1] m X MUST BE NUMERIC Replace a line

Copying or Moving Lines
Copying lines in Editor 1 is a one-step procedure:
e To copy a line, change its line number.
When you press Enter, the copied line appears as the line number specified, but
the original text and line number are unaffected.
Moving lines in Editor 1 is a two-step procedure:
1. Copy a line by changing its line number.
2. Delete the original line.

When you press Enter, the copied line appears as the line number specified, and
the original text and line number is deleted.

390 APL2 Programming: Language Reference

Deleting Lines
To delete lines from a definition, use the delta (A):
L A option]

The delete command deletes all or part of an object, except the header. The
delete command may be entered when a definition is opened or at any time during
the editing session.

Some form of the delete command is required to delete lines from the definition of
an object that has been established in the active workspace. Merely erasing a line
from the screen does not delete it from the object.

No text should follow the delete command. Thus, if the delete command is inserted
to precede a number in a bracketed line number, the ERASE EOF key should be
used to delete the text from the line.

Delete Options: The following delete options allow you to delete specific lines or
a range of lines. These options are similar to the display options. Line numbers
specified as endpoints of delete ranges need not be existing line numbers. Line
numbers falling within the range are deleted. Renumbering occurs after the defi-
nition is closed.

To Delete Specific Lines
[LAnin2n3...]

The lines specified by the vector of line numbers are deleted. These line numbers
may be in any order and may contain repetitions and redundant blanks. Zero is
ignored. APL2 expressions to define the line numbers are not permitted. For
example:

[61] [A1 4]
[4.1]

To Delete a Range of Lines
LAn1-n2]

Lines n1 through n2 are deleted. For example:

(9] CA4-7]
[7.1]

To Delete from Line 1 through Line n
[A-n]

Chapter 9. The APL2 Editors 391

Lines from line 7 through line n are deleted. For example:

C4] [A-3]
[3.1]

To Delete from Line n through the End Line
[An-]

Lines from line n through the end are deleted. For example:

[31] [AL-1]
[8l

To Delete All the Lines
[A1-1]

Except for the header, the entire object is deleted. Use)FRASE or OEX to
remove an object from the active workspace.

Note: The command [A] resultsina DEFN ERROR.

Caution: If you delete more lines than you intended, stop editing the object with
the [+ command. The original definition is retained and can then be reopened
for editing. This recovery technique works only for objects previously established in
the workspace. Lines deleted in nonestablished objects cannot be recovered.

Abandoning Editing of an Object
To abandon editing of the function or operator, enter:

[~>]

This command ends the editing session and retains the most recently established
definition of the object. If the object is new (not established), none of its definition
is retained. This command may be entered at any time during the editing session.

If more than one object is opened for editing, the [-] quits from the most recently
opened object. Editing of the next object resumes if there are no intervening sus-

pensions of execution, as discussed in fOpening More Than One Object for Editing’]
[on page 3871 When no further open definitions exist, the editing session ends.

392 APL2 Programming: Language Reference

The Display-Edit Command
To display a line for editing when the session manager is not available, enter:

[nOp]
where:
n Specifies a particular line of the defined function or operator to be
displayed.
p Is 0 or a positive integer specifying a position within the line.

Note: You cannot use the [nlp] command to edit lines longer than OPW or the
screen width.

The edit action:
e Displays line nin the input area.
e If p=0, places the cursor just after the end of the line.
If p=0, places the cursor at the position specified.

* Accepts input to change the line.

The display-edit command may be entered as the command when a definition is
opened or at any time during the edit session.

Immediate Execution with Editor 1

Any input line not beginning with a left bracket ([) is executed immediately and is
not part of the definition. The definition of the defined function or operator is sus-
pended and the input line is executed in the active workspace. After successful
execution, editing is resumed. If an error occurs, the statement in error is normally
cleared from the state indicator with -~ or)RESET n, so that editing can continue.
Clearing the error from the state indicator is especially important if more than one

object is opened for editing, as described in fOpening More Than One Object fon
[Editing” on page 387}

Entering System Commands

System commands can be entered by typing over or erasing the line number
prompt or by typing on any blank line. The system command or any response to it
is not treated as input to the editor.

The system commands)SI,)SINL, and)SIS use the del (V) to identify the
names of defined functions and operators still in edit mode.

If you enter the Y)EDITOR 2 system command while one or more definitions are
open in Editor 1, Editor 2 (the full-screen editor) is started only for the definitions
opened after you issue the)EDITOR 2 command. The definitions previously
opened in Editor 1 remain available within Editor 1 and can be edited or closed
when all segments of Editor 2 are closed.

If, during editing, you save the workspace with) SAVE, edit mode is resumed
when the workspace is loaded.

The following system commands cause editing to end without the object's being
established in the active workspace:

Chapter 9. The APL2 Editors 393

JCLEAR
JLOAD
JOFF
JCONTINUE
JRESET

System Services and Editor 1

Use of Editor 1 is affected by the APL2 session manager and by the type of
display.

Editor 1 with the APL2 Session Manager
When Editor 1 is invoked, the facilities of the session manager are still available for
use with the editor.

Lines in the session log can have bracketed numbers and can be used as input to
the definition. Lines selected for reuse that do not have bracketed line numbers
are treated as lines for immediate execution, not as lines of text for the definition.

Displayed lines of the definition are lines of output in the session manager and can
be edited directly by typing over the displayed text. When Enter is pressed, the
lines are redisplayed in the session manager input/output area, following the rules
of the session manager. The original lines reappear as they were displayed, and
the changed lines appear with bracketed line numbers as input to the definition.

For more information on the APL2 session manager and its use, see the appro-
priate workstation user's guide or APL2/370 Programming: System Services Refer-
ence.

Editor 1 without the APL2 Session Manager
If you start an APL2 session without the session manager, Editor 1 operates under
the standard input/output protocol of the host system.

Editor 2 (Full-Screen Editor)

If used on a display device, Editor 2 operates in full-screen mode and uses function
keys to simplify entry of commands.

Changes made through Editor 2 are not recorded in the session log when the editor
is invoked from the session manager. The command that starts the editor is
recorded, but work within the editor does not become part of the log.

To log the results of changing an object with Editor 2, close the definition to fix it in
the active workspace and redisplay the object in the session manager, using the
expression VNAMELOJV (where NAME is the name of the object).

Figure 53 shows the Editor 2 display of a function opened for editing with
VPALIN.

394 APL2 Programming: Language Reference

[LA]lVPALIN.3 p: 4 1993-05-21 14.,13.32

[01] PALIN R

[11] R<(ReALF)/R

[2] R<RA.=0R

[3] (R,~R)/'A PALINDROME' 'NOT A PALINDROME'

Figure 53. Display of Object with Editor 2

Editor 2 displays one page at a time of the definition. The display includes:
information line ldentified by [na].

line number field The first six columns of each line. The remaining columns
of each line are the text field.

Information Line

When a definition is opened, an information line precedes the header line. The
information line varies for defined operations and variables.

For Defined Functions and Operators: The information line has the following
format:

[alVname.x p : nyyyy-mm-dd hh.mm.ss

where:
name Is the name of the object being edited.
X Is a number that indicates the type of object:
3 = Defined function
4 = Defined operator
p: N Indicates the number of rows in the object when last estab-
lished in the workspace. It is calculated as 14 p0OCR name.
yyyy-mm-dd Is the date the object was last fixed in the workspace.
hh.mm.ss Is the time the object was last fixed in the active workspace.

The above fields display zeros if the object is new.

The information line is updated each time you establish the current definition in the
workspace with the [V] command (fix the object in the workspace and remain in
edit mode).

For Simple Character Vectors and Matrixes: The information line has the fol-
lowing format:

[LalVname2p: n

where:
name Is the name of the variable being edited.
2 Indicates a character vector or matrix.

Chapter 9. The APL2 Editors 395

p: N Is the shape of the variable. This field is updated each time the
variable is saved in the workspace with a [V] command.

Line Numbers

When they are displayed, all object lines are given bracketed line numbers. The
object's header is line [0], and subsequent lines are assigned the positive inte-
gers beginning with [1]. Editing is done with reference to these line numbers or
to the lines themselves.

During editing, inserted lines are displayed with fractional numbers to indicate their
positions relative to existing lines. For example, a line inserted between lines [3]
and [47 is displayed with the fractional number [3.1 1. A line inserted between
[3]1 and [3.1] is displayed with the number [3.01 1. All lines are renum-
bered to positive integers when a definition is closed or in response to the
renumber command ([1 J).

Line Number Prompts

Editor 2 does not display line number prompts. However, after you press Enter, the
editor numbers previously unnumbered lines. You can also enter bracketed line
numbers as part of a line.

Editor 2 Commands

Unlike other full-screen editors, Editor 2 does not have a command line. Therefore,
editing with this full-screen editor is accomplished by one of the following:

e |ssuing commands, as with Editor 1

e Manipulating line numbers within brackets

e Modifying or manipulating displayed lines of the object

e Scrolling through function keys or commands within brackets and not with
command line commands

Except for the opening and closing V and ¥ (lock) commands, editor commands
are entered within brackets. They may be entered on any line of a displayed object
or on a line by themselves, with no text to the left. For example:

[~>] Abandon editing of the object
[A5] I<1+T Delete line 5

Two sets of bracketed numbers cannot be adjacent on the same line. For
example:

[5102.1]

The [2.11] is taken to be the text for line 5;a SYNTAX ERROR is generated
when the operation is subsequently executed.

Some edit commands are represented by function keys. The function key assign-
ments are shown in|Figure 54 on page 397 Each key's use is discussed with the
explanation of the associated edit command.

396 APL2 Programming: Language Reference

Figure 54. Function Key Assignments for Editor 2
1[027] 2[1] 3V
Display Close
Function Key | Henumber Definition
Settings
4 5 6 [V]
Fix Object in
Workspace.
Resume Editing
7041 8[+1] 9[T11]
Scroll Scroll Cursor-Dependent
Backward Forward Scroll Forward
10 11 12

If you use a display terminal, the number of lines in the object may exceed the
capacity of the definition area for display. When an existing definition is opened, as
much of the requested definition as will fit in the definition area is shown. To see
the remainder of the display, use the scrolling commands [41 (PF7), [+] (PF8),
and [71 (PF9), as described in [Scrolling through a Definition” on page 401]

If more than one line or command is entered on the screen, they are processed
from top to bottom when ENTER is pressed.

Opening a Definition
To open a definition of an object, use the V (del) command:

V option
To open a locked definition of an object use the % (del tilde) command:
¥ option

The locked function cannot be displayed or edited after the definition is closed. For
a description of locked definitions, see [Effect of Locking” on page 399

More than one object can be opened for editing at a time. Editing multiple objects
is discussed in|“Editing Multiple Objects” on page 411

Chapter 9. The APL2 Editors 397

Options for Opening a Definition: The following options for opening a definition
are available.

To Define a New Object
V header

The header defines the syntax of the new defined function or operator. At
minimum, it must contain the object name. The header can be edited. However, if
the name is changed, a new object is implied. The definition associated with the
former name remains unless the object is explicitly erased with)ERASE or OFX.

After you press the Enter key, both the information line and line [0] display. The
remaining lines are blank.

If the header consists of only a name, and that name already exists in the work-
space as a defined operation or character vector or matrix, the object is displayed.
If the header specifies a monadic or dyadic operation and the name already exists
in the workspace as a defined operation, a DEFN ERROR is generated.

To Edit an Existing Object
V name [command]

Editing of the existing defined function or operator begins by the user executing the
given command. If only a line number is included within the brackets, a DEFN
ERROR results.

If a closing V follows the command, the edit command is executed and the defi-
nition is closed. Full-screen mode is not entered.

If no command is given, the object is displayed. If the name has not been estab-
lished, the definition is opened as a niladic defined function without an explicit
result.

To Edit a Simple Character Vector or Matrix
V name

Only named simple character vectors and matrixes can be edited. The character
vector or matrix is displayed without single quotation marks and may be edited
without them. They are implied by the information line that displays .2 after the
object name (meaning a variable), and quotation marks should not be explicitly
entered unless they are to be displayed as part of the variable. If a vector or matrix
is so wide that one row does not fit on the whole screen, then the object cannot be
edited.

If the name represents an array that is not a simple character vector or matrix, a

DEFN FERROR is generated. If the name does not exist in the workspace, it is
taken to represent the header of a niladic defined function without an explicit result.

398 APL2 Programming: Language Reference

Closing a Definition
To close a definition, press PF3 or enter either V (del) or ¥ (del tilde).

The closing V (or ¥ to create a locked object) may appear on a line by itself or
after the text on any line or after a command. For example:

[2] = L MAY BE NESTED TO DEPTH 2V
[A7 8 121V

The V establishes the definition in the active workspace and ends editing of the
object.

Closing the definition establishes the object in the workspace. Use)SAVE to
store the updated workspace. For a description of quitting the definition mode
without establishing the object in the workspace see [‘Abandoning Editing of an|

[Obiecti

For a description of the effect of the closing del when multiple objects are being
edited, see [Editing Multiple Objects” on page 411]

Effect of Locking: An object whose definition is locked cannot be displayed or
edited; it can only be erased and re-created if it is necessary to change its defi-
nition. Although on rare occasions you may want to lock a function when it is used
in a production application, you should keep an unlocked version of the function as
an essential aid to maintenance of the application. (See also OFX, page 294, for
setting execution properties of a defined operation.)

Fixing the Object in the Workspace and Staying in Edit Mode
To fix the function, operator, or character vector or matrix in the workspace and
stay in edit mode, press PF6 or enter:

[vl

This command establishes the current definition of the object in the active work-
space but leaves the definition open.

After this command is executed, the information line for defined functions and oper-
ators is updated.

Abandoning Editing of an Object
To abandon editing of the function, operator or character vector, or matrix, enter:
[~>]

The [~1 command ends a definition without establishing the object. It must be

entered in brackets. It can be entered on a line by itself or it can be typed over any
displayed line number in the definition.

Chapter 9. The APL2 Editors 399

Changing the Name of an Object

You can change the name of an object by editing the name in line 0. If the object
is subsequently saved, it is saved under the new name. The original definition
(under the original name) is not affected. An attempt to change the name of an
object to one that already exists in the workspace is rejected with a DEFN
FRROR.

Displaying an Object
To display an object, enter:
L O option]

Display commands include a O (quad) to indicate display. They may be entered as
the command when a definition is opened with a V or ® or at any time during the
editing session.

If the display command is issued as part of opening a definition and if it is not
followed by a closing del, full-screen edit mode is entered. If the display command
is followed by a closing del, full-screen edit mode is not entered.

When the display command is issued as part of opening a definition, a full page of
the requested display is shown without the information line. When you press Enter
or a function key for the first time, the information line and a page of the object are
displayed, beginning with the first line requested. You can then scroll through the
definition. If, however, you close the definition (with V or PF3), you do not see the
information line and the object is not displayed further.

If a display command is entered during an editing session, the requested lines are
displayed at the point at which the command was entered and remain displayed
until you press Enter or a function key. The object is then redisplayed beginning
with the first line shown on the screen. Therefore, in order to move a specific line
in the object, issue the display command on the line following the information line.

Display Options: The following display options are available. You can display the
entire object, specific lines, or ranges of lines. Line numbers specified as endpoints
of display ranges need not be existing line numbers. Lines falling within the range
are displayed.

To Display the Definition
(ol

The first page of the object is displayed beginning with line 0.

To Display Specific Lines
(Ontn2 n3...]

The lines specified by the vector of line numbers, up to a full page, are displayed.

The line numbers in the command may be in any order and may contain repetitions
and redundant blanks. APL2 expressions to define the line numbers are not per-
mitted.

To Display a Range of Lines
COnt-n2]

400 APL2 Programming: Language Reference

The lines specified from n1 through n2 are displayed.

To Display from the Beginning Line to Line n
(O0-n1]

The object is displayed from line 0 through line n.

To Display from Line n through the End
COn-1

The object is displayed from line n through the end.

Scrolling through a Definition
To scroll one screen backward or to the top, press PF7 or enter:
[+1

To scroll one screen forward or to the bottom, press PF8 or enter:
[+]

To scroll one screen forward from the cursor position, press PF9 or enter:
[T1]

Scroll Backward: |f this command is entered on the first screen of the definition,
no action is taken. For all other screens, the first line on the screen becomes the
last line displayed after the command is executed.

(121 MMMMMM [6] GGGGGG
(131 NNNNNN [7] HHHHHH
(141 000000 [81 IIIIIT
[15] PPPPPP [91 JJJJJIJ
[16] Q4QQRQE [10] KKKKKK
[17]1 RRRRRR L

L

[18]1 SSSSSS

1 LLLLLL
121 MMMMMM

Before PF7 is pressed After PF7 is pressed
or [4] is entered. or [+] is entered.

Chapter 9. The APL2 Editors 401

Scroll Forward: The last line on the screen becomes the first line displayed after
the command is executed.

(121 MMMMMM [18] SSSSSS
[13] NNNNNN (19] TTTTTT
(141 000000 [20] UUUUOUU
[15]1 PPPPPP [21]1 VVVVVV
[16] QQQAAQQ [22] WWWWWW
[17] RRRRRR [23] XXXXXX
[18] SSSSSS [24] YYYYYY
Before PF8 is pressed After PF8 is pressed
or [+1] is entered. or [+1] is entered.

Cursor-Dependent Scroll Forward: The line on which the command is issued
becomes the first line of the definition displayed. Succeeding lines of the object are
displayed in numeric order below the line.

Pressing PF9 makes the line that the cursor is on be the first line of the next dis-
played screen.

[12] MMMMMM [16] QQAAQQ
[13] NNNNNN [17]1 RRRRRR
[14] 000000 [18] 8S58SS
[15] PPPPPP [19]1 TTrTTTT
[16] @QQQeQQ [20] UUUUUU
[17]1 RRRRRR [21] VVVVVV
[18] S8S5S8SS [22] WWWWWW
Before PF9 is pressed After PF9 is pressed
or [7] is entered. or [7] is entered.

Cursor-Dependent Scroll Backward: To display the line on which the command
is issued as the /ast line displayed, press PF9 followed by PF7.

Adding Lines
Lines can be added to an object or inserted into it by typing the addition or insertion
or by copying another line.

Adding Lines by Typing: Input lines can be typed anywhere within the definition
area and may be numbered with a bracketed line number [n] or entered without a
line number.

When editor processing is requested (by an Enter or a function key), the editor
sequentially renumbers the unnumbered lines in the definition area from top to
bottom.

A line can be added to the end of a definition by:

e Typing it on a blank line after the last line of the object.

* Typing the new line over line [0 1. Start your text over the left bracket ([).
Use the ERASE EOF key to delete any text not needed. When you press
Enter, line [0] is restored and the new line is added to the end of the object.
This line is displayed as the first line of the page; the remaining definition area
is blank.

402 APL2 Programming: Language Reference

e Typing over any displayed line with the new line number and text. Use the
ERASE EOF key to delete any text not needed. When you press Enter, the
line typed over is restored and the new line is added to the end of the defi-
nition. You can see the added line by using a display command or scrolling to
the end of the definition.

Inserting Text Lines by Typing: There are two options for inserting text lines by
typing.

Option 1

To insert one or more lines between two lines of an existing object, type the new
text beginning at the left margin on the line immediately following the line at which
the text is to be inserted. The lines typed over retain their original definition, and
the inserted lines are numbered by the system.

Before Insertion

[2] N<2
[31] L1:A<eARRAY
[u] Z<N ROUND(+/A4A)+pA

Insertion Typed

[2] N<2
+~(CHARACTER)/NONUM
[u] Z«N ROUND(+/A)+pA

Result After Enter

L2 1 N<2

[2.1] +~(CHARACTER)/NONUM
[3] L1:A<cARRAY

Cu] Z<N ROUND(+/A4A)+pA

If the inserted line is shorter than the line on which it is typed, press ERASE EOF

to clear the remainder of text from the line; otherwise, the remaining text appears
as part of the inserted line.

Chapter 9. The APL2 Editors 403

Option 2

Number any line of the definition with the appropriate fractional line number and
type the text.

If the line used is an existing text line, the line typed is restored to its original text,
and the line created is inserted as the line number specified.

Entering Lines Wider Than One Screen Row—Continue
Command
To enter a line wider than one screen row, precede the continuation line with:

L]

The continue command is used to create a single logical line from text lines that
are wider than the width of the screen. The command can be typed anywhere on
the line but may have no text to its left.

If typed as part of a text entry, the continue command indicates that the text line is
continued from a previous screen row. When the editor processes a line with con-
tinue commands, it creates a single text line that covers more than one screen row.
The [1 is never displayed by the editor.

Creating a Single Line from Two Lines—Continue Command
To append a text line to the line above it, erase, with the terminal's delete key, the
text's line number, but not the brackets. The brackets remain:

L]

When you press Enter, the line is appended to the previous line. Indicate that the
line is to continue, if necessary, by inserting [] at the beginning of each succes-
sive row.

Note: The text of the original line is unchanged.

Replacing Text Lines
Lines of the definition are replaced by a new line with the same number as the line
you want to replace. To replace text lines, do one of the following:

» Display the line to be changed and type over the line text (using the ERASE
EOF key as needed); do not change the bracketed line number.

e Number and type the text of the replacement on a blank line.

e Change the bracketed number of a displayed line and type over the displayed
text.

The line typed over retains its original definition; the line created replaces the
line with the number specified.

404 APL2 Programming: Language Reference

Inserting and Deleting Characters in a Line
You insert characters into a line by using one of the following:

* Insert mode of the terminal keyboard
» Change command described on page

You delete characters using the terminal delete key.

Deleting Lines
To delete lines from a definition, use the A (delta):
L A option]

The delete command deletes all or part of an object, except the header. The
delete command may be entered when a definition is opened or at any time during
the editing session.

Some form of the delete command is required to delete lines from the definition of
an object that has been established in the active workspace. Merely erasing a line
from the screen does not delete it from the object.

Delete Options: The following delete options allow you to delete specific lines or
a range of lines. Line numbers specified as endpoints of delete ranges need not
be existing line numbers. Line numbers falling within the range are deleted.

To Delete Specific Lines
[LAn1n2n3...]

The lines specified by the vector of line numbers are deleted. These line numbers
may be in any order and may contain repetitions and redundant blanks. Zero is
ignored. APL2 expressions to define the line numbers are not permitted.

To Delete From Line n7 to Line n2
[LAnt1-n2]

To Delete from Line 7 to Line n
[LA-n]

To Delete from Line n through the End Line
[An-1]

To Delete All the Lines Except the Header
[A1-]

Use)ERASE or OEX to remove an object from the active workspace. Note that
the command [A] resultsina DEFN ERROR.

Caution: To avoid deleting lines that should be retained, always enter one or
more line numbers after the A. If you delete more lines than intended, stop editing
the object with the [+]1 command. The original definition is retained and can then
be reopened for editing. This recovery technique works only for objects previously
established in the workspace. Deleted lines in objects not previously established
cannot be recovered.

Chapter 9. The APL2 Editors 405

Renumbering Lines
To renumber lines, press PF2 or enter iota (1) within brackets:
(1]

All lines of the object are renumbered to consecutive integers beginning with [0]
for the header.

Lines are also renumbered when the definition is closed.

Locating Strings of Characters—Locate Command
To locate strings of characters and display the lines that contain the string, use the
locate command:

[/string/ NV lines]

where:

/string/
Specifies the string of characters to be located.

The delimiter, represented here by /, may be any nonalphameric character not
occurring in the string except the following:

1> v 412 a0AV AV T
If the terminating delimiter is not specified neither N nor lines may be specified.

An entry in the form /string specifies a search of all object lines.

N Specifies that the characters in string represent an APL2 name. Valid matches
include strings within quotation marks but exclude any strings of characters that
are not also APL2 names.

If ¥ is omitted, any occurrence of the string is located.

N may be specified in combination with lines.

lines
Specifies the lines to be searched for the string.

If lines is omitted, the search begins with line 0. If lines is not omitted, only
one of the following may be specified:

e n1 n2 n3. .. specifies a vector of line numbers
e n1-n2, specifies a range of lines
e n-, specifies all lines in the object beginning with line n

e -n, specifies all lines in the object through line n.

Caution: No text should follow the locate command. Use the ERASE EOF key,
as necessary, to delete text after the command.

406 APL2 Programming: Language Reference

Sample Command: In the following example, o is the delimiter, and the string to
be located is / A\. All lines through line 13 of the object are to be searched for the
string.

La/A\a -13]

Characteristics of the Locate Command Display: The located lines replace the
current display in the definition, beginning with the line at which the command is
entered (including the information line) and continuing for a page. Lines not dis-
played are unaffected by the command. Located lines may be edited.

When Enter or a function key is subsequently pressed, the object is redisplayed
beginning with the first line shown on the screen. If the command was issued on
the first line of the screen, the display will begin with the first found line.

If more lines are located than can fit on a screen, scrolling commands cannot be
used to view additional screens of output. Instead, a second locate command must
be issued specifying line numbers beyond that shown as the last line on the
screen.

Replacing One String of Characters with Another—Change

Command

To replace a specified string of characters with another, use the change command:
[/oldstring/newstring/ form lines]

/oldstring/newstring/
oldstring is a string of characters to be replaced by the characters specified as
newstring.

The delimiter, represented here by /, may be any nonalphameric character not
occurring in the string except the following:

1] >+ 4+ 12040V V AT
The terminating delimiter must be entered.

A change command in the format /oldstring/newstring/ changes the first occur-
rence of oldstring in every line that it appears.

form
Specifies the form of the search; it may be omitted. If provided, either or both
of the following may be specified, with either operand first.

« "~ specifies that all occurrences of the old string on any eligible line are to
be changed. If the ™ option is not specified, only the first occurrence of
oldstring on any eligible line is changed.

e [specifies that the characters in a string represent an APL2 name. Valid
matches exclude any strings of characters that are not APL2 names.

Chapter 9. The APL2 Editors 407

lines
Specifies the lines to be affected by the change command. If no lines are
specified, all lines are affected by the command. This operand must follow any
specification of form.

Only one of the following may be specified for lines:

e n1 n2 n3. .. specifies a vector of line numbers
e n1-n2, specifies a range of lines
* n-, specifies all lines in the object beginning with line n

e -n, specifies all lines in the object through line n.

Any form operand(s) must precede the lines operand; blanks between operands are
not necessary.

Caution: No text should follow the change command. Use the ERASE EOF key,
as necessary, to delete the text following the command.

Sample Command: The following forms are equivalent commands:

[/TVAR/XV/ = N 6-1]
[/TVAR/XV/ N = 6-1]
[/TVAR/XV/N"6-]

In the example, / is the delimiter, and the APL2 name TVAR is to be changed to
XV wherever it appears in the object. ~ indicates that all occurrences on a line
are to be changed, IV indicates that the old string is an APL2 name, and 6- indi-
cates that all lines of the object, beginning with line 6, are to be affected by the
command.

Change Command Useful for a Long Line: To insert characters in the middle of
a long line, especially one that continues to a second line, use the change
command for a single line. For example:

L/VAR/VARIABLE/ 17]

Type the change command on any line except a continuation line, then press Enter.

408 APL2 Programming: Language Reference

Copying Lines Into a Definition—Get Command
To copy lines into a definition, use the get command. The get command gets the
lines specified from the character representation of the object named and inserts
them at the point of the command in the object being edited.

[A name lines]

name
Any simple character variable of rank 2 or less, an unlocked defined function,
or an unlocked defined operator may be specified. Scalars and vectors are
treated as one-row matrixes.

If the name is omitted, lines are copied from the current object being edited.

lines
Specified as with display and delete commands, lines may be individual line
numbers or a range of numbers. (See [‘Displaying an Object” on page 400})
Lines are selected with index origin 0. Thus, for example, a 3 selects the
fourth row of a matrix.

If lines are not specified, the entire object is inserted.

If the object has 0 rows, a DEFN ERROR is generated. An object will have 0
rows if:

e |tis locked.
e Itis a 0 by n empty matrix.
e It is undefined.

If an array is an n by 0 empty array (where nis not equal to 0), n lines without text
are inserted.

Copying or Moving Lines within a Definition
Lines of an object may be copied by changing their line numbers, or by using the
get command. To move lines, simply copy them, then delete the originals.

* To make a copy of a line, change its line number.
e To copy a line with text changes, change the line number and the text.

When you press Enter, the copied line appears as the line number specified, but
the original text and line number are unaffected.

Chapter 9. The APL2 Editors 409

To copy several consecutive lines, change the line number of the first line to be
copied and blank out the line number field on subsequent lines to be copied. For
example, to copy lines 4 through 6 and place after line 8:

Original Display

[3] LINE 3
[41] LINE 4
[5] LINE 5
(6] LINE 6
L7] LINE 7
[81] LINE 8
(9] LINE 9

Lines Marked for Copy

[3] LINE 3
[8.1] LINE 4

LINE 5

LINE ©
L7] LINE 7
[8] LINE 8
[91] LINE 9

After the Copy

(3 1 LINE
s 1] LINE
[5 1 LINE
(e 1 LINE
L7 1 LINE

s 1 LINE
[8.1] LINE
[8.2] LINE
[8.3] LINE
(o 1 LINE

O O 0 F 03O0 o F Ww

To copy a block of lines that occupy more than one screen or are not displayed on
the current screen or to copy from another object, use the put and get commands
(see [FCopying Lines Into a Definition—Get Command” on page 409]and [Copying]

|Lines From a Definition—Put Command’1).

Copying Lines From a Definition—Put Command

To copy lines from a definition, use the put command. The put command takes the
character representation of specified lines from the object being edited and creates
in the active workspace a character matrix with the specified name. Line numbers

are not part of the created matrix.

410 APL2 Programming: Language Reference

[v name lines]

name
The name is constructed following the rules for names. If it is the same as a
variable in the workspace, the value will be replaced. If it is the same as a
defined function or operator in the workspace, a DEFN ERROR is generated.

lines
Specified as with display and delete commands, lines may be individual line
numbers or a range of numbers. (See [‘Displaying an Object” on page 400}) If
lines are not specified, the entire object is used.

Editing Multiple Objects

Multiple objects can be viewed and edited concurrently by dividing the screen into
horizontal segments. Each segment has the same structure as when a single defi-
nition is opened and is treated as a separate definition area. All the editing facili-
ties described in [‘Editor 2 Commands” on page 396|apply to each segment.

Opening Screen Segments

Segments are opened from within the editor by issuing an appropriate V or %
command (with no text to the left of V on the line). The segment begins on the line
at which the V is entered.

If V is entered on a line at which lines of an object are currently displayed, lines of
the currently displayed segment are replaced by lines of the segment just opened.
The lines of the original segment can still be displayed in their own segment with
the display or scroll commands.

A new segment may not be opened on the last line of the screen.

Working with Multiple Segments

Commands that change or delete lines can affect the entire object. You may be
unable to see some of the changes until you display more lines of the object. To
avoid changing or deleting lines you cannot see, you can limit such commands to
the lines you can see by specifying only the numbers of the lines currently dis-
played.

When Enter or a defined function key is pressed, the editor scans all lines on the
terminal screen for input and processes any modified line. More than one line can
be typed before processing is requested. The lines may be typed on any line of
the screen segment where they are to take effect. When the screen is split, an edit
command affects only the object being edited in the screen segment where the
command is issued (although the entire screen is processed). The editor ignores
blank lines.

Entering the closing V or pressing PF3 when the cursor is in a segment releases
that segment. Any screen segment immediately above the released segment
expands to include the screen rows released. If the released segment is the top
segment on the screen, the segment immediately below expands upward to include
the screen rows released. If only one segment is open, the closing V ends the
editor and returns to immediate execution under the system.

Signaling an interrupt ends all segments of Editor 2 without establishing any
objects.

Chapter 9. The APL2 Editors 411

Immediate Execution in Editor 2
An APL2 statement or defined function or operator can be executed within Editor 2

through the execution command (¢) entered on any line of a segment. The exe-
cution command has the form:
[¢ Jexpression

The expression is evaluated, and the expression and result remain displayed, as
illustrated below:

Command Is Typed
Lel6+1k4
Enter Is Pressed

[e] 6+14
7 8 9 10

The result of an executed expression can be made part of the definition. This is
done by typing over any character in the result, or inserting or deleting characters
in it.

System commands cannot be executed in Editor 2.

To execute an object that you have been editing in another segment, use [V] or

PF6 to fix the definition in the workspace. Then execute the object with [2]
expression.

412 APL2 Programming: Language Reference

Chapter 10. System Commands

APL2 provides three types of system commands for:

e Storing and retrieving objects and workspaces
e Using system services and information
e Using the active workspace

This chapter describes all system commands alphabetically. System-specific com-
mands are labeled. The structure of the system command is given at the beginning
of each command description, as shown in Figure 55.

)SAVE [[library] workspace]

Figure 55. Structure of a Command

Brackets indicate that the enclosed item is an optional parameter--they are not
entered as part of the command. Any parameter not shown in brackets must be
entered. Parameters must be entered in the order shown.

In this chapter, command names and keywords are shown in uppercase, and fields
to be substituted with user data are shown in lowercase. In actual usage,
command name and keyword characters may be entered in any case. Some user-
supplied fields in system commands refer to APL objects (variables, functions, and
operators). These fields are case sensitive, since APL2 treats uppercase object
names as distinct from lowercase object names. For other user-supplied fields
(such as file, workspace, or editor names), case sensitivity varies by operating
system.

Figure 56 displays the APL2 system commands, grouped according to use.

Figure 56 (Page 1 of 2). APL2 System Commands

Storing and Retrieving Objects and Work-
spaces

These system commands move data
between the active workspace and other
workspaces or external files. They also
enable a user to migrate workspaces.

JLIB List workspace names

YJLOAD Retrieve workspace from library

)SAVE Save active workspace

JCLEAR Activate a clear workspace

YWSID Query/assign workspace identifier

)COPY Copy objects into active workspace

)PCOPY Copy objects into active workspace

)JMCOPY1 Migrate VS APL objects into active work-
space

YIN Read transfer file into active workspace

YPIN Read transfer file into active workspace

)our Write objects to transfer file

)DROP Delete a library workspace

© Copyright IBM Corp. 1984, 1994

413

Figure 56 (Page 2 of 2). APL2 System Commands

Using the Active Workspace YNMS List names
APL2 editor to be used, and remove vari- YENS List functions

JERASE Delete objects

)SIS Display state indicator

)ST Display state indicator

)SINL Display state indicator

JRESET Clear state indicator

)PBS2 Printable backspace character

YEDITOR Query/specify editor

)QUOTA? Display resource limits

)SYMBOLS Query/modify symbol table size
System Commands for System JOFF End APL2 session
?E;EZ;Q::;";?:;; ds provide diagnostic JCONTINUE Save active workspace and end session
information and access to operating system JHOST Execute a host system command
commands. YMORE List additional diagnostics

)TIMES Display current time

YMSG3 Send message to another user

)OPR3 Send message to the system operator

)JCHECK Diagnose errors
Note:

1. APL2/370 only. Refer to the APL2 Migration Guide for additional information.

2. APL2/370 only.

3. These system commands are provided on CMS and TSO for compatibility with older APL products.

Storing and Retrieving Objects and Workspaces

APL2 provides several system commands for storing and retrieving objects and
workspaces. These commands:

e Store workspaces, list stored workspace names, and remove stored work-

spaces.

» Retrieve the contents of stored workspaces.

e Write and read objects to and from transfer files.

|Figure 57 on page 415| summarizes the actions of several of these commands.

414 APL2 Programming: Language Reference

EMPTY

Workspace
v JCLEAR
>
-
Library of
Active Workspace < JLOAD Stored
Workspaces
JSAVE
»
>
A A
YCLEAR,)LOAD,and)SAVE
affect the entire active workspace.
JCOPY or JPCOPY
Adds all or selected objects
from inactive workspace to
contents of active workspace.
)1V adds to the active workspace all or selected objects
from a file containing transfer forms.
JOUT moves entire workspace or selected objects, but
always replaces the entire file to which it is directed.
JIN your
\ v

Files (not workspaces)
Containing
Transfer Forms

Figure 57. How Selected System Commands Affect the Active Workspace

Chapter 10. System Commands

415

. Common Command Parameters—Library, Workspace
The system commands that move objects to and from libraries may require the
library number, as well as the workspace name. These three parameters are
explained below without the detailed descriptions of the individual commands.
Other parameters are described with the relevant commands in the detailed
sections of this chapter.

Parameter Meaning

library Is the number of the library to be accessed by the command. You
must enter a number if the library is not your default library.

The library structure is dependent on the host system, but differences
in structure do not affect the way the system commands work.

workspace Is the name of the workspace to be accessed. Workspace names
may contain up to eight characters (A through Z, 0 through 9), and
they must begin with a character.

The underlying workspace structure is also dependent on the host
system, but the differences in structure do not affect the way the
system commands work.

A quoted filename format is supported on some platforms.

System Services and Information

APL2 provides system commands for ending an APL2 session, gaining access to
host system services, and obtaining information from the system. These system
commands are used to:

* End the APL2 session
e Issue host system commands
e Obtain additional information on error reports from system commands

Using the Active Workspace

APL2 provides several system commands for using the active workspace. These
commands :

 List or erase global objects (variables, defined functions, and defined operators)
» Display or reset the state indicator
e Set or query the editor or printable backspace

Common Parameters—First, Last

For the system commands that list objects, you may request an alphabetic range
for the list. The parameters for specifying the range are explained below rather
than repeated with the detailed descriptions of the individual commands.

Parameter Meaning

first Begins the list of names with the characters shown for this parameter.
first may be a single character or a set of characters.

last Ends the list of names after names beginning with this parameter have
been displayed. /ast may be a single character or a set of characters.

416 APL2 Programming: Language Reference

First and last are separated by a hyphen. Either name (or both) may be omitted to
indicate that the range is unbounded at that end. For example :

JFNS QU- (all names from QU to the end of the list)

JFNS -@QA (all names from the beginning of the list
through the last one that begins with @4)

JENS @-T (all names beginning with a letter from @ through T

The atomic vector (OA V) character sequence (see |[Figure 69 on page 471 for

EBCDIC and|Figure 68 on page 470 for ASCII) determines the order of the names
listed as a result of any of the following commands:

YNMS list global names

JVARS list global variable names
JFNS list defined function names
)OPS list defined operator names
)LIB list workspace names

All names reported in the list begin at eight-column intervals. A multiple-row list

forms columns if the names are short enough to fit every eight columns.

The examples of these system commands assume a workspace with the contents

shown in Figure 58.

CONTENTS OF EXAMPLE WORKSPACE USED WITH
YNMS, YFNS,)VARS, AND)0OPS

Variables

CHANGE _ACTIVITY COIBM DCS GPAPL?2
Functions

ABSTRACT ASS0C BIN COMB
DO EXAMPLE EXAMPLES EXPAND
HEX2DEC HILB HOW I0TAU LFC
PERM PO POL POLY POLYB
SORTLIST TIME TRUTH TYPFE
Operators

AND COMMUTE CR FL ELSE
IF NOP PAD PL POWER

TRUNC ZERO

GPDESC TIMER

DEC2HEX DESCRIBE

FC
PACK
REP

GCD HELP
PALL PER
REPLICATE

UNIQUE UNPACK

ER
PR

FAROUT HEX
TRACE TRAP

Figure 58. Sample Workspace for System Command Examples

Chapter 10. System Commands

417

)CHECK

) CHE C K—Diagnostic Information

) CHECK command options common to all platforms are described here. For infor-
mation about the additional options supported in APL2/370, see APL2/370 Diag-
nosis Guide.

The common options are grouped as follows:

Workspace validation
JCHECK WS [ON|OFF]

Tracing functions
YJCHECK TRACE STMT
JCHECK TRACE OFF

Forcing dumps
JCHECK DUMP

Workspace Validation

YCHECK WS

Causes an immediate comprehensive check of the workspace. This is independent
of the other settings of)CHECK.

Diagnostic information is produced as APL2 output if any inconsistency is found
and the active workspace is replaced with a clear workspace (CLEAR WS).

Note:)CHECK WS is done automatically when the)LOAD and)SAVE com-
mands are issued.

YJCHECK WS ON

Causes a comprehensive check of the workspace at the completion of every primi-
tive function and prior to the processing of a new line of input from the keyboard or
AP 101 stack.

A minidump of selected areas of APL2 storage is produced as APL2 output if any
inconsistency is found and the active workspace is replaced with a clear workspace
(CLEAR WS).

Note: Using this command causes significant performance degradation.

JCHECK WS OFF

Resets the command)CHECK WS ON. The)LOAD and)CLEAR commands
alsoreset)CHECK WS ON.

418 APL2 Programming: Language Reference

)CHECK

Tracing Functions

YJCHECK TRACE STMT

Displays the text of each statement of defined functions or operators as the state-
ment is about to be executed. The text of the statement is preceded in the trace by
the current value of the second element of JAT.

YJCHECK TRACE OFF

Resets the)CHECK TRACE STMT request.

Forcing Dumps

YCHECK DUMP

Produces a small minidump of selected areas of APL2 storage and replaces the
active workspace with a clear workspace (CLEAR WS).

Chapter 10. System Commands 419

JCLEAR

) CLEAR—Activate a Clear Workspace

YCLEAR

)CLEAR replaces the current active workspace with a clear workspace. When
)CLEAR is executed, these actions take place:

¢ All shares are retracted.

e The contents of the active workspace are discarded and the state indicator is
cleared.

e Most system variables are set to their initial default values. These default
values are shown in|Figure 59 on page 421}

» The active workspace has no name.
For example:

JCLEAR
CLEAR WS

YWSID
IS CLEAR WS

System Variables Not Reset: The values of the system variables ONL T (national
language translation), OPW¥ (printing width), and 0T Z (time zone) and the settings
established by) PBS (printable backspace) and)EDITOR (named editor) are not
reset. Their values are retained, except that if any of the three system variables
had been localized before) CLEAR, their value is restored to their last valid global
value.

420 APL2 Programming: Language Reference

JCLEAR

Figure 59. Environment Reset by CLEAR Command

Symbol Meaning Default

0z Left argument No value

Or Right argument No value

ocr Comparison tolerance 1E713

OEM Event message 3 0p' !

Oer Event type 00

Orc Format control e, *0_ "

0ro Index origin 1

orc Line counter 10

Orx Latent expression "

Opp Printing precision 10

O0pPRr Prompt replacement U

ORL Random link 7%5 (that is, 16807)

OSVE Shared variable event 0

OwA Workspace available Depends on installation and invoca-
tion options

YWSID Workspace name None (thatis, CLEAR WS)

)ST State indicator Cleared

Chapter 10. System Commands 421

YCONTINUE

)CONTINUE—Save Active Workspace and End Session

YCONTINUE

)CONTINUE saves the active workspace in the default private library under the
name CONTINUE and ends the APL2 session. APL2 displays connect and
processor time, and control then returns to the host system.

Each time you start APL2, the CONTINUE workspace is loaded automatically, as
indicated by the SAVED date/time message, and any latent expression in the
CONTINUE workspace is executed. If, however, you have used the INPUT
parameter in your invocation of APL2, the input specified there replaces the load of
the CONTINUE workspace.

YWSID

DUMMY
JVARS

DRY FAT I0D ME PRO SALT
JCONTINUE

1993-05-21 11.30.56 (GMT-4) CONTINUE
Next APL2 session :

SAVED 1993-05-21 11.30.56 (GMT-u4)

YWSID
CONTINUE
JVARS
DRY FAT I0D ME PRO SALT

After being established by)CONTINUE or)SAVE CONTINUE, the CON-
TINUE workspace remains in your library unless explicitly dropped.

Caution: Any CONTINUE workspace in the library is replaced by the active

workspace whenever the) CONTINUE command is executed. The name of the
active workspace does not need to be CONTINUE for this to occur.

422 APL2 Programming: Language Reference

)COPY

) COPY—Copy Obijects into the Active Workspace

) COPY [library] workspace [names]

The results of the) COPY command depend on whether object names are
included in the command:

e |f the command lists names, the named global objects either are added to the
active workspace or replace global objects of the same name that are currently
in the active workspace.

e If the command does not include names, all global objects from the workspace
are added to the active workspace or replace global objects of the same name
that are currently in the active workspace.

In either case, the definitions of local objects are not affected by the)COPY
command. The only system objects that can be copied are OCT, OFC, OI0,
OrX, OPP, OPR, and ORL. These system objects are also copied when object
names are not included in the command.

The examples below show the) COPY command and the system response to it.

)COPY LANGMAN SHOW TEST TESTING 0OLX
SAVED 1993-05-21 13.56.08 (GMT-4)

)COPY LEARN
SAVED 1993-05-21 17.23.58 (GMT-4)

The SAVED message indicates the date and time the workspace was last saved.

If an object being replaced is a shared variable, its share is retracted. If an object
being replaced is a suspended or pendent function, SI WARNING is reported.

Defined function and operator definitions are copied without any associated trace
and stop controls. Because only the definitions are copied, there is no effect on the
copy if these defined functions or operators are suspended or pendent in the library
workspace.

The)COPY command requires space in both the source workspace and the active
workspace in order to copy each of the objects. If there is insufficient room in
either workspace to copy an object,) COPY continues to the next object, and so
forth, until all of the objects that can be copied are brought into the active work-
space. If some objects cannot be brought in, WS FULL and NOT COPIED are
displayed along with the names of the uncopied objects.

To circumvent WS FULL problems on) COPY, it may be necessary to invoke
APL2 with a larger workspace.

If objects to be copied cannot be found in the source workspace, NOT FOUND is
displayed along with the names of those objects.

Chapter 10. System Commands 423

)COPY

Copying Versus Loading a Workspace: Copying an entire workspace into a
clear workspace is not equivalent to using the) LOAD command for the same
workspace. The)COPY command requires the system to do more work than the
)LOAD command, and it omits some potentially important control information that
may be in the stored workspace. The following are not copied:

e Local variables, functions, or operators that are part of suspended or pendent
functions or operators in the source workspace

e The state indicator, which lists where evaluation halted in the source workspace

e System variables associated with suspension
(OEM, OET, OL, OR, OLC, USVE)

Parameters
The introduction to this chapter (page gives the general requirements for the
library and workspace parameters. The examples below demonstrate their use.

JCOPY 1 EXAMPLES TRACE PL XI MIX
SAVED 1993-05-21 12.21.14 (GMT-4)

)COPY 1010 TOOLBOX LOCKOUT SUMCOL MODIFY
SAVED 1993-05-21 14.02.54 (GMT-U4)

Additional Parameter Information: In addition to the general parameter require-
ments, the following information applies to) COPY.

Parameter Meaning

names lists valid global object names. One or several names may be
included.

If the name list includes the name of a simple character scalar, vector,
or matrix enclosed within parentheses, its rows are interpreted as APL2
names, and these objects are copied instead of the array itself. The
array may also contain its own name and then it is copied as well.

This form of copying is called indirect copy. Indirect copying offers a
convenient way to copy a group of objects simultaneously. Figure 60
shows an example.

424 APL2 Programming: Language Reference

)COPY

YWSID
TooLs
PGRP<+>'PROMPT' 'EMPTY' 'IF' 'CHARACTER' 'PGRP'
)SAVE
1993-05-21 22.,02.39 (GMT-4) TOOLS

JCLEAR
CLEAR WS
)COPY TOOLS (PGRP)
SAVED 1993-05-21 22.,02.39 (GMT-4)

All objects named in the matrix PGEP are copied into the workspace.

YNMS
CHARACTER .S EMPTY.3 IF.3 PROMPT .3
PGRP.?2

PGRP
PROMPT
EMPTY
IF
CHARACTER
PGRP

Figure 60. Use and Effect of Indirect Copy

Chapter 10. System Commands 425

)DROP

) DROP—Remove a Workspace from a Library

)DROP [library] workspace

Execution of) DROP deletes the named workspace from the indicated library.

YDROP THISWS
1993-05-21 22.17.56 (GMT-4)

The message indicates the current time, date, and time zone.

To drop a workspace, you must have write access. Also, note that only one work-
space can be dropped at a time.

Parameters
The introduction to this chapter (page gives the general requirements for the
library and workspace parameters. The examples below demonstrate their use.

)DROP 1008 WSONE
1993-05-21 22.18.55 (GMT-4)

)J)DROP 10 CLASS
1993-05-21 22.19.34 (GMT-4)

426 APL2 Programming: Language Reference

JEDITOR

)EDITOR—Query or Select Editor to be Used

JEDITOR
JEDITOR 1
YJEDITOR 2 [name]
JEDITOR name

APL2 provides the following editors for defining and editing functions and operators:

1 Line editor

2 APL full-screen editor
2 name Named APL editor
name Named system editor

Use of the editors is described in [Chapter 9, “The APL2 Editors” on page 375|

When you start APL2, the initial setting for the editor is 1. To determine the current
setting, enter)EDITOR:

JEDITOR
Is 1

To change the editor setting, enter 1 for the line editor or 2 for the full-screen
editor. For example:

YEDITOR 2
YEDITOR

IS8 2
YEDITOR XEDIT
YEDITOR

IS XEDIT

The editor setting is a session parameter. It is not affected by the)CLEAR or
)LOAD commands.

Chapter 10. System Commands 427

JERASE

) ERASFE—Delete Objects from the Active Workspace

YJERASE names

Parameter Meaning

names Is a list of valid global object names. One or several names may be
included.

Note: If the name list includes the name of a simple character scalar,
vector, or matrix enclosed within parentheses, its rows are interpreted
as APL2 names, and these objects are erased instead of the array
itself. The array may also contain its own name, which is then erased
as well. This form of erasing is called indirect erase. Indirect erasing
offers a convenient way to erase a group of objects simultaneously.
[Figure 62 on page 430| shows an example of indirect erasing.

)ERASE removes the named global objects (variables, defined functions, and
defined operators) from the active workspace. For example:

JNMS R
ROUND.3 SHOW.4 STATS.3 SUMCOL.3 TOTS .2
TRACE .4 TRAP.4 TRPLGRP.?2 TRUNC .4 UWAY.2

JERASE SUMCOL TOTS UWAY STATS

JNMS R
ROUND.3 SHOW.4 TRACE.4 TRAP.4 TRPLGRP.2
TRUNC .4

If an object being erased is a shared variable, its share is retracted. If the name
list includes a defined function or defined operator that is pendent or suspended,
that object is erased; however:

e SI WARNING is notreported and the stack is not affected.

e The defined function or operator in the state indicator retains its original defi-
nition until its execution is completed or until the state indicator is cleared
(using = or)RESET).

e The name previously associated with the function or operator now has no
value, and further execution and editing of the original definition is not possible.

[Figure 61 on page 429 demonstrates the effect of erasing a suspended defined
function.

428 APL2 Programming: Language Reference

JERASE

v
[0] F
[1] 'LINE 1!
[2] 230
[3] 'LINE 3!
v

F
LINE 1
DOMAIN ERROR
FL2]1 230

AA

)ST
FL2]
*

JERASE F

)ST
F[2] Definition of F is retained
* in the state indicator.

-3 Execution of F resumes
LINE 3 at line 3.

F Attempt to invoke F' results
VALUE ERROR in an error because the definition

F of F no longer exists.

A

Figure 61. Effect of Erasing a Suspended Defined Function

Chapter 10. System Commands 429

JERASE

)CLEAR
CLEAR WS

MAT<2 3p'FORYOU'

SCA<5

VEC<5 6 7

NEST<'HI' 'GUY'

GROUP<+3 u4p'NESTVEC SCA !

CHAR<'Y"
GROUP
NEST
VEC
SCA
YVARS
CHAR GROUP MAT NEST SCA VEC

YERASE CHAR (GROUP)

YVARS
GROUP MAT

Figure 62. Use and Effect of Indirect Erase

OEX Expunge (page eliminates the currently active objects named in its argu-
ment and may be used to eliminate certain system variables.

430 APL2 Programming: Language Reference

YENS

) FNS—List Indicated Objects in the Active Workspace

)FNS [firsf] [-] [lasf]

)FN S displays an alphabetic list of the global defined functions in the active work-
space.

See the introduction to this chapter (page for explanations of the parameters
first and last. The following examples illustrate the commands used to display
partial contents of the sample workspace shown in [Figure 58 on page 417|

YFNS P-
PACK PALL PER PERM PO POL POLY
POLYB REP REPLICATE SORTLIST TIME
TRUTH TYPE UNIQUE UNPACK

YFNS -T
ABSTRACT ASSocC BIN COMB DEC2HEX DESCRIBE
DO EXAMPLE EXAMPLES EXPAND FC GCD
HELP HEX2DEC HILB HOW IO0TAU

YFNS I-P
IOTAU LFC PACK PALL PER PERM PO
POL POLY POLYB

YFNS P-T

YFNS PE-PE
PER PERM

Chapter 10. System Commands 431

YHOST

) HOST—Execute a Host System Command

YHOST [command]

JHOST allows you to execute host system commands from within APL2.

YHOST passes the given command to the system and displays the system return
code. If you enter)HOST with no parameters, the name of the host system is
displayed.

432 APL2 Programming: Language Reference

)IN

) I N—Read a Transfer File into the Active Workspace

) IN file [names]

A transfer file may be created by using)OUT (see page [442), by using auxiliary
processors, or by a process external to APL2.

The result of the) TN command depends on whether object names are included in
the command:

 If the command lists object names, the transfer forms of these objects are read
from the named transfer file and are defined in the active workspace.

 If the command does not list object names, the entire transfer file is read and
its objects are defined in the active workspace.

The format of the transfer file created by)OUT is shown in|Appendix B, “APL2|
[Transfer Files and Extended Transfer Formats” on page 484l) IN ignores
sequence numbers in the transfer file (columns 73 through 80).

If)IN is successful, no messages are displayed, as shown below:
)JIN TOOLS

JIN TRIAL PAL ROUND PIG

If a name conflict occurs, the object from the transfer file replaces the one currently
in the active workspace.

If the object being replaced is a shared variable, its share is retracted. If the object
being replaced is a suspended or pendent function, no warning is reported.

Parameters
The following information applies to) I V.

Parameter Meaning

file Is the name of a transfer file, following the file naming conventions and
defaults of the operating system.

names Are names of objects to be read and defined in the active workspace.
Names may include system variables if these are present in the
transfer file.

Chapter 10. System Commands 433

)LIB

) L I B—List Workspace Names in a Library

)LIB [library] [first] [-] [lasf]

) I, I B displays an alphabetic list of workspace names, according to these condi-
tions:

e All names in the library list begin at nine-column intervals so that a multiple-row
list forms columns (if OPW is appropriate to your display device.)

* The collating sequence gives alphabetic characters higher significance than
numeric characters.

For example, to list the workspaces in your private library:

)LIB
BUDGET BUDGET2 ESTIMATE GENES INFOEST
LANGMAN LEARN OUTTEST SCHEDULE STATUS
TOOLS UISAMPLE

Note: If the library exists but contains no workspaces, an empty list is displayed.

Parameters
The introduction to this chapter (page gives the general requirements for the
parameters of the) T B command. The examples below demonstrate their use:

)LIB 1 D-E
DISPLAY FEXAMPLES

JLIB 1010
ADDCUST DICKNICK EXECMEAN PAULS SBIC?2
TOOLBOX

Additional Parameter Information: In addition to the general parameter require-
ments, the following information applies to) LI B parameters:

Parameter Meaning

first Provides a partial list of workspaces, starting with any that begin with
the indicated letter or set of characters.

last Ends the list of workspace names after names beginning with this
parameter are displayed. /ast may be a single character or a set of
characters.

434 APL2 Programming: Language Reference

)LIB

For example:
JLIB S
SCHEDULE STATUS TOOLS UISAMPLE
JLIB ST-
STATUS TooLs UISAMPLE
JLIB G-S
GENES INFOEST LANGMAN LEARN OUTTEST

SCHEDULE STATUS

See the introduction to this chapter, page |416} for more information on the parame-
ters first and last.

Chapter 10. System Commands 435

YLOAD

) LOAD—Bring a Workspace from a Library into the Active Workspace

)LOAD [library] workspace

See the introduction to this chapter (page for information about the general
requirements for the parameters library and workspace.

When)LOAD is issued:

* A duplicate of the indicated library workspace completely replaces the contents
of the active workspace. The original copy of the workspace on the permanent
storage device remains intact and in place.

* Any shared variables that were in the active workspace are retracted.

The example below shows a) LOAD command and the system response to it.

JLOAD TOOLS
SAVED 1993-05-21 13.56.08 (GMT-4) 675K(615K)

The SAVED message indicates the time, date, and time zone when the workspace
was last saved. Also reported may be the size of the active workspace after the
)LOAD, and, in parentheses, the size of the workspace when it was last saved.
This information is provided only if the load size differs from the saved size.

If the workspace was saved with a latent expression, specified by 0L X, the system
executes the latent expression (¢ [JLX) immediately after the) LOAD.

JLOAD 1010 LEARN
SAVED 1993-05-21 17.23.58 (GMT-4)
HI. ARE YOU READY TO LEARN MORE APL27?

When a workspace is loaded, the active workspace assumes the name of that
workspace, for example:

YWSID

IS CLEAR WS
JLOAD SCHEDULE

SAVED 1993-05-21 22.54.21 (GMT-4) 675K(783K)
YWSID

SCHEDULE

Note: The current values of the session system variables in the active workspace
ONLT (national language translation), OPW, (printing width) and O7Z (time zone)
and the settings established by) PB.S (printable backspace) and)EDITOR
(named editor) are not altered by a) LOAD command.

436 APL2 Programming: Language Reference

YLOAD

On some APL2 platforms, an additional parameter can be supplied to control the size of the active
workspace when loading. Without the size parameter, the maximum workspace size is used.

YJLOAD STATUS
SAVED 1993-05-21 12,21.14 (GMT-4) 683K(1043K)
awA ABYTES AVAILABLE IN THE WORKSPACE
605476

The size parameter specifies the size of the active workspace, which is reported as part of the SAVED
message.

YJLOAD STATUS 100000

SAVED 1993-05-21 12.,21.14 (GMT-4) 97K(1043K)
awA

6036

The workspace is saved with the current workspace size, which is then reported within parentheses
the next time the workspace is loaded.

)SAVE
1993-05-21 10.18.56 (GMT-4) STATUS
YJLOAD STATUS
SAVED 1993-05-21 10.18.56 (GMT-4) 683K(97K)

An error message is displayed if the size parameter is not large enough to accommodate the work-
space.

JLOAD STATUS 78000
SYSTEM LIMIT
CLEAR WS

Figure 63. Use and Effect of Size Parameter

Chapter 10. System Commands 437

JMORE

)MORE—List Additional Diagnostic Information

YMORE [number]

Error messages display one line of information. The command)MORE is used to
request additional information about the error. The following are examples of the
use of)MORE :

OAF<0AV A<
SYNTAX ERROR+ SYNTAX ERROR+

OAF<0AV yPRER

A A A

JMORE JMORE
NAME CLASS ILL-FORMED LINE

In the case on the left, the additional message indicates that the assignment cannot
complete because of the name class of JAF. (Assignment requires a variable
name, while A F is a function.) In the case on the right, the message indicates
the character constant beginning at the caret is not formed properly. (Quote char-
acters within a character constant must be doubled.) The plus sign on the error
message indicates that more information is available.

In situations where you do not get an error message but do not get the expected
response,)MORE may give information to help you diagnose the problem. For
example, if a function merely returns an auxiliary processor return code, JMORE
may provide more information.

)MORE must be used immediately after a message is displayed. If any input other
than)MORE is entered, the information on the message is erased.

If no diagnostic information is available, a message is displayed indicating that no
further information is available.

YJMORE
NO MORE INFORMATION

To display more than one message at a time, use the optional number parameter.
For example, if you want to see the last three error messages issued, enter:

JMORE 3

APL2/370 Messages and Codes lists the messages received from)MORFE and
suggests corrective actions.

438 APL2 Programming: Language Reference

YNMS

) VM S—List Names in the Active Workspace

YNMS [firsf] [-] [lasf]

)NVMS displays an alphabetic list of the global objects (variables, defined functions,
and defined operators) in the workspace.

Each name reported is followed by a dot and an integer indicating its name class:

Integer Name Class

2 Variable
3 Defined function
4 Defined operator

These numbers are the same as those produced by [ONC for these objects (see

page 309).

See the introduction to this chapter, page [416} for explanations of the parameters
first and last. The following example shows the) NM.S display for the contents 4
through E of the sample workspace shown in [Figure 58 on page 417|

)NMS A-E
ABSTRACT.3 AND . 4 ASS0OC.3 BIN.3 CHANGE_ACTIVITY.2
COIBM.2 COMB.3 COMMUTE .4 CR.4 DCS .2 DEC2HEX .3
DESCRIBE .3 DO.3 EL .4 ELSE.4 ER.U4 EXAMPLE .3
EXAMPLES .3 EXPAND.3

Chapter 10. System Commands 439

)OFF

)OFF—End APL2 Session

JOFF

)OFF ends the APL2 session. Any active workspace objects not previously saved
are lost. Control returns to the host system.

440 APL2 Programming: Language Reference

)OPS

) OPS—List Indicated Objects in the Active Workspace

)OPS [firsf] [-] [lasf]

)OPS displays an alphabetic list of the global defined operators in the active work-
space.

See the introduction to this chapter, page [416} for explanations of the parameters
first and last. The following examples illustrate the commands used to display
partial contents of the sample workspace shown in [Figure 58 on page 417|

)OPS -P
AND COMMUTE CR EL ELSE ER FAROUT HEX
IF NOP PAD PL POWER PR

YOPS I-
IF NOP PAD PL POWER PR TRACE TRAP

TRUNC ZERO

YOPS I-P

IF NOP PAD PL POWER PR
)OPS P-I
YOPS TR-TR

TRACE TRAP TRUNC

Chapter 10. System Commands 441

YOUT

) OUT—Write Objects to a Transfer File

)OUT file [names]

Parameter Meaning

file Names the transfer file. The conventions governing the name (and
name defaults) of the file, its location, control of access to it, and its
permanence are all local conventions of the particular operating system
under which APL2 runs. (See the appropriate workstation user's guide
or APL2/370 Programming: System Services Reference.)

names Names of objects whose transfer forms are to be written to the named
file.

The result of the) OUT command depends on whether object names are included

in the command invocation:

 If the command lists object names, the transfer forms of the named objects are
written to the named transfer file.

» |f the command does not list object names, the transfer forms of all unshared
variables, defined functions, and defined operators, and the system variables
gcr, OrFc, 0O1I0, OLX, OPP, OPR, and ORL are written to the
named transfer file.

If the command is successful, no messages are displayed, as shown below:
)OUT TOOLS ALTER TRACE SHOW
)OUT TRIAL

System variables in addition to those listed above can be transferred with)OUT if
specifically requested:

your Sv Opw OTZ
In this case, only the named objects are transferred.

Transfer File Format: A transfer file has fixed-length 80-character records. Either
migration transfer forms or extended transfer forms of APL2 objects may be in the
transfer file. See |Appendix B, “APL2 Transfer Files and Extended Transfer|
[Formats™ on page 484]for format details.

442 APL2 Programming: Language Reference

YOUT

Figure 64 shows a sample workspace written to a transfer file with YOUT. The file
contains one function named G.

XAOLX-1'" 00000100
XAO10-1 00000200
XAOPP-10 00000300
XAOCT-1E 13 00000400
XAORL-16807 00000500
XAOFC-'.,z0_ ! 00000600
XAOPR-1 ' ! 00000700
*(1993 8 17 30 16) 00000800
XFG OFX 'Z2-G X' '2+! 00000900

Figure 64. Transfer Form of a Workspace (Each record is 80 characters long.)

Warning:)OUT does not add to an existing file. If a transfer file by the speci-
fied name already exists, its contents are entirely replaced by the transfer forms of
objects in the current active workspace.

Transferring the Most Local Version: The most local version of an object is
transferred. Figure 65 shows the writing of a local object to a transfer file.

I
GLOBAL
FN
FNL2] AFUNCTION IS SUSPENDED
I AVALUE OF LOCAL VARIABLFE I
LOCAL
YOUT TEST I AeWRITE I TO A TRANSFER FILE
>2 ARESUME FUNCTION EXECUTION
END OF FUNCTION
I AVALUE OF GLOBAL VARIABLE I
GLOBAL
YIN TEST I AREAD I FROM TRANSFER FILF
I
LOCAL

Figure 65.)OUT Writes Local Objects

Chapter 10. System Commands 443

)PBS (APL2/370 Only)

) PBS—AQuery or Set the Printable Backspace Character (APL2/370
Only)

)PBS
)PBS ON
)PBS OFF

Parameter Meaning

ON Turns on the printable backspace character.

OFF Turns off the printable backspace character.

If you are using a terminal that cannot enter all the APL2 characters, you must use

the printable backspace to enter or edit any line containing one of the characters
listed below.

The character _ is the printable backspace character. Within the context of the ten
characters shown below, it tells the system to treat the characters entered to its
right and left as overstruck, thus forming a single character.

For example, to enter or edit the depth or match symbol = with the printable back-
space character, enter either =__ or __ =.

The characters that are entered with the printable backspace follow:

Character Entered As...
[O_o
1 1__
€ €__
0 [_1]
N O_\
Q <:>
- [_-
4 -_1

The overstrike pairs may be entered in either order, with the intervening printable
backspace character.

The initial setting is determined by your display. To determine the current setting,
enter) PBS. To deactivate the printable backspace character, enter)PBS OFF.

)PBS
Is

)PBS OFF

444 APL2 Programming: Language Reference

)PBS (APL2/370 Only)

The printable backspace character is effective only in the context of the new APL2
characters. For example:

)PBS ON
C.(_V €__|
pC
(empty)
C<'4_ 4!
oC
3

Note: APL2 always treats a printable backspace combination as a single char-
acter, for example, when determining the width of a display under OPW Printing

Width, page

If your terminal has the programmable symbol set (PSS), the new characters are
always displayed in their true typographical form.

A<'0 o 1 e _[_10N . " =__<>1[_--_1
A
B 1e 0N~ =O0OF

If YPBS is on and you do not have the PSS, the characters will display with the
printable backspace character as they were entered.

)PBS

Is _
A<'O_e 1__ e__ [_10N .7 =__<>10[_--_1
A

O_c v__ e__ [_10N "_. =__<_>1[_--_1

If)PBS is off and your terminal does not have the PSS, the display depends on
the character set built in to your display.

The printable backspace character is a session parameter. It is not affected by a
JCLEAR or)LOAD command.

Cases of apparent ambiguity in the use of the printable backspace are resolved by
taking as the printable backspace the first underscore that can be a printable back-
space. For example:

1=__=2 3

is 1 match equal 2 3 (which yields a VALENCE ERROR), NOT 1 equal depth 2
3.

Chapter 10. System Commands 445

)PCOPY

) PCOPY—Copy Objects into the Active Workspace with Protection

) PCOPY [library] workspace [names]

)PCOPY is identical to) COPY in all respects except one:

If the active workspace contains global objects with the same name as any that
are requested to be copied, they are not copied and the old ones are not

replaced.

The example below shows the) PCOPY command and the system response to it.

JLOAD LEARN
SAVED 1993-05-21 17.23.58 (GMT-4) 675K(783K)

JPCOPY UISAMPLE AVERAGE ROUND ADDTOTALS
SAVED 1993-06-20 16.23.32 (GMT-4)
NOT COPIED: ROUND

Refer to) COPY, page [423| for details of the command syntax and results.

446 APL2 Programming: Language Reference

)PIN

) PI N—Read a Transfer File into the Active Workspace with Protection

)PIN file [names]

)PIN,like)IN, reads objects into the active workspace from a transfer file. The
two commands are identical in all respects except one:

) PT IV will not transfer an object if another object of the same name already
exists in the active workspace, whereas) IN replaces any object in the active
workspace that has the same name as the object being transferred in.

If)PIN is successful, no messages are displayed, as shown below :

JPIN TOOLS

)JPIN TOPS SIDES SPINS
If a name conflict does occur, the object from the transfer file is listed ina NOT
COPIED: message, as shown below :

JPIN WORK DONE OVER
NOT COPIED: WORK
Refer to) IN on page for details of the command syntax and results.

Note: System variables are also protected when using)PIN. Most or all of them
will be included in the NOT COPIED: list, unless a specific name list is provided
in either the)PIN command or the)OUT command that created the transfer file.

Chapter 10. System Commands 447

)QUOTA (APL2/370 Only)

)QUOTA—List Workspace, Library, and Shared Variable Quotas
(APL2/370 Only)

YQUOTA

)QUOTA displays a report on the availability of your private library, workspaces,
and shared variables. The report is shown and explained below :

YQUOTA
LIB 3404800 FREE 735200
WS 618496 MAX 618496
sV 88 SIZE 32768

Each row of the report provides information on your library, workspace size, and
shared variable capabilities, respectively. In some implementations, not all the
information is available. For more information, see APL2/370 Programming:
System Services Reference.

Item Meaning

LIB Total amount of space (in bytes) in your library

FREE The amount of space (in bytes) still available in your library for
saving

WS The default size (in bytes) in the active workspace

MAX The maximum size workspace (in bytes) that may be requested (as
with)CLEAR or)LOAD)

SV The maximum number of variables that may be simultaneously
shared

SIZE The size (in bytes) of your shared storage

448 APL2 Programming: Language Reference

JRESET

) RESET—Clear the State Indicator

YRESET [number]

JRESET is a synonym for)SIC.

Clearing n Lines from the State Indicator:)RESET with number clears that
number of lines from the state indicator and resets OEM, OET, 0L, and 0ORF to
values appropriate to the statement at the top of the state indicator after the reset.
If this is a line stopped by an error, , 0L and OF indicate the values of the func-
tion's arguments at which the error occurred, and OFM and OET reflect the error.
If the line did not stop because of an error, L and [OF have no value, EM is an
empty matrix, and OET is 1 1 (interrupt). For example:

)ST

GN[1]
FN[2]
*

*

OEM
DOMAIN ERROR
GNL1] Z+<330

A A

JRESET 3

)ST

OEM
DOMAIN ERROR
1x11.2

AA

OrT

0z
Or

Or

1.2
0L

VALUE ERROR 0L has no value because
0L the function interval has no
A left argument.

Chapter 10. System Commands 449

JRESET

Clearing the Entire State Indicator: If a number is not specified with the
command,)RESET clears all suspended and pendent statements and editing
sessions from the state indicator. For example:

)ST
GN[1]
FN[L2]
*
*
JRESET
)ST

This is equivalent to entering > (escape) until the state indicator is clear.

Because they are effectively local to functions in lines of immediate execution,
)RESET without a number returns the system variables M and OF T to their
initial values in a clear workspace and removes the values of [OLZ and 0Z.
)RESET also purges and contracts the internal symbol table.

See also [*) ST C—Clear the State Indicator” on page 454

450 APL2 Programming: Language Reference

)SAVE

) SAVE—Save the Active Workspace in a Library

)SAVE [[library] workspace]

)SAVE stores a copy of the active workspace in the indicated library.)SAVE
has one of the following effects on the library:

 If the named workspace does not exist in the library,)SAVE establishes it in
the library.

 If the named workspace exists in the library,)SAVE replaces the current con-
tents of the library workspace with the active workspace.

 If the named workspace exists in the library but is not the same as the name of
the active workspace, the following error message is displayed:

NOT SAVED: THIS WS IS name

The example below shows a) SAVE and the system response to it.

)SAVE THISWS
1992-03-27 21.48.04 (GMT-4)

The message indicates the time, date, and time zone in effect when the workspace
was saved.

Current values of any shared variables are saved in the stored copy even though
they have not yet been referenced. The state indicator, current values of system
variables, and stop and trace controls are also saved.

)SAVE does not affect the contents of the active workspace. However, the active
workspace assumes the name given in the)SAVE command.

YWSID
IS CLEAR WS
VSAVE NEWWS
1992-03-27 21.50.45 (GMT-4)
YWSID
IS NEWWS

Parameters
The introduction to this chapter (page gives the general requirements for the
library and workspace parameters. The examples below demonstrate their use.

)SAVE 10 CLASS
1992-03-27 21.40.23 (GMT-U4)

)SAVE 1008 WSONE
1992-03-27 21.49.23 (GMT-4)

Chapter 10. System Commands 451

)SAVE

Additional Parameter Information: If you omit the workspace name and associ-
ated library number, they are supplied from the current workspace identification
(see YWSID, pagel460).

For example:

YWSID
THISWS
)SAVE
1992-03-27 21.51.09 (GMT-4) THISWS

Note: The system response includes the workspace name when it is omitted from
the)SAVE command.

452 APL2 Programming: Language Reference

)ST

) S I—Display the State Indicator

) ST [numben

The state indicator, discussed in|‘State Indicator” on page 355| is a list of:

e The calling sequence of defined functions and defined operators (and their per-
tinent line numbers).

 Asterisk(s) for all immediate execution expressions that did not complete, either
because of an error in the expression or because the function invoked by the
expression is pendent or suspended.

The command).ST without a number specified displays data from each line of the
state indicator. If a number is provided, the command does not display more than
that number of lines of the state indicator.

The)SI command is similar to).SI.S but it does not list the statement that was
being executed at the time the line was added to the state indicator.) ST lists
the defined functions and defined operators (and their pertinent line numbers) in the
state indicator, and an asterisk for all immediate execution expressions that did not
complete. For example:

)ST
GN[1]
FN[2]
*
*

)SI 2
GN[1]
FN[2]

If a definition line appears in the state indicator, the value within brackets indicates
the status of the object:

[Positive integer I] Execution is suspended at line I.
Execution can be resumed by +~10.

[Negative integer I] Execution is suspended at line | I.
Execution can be restarted by
+0LC or —-n, where nis a line
number.

[blank] Execution is suspended by a line,
but which one cannot be deter-
mined. Execution can be neither
restarted nor resumed.

[1V The object is being edited.

Clearing the State Indicator:)SIC, page and)RESET, page 449 both
clear the state indicator as does - (escape), described under|[‘Clearing the State]
[Indicator” on page 357

Chapter 10. System Commands 453

)SIC

) S I C—Clear the State Indicator

)SIC [numben

Clearing n Lines from the State Indicator:)SIC with number clears that
number of lines from the state indicator and resets OEM, OET, 0L, and 0OF to
values appropriate to the statement at the top of the state indicator after the reset.
If this is a line stopped by an error, , 0L and OF indicate the values of the func-
tion's arguments at which the error occurred, and 0FM and OET reflect the error.
If the line did not stop because of an error, L and [OF have no value, EM is an
empty matrix, and OET is 1 1 (interrupt). For example:

)ST

GN[11]
FN[2]
*

*

OEM
DOMAIN ERROR
GN[1] Z<«3%0

A A

)SIC 3

VST

OeM
DOMAIN ERROR
1x11.2

AA

OrT
0L
Or
Or
0z
VALUE ERROR 0L has no value because

0L the function interval has no
A left argument.

454 APL2 Programming: Language Reference

)SIC

Clearing the Entire State Indicator: If a number is not specified with the
command,)SIC clears all suspended and pendent statements and editing ses-
sions from the state indicator. For example:

)ST
GN[1]
FNL[2]
*
*
)SIC
)ST

This is equivalent to entering > (escape) until the state indicator is clear.

Because they are effectively local to functions in lines of immediate execution,

) SIC without a number returns the system variables OFM and OF T to their intitial
values in a clear workspace and removes the values of 0L and JR.)SIC also
purges and contracts the internal symbol table.

)SIC is identical to)RESET (see [) RESET—Clear the State Indicator” on|
page 449) and was added to meet international APL standards.

Chapter 10. System Commands 455

)SINL

)SINL—Display the State Indicator with Name List

)SINL [numben

The state indicator, discussed in[“State Indicator” on page 355) is a list of :

e The calling sequence of defined functions and defined operators (and their per-
tinent line numbers).

 Asterisk(s) for all immediate execution expressions that did not complete, either
because of an error in the expression or because the function invoked by the
expression is pendent or suspended.

The command) SINL without a number specified displays data from each line of
the state indicator. If a number is provided, the command does not display more
than that number of lines of the state indicator.

Like)SI,)SINL lists the defined functions and defined operators (and their perti-
nent line numbers) in the state indicator, and an asterisk for all immediate exe-
cution expressions that did not complete. In addition, it lists the names local to the
function or operator. For example :

)SINL
GN[1] Z
FN[2] Z

*

*

If a definition line appears in the state indicator, the value within brackets indicates
the status of the object:

[Positive integer I] Execution is suspended at line I.
Execution can be resumed by -1 0.

[Negative integer I] Execution is suspended at line | T.
Execution can be restarted by
~0LC or —-n, where nis a line
number.

[blank] Execution is suspended by a line,
but which one cannot be deter-
mined. Execution can be neither
restarted nor resumed.

L1V The object is being edited.

Clearing the State Indicator:)SIC, page and)RESET, page 49 both
clear the state indicator as does + (escape), described under[Clearing the State]
[Indicator” on page 357,

456 APL2 Programming: Language Reference

)SIS

.)SIS—Display the State Indicator with Statements

)SIS [numben

The state indicator, discussed on page 355} is a list of:

e The calling sequence of defined functions and defined operators (and their per-
tinent line numbers).

 Asterisk(s) for all immediate execution expressions that did not complete, either
because of an error in the expression or because the function invoked by the
expression is pendent or suspended.

The command) SIS without a number specified, will display data from each line of
the state indicator. If a number is provided, the command will not display more
than that number of lines of the state indicator.

The)SI.S command displays each line in the state indicator and the statement
that was being executed at the time the line was added to the state indicator.
Carets shown on the line below the statement indicate how much of the statement
had been executed.

)SIS
GN[1] Z+<330 First entry in the state indicator
AA is last expression that did not
FN[2] Z<«GNx2 complete.
A

* FN

A
* 31

AN

If a definition line appears in the state indicator, the value within brackets indicates
the status of the object:

[Positive integer I] Execution is suspended at line I.
Execution can be resumed by -1 0.

[Negative integer I] Execution is suspended at line | T.
Execution can be restarted by
+0LC or —-n, where nis a line
number.

[blank] Execution is suspended by a line,
but which one cannot be deter-
mined. Execution can be neither
restarted nor resumed.

C1v The object is being edited.

Clearing the State Indicator:)SIC, page and)RESET, page {49 both
clear the state indicator as does + (escape), described under[‘Clearing the State]
[Indicator” on page 357

Chapter 10. System Commands 457

)SYMBOLS

)SYMBOLS—Query or Modify the Symbol Table Size

)SYMBOLS [numben]

)SYMBOLS refers to the number of symbols in the APL2 symbol table.

The symbol table contains the names used in a workspace. When a name is first
specified or defined, an entry is made for it in the symbol table.

If a number is not specified with the command, then)SYMBOLS purges unas-
signed names, compresses the internal symbol table, and reports the number of
symbols currently in use. This is larger than the number of names of variables,
functions, and operators in use. For example:

)CLEAR
CLEAR WS

)SYMBOLS
IS 4u7

A<B<(C<«D<E<«1
)SYMBOLS
IS 52

If number is specified with the command, then) SYMBOLS expands or com-
presses the internal symbol table to at least the given number of slots. For
example:

OwA

412708
)SYMBOLS 100
OwA

412084

The symbol table is automatically expandable; system efficiency may be improved
by enlarging the symbol table. A larger symbol table consumes more workspace
but may save computation time. Some workspace may be reclaimed by com-
pressing the symbol table.

Note: System functions and system variables exist in a clear workspace.

458 APL2 Programming: Language Reference

JVARS

) VAR S—List Indicated Objects in the Active Workspace

)VARS [firsf] [[last]

)VARS displays an alphabetic list of the global variables in the active workspace.

See the introduction to this chapter, page [416] for explanations of the parameters
first and last. The following examples illustrate the commands used to display
partial contents of the sample workspace shown in [Figure 58 on page 417}

JVARS D-
DCS GPAPL2 GPDESC TIMER

JVARS -G
CHANGE_ACTIVITY COIBM DCS GPAPL2 GPDESC

JVARS D-G
DCS GPAPL2 GPDESC

JVARS G-D

JVARS GP-GP
GPAPL2 GPDESC

Chapter 10. System Commands 459

YWSID

)WSID—Query or Assign the Active Workspace Identifier

YWSID [[library] workspace]

To learn the current identifier of the active workspace (called wsid), enter YW SID.

YWSID
IS CLEAR WS Indicates that no identifier is
associated with the workspace
YWSID

IS LANGMAN

YWSID
IS 1 DISPLAY

To change the current identification of the active workspace, enter the workspace
name and, optionally, a library number :

JWSID NEWNAME
WAS LANGMAN

JWSID 1008 ANOTHER
WAS NEWNAME

YWSID
IS 1008 ANOTHER

Parameters
The introduction to this chapter (page gives the general requirements for the
library and workspace parameters.

460 APL2 Programming: Language Reference

Interpreter Messages

, Chapter 11. Interpreter Messages

| This chapter lists and explains interpreter messages in alphabetical order. If a
message is associated with a specific OE T setting, that setting is shown to the right
of the message.

APL2 displays interpreter messages as the next line of output, beginning at the left
margin. Such messages indicate:

e An interrupt signaled or an error within an expression. This could be an incor-
rect number of arguments for a function, invalid arguments, or incorrect syntax.

» Successful or unsuccessful completion of actions initiated by system com-
mands.

In some cases messages are displayed with “+” as their final character. This
means that additional, more detailed, information is available. That can be
obtained by entering)MORE at the first opportunity (see[*) MORE—List Additional

[Diagnostic Information” on page 438).

| Messages for the workstations, including those for the APL2 session manager and

| auxiliary processors, are explained in the appropriate user's guide. All messages

| for APL2/370, including those concerning the APL2 session manager and auxiliary
processors, are detailed in APL2/370 Messages and Codes.

Interrupts and Errors in APL2 Expressions
Interrupts and errors in expressions generate the following types of messages:

¢ Classification
e The expression was interrupted or is in error
e Two carets pointing to the expression

Figure 66 shows the message displayed when an error occurs in the expression

2+'X"'.
23X Expression as entered
DOMAIN ERROR Classification
2:'X! Expression in error
AA Carets pointing to the expression

Figure 66. Display When an Error Occurs within an APL2 Expression

The left caret indicates how far APL2 interpreted the statement—from right to left.
The right caret indicates where the error or interrupt occurred. In Figure 66, APL2
interpreted the entire expression. The error occurred with the divide function
because the right argument was not numeric. Sometimes one caret appears
because the point where the error occurred and the point at which APL2 interpreted
the expression are the same.

The error message can be retrieved using OEM (event message), page
Further information on the category of error can be obtained using either OET
(event type), see page[287] or)MORE, see page #38[Errors and Interrupts in|

© Copyright IBM Corp. 1984, 1994 461

Interpreter Messages

[Immediate Execution” on page 59 discusses clearing the error from the state indi-
cator.

Interrupts and Errors in Defined Functions or Operators

When execution of a defined operation results in an error, APL2 displays an error
message similar to that generated by an error in immediate execution. The name
of the operation and the line number precede the display of the statement in error.
Figure 67 shows a message displayed when an error occurs within the defined
function named AVERAGE.

AVERAGE 4 9 'B! Function invoked
DOMAIN ERROR Error classification
AVERAGE[L1] Z<(+/X)+peX Statement causing the error
AA Pointers showing how far APL2

interpreted the statement and
where the error occurred

Figure 67. Display When an Error Occurs within a Defined Function or Operator

[‘Clearing the State Indicator” on page 357| describes clearing the state indicator
when an error suspends execution of a defined operation.

Errors in System Commands

Messages generated as a result of system commands may indicate successful
completion of an operation or an error. For instance, issuing the)CLEAR system
command to clear the active workspace results in the display of the information
message CLEAR WS:

)CLEAR
CLEAR WS

The message indicates successful clearing of the active workspace. After receiving
an information message, you can proceed as normal.

If the message is caused by an error in the execution of a system command, the
command is not executed. If the message ends with “+”, additional information is
available. The additional information can be obtained by using the system
command)MORE.

Messages

Note: For descriptions of workstation messages, see the appropriate user's guide.
For complete descriptions of APL2/370 messages, standard IBM message
numbers, and corrective actions, see APL2/370 Messages and Codes.

AXIS ERROR OET <~ 5 6

462 APL2 Programming: Language Reference

Interpreter Messages

The indicated axis is incompatible with the function or operator and the given argu-
ments; or the operator is not defined with an axis; or the axis specification includes
semicolons.

CLEAR WS

The current active workspace was replaced with a clear workspace. See
“)CLEAR,” page }20] for a description of the initial contents of a clear workspace.

DEFN ERROR

The V or an editing command was misused:

A syntactically incorrect V or # command was entered to begin edit mode.
An invalid character was used outside of a quote string or comment.

The object cannot be edited. For example, a variable under the line editor or a
locked function.

An invalid edit command was entered.
The closing V or # was entered to establish an invalid object.

Under Editor 1 (the line editor), a V or # was entered on an unnumbered line to
close a definition.

Under Editor 2 (the full-screen editor), an attempt to pass lines from one
segment to another failed because two lines numbered [0] appear in the
same segment.

An attempt was made to name an object with a name already in use in the
active workspace.

[Chapter 9, “The APL2 Editors” on page 375|discusses the use of the editors and

explains all the edit commands.

Chapter 11. Interpreter Messages 463

Interpreter Messages

DOMAIN ERROR OET <> 5 4

The data type, degree of nesting, or number of arguments or operands specified for
a primitive operation is invalid.

A DOMAIN ERROR is also generated if:

e A calculation requires or produced data that is beyond the range of the system
implementation but does not fit any of the categories of SYSTEM LIMIT
(this can occur with some mathematical functions).

e A nonresource error occurred in a defined function or operator whose fourth
execution property is set to convert nonresource errors to a DOMAIN
ERROR. (See OFX, page[294])

» A derived function from the slash operator or inner product was presented with
an empty argument but no identity function existed for the function operand. Or
a derived function from the Each operator or inner product was presented with
an empty argument but no fill function existed for the function operand.

ENTRY ERROR

The APL2 system received invalid characters. (Valid characters are listed in
[Appendix A, “The APL2 Character Set” on page 470})

IMPROPER LIBRARY REFERENCE

The library number specified fora)COPY,)LOAD,)LIB, or)SAVE command
is incorrect or does not exist; or you are not authorized to access the library.

INCORRECT COMMAND

The APL2 system command entered is invalid or has invalid parameters.

INDEX ERROR OET <> 5 5

The index specified for bracket indexing (R [I]) or pick (L>R) is invalid with
respect to the array given as the argument.

464 APL2 Programming: Language Reference

Interpreter Messages

INTERRUPT OET <> 1 1

An interrupt was signaled from the terminal during processing and execution is
halted. Execution can be resumed with -1 0 or restarted by branching to a line
number in the defined operation. If execution is not resumed or restarted, the state
indicator should be cleared (with -~ or)RESET), as described in
[State Indicator” on page 357}

LENGTH ERROR OET <> 5 3

An argument of a primitive function or operand of a primitive operator has an axis
whose length is incompatible with respect to that of the other argument or operand.

LIBRARY I/0 ERROR

An internal error is preventing successful completion of a)CONTINUE,)COPY,
)JDROP,)LOAD, or)SAVE command.

LIBRARY NOT AVAILABLE

The)CONTINUE,)COPY,)DROP,)LOAD,)SAVE operation cannot be suc-
cessfully completed because other user(s) have temporary control of a shared
library; or you do not have write access to the library.

NOT COPIED: object-names

The listed objects were not copied by the) PCOPY system command because the
objects already exist in the active workspace. Or the listed objects were not copied
by the)PCOPY or)IN system command because the objects do not fit in the
active workspace.

Also, the listed objects specified with the) I N system command do not have valid
transfer forms in the file specified. Or the listed objects specified with the)0UT
system command were not written to a transfer file because they do not exist in the
active workspace or cannot be transferred.

NOT ERASED: object-names

The listed objects were not erased by the) ERASE command because the objects
do not exist in the active workspace.

Chapter 11. Interpreter Messages 465

Interpreter Messages

NOT FOUND: [object-names]

The objects listed were either:

)PCOPY system command but cannot be found in the specified library work-
space.

e Specified with an) TN system command but are not in the transfer file.

If no objects are listed, the file specified by name with the) IV system command
cannot be found or is not a transfer file.

NOT SAVED, THIS WS IS wsid

The)SAVE system command was issued ina CLEAR WS with no specified
workspace name; or the workspace named in the) SAVE command exists in the
library but is not the same as the name of the active workspace.

NOT SAVED, LIBRARY FULL

The space allotted for saving workspaces is full; or the remaining space is not large
enough to save the workspace.

RANK ERROR OET <> 5 2

An array specified as the argument of a function or operand of an operator has a
rank that is incompatible with another argument or operand. If the array is nested,
the incompatibility may exist below the top level of structure.

SI WARNING

A suspended or pendent defined function or operator was altered by editing or was
replaced by the)COPY or)PCOPY command; or an attempt was made to use
10 to resume execution of an operation that cannot be resumed (see [‘Suspen]
[sion of Execution” on page 354).

SYNTAX FERROR OET <> 2n

The displayed APL2 expression is constructed improperly (for example, a function
has a missing right argument); or an expression has mismatched parentheses or
brackets.

If the error type is 2 5 (compatibility setting error), enter)C'S 0 to return the
compatibility setting to full APL2.

466 APL2 Programming: Language Reference

Interpreter Messages

SYSTEM FERROR OET <> 1 2

A fault occurred in the internal operation of the APL2 system; or the active work-
space was damaged.

On APL2/370, the damaged workspace is copied into a DUMPnnnn workspace.
You may be able to copy objects from the DUMPnnnn workspace; however,
examine and test them to ensure that they have not been damaged.

The active workspace is replaced by a CLEAR workspace.

See APL2/370 Diagnosis Guide for other information on recovering data.

SYSTEM LIMIT OET <> 1n

The requested operation or action exceeds the system limits for symbol table size,
number of shared variables, size of shared variable storage, rank of an array,
number of dimensions of an array, number of items in an array, depth of an array,
or size of a prompt in a prompt/response interaction.

VALENCE ERROR OET <> 5 1

An attempt has been made to specify a left argument for a monadic function, or to
specify a single argument for a dyadic function, or to execute a function declared
through the use of dyadic N A whose definition cannot be activated.

VALUE ERROR OET <> 3n

The constructed name being referenced was not specified; or an attempt was made
to reference a value from a function that does not return a result; or a defined func-
tion that references two arguments was called with only a right argument, and the
definition of the function does not check for this.

WS CANNOT BE CONVERTED

This message occurs after a WS FULL message if, because of system mainte-
nance, the internal format of workspaces was changed and a larger workspace size
is now needed.

WS CONVERTED, RESAVE

If system maintenance has changed the internal format of workspaces, the work-
spaces are automatically converted when you issue a) LOAD command. Saving
the workspace ensures that the library copy of the workspace has the changed

Chapter 11. Interpreter Messages 467

Interpreter Messages

internal format. If you do not save the workspace, as directed, this message
appears every time you load the workspace.

WS FULL OET <> 1 3

An attempt was made to execute an operation that requires more storage than is
currently available.

WS INVALID

The)LOAD system command was issued to load a file that is not an APL2 work-
space.

WS LOCKED

The password specified with a)COPY,)PCOPY, or)LOAD command differs
from that for the library workspace.

WS NOT FOUND

The workspace specified witha)DROP or)LOAD command does not exist.

OCT ERROR OET <> 4 3

An attempt was made to execute a primitive function that uses OCT as an implicit
argument when 0CT has an inappropriate value or no value.

OFC ERROR OET <> 4 Yy

An attempt was made to:

e Execute a primitive function that uses 0OFC as an implicit argument but OFC
has an inappropriate value or no value.

e Display a negative number (with LsR) when OFCL 6] has an inappropriate
value or no value.

UI0 ERROR OET <> 4 2

An attempt was made to execute a primitive function that uses 0OI0 as an implicit
argument when [I0 has an inappropriate value or no value.

468 APL2 Programming: Language Reference

Interpreter Messages

OPP ERROR OET <> 4 1

An attempt was made to display an array when OPP has an inappropriate value or
no value; or to execute a primitive function that uses OPP as an implicit argument
when OPP has an inappropriate value or no value.

OPR ERROR OET <> 4 7

An attempt was made to use the [system variable to create a character prompt
immediately followed by a request for character input. However, PR has no value
or an inappropriate one.

ORL ERROR OET <> 4 5

An attempt was made to execute roll or deal, each of which requires ORL as an
implicit argument, but ORL has an inappropriate value or no value.

Chapter 11. Interpreter Messages 469

Appendix A. The APL2 Character Set

The APL2 character set is composed of 143 characters (plus blank) for which spec-
ified graphics must be used. The ATV system variable defines these 144 code
points plus an additional 112 deprecated or non-APL code points that may have no
defined graphic, or whose graphics may vary.

Different APL implementations may choose differing AV orderings, and several
have been used in the past. There are currently two orders being used by APL2
products:

e The ASCII order used on workstations and shown in Figure 68
e The EBCDIC order used on System/370 and shown in Figure 69

Both figures show a matrix correspondingto 16 16p0AV and are labeled with
hexadecimal indexes into the matrix. The hexadecimal representation XX of a
character gives its row and column in the table. A corresponding index to AV can
be obtained by the expression:

1+161 1+'0123456789ABCDEF "' 1XX

The following table shows the ASCII encoding of APL2 characters used on the
workstation implementations.

Figure 68. ASCII Character Set (Workstations)

0o o0 0 o o0 o o o o 0O o o o o0 o0 O
0o 1 2 3 4 5 6 7 8 9 A B C D E F

00 | | oo
10 I I 10
20 b # s % & 0 C) o o+, - 0/ 20
30 | o1 2 3 4 5 6 7 8 9 : 3 < = > 2] 30
40 | @ A B ¢C D EF G HI J KL M N O | 40
50 P Q@ RS T UV W XY Z [\N 1 ~ _ 50
60 I S a b c d e £f g h i j k 1 m n o I 60
70 p g r s t uvwxy =z { | }t ~ 70
80 | C 0 é a a a a ¢ & & e 1 1t i A A 80
90 | omB®e o6 6 6 0du10OU @ £ 1 m 1 | 90
A0 a i 6 a A N 2 o 4, [= u | T e A0
BOI ﬁﬁli@AV+%lllﬂ”+L1IBO
co S T T R S S S N A
Do | 1 € it 88 -~ o4 B al I ®] Do
EO | o B ¢ 2> A * p ¥ ¢ © O VvV 1 ® € n | EO
Fo A XN =2 < # x £ A o w ® A VY T 7 FO

00 000OO OO O0O0UO0UO0O0O0 0 O

01 2 3 4 5 6 7 8 9 A B C D E F

470 © Copyright IBM Corp. 1984, 1994

The following table shows the EBCDIC encoding of APL2 characters used on the
System/370 implementation.

Figure 69. EBCDIC Character Set (APL2/370)

00 00 0 0 O0OO0O0UO0OTO0O0TUO0CTO0 0 O
0 1 2 3 4 5 6 7 8 9 A B C D E F
00 |
10
20
|
30
40 A B C D EE G H I ¢ < C + |
50 | & J K L M N 0 P @ B ! $ *) 35 =
60 -/ ST uvuwWw XYz s % _ > 72
70 Q A @B 1 € - 4 v # 2 '+ ="
|
80 | ~ a b ¢ d e f g h i 4+ ¥ < [L -~
90 0 7 k 1 m n o p g r > ¢ o <
A0 | T ~ s t u v w x y z n u 1 [2 o
|
BO o € 1 p w x \ % v A T 1 = |
co { A B ¢CDEVFGUHTI~~TTN ¢ N ¥
|
Do } J K L M N 0 P @ R T ! VvV A 0 a
EO \ = 8 T UV W X Y 72 # X e B =3
FO | 0 1 2 3 4 5 6 7 8 9 ¥ A ® o
0000 00O O0OO0OUOTO0UO0TU 0O 0 0 O
01 2 3 4 5 6 7 8 9 A B C D E F
Note:

The characters that are not shown in the above figures may or may not

00

10

20

30

40

50

60

70

80

90

AO

BO

Cco

DO

EO

FO

have graphic representations on specific APL2 input and output devices. All char-
acters in AV and those obtained using JA F can be used in comments and char-
acter constants even though they may not have graphic representations. Except

for comments and character constants, only APL2 graphic characters whose use is

defined in this manual can be meaningfully used in APL2 expressions.

APL2 Special Characters

Figure 70 shows the APL2 special characters and their names. The names of the

characters do not necessarily indicate the operations they represent. The table
includes the pages containing descriptions for the APL2 use of the symbols.

Figure 70 (Page 1 of 3). Names of APL2 Characters

Symbol Name

Monadic Use

(Operation

Name and Page)

Dyadic Use
(Operation
Name and Page)

Other

Reference

(Page)

Symbol

dieresis

Each (109

Appendix A. The APL2 Character Set

471

Figure 70 (Page 1 of 3). Names of APL2 Characters

Monadic Use Dyadic Use Other
(Operation (Operation Reference
Symbol Symbol Name Name and Page) Name and Page) (Page)
- overbar — —
< less — Less Than [19) —
< not greater — Less Than or Equal —
(219)
= equal — Equal —
> not less — Greater Than or —
Equal
> greater — Greater Than —
2 not equal — Not Equal —
v down caret — Or —
A up caret — And (68) —
- bar Negative Subtract —
+ divide Reciprocal Divide —
+ plus Conjugate Add —
X times Direction Multiply (183) —
? query Roll Deal (B9] —
w omega — — —
€ epsilon Enlist Member —
o rho Shape Reshape —
~ tilde Not Without —
4 up arrow First Take (244), Take —
with Axis
¥ down arrow — Drop (101}, Drop —
with Axis (105)
1 iota Interval Index Of (162 —
o circle Pi Times Circle —
* star Exponential Power —
> right arrow — -
<« left arrow — — D71 B9
o alpha — — —
r up stile Ceilin Maximum (180) —
L down stile Floor (133) Minimum (182) —
_ underbar — — po| 7] B4
v del — —
A delta — —
o jot — Outer Product —
(186)
' quote — — %
a quad — — P62
(left paren — — [Bél
) right paren — — B4l
[left bracket — Bracket Index (70) B4
] right bracket — Bracket Index (70) p7] 34]
c left shoe Enclose {{11), Partition (88), Par- —
Enclose with Axis tition with Axis
(192)
> right shoe Disclose {94), Dis- Pick —
close with Axis
n up shoe — — —
u down shoe — — —
L down tack — Decode —
T up tack — Encode ({116) —
I stile Magnitude ({172 Residue (227) —
; semicolon — —

472 APL2 Programming: Language Reference

Figure 70 (Page 2 of 3). Names of APL2 Characters

Monadic Use Dyadic Use Other
(Operation (Operation Reference
Symbol Symbol Name Name and Page) Name and Page) (Page)
colon — —
. comma Ravel (B02), Ravel Catenate (74), Cat-
with Axis enate with Axis
@7), Laminate
(169)
dot — Outer product
(186), Inner
product
\ A\ slope Backslash (Expand — —
slope bar 122 , Scan
(239] [240))
/7 slash Slash (Reduce — —
slash bar B17), N-wise
Reduce ,
Replicate
222))
~ down caret tilde — Nor —
» up caret tilde — Nand (68 —
4 del stile Grade Down Grade Down (with —
Collating
Sequence) (149)
A delta stile Grade Up Grade Up (with —
Collating
Sequen
b e circle stile Reverse (228), Rotate (232), —
circle bar Reverse with Axis Rotate with Axis
[235)
® circle slope Transpose (with Transpose —
Reversed Axis) (General) (251)
256)
e circle bar See circle stile See circle stile —
® circle star Natural Log Logarithm —
I I-beam — — —
¥ del tilde — —
e down tack jot Execute — —
3 up tack jot Format (Default) Format By Specifi- —
[135) cation (143),
Format By
Example
) up shoe jot — —
Ul quad quote — —
! quote dot Factorial Binomial (66) —
B quad divide Matrix Inverse Matrix Divide —
177)
A delta underbar — —
N quad slope — — —
[quad jot — — —
0 squad — Index (160), Index —
with Axis
dieresis dot — — —
= equal underbar Depth Match —
€ epsilon underbar — Find —
1 iota underbar — — —

Appendix A. The APL2 Character Set

473

Figure 70 (Page 3 of 3). Names of APL2 Characters

Monadic Use Dyadic Use Other
(Operation (Operation Reference
Symbol Symbol Name Name and Page) Name and Page) (Page)
Y diamond — — B&]
= left tack — — —
- right tack — — —

474 APL2 Programming: Language Reference

Figure 71 maps OAV into characters defined by the ISO 10646 standard 32-bit
code and the Unicode subset of these characters.

Figure 71 (Page 1 of 5). ASCIl, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode APL
Decimal Hex Decimal Hex Decimal Hex Char Description
0 00 0 00 0 0000 Null
1 01 1 01 1 0001 Start of heading
2 02 2 02 2 0002 Start of text
3 03 3 03 3 0003 End of text
4 04 55 37 4 0004 End of transmission
5 05 4 04 5 0005 Enquiry
6 06 46 2E 6 0006 Acknowledge
7 07 47 2F 7 0007 Bell
8 08 22 16 8 0008 Backspace
9 09 5 05 9 0009 Horizontal tabulation
10 0A 37 25 10 000A Linefeed
11 0B 11 0B 11 000B Vertical tabulation
12 0C 12 0C 12 000C Formfeed
13 oD 21 15 13 000D Carriage return
14 OE 14 OE 14 000E Shift out
15 OF 15 OF 15 000F Shift in
16 10 16 10 16 0010 Data link escape
17 11 17 11 17 0011 Device control one
18 12 18 12 18 0012 Device control two
19 13 19 13 19 0013 Device control three
20 14 60 3C 20 0014 Device control four
21 15 6 06 21 0015 Negative acknowledgement
22 16 50 32 22 0016 Synchronous idle
23 17 38 26 23 0017 End of transmission block
24 18 7 07 24 0018 Cancel
25 19 9 09 25 0019 End of medium
26 1A 20 14 26 001A Substitute
27 1B 39 27 27 001B Escape
28 1C 34 22 28 001C File separator
29 1D 29 1D 29 001D Group separator
30 1E 53 35 30 001E Record separator
31 1F 13 0D 31 001F Unit separator
32 20 64 40 32 0020 Space
33 21 219 DB 33 0021 ! Exclamation mark
34 22 127 7F 34 0022 Quotation mark
35 23 123 7B 35 0023 Number sign
36 24 91 5B 36 0024 Dollar sign
37 25 108 6C 37 0025 Percent sign
38 26 80 50 38 0026 Ampersand
39 27 125 7D 39 0027 ! Apostrophe, quote
40 28 77 4D 40 0028 (Opening parenthesis
41 29 93 5D 41 0029) Closing parenthesis
42 2A 92 5C 42 002A * Star
43 2B 78 4E 43 002B + Plus sign
44 2C 107 6B 44 002C Comma
45 2D 96 60 45 002D - Bar
46 2E 75 4B 46 002E . Dot
47 2F 97 61 47 002F / Slash
48 30 240 FO 48 0030 0 Digit zero
49 31 241 F1 49 0031 1 Digit one
50 32 242 F2 50 0032 2 Digit two

Appendix A. The APL2 Character Set

Figure 71 (Page 2 of 5). ASCIl, EBCDIC, Unicode, and Symbol Equivalents
ASCII EBCDIC Unicode APL
Decimal Hex Decimal Hex Decimal Hex Char Description
51 33 243 F3 51 0033 3 Digit three
52 34 244 F4 52 0034 L Digit four
53 35 245 F5 53 0035 5 Digit five
54 36 246 F6 54 0036 6 Digit six
55 37 247 F7 55 0037 7 Digit seven
56 38 248 F8 56 0038 8 Digit eight
57 39 249 F9 57 0039 9 Digit nine
58 3A 122 7A 58 003A : Colon
59 3B 94 5E 59 003B H Semicolon
60 3C 76 4C 60 003C < Less-than sign
61 3D 126 7E 61 003D = Equals sign
62 3E 110 6E 62 003E > Greater-than sign
63 3F 111 6F 63 003F ? Query
64 40 124 7C 64 0040 Commercial at
65 41 193 C1 65 0041 A Capital A
66 42 194 Cc2 66 0042 B Capital B
67 43 195 C3 67 0043 c Capital C
68 44 196 C4 68 0044 D Capital D
69 45 197 C5 69 0045 E Capital E
70 46 198 Cé6 70 0046 F Capital F
71 47 199 c7 71 0047 G Capital G
72 48 200 Cs8 72 0048 H Capital H
73 49 201 C9 73 0049 I Capital |
74 4A 209 D1 74 004A J Capital J
75 4B 210 D2 75 004B K Capital K
76 4C 211 D3 76 004C L Capital L
77 4D 212 D4 77 004D M Capital M
78 4E 213 D5 78 004E N Capital N
79 4F 214 D6 79 004F 0 Capital O
80 50 215 D7 80 0050 P Capital P
81 51 216 D8 81 0051 Q Capital Q
82 52 217 D9 82 0052 R Capital R
83 53 226 E2 83 0053 S Capital S
84 54 227 E3 84 0054 T Capital T
85 55 228 E4 85 0055 U Capital U
86 56 229 E5 86 0056 /4 Capital V
87 57 230 E6 87 0057 W Capital W
88 58 231 E7 88 0058 X Capital X
89 59 232 ES8 89 0059 Y Capital Y
90 5A 233 E9 90 005A Z Capital Z
91 5B 173 AD 91 005B C Left bracket
92 5C 183 B7 92 005C \ Slope
93 5D 189 BD 93 005D] Right bracket
94 5E 113 71 94 005E A Up caret
95 5F 109 6D 95 005F _ Underbar
96 60 121 79 96 0060 Grave accent
97 61 129 81 97 0061 a Small a
98 62 130 82 98 0062 b Small b
99 63 131 99 83 0063 c Small ¢
100 64 132 84 100 0064 d Small d
101 65 133 85 101 0065 e Small e
102 66 134 86 102 0066 £ Small f
103 67 135 87 103 0067 g Small g
104 68 136 88 104 0068 h Small h

476 APL2 Programming: Language Reference

Figure 71 (Page 3 of 5). ASCIl, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode APL

Decimal Hex Decimal Hex Decimal Hex Char Description
105 69 137 89 105 0069 1 Small i
106 6A 145 91 106 006A J Small j
107 6B 146 92 107 006B k Small k
108 6C 147 93 108 006C 1 Small |
109 6D 148 94 109 006D m Small m
110 6E 149 95 110 006E n Small n
111 6F 150 96 111 006F o Small o
112 70 151 97 112 0070 jo) Small p
113 71 152 98 113 0071 q Small q
114 72 153 99 114 0072 r Small r
115 73 162 A2 115 0073 s Small s
116 74 163 A3 116 0074 t Small t
117 75 164 A4 117 0075 u Small u
118 76 165 A5 118 0076 v Small v
119 77 166 A6 119 0077 1% Small w
120 78 167 A7 120 0078 X Small x
121 79 168 A8 121 0079 y Small y
122 7A 169 A9 122 007A z Small z
123 7B 192 Co 123 007B Left curly brace
124 7C 191 BF 124 007C | Stile
125 7D 208 DO 125 007D Right curly brace
126 7E 128 80 126 007E ~ Tilde
127 7F 65 41 127 007F Delete
128 80 66 42 199 00C7 Capital C cedilla
129 81 67 43 252 00FC Capital U dieresis
130 82 68 44 233 00E9 Small e acute
131 83 69 45 226 00E2 Small a circumflex
132 84 70 46 228 00E4 Small a dieresis
133 85 71 47 224 00EO Small a grave
134 86 72 48 229 00E5 Small a ring
135 87 73 49 231 00E7 Small ¢ cedilla
136 88 81 51 234 00EA Small e circumflex
137 89 82 52 235 00EB Small e dieresis
138 8A 83 53 232 00E8 Small e grave
139 8B 84 54 239 00EF Small i dieresis
140 8C 85 55 238 00EE Small i circumflex
141 8D 86 56 236 00EC Small i grave
142 8E 87 57 196 00C4 Capital A dieresis
143 8F 88 58 197 00C5 Capital A ring
144 90 144 90 9647 25AF 0 Quad
145 91 222 DE 9054 235E 0 Quote quad
146 92 238 EE 9017 2339] Quad divide
147 93 89 59 244 00F4 Small o circumflex
148 94 98 62 246 00F6 Small o dieresis
149 95 99 63 242 00F2 Small o grave
150 96 100 64 251 00FB Small u circumflex
151 97 101 65 249 00F9 Small u grave
152 98 188 BC 8868 22A4 T Up tack
153 99 102 66 214 00D6 Capital O dieresis
154 9A 103 67 220 00DC Capital U dieresis
155 9B 74 4A 248 00F8 Small o slash
156 9C 104 68 163 00A3 Pound sign
157 9D 172 AC 8869 22A5 L Down tack
158 9E 105 69 9078 2376 Alpha underbar

Appendix A. The APL2 Character Set

477

Figure 71 (Page 4 of 5). ASCIl, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode APL
Decimal Hex Decimal Hex Decimal Hex Char Description

159 9F 218 DA 9014 2336 I I-beam

160 A0 33 21 225 00E1 Small a acute

161 A1 161 A1 237 00ED Small i acute

162 A2 35 23 243 00F3 Small o acute

163 A3 36 24 250 00FA Small u acute

164 A4 106 B6A 241 00F1 Small n tilde

165 A5 158 9E 209 00D1 Capital N tilde

166 A6 224 EO 170 00AA Feminine ordinal indicator

167 A7 181 B5 186 00BA Masculine ordinal indicator

168 A8 41 29 191 00BF Inverted question mark

169 A9 141 8D 8968 2308 r Up stile

170 AA 95 5F 172 00AC Not sign

171 AB 54 36 189 00BD Fraction one half

172 AC 171 AB 8746 222A u Down shoe

173 AD 43 2B 161 00A1 Inverted exclamation mark

174 AE 239 EF 9045 2355 3 Up tack jot

175 AF 254 FE 9038 234E [Down tack jot

176 BO 10 0A 9617 2591 Light shade

177 B1 32 20 9618 2592 Medium shade

178 B2 42 2A 9619 2593 Dark shade

179 B3 26 1A 9474 2502 Forms light vertical

180 B4 63 3F 9408 2524 Forms light vertical and left

181 B5 253 FD 9055 235F ® Circle star

182 B6 187 BB 8710 2206 A Delta

183 B7 186 BA 8711 2207 v Del

184 B8 143 8F 8594 2192 > Right arrow

185 B9 49 31 9571 2563 Forms double vertical and left

186 BA 48 30 9553 2551 Forms double vertical

187 BB 51 33 9559 2557 Forms double down and left

188 BC 52 34 9565 255D Forms double up and left

189 BD 159 9F 8592 2190 < Left arrow

190 BE 142 8E 8970 230A L Down stile

191 BF 27 1B 9488 2510 Forms light down and left

192 Co 30 1E 9492 2514 Forms light up and right

193 C1 62 3E 9524 2534 Forms light up and horizontal

194 C2 59 3B 9516 252C Forms light down and hori-
zontal

195 C3 61 3D 9500 251C Forms light vertical and right

196 C4 45 2D 9472 2500 Forms light horizontal

197 C5 44 2C 9532 253C Forms light vertical and hori-
zontal

198 Cé6 138 8A 8593 2191 4 Up arrow

199 Cc7 139 8B 8595 2193 ¥ Down arrow

200 C8 185 B9 9562 255A Forms double up and right

201 C9 56 38 9556 2554 Forms double down and right

202 CA 57 39 9577 2569 Forms double up and hori-
zontal

203 CB 79 4F 9574 2566 Forms double down and hori-
zontal

204 CC 90 5A 9568 2560 Forms double vertical and right

205 CD 156 9C 9552 2550 Forms double horizontal

206 CE 58 3A 9580 256C Forms double vertical and hori-
zontal

207 CF 225 E1 8801 2261 = Equal underbar

478 APL2 Programming: Language Reference

Figure 71 (Page 5 of 5). ASCIl, EBCDIC, Unicode, and Symbol Equivalents

ASCII EBCDIC Unicode APL
Decimal Hex Decimal Hex Decimal Hex Char Description
208 DO 116 74 9080 2378 1 lota underbar
209 D1 117 75 9079 2377 £ Epsilon underbar
210 D2 236 EC 8757 2235 Dotted del (dieresis dot)
211 D3 204 CcC 9015 2337 0 Squash quad
212 D4 206 CE 9026 2342 N Quad slope
213 D5 115 73 9019 233B] Quad jot
214 D6 118 76 8866 22A2 - Right tack
215 D7 119 77 8867 22A3 - Left tack
216 D8 112 70 9674 25CA O Diamond
217 D9 31 1F 9496 2518 Forms light up and left
218 DA 28 1C 9484 250C Forms light down and right
219 DB 24 18 9608 2588 Full block
220 DC 40 28 9604 2584 Lower half block
221 DD 23 17 166 00A6 Broken vertical bar
222 DE 25 19 204 00CC Capital | grave
223 DF 8 08 9600 2580 Upper half block
224 EO 176 BO 9082 237A o Alpha
225 E1 250 FA 9081 2379 Omega underbar
226 E2 155 9B 8834 2282 c Left shoe
227 E3 154 9A 8835 2283 > Right shoe
228 E4 223 DF 9053 235D A Up shoe jot
229 E5 202 CA 9074 2372 ~ Up caret tilde
230 E6 179 B3 9076 2374 o Rho
231 E7 203 CB 9073 2371 » Down caret tilde
232 E8 205 CD 9021 233D ¢ Circle stile
233 E9 237 ED 8854 2296 e Circle bar
234 EA 157 9D 9675 25CB o Circle
235 EB 120 78 8744 2228 v Down caret
236 EC 178 B2 9075 2373 1 lota
237 ED 207 CF 9033 2349) Circle slope
238 EE 177 B1 8714 220A € Epsilon
239 EF 170 AA 8745 2229 n Up shoe
240 FO 234 EA 9023 233F 4 Slash bar
241 F1 235 EB 9024 2340 \ Slope bar
242 F2 174 AE 8805 2265 > Not-less-than sign
243 F3 140 8C 8804 2264 < Not-greater-than sign
244 F4 190 BE 8800 2260 z Not-equal sign
245 F5 182 B6 215 00D7 X Times
246 F6 184 B8 247 00F7 $ Divide
247 F7 252 FC 9049 2359 A Delta underbar
248 F8 175 AF 8728 2218 ° Jot
249 F9 180 B4 9077 2375 W Omega
250 FA 251 FB 9067 236B ¥ Del tilde
251 FB 221 DD 9035 234B A Delta stile
252 FC 220 DC 9042 2352 ¥ Del stile
253 FD 160 A0 175 00AF - Overbar
254 FE 114 72 168 00A8 Dieresis
255 FF 255 FF 160 00A0 Nonbreaking space

Appendix A. The APL2 Character Set

479

Explanation of Characters
The alphabetic characters are :

ABCDEFGHIJKLMNOPQUSTUVWXYZ
abcdefghijklImnopgrstuvwxyz
AA

The alphameric characters include the alphabetic characters, and also:
0123456789

The blank is not visible in the EBCDIC and ASCII character set figures
lon page 471| and |Figure 68 on page 470), but is encoded in EBCDIC as JAF 6u4
(X'40') and in ASCll as DAF 32 (X'20').

The underbarred APL alphabet is now deprecated, having been replaced by lower-
case letters, and is not defined at all in ASCIl. When APL objects containing
underbarred letters are transferred to an ASCII based system, the characters are
mapped as follows:

hex 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 62 63 64 65 66 67 68 69
EBCDIC 4 B ¢ D EEGHIJKLMNOQPRPQ@RSTIUVWIXYZ
ASCIl 6 G U0 é a a aacééei it 1 AAOGOS6OCOGUOUZE

hex 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 93 94 95 96 97 99 9A 9C 9E

The ASCII character set figure (Figure 68 on page 470) shows a number of char-
acters that are not displayed in the EBCDIC figure (Figure 69 on page 471).
There is a one-for-one code point mapping of these characters, but either the
EBCDIC code points are below X'40' so that they may not display or print on
some devices, or the graphics for the EBCDIC code points are national language
dependent. The following table shows these code points and the graphics defined
by a few commonly used code pages:

ASCII ¢ $ - # @{ } !+ -1 FLA g ¢
ASCII hex 9B 24 AA 60 23 40 7B 7D B3 BF DA CO D9 C5 C4 C2 C3 C1 B4
EBCDIC hex 4A 5B 5F 79 7B 7C CO DO 1A 1B 1C 1E 1F 2C 2D 3B 3D 3E 3F
Codepage 037 ¢ $ - # @ { } (Canada, US)

Codepage 273 A$ ~ -~ # § a (Austria, Germany)

Codepage 275 E $ ~ a O A b6 ¢ (Brazil)

Codepage 277 # A~ ° E O = a (Denmark, Norway)

Codepage 278 § A~ & A O a a (Finland, Sweden)

Codepage 280 ° $ ~ u £ § a e (Italy)

Codepage 281 £ ¥ - 7 # @ { } (Japan-Latin)

Codepage 282 [$ ~ A O a - (Portugal)

Codepage 284 [$ - N @ { } (Latin America, Spain)

Codepage 285 $ £ - # @ { } (United Kingdom)

Codepage 290 £ ¥ - # @ { } (Katakana)

Codepage 297 ° % ~ u £ a é é (France)

Codepage 500 [¢ ~ ~ # @ { } (International)

480 APL2 Programming: Language Reference

The following characters are not shown in either the ASCII or EBCDIC character
set figures (Figure 68 on page 470|and [Figure 69 on page 471). They do have
an extended ASCII assignments that are honored by APL-ASCII, though the code
points may be redefined by other ASCII code pages. But the graphics for the
EBCDIC mapping are national language dependent, as this table shows:

ASCII i A N a o L & | = 8

ASCII hex A1 A4 A5 A6 A7 C8 CB CC CD Et

EBCDIC hex A1 6A 9E EO B5 B9 4F 5A 9C FA

Codepage 037 Sl EN § %! 2 0 (Canada, US)
Codepage 273 B & £O0 @ % ! U &= 3 (Austria, Germany)
Codepage 275 ¢ E\N § %! S = 3 (Brazil)

Codepage 277 u0g o [\ @ % ! =« { 3 (Denmark, Norway)
Codepage 278 Gt 6 £EE [% | o = 3 (Finland, Sweden)
Codepage 280 i 0 £ ¢ @ % ! é& &= 3 (Italy)

Codepage 281 T E$ § W | ! e d (Japan-Latin)
Codepage 282 ¢c 060 A C § % !] e 3 (Portugal)
Codepage 284 A £\ § % |] & 3 (Latin America, Spain)
Codepage 285 T EN § % |l e 3 (United Kingdom)
Codepage 297 u £Ac¢] %! § = 3 (France)
Codepage 500 T EN § %] o 3 (International)

The character X'FF' (HAF 255) has no graphics associated with it and, if used
in comments, may not be preserved by the editors. Similar problems may occur for
any of the characters X'00' through X'3F' (6 4+0AV) in EBCDIC, and the char-
acters X'00' through X'1F' (3240A47V) in ASCII, although in some cases graphics
are associated with them. In particular, APL systems and their editors often recog-
nize the following as control characters:

EBCDIC ASCII 07C index Usage as a
OAF hex OAF hex (Origin 1) Control Character

5 05 9 09 Tab

1y OE 14 OE Shift Out

15 OF 15 OF Shift In

21 15 13 0D 2 Carriage Return

22 16 8 08 1 Backspace

37 25 10 0A 3 Line Feed

[Figure 72 on page 482 and [Figure 73 on page 482|show complete code point
mapping tables from EBCDIC to ASCII and from ASCII to EBCDIC. Hexadecimal
source code points are shown in the table margins, with hexadecimal destination
code points in the body of the table.

Appendix A. The APL2 Character Set 481

00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF
00 00 01 02 63 65 09 15 18 DF 19 B0 0B OC 1F OE OF 00
10 16 11 12 13 1A oD 08 DD DB DE B3 BF DA 1D CO D9 10
20 Bl A0 1C A2 A3 OA 17 1B DC A8 B2 AD C5 C4 06 07 20
30 BA B9 16 BB BC 1E AB 04 C9 CA CE C2 14 C3 C1 B4 30
40 20 7F 80 81 82 83 84 85 86 87 9B 2E 3C 28 2B CB 40
50 26 88 89 8A 8B 8C 8D 8E 8F 93 CC 24 2A 29 3B AA 50
60 2D 2F 94 95 96 97 99 9A 9C 9E A4 2C 25 5F 3E 3F 60
70 D8 5E FE D5 DO D1 D6 D7 EB 60 3A 23 40 27 3D 22 70
80 7E 61 62 63 64 65 66 67 68 69 C6 C7 F3 A9 BE B8 80
90 90 6A 6B 6C 6D 6E 6F 70 71 72 E3 E2 CD EA A5 BD 90
AO FD A1 73 74 75 76 77 78 79 7A EF AC 9D 5B F2 F8 A0
BO EO EE EC E6 F9 A7 F5 5C F6 C8 B7 B6 98 5D F4 7C BO
co 7B 41 42 43 44 45 46 47 48 49 E5 E7 D3 E8 D4 ED co
DO 7D 4A 4B 4C 4D 4E 4F 50 51 52 9F 21 FC FB 91 E4 DO
EO A6 CF 53 54 55 56 57 58 59 5A FO F1 D2 E9 92 AE EO
Fo 30 31 32 33 34 35 36 37 38 39 E1 FA F7 B5 AF FF FO

00 01 02 063 04 05 06 07 68 09 OA 0B OC OD OE OF

Figure 72. APL2 EBCDIC to ASCII code point mapping

00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF
00 00 01 02 03 37 04 2E 2F 16 05 25 0B OC 15 OE OF 00
10 10 11 12 13 3C 06 32 26 07 09 14 27 22 1D 35 OD 10
20 40 DB 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61 20
30 FO F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F 30
40 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6 40
50 D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD B7 BD 71 6D 50
60 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 60
70 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 CO BF DO 80 41 70
80 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 80
90 90 DE EE 59 62 63 64 65 BC 66 67 4A 68 AC 69 DA 90
A0 21 A1 23 24 6A 9E EO B5 29 8D 5F 36 AB 2B EF FE A0
BO OA 20 2A 1A 3F FD BB BA 8F 31 30 33 34 9F 8E 1B BO
co 1E 3E 3B 3D 2D 2C 8A 8B B9 38 39 4F 5A 9C 3A El co
DO 74 75 EC CC CE 73 76 77 70 1F 1C 18 28 17 19 08 DO
EO BO FA 9B 9A DF CA B3 CB CD ED 9D 78 B2 CF Bl AA EO
FO EA EB AE 8C BE B6 B8 FC AF B4 FB DD DC AO 72 FF FO

00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF

Figure 73. APL2 ASCII to EBCDIC code point mapping

482 APL2 Programming: Language Reference

The appearance of some national-language-dependent EBCDIC characters may be
very similar to APL characters even though they are distinct. The specific charac-
ters vary by language, but ones that often cause confusion are:

EBCDIC EBCDIC APL Some EBCDIC code points
hex OAF char that may appear similar

80 128 ~ 48 58 59 A0 A1 BC BD DC

AD 173 L 4A 63 70 71 90 9E B1 B5 BA
B7 183 \ 48 68 71 B2 EO EC

BD 189 1 59 5A 68 80 9F B5 BB FC

DB 219 ! 4F 5A 5B BB

BF 191 | 4F BB

The above characters can also cause problems when using non-APL facilities (such
as terminal emulators or upload programs) to transfer data between an ASCII
system and an EBCDIC system. The problems occur if the facility attempts to map
between APL and ASCII code points. You should have no problem if you let APL
do the translation, or if you use a terminal emulator that supports the 3270 APL
feature.

Appendix A. The APL2 Character Set 483

Appendix B. APL2 Transfer Files and Extended Transfer

Formats

Transfer file formats have been defined to permit exchange of APL2 workspaces or
workspace objects among all IBM APL2 implementations. In general, users need
only be concerned with the APL commands needed to create and read transfer
files, and with the physical requirements of moving files from one system to
another. APL2 systems implementers, and occasionally writers of sophisticated
applications, also need to understand the internal formats of the files. Each of
these is covered below.

Reading and Writing Transfer Files

The APL commands used to create and read transfer files are)OUT,)IN, and
)PIN. The APL system function OTF also converts individual APL objects
between their internal format and a character-based representation that can be
used in transfer files. Since)OUT,)IN, and)PIN also take care of all of the
additional file format requirements, provide support for multiple objects or entire
workspaces, and perform the file I/O itself, they are the preferred technique in
almost every case.

Moving Transfer Files from One System to Another

484

The techniques for physically moving files from one system to another vary greatly
depending on the types of systems and what connections exist between them.

* One key issue is that some systems (for example MVS/TSO and VM/CMS) use
an EBCDIC character encoding, while others (for example PC/DOS and
AIX/6000) use an ASCII encoding. Both ASCII and EBCDIC transfer file
formats are defined, and all IBM APL2 systems accept both formats. No data
conversion should be attempted within the file itself when transferring it from
one system to another. The receiving APL2 system performs any necessary
conversion. If the transfer is done electronically through a network connection,
the programs controlling that transfer must be told that this is a “binary” rather
than “character” file. (The exact terminology used may vary depending on the
system and network control programs being used.)

e Some systems use “record oriented” files while others use stream files. If
stream files are being transferred to a system that expects record oriented files,
an arbitrary record length may be used, but the existing record separators
(“CR” or “CR/LF”) must be retained. Conversely, separators should not be
inserted when record oriented files are being transferred to a system that
expects stream files. Again, the receiving APL2 system adjusts to these differ-
ences.

e Within these constraints, standard data transmission commands appropriate to
the system such as “ftp put”, “SEND”, “SENDFILE”, or “TRANSMIT” may be
used for network transmission, with corresponding commands such as “ftp get”
or “RECEIVE” as appropriate to the receiving system.

e Because the receiving APL2 system performs all necessary conversions, it is
also possible to use shared DASD, remote file systems, removable media, or
other such facilities to transport the data.

© Copyright IBM Corp. 1984, 1994

Internal Formats of Transfer Files

The remainder of this appendix deals with data formats within transfer files, and is
not of concern to most users.

Note: The migration and extended forms of objects defined below can be inter-
mixed within a transfer file.

File and Record Structure

A transfer file is logically structured as a set of 80-byte records, whether or not the
file system is record oriented. For stream files each record must be followed by
either a CR (ASCII X'eD' or EBCDIC X'15') or a CR/LF combination (ASCII
X'0DOA', no EBCDIC equivalent).

Caution: Any of these three code points may also be embedded within the data.
They must be interpreted as record separators only if they appear imme-
diately following the 80th byte of a record. No record in a transfer file can
begin with one of these three code points, so a check for them at the end of
a record is unambiguous.

Within each 80-byte record the structure is:
Columns Content

1 Blank in all records which are part of an object except for the last (or only)
record of the object, which contains “X”. Records which is not part of an
object contain “+”. See [‘Records Not Containing Objects” on page 486 for
the usage of those records. Note that the only valid code points (in hex)
are ASCIl 20, 2A, or 58, or EBCDIC 40, 5C, or E7. Thus the first byte of
a file can be used to determine whether it is in ASCII or EBCDIC format.

2-72 Part or all of the transfer form representation of an object. Column 2 of
the first record for an object must indicate the representation type:

A An array in extended (2 [OTF) transfer format.

C A character array in migration (1 [OTF) transfer format.

F A defined function or operator in extended (2 0OTF) transfer format.
N A numeric array in migration (1 0TF) transfer format.

Note: The “C” or “N” in column 2 is actually the first character produced
by 1 OTF. The “A” or “F” in column 2 precedes the first char-
acter produced by 2 [0OTF. A transfer file is not allowed to contain
a function in 1 OTF format.

Objects not complete by column 72 of a record are continued in column 2
of the next record. Unused bytes in the last record of an object must be
blank.

73-80 These columns may contain sequence numbers or any other desired infor-
mation. They are not inspected during) TN processing.

Appendix B. APL2 Transfer Files and Extended Transfer Formats 485

Records Not Containing Objects
Any record beginning with “+” is either a comment or a special directive. The cases
are distinguished by the content of column 2.

blank A comment record, ignored by)IN and)PIN.

(A time stamp. This should appear immediately preceding a function or
operator definition. Its format is

*(year month day hour min sec millisec)

(i.e. 0TS format) for the time when the function was created or last
modified. The timestamp should be adjusted to Greenwich Mean Time
if possible. Transmitting systems should supply trailing zeroes if
timestamp information is not known precisely.

Time stamps should be provided for each defined function or operator if
the information is available, but receiving systems must be able to
accept defined objects without timestamps. If no timestamp is available,
but the receiving system maintains a timestamp for the object type, then
the time of receipt should be used.

I Reserved for an “imbed” facility. At present) OUT must not produce
transfer files containing this directive, and)TN and) PTN need not
support it.

Migration Transfer Form of an Object

The migration form is one of two forms of objects that can be intermixed within a
transfer file. Migration form can be used for simple arrays (unless they contain
complex numbers), but cannot be used for functions or for objects unique to APL2.
In migration form an object is represented by four character segments:

1. A data type indicator character, “C” or “N” for simple character or numeric data.
“F” (for functions) is also supported as 1 [OTF output, but not in a transfer file.
Where “F” is supported, the remaining three fields are based on the matrix form
of the function produced by OCE. (Any OFX execution attributes are ignored.)

2. The name of the object, followed by a single blank. (there is no blank between
the type indicator and the name.)

3. A character representation (digits 0-9) of the rank followed by the shape of the
array, with one blank following each numeric item. For example:

”

scalar “0
293 element vector “1 293 ”
17 by 11 matrix “2 17 117

4. A character representation (as produced by %) of the ravel of the array.
Numeric conversions are done as if JPP<18. Note that trailing blanks must
be present, even if this requires extra records in the transfer file, and even
though they are indistinguishable from record padding blanks.

486 APL2 Programming: Language Reference

Extended Transfer Form of an Object

The extended form is the second of the two forms of objects that can be intermixed
within a transfer file. Extended form can be used for all APL2 objects. There are
three basic subformats within extended form, each having the attribute that the
object can be recreated by applying the ¢ primitive to the entire representation:

e The variable format, described in detail below. It begins with a name followed

by “«”. This form is used for shared variables and system variables as well as
ordinary variables in the workspace.

* The function format, used for defined functions and defined operators in the
workspace. It begins with OFX, preceded by a character representation of the
four FX execution attributes if any of them are nonzero, and continues with
the lines of the function, each represented as a quoted character constant, with
a single blank between each constant.

e The external object format, used for all objects external to the workspace
regardless of their class. This format is a reconstruction of the ON A4 function
originally used to make a workspace association to the object, though with the
ONA arguments represented as constants regardless of how they may have
originally been provided.

Conceptually the variable format could contain, to the right of the “<”, any valid
APL statement which returns a result and has no side effects. In practice only a
very limited set of constructs is permitted in transfer files, to allow APL2 systems to
optimize processing during) IN. For the same reason, redundant blanks and
parentheses are prohibited. The overall object representation is:

name<value

where value must be one of the following:

Construct Format or Example

scalar constant eg.'Q'or3.26J1E 5
empty vector mustbe ' ' or 0p0
one-element vector lpscalar,e.qg. 1p'A"' or 1p?2
vector constant eg. "ABC'or6 2 0

progression expression (see below)
rank 2 or higher array shapep data (see below), e.g. 2 2p'ABCD"'
enclosed value cvalue (recursive), e.g. €2 1 4

where progression applies to an array of integers of any rank, 1 or greater, where
the difference between all pairs of adjacent values (in raveled order) is a constant.
The representation is first-incr<0I0- 1 count.

Example Value Representation
9 8 7 9-"1x0I0-13
"3 0 3 6 "3-3x0I0-14

and where data must be one of the following, defining exactly x /shape items:

Construct Format or Example

empty vector mustbe ' ' or 0p0

scalar or vector constant e.g. '"ABCDE' or 3.14159

progression expression (see above)

extended character vector using OAF, e.g. DAF 19677897 19677890
enclosed value cvalue (recursive), e.g.c'XYZ"'

Appendix B. APL2 Transfer Files and Extended Transfer Formats 487

strand expression two or more items in any combination from the fol-
lowing:
e a scalar or empty character constant
e a scalar or vector numeric constant
* a parenthesized value (recursive)

488 APL2 Programming: Language Reference

Appendix C. System Limitations for APL2

System limitations for APL2 vary depending on the APL2 product. Figure 74
shows the limitations imposed on APL2 on the various systems by the nature of the
implementation. Because they interact, a particular limitation may not be attainable.

Figure 74. Limitations by System

APL2/PC
Limitation Workstations APL2/370 16-Bit 32-Bit
Largest and smallest represent- 1.7976931348623158% +308 7.2370055773322621E75 1.7976931348623158F +308 1.7976931348623158% +308
able numbers in an array and and and and
71.7976931348623158E +308 77.2370055773322621E75 71.7976931348623158E +308 71.7976931348623158E +308
Most infinitesimal (near 0) 2.2250738585072014E ~ 308 5.397605346934027891E " 79 2.2250738585072014E ~ 308 2.2250738585072014E ~ 308
representable numbers in an and and and and
array T2.2250738585072014E ~ 308 ~5.397605346934027891E 79 T2.2250738585072014E ~ 308 T2.2250738585072014E ~ 308
Maximum rank of an array 63 64 63 63
Maximum length of any axis in T1+2%31 (2147483647) T1+2%31 (2147483647) 65520 T1+2%31 (2147483647)
an array
Maximum product of all dimen- T1+2%31 (2147483647) T1+2%31 (2147483647) 65520 T1+2%31 (2147483647)
sions in an array
Maximum depth of an array 181 181 No limit No limit
applied with the primitive func-
tions depth (=R) and match
(L=R)
Maximum depth of a shared 181 181 6 6
variable
Maximum depth of a copied var- 181 181 168 168
iable
Maximum number of characters 255 255 18 18
in the name of a shared variable
Maximum number of characters 4090 32764 4089 4089
in a comment (minus leading
blanks)
Maximum length of line 8190 N/A 4096 4096
Maximum number of lines in a T1+2%15 (32767) T1+2%31 (2147483647) 700 545
defined function or operator
Maximum number of labels in a Limited by number of lines 32767 700 545
defined function or operator
Maximum number of local Limited by lengths of lines 32767 Limited by lengths of lines Limited by lengths of lines and
names (excluding labels) in a and names and names names
defined function or operator
Bytes in internal symbol label 8191 N/A 64999 4095
Maximum number of slots in the N/A 32767 N/A N/A
internal symbol table. A slot is
required for each unique name,
each unique constant, and each
ill-formed constant in the work-
space.
Maximum value of OPW 254 390 254 254
Maximum value of OPP 16 18 16 16

© Copyright IBM Corp. 1984, 1994

489

Bibliography

APL2 Publications

APL2 Fact Sheet, GH21-1090

APL2/370 Application Environment Licensed
Program Specifications, GH21-1063

APL2/370 Licensed Program Specifications,
GH21-1070

APL2 for AIX/6000 Licensed Program Specifica-
tions, GC23-3058

APL2 for Sun Solaris Licensed Program Specifica-
tions, GC26-3359

APL2/370 Installation and Customization under
CMS, SH21-1062

APL2/370 Installation and Customization under
TSO, SH21-1055

APL2 Migration Guide, SH21-1069

APL2 Programming: Language Reference,
SH21-1061

APL2/370 Programming: Processor Interface Ref-
erence, SH21-1058

APL2 Reference Summary, SX26-3999

APL2 Programming: An Introduction to APL2,
SH21-1073

APL2 for AIX/6000: User's Guide, SC23-3051
APL2 for 0S/2: User's Guide, SH21-1091

APL2 for Sun Solaris: User's Guide, SH21-1092
APL2 for the IBM PC: User's Guide, SC33-0600

APL2 GRAPHPAK: User's Guide and Reference,
SH21-1074

APL2 Programming: Using Structured Query Lan-
guage, SH21-1057

490

e APL2/370 Programming: Using the Supplied Rou-
tines, SH21-1056

e APL2/370 Programming: System Services Refer-
ence, SH21-1054

e APL2/370 Diagnosis Guide, LY27-9601
e APL2/370 Messages and Codes, SH21-1059

Other Books You Might Need

The following book is recommended :

e APL2 at a Glance, by James Brown, Sandra Pakin,
and Raymond Polivka, published by Prentice-Hall,
ISBN 0-13-038670-7 (1988). Copies can be
ordered from IBM as SC26-4676.

See your system-specific user's guide for other books
you might need for your operating system.

APL2 Keycaps and Decals

Plastic replacement keyboard keycaps are available
from IBM as:

e APL2 Keycaps (US and UK base set), SX80-0270

e APL2 Keycaps, German upgrade to SX80-0270,
SX23-0452

e APL2 Keycaps, French upgrade to SX80-0270,
SX23-0453

e APL2 Keycaps, Italian upgrade to SX80-0270,
SX23-0454

APL2 Keyboard Decals, SC33-0604, can also be
ordered from IBM.

© Copyright IBM Corp. 1984, 1994

Index

Special Characters
JCHECK 418

JCLEAR 420

JCONTINUE 422

YCOPY 423

)JDROP 426

JEDITOR 427

JERASE 428

JFNS 431

YJHOST 432

JIN 433

JLIB 434

JLOAD 436

JMORE 438

YNMS 439

JOFF 440

JOPS 441

)OUT 442

)PBS 444

)PCOPY 446

YPIN 447

)QUOTA 448

JRESET 449

)SAVE 451

)SI 453

)SIC 454

)SINL 456

)SIS 457

)SYMBOLS 458

JVARS 459

YJWSID 460

o[] Reverse Along the First Axis 229
+ Add (dyadic) 65

A And (dyadic) 68

! Binomial (dyadic) 66

[1 Bracket Index 70

, Catenate (dyadic) 74

, [1 Catenate with Axis (dyadic) 77
[Ceiling (dyadic) 79

o Circle Functions (dyadic) 80
/ Compress (from Slash) 85
+ Conjugate (monadic) 88

? Deal (dyadic) 89

Decode (dyadic) 90

= Depth (monadic) 91

x Direction (monadic) 93

> Disclose (monadic) 94

> [] Disclose with Axis (monadic) 96
+ Divide (dyadic) 100

+ Drop (dyadic) 101

[

© Copyright IBM Corp. 1984, 1994

+ [] Drop With Axis (dyadic) 105

" Each (Dyadic) 107

* Each (Monadic) 109

< Enclose (monadic) 111

<[] Enclose with Axis (monadic) 113

Encode (dyadic) 116

Enlist (monadic) 118

Equal (dyadic) 219

Execute (monadic) 120

\ Expand (from Backslash) 122

\[1 X[] Expand With Axis (from Backslash) 124

Exponential 127

Factorial (monadic) 128

Find (dyadic) 129

First (monadic) 131

Floor (monadic) 133

Format (Default) (monadic) 135

Format by Example (dyadic) 139

Format by Specification (dyadic) 143

¥ Grade Down (monadic) 147

¥ Grade Down (With Collating Sequence)
(dyadic) 149

A Grade Up (monadic) 153

A Grade Up (With Collating Sequence) (dyadic) 155

> Greater Than (dyadic) 219

> Greater Than or Equal (dyadic) 219

0 Index 160

1 Index of 162

0C] Index with Axis 163

. Inner Product (from Array Product) 165

1 Interval (monadic) 168

, [] Laminate (dyadic) 169

< Less Than (dyadic) 219

< Less Than or Equal (dyadic) 219

® Logarithm (dyadic) 171

| Magnitude (monadic) 172

= Match (dyadic) 173

B Matrix Divide (dyadic) 174

B Matrix Inverse (monadic) 177

[Maximum (dyadic) 180

€ Member (dyadic) 181

L Minimum (dyadic) 182

x Multiply (dyadic) 183

~ Nand (dyadic) 68

@ Natural Logarithm (monadic) 184

- Negative (monadic) 185

~ Nor (dyadic) 68

~ Not (monadic) 68

#z Not Equal (dyadic) 219

v Or (dyadic) 68

o, Outer Product (from Array Product) 186

* e nm -+

of o o ™ > |m

491

c Partition 188

c [] Partition with axis 192

o Pi Times (monadic) 194

> Pick (dyadic) 195

* Power (dyadic) 201

, Ravel (monadic) 202

» [1 Ravel with Axis (monadic) 204

+ Reciprocal (monadic) 208

/ Reduce (from Slash) 209

/ Reduce N-Wise (from Slash) 213

/[1 Reduce N-Wise With Axis (from Slash) 215
/ [1 Reduce With Axis (from Slash) 217
/ Replicate (from Slash) 220

/[1#[] Replicate with Axis (from Slash) 222
p Reshape (dyadic) 225

| Residue (dyadic) 227

¢ e Reverse (monadic) 228

¢ [] e[1 Reverse with Axis (monadic) 229
? Roll (monadic) 231

¢ Rotate (dyadic) 232

¢ [JRotate with Axis (dyadic) 235

© Rotate Along the First Axis 235

\ Scan (from Backslash) 239

\ [] Scan With Axis (from Backslash) 240
p Shape (monadic) 241

- Subtract (dyadic) 243

+ Take (dyadic) 244

+[] Take with Axis (dyadic) 247

® Transpose (General) (dyadic) 251

& Transpose (Reversed Axes) (monadic) 256
~ Without (dyadic) 258

O 2e2

OAF 268

041 269

OgAT 270

O4v 273

Ocr 274

gcr 275

OCcT ERROR 468

OprL 277

OrA 278

OEC 280

OEM 281

OEs 282,285

OET 287

OEX 289

Orc 291

OFC ERROR 468

OFX 292,294

0ro 297

0I0 ERROR 468

0L 298

OLc 300

O0Lx 302

ONA 304, 305

492 APL2 Programming: Language Reference

Onc 309

gvrL 311, 313

ONLT 314

OpPpP 315

OPP ERROR 469

OrPr 316

OPR ERROR 469

OrPw 318

Or 319

ORL 322

ORL ERROR 469

gsve 323, 324

[0SV shared variable control 365, 367

OSVE 326

OSVE shared variable event 365, 373
determining your next action 374
using, sample function 374

Osvo 328, 329

0S7V0 shared variable offer 365

Osve 331

0SV@Q shared variable query 365

OSVR 332

OSVR shared variable retraction 365

Osvs 334

0SVS shared variable state 365, 367, 370

grc 335

OTF 336

Ors 340

077 341

gucs 342

OUL 343

OwA 344

A

abort
See escape
absolute value
See magnitude
access control matrix 369
See also access control vector (ACV)
access control mechanism
combinations of access control and access
state 371
description of 367
meaning of settings 369
symmetry of 368
terminal interlock 372
vector reshaped to matrix 368
access control vector (ACV)
examples 369
meanings of settings 369
purpose of 364
querying 370
reshaped to matrix, illustration 369
setting 369

access control vector (ACV) (continued)
setting the protocol 324
what it indicates 367
access control, setting 370
access state matrix
See access state vector
access state vector (ASV)
illustrated as a matrix 371
in general 370
meaning of settings 370
possible settings 371
purpose of 364
what it indicates 367
access states, of shared variable 334
accessing shared variables, constraints 369
account information (A I)
discussion of 269
account number JAT[1] 269
accuracy
See precision
See tolerance
ACOSHZ, formula for 81
ACOSZ, formula for 81
activate a clear workspace 420
active function 354
active workspace 2
See also workspace, active
ACV
See access control vector (ACV)
add +
discussion of 65
add lines to definition
full-screen editor 398, 402
line editor 385
O0AF 268
041 269
algorithm, for matrix inverse, matrix divide 179
alias, or surrogate, shared variable names 366
alignment of data
in array display 18
with format by specification 145
all A/ 212
alpha o 472
alphabet
See APL2 character set
alphabetic sort
grade down (with collating sequence) ¥ 149
grade up (with collating sequence) 4 155
alternate
See execute alternate
alternating product +/ 212
alternating sum -/ 212
ambi-valence, not for operators 24
ambi-valent functions
defining 347
determining which valence 33

ambi-valent functions (continued)
structuring 352

and A
discussion of 68
angle
See phase
any v/ 212
APL2

character set 470
system limitations 489
apostrophe
See quotation mark
arccosh " 60F 83
arccosine ~ 20R 83
archtanh ~70R 83
arcsine ~ 10R 83
arcsinh " 50R 83
arctangent ~ 30RF 83
arguments
See also operands
and binding for evaluation 36
conformability of 52
meaning 23
nested, with scalar function 54
of defined or derived function 31
placement 23
position in binding hierarchy 34
arithmetic functions
add + 65
divide + 100
multiply x 183
subtract - 243
arithmetic progression 168
array
See also empty array
alignment in display 18
construction 14
cross-section 253
display of
items in scaled form 18
nested 19
simple matrix 17
simple multidimensional 18
simple scalar 17
simple vector 17
edit of character vector or matrix 398
empty 48
expression 27
mixed numbers and characters 10
named by a variable 26
nested
discussion of 8
empty 50
scalar 17
vector 15
with empty items 50

Index

493

array (continued)

null

See empty

simple 8

simple nonscalar 9

simple scalar 8

simple vector 14

structure illustrated 9

turned into a matrix 206

variable name for 24
array expression, in parentheses 38
array product .

deriving inner product 165

deriving outer product 186
arrow, branch -

syntactic construction symbol 27

syntax rules for 29
arrow, specification <

syntactic construction symbol 39

syntax rules for 29
ascending order 153
ASCII character mappings 475
ASINHZ, formula for 81
ASINZ, formula for 81
assignment

See specification
assignment arrow

See specification arrow
asterisk *

exponential 127

in state indicator 355

power 201

removing from state indicator 59, 357
ASV

See access state vector
asynchronous processors 367
AT 270
ATANHZ, formula for 81
ATANZ, formula for 81
atomic function (JAF)

discussion of 268
atomic vector (OA V)

discussion of 273
attention, to suspend execution 354
attributes (0AT)

discussion of 270
automatic localization

with OEM 281

with OET 287
auxiliary processor 60
auxiliary processors

shared variables for communicating 260

JAv 273

available workspace (OWA)
See also)QUOTA
discussion of 344

494 APL2 Programming: Language Reference

axes
expressions representing 63
length 6, 241
names of 5
of an array 5

AXIS ERROR 462

axis specification

See also individual functions and operators having

“with axis” in their names
conditions for 45
meaning 23
operations that allow 45
syntax of 23
syntax with operators 24

backslash \
deriving expand 122
deriving scan 239
backslash bar X
See backslash with axis
backslash with axis \[I\ []
alternate symbol X 125, 240
deriving expand 124
deriving scan 240
backslash, national \ 124
backspace character 07C[1] 335
bar -
negative 185
subtract 243
bare input/output
See character input/output
base jot ¢ (execute) 120
base top T (I-beam) 473
base value
See decode
best fit 174
beta function (f) 66
bilateral sharing 364
binary
functions
See Boolean functions
number
See Boolean number
binding
discussion of 33
summary of binding strengths 21
use of parentheses 36
binomial expansion, coefficients of 66
binomial !
discussion of 66
blank
See also spaces
as a character 14
as fill item 47

blank (continued)
in display of arrays 17, 19
indicator of numeric type 46
blanks, deleting multiple 130
body, of a defined function 348
Boolean functions
discussion of 68
table 69
Boolean number
meaning 10
tolerance for determining 59
box O
See quad
bracket index []
discussion of 70
brackets []
and binding for evaluation 34
for axis specification 23
position in binding hierarchy 34
syntactic construction symbol 27
syntax rules for 29
branch arrow -
See also escape
position in binding hierarchy 34
syntactic construction symbol 27
syntax rules for 29
branching
conditional 350
discussion of 349
examples 351
in a line with diamonds 351
looping 109, 352
to escape 351
to line counter 359
unconditional 351
break
See attention
See interrupt
bring a workspace from a library into the active work-
space 436
bytes
See AT
See OWA

C

calculation precision 58
calculator mode
See immediate execution mode
call
See function
See operator
See valence
calling programs in other languages
See name association

calling sequence 354
canonical representation
See character representation
cap n
See up shoe
cap jot m (comment) 28
caret A (and) 68
caret, error indicator 59
carriage return
See new line character
cartesian form
See J notation
cartesian product
See outer product
case, upper and lower 470
catenate ,
compared to vector notation 74
discussion of 74
catenate with axis , []
discussion of 77
CDR 271
ceiling T
discussion of 79
chain
See catenate
See vector notation
change command, full-screen editor 407
CHARACTER ERROR
See ENTRY ERROR
character input/output ([M)
discussion of 265
interrupting input 267
character mappings 475
character representation (OCR)
See also format s
discussion of 274
character set 470
character vector or matrix, edit of 398
characters
See also OAF
See also DAV
APL2 set of 470
as data 13
display 14,17, 318
mixed with numbers 10
names of 471
response to 1 265
sorted 149, 155

JCHECK 418
check protection 142
circle o
circle functions 80
pi times 194

circle backslash &
transpose (general) 251
transpose (reversed axes) 256

Index

495

circle bar e commands (continued)

reverse with axis 229 system (continued)
rotate with axis 235)NMS 439
circle functions o YJOFF 440
discussion of 80 JOPS 441
formulas for complex arguments 81 YOUT 442
circle star ®)PBS 444
logarithm 171 YPCOPY 446
natural logarithm 184 YPIN 447
circle stile ¢ YQUOTA 448
rotate 232 JRESET 449
circle stile ¢ o)SAVE 451
reverse 228)SI 453
circle, small o (jot) 27)SIC 454
circular functions 82)SINL 456
class 309)SIS 457
JCLEAR 420)SYMBOLS 458
clear the state indicator 449, 454 JVARS 459
CLEAR WS, message 463 YWSID 460
close a definition comment a
full-screen editor 399 part of statement 28
line editor 386 common data representation (CDR) 271
codes, event type 287 communication
coding 345 using shared variables 60
coefficients communication procedure, shared variables 366
of binomial expansion 66 communication protocols 366
polynomial evaluation 90 comparison tolerance 275
collating sequence array (DCS) 157 concept 58
collation 155 complement 68
colon : complex number 10
syntax rules for 30 display 13
use in statement 28 representation of 11
column 5 complex number functions 84
combinations component
See binomial See item
comma , compress 85, 86
catenate 74, 77 compute time, A I to determine 269
laminate 169 concurrent process
ravel 202 See access states
commands conditional branch 350
editor examples 351
full-screen 396 conformability
line 384 See also individual functions by name
system See also LENGTH ERROR
JCHECK 418 See also RANK ERROR
JCLEAR 420 meaning 52
JCONTINUE 422 with dyadic scalar functions 54
)COPY 423 conjugate +
)DROP 426 discussion of 88
JEDITOR 427 connect time, JA I to determine 269
YERASE 428 constant
YFNS 431 See data
JHOST 432 constraints
JIN 433 access of shared variables 369
JLIB 434 imposed by access control 369
JLOAD 436
JMORE 438

496 APL2 Programming: Language Reference

constructed names
See names, constructed
JCONTINUE 422
continue
See restart
See resume
control
flow of in definition 349
format 291
shared variable 0SVC 323, 324
stop SA 362
terminal characters O0T7C 335
trace A 361
control characters, for format by example 140
control variable 365
coordinate
See axis
JCOPY 423
copy objects into the active workspace 423
copy objects into the active workspace with
protection 446
copying
lines from another object 409, 410
lines in a definition 394, 409
corrections, to definition 375
See also full-screen editor
cosh "60R 83
COSHZ, formula for 81
cosine 20R 82
COSZ, formula for 81
cotangent 30R 82
counter, line JLC 300
coupling, degree of 60
See also degree of coupling
coupling, of shared variables 364
CPUtime 0AI[2] 269
Ocr 274
cross-section, diagonal 253
gcr 275
cup u
See down shoe
cursor-dependent scroll, in full-screen editor 402
curve fitting 175
cut, complex number functions 84

D

D notation 11
damage
See ST WARNING
See SYSTEM ERROR
dash
See negative
See subtract
data
See also array

data (continued)

alignment with format by specification 145

associated with names 24

character 13

how entered 10

internal type 271

mixed character and numeric 10

numeric 10
data type

See type
data variable 365
date

Orsc1i 2 31 340
day O7S[31 340
deal ?

discussion of 89
debug variable 260
debugging

stop control SA 362

trace control TA 361
decimal alignment 18
decimal indicator OFC[1]
decision branch

See conditional branch
decode L

discussion of 90
decorator characters, for format by example
defined functions

See functions, defined
defined functions and operators 345

See also functions, defined

See also operations, defined

See also operators, defined
defined operators

See operators, defined
definition

See also edit

See also full-screen editor

See also line editor

body of 348

conditional branching in 350

contents 349

flow of control in 349

header 347

mode 2

of functions and operators 345

of new object 385, 398

structure 346

time stamp 349

unconditional branching in 351

use of labels in 350
DEFN ERROR 463
degree of coupling 60, 365, 366
degrees

converted from radians 82

converted to radians 82

140, 291

140

Index

497

del Vv display

definition closing 399 arrays 17
definition opening 385, 397 characters 14
del stile ¥ (grade down) 147, 149 complex number 13
del tilde ¥ 388, 399 definition 400
delay in scaled form 13
apL messages 461
discussion of 277 nested array 19
OSVE 326 numbers 12
delete precision 12
See)ERASE range of lines 389, 400
See OEX rules for format (default) 135
delete characters, from definition line 405 simple matrix 17
delete lines, from definition 405 simple multidimensional array 17
delete objects from the active workspace 428 simple scalar 17
delta A simple vector 17
delete command for editing 405 specific lines 389, 400
in constructing names 25 DISPLAY function 9
delta stile A (grade up) 153, 155 determining depth from 10
delta underbar A 25 meaning of symbols 9
depth display the state indicator
measure of array structure 8 YSI 453
of an array 8)SINI 456
depth =)SIS 457
discussion of 91 display-edit command 393
descending order 147 displayable, execution property 360
diagnostic information 418 distance
diagonal cross-section 253 See magnitude
dialog 1 distinguished names
diamond See names, distinguished
branching 351 divide +
multiple expressions in a line 36 discussion of 100
syntactic construction symbol 27 OprL 277
traces 362 DOMAIN ERROR 464
diamond { 474 domino B
dieresis ~ (each) 107, 109 matrix divide 174
difference matrix inverse 177
See subtract DOP, arbitrary dyadic operator name 31
)DIGITS dot .
See OPP decimal point 10, 140
digits inner product 165
format by example 139 outer product 186
precision 315 dotted del -~ 473
dimension, of an array 5 double arrow <+ 64
See also axes double attention
direction x See interrupt
discussion of 93 down arrow ¥ (drop) 101, 105
disclose = down shoe u 472
discussion of 94 down stile L
relationship to disclose with axis 95 floor 133
relationship to enclose 95 minimum 182
use of fill item 47 down tack L
disclose with axis =[] See decode
discussion of 96 down tack jot ¢
relationship to enclose with axis 99 See execute

use of fill item 47

498 APL2 Programming: Language Reference

downgrade
See grade down
)DROP 426
drop +
discussion of 101
drop with axis +[]
discussion of 105
dump 467
duration of sharing 332
dyadic
format s 143
grade down ¥V 149
grade up A 155
transpose & 251
dyadic function
distinguished from monadic 33
syntax 23
valence 23
dyadic operator
syntax 24
valence 24
dyadic scalar functions, rules 54

E

E notation 11
E, in scaled form 11
e, raised to the 127
OrA 278
each ™ 107
deriving dyadic 107
deriving monadic 109
EBCDIC 470
EBCDIC character mappings 475
Orc 280
edit 375
existing object 386, 398
mode 2
of multiple objects 411
JEDITOR 427
editors
See also full-screen editor
See also line editor
See also named editor
features 376
full-screen 394
full-screen commands 396
immediate execution 393, 412
line editor commands 384
named 380
use of 375
element
See item
OEM 281
empty array
and nesting 50

empty array (continued)
discussion of 6, 48
fill function 110
identity function 210
prototype of 49
uses 48
value of nested 50
ways to create 49
enclose c
discussion of 111
relationship to disclose 112
enclose with axis <[]
discussion of 113
relationship to disclose with axis 115
encode T
discussion of 116
end APL2 session 440
enlist €
compared with ravel 119
discussion of 118
ENTRY ERROR 464
epsilon €
enlist 118
member 181
epsilon underbar e
find 129
equal =
discussion of 219
equal underbar =
depth 91
match 173
equality, tolerance for 58
equivalent
See match
JERASE 428
See also)DROP
delete objects from the active workspace 428
effect on shared variable 333
error
event simulate JFS 282, 285
event type OET 287
in defined operation 462
in immediate execution 59
shown in state indicator 355
error message
OEM 281
OES 282,285
converted to DOMAIN ERROR 360
with execute 120
error messages 461, 462
See also individual message
error recovery
See OEA
See OES
See restart
See resume

Index

499

OEsS 282,285
escape
See also interrupt
character input/output 267
evaluated input/output 263
full-screen editor 399
line editor 392
to clear state indicator 358
escape arrow -, syntactic
construction symbol 27
OET 287
evaluated input/output (0)
discussion of 262
escape from 263
evaluation
ambi-valent functions 33
expressions 32
summary 20
expressions with parentheses 37
expressions with variables 39
item-by-item
each derived functions 107, 109
scalar functions 53, 54
rule of 32
even root 201
event code
See event type
event handling 352
example function 353
event message (EN)
discussion of 281
event simulate (JE.S)
error message and event type explained 285
error message or event type explained 282
example function 353
event type (OET)
discussion of 287
event, shared variable OSVE 326
OEX 289
examples, display of 2, 63
exclusive or z 68
execute a host system command 432
execute alternative (OFA4)
discussion of 278
execute controlled (OEC)
discussion of 280
execute ¢
discussion of 120
of a latent expression 302
execution
See also evaluation
and state indicator 355
calling sequence 354
immediate
error or interrupt in 59, 461
with full-screen editor 412
with line editor 393

500 APL2 Programming: Language Reference

execution (continued)
interrupted 354
of defined function or operator 353
order of 32
pendent operation 354
resume or restart 359
suspended
defined operation 354
execution error, shown in state indicator 59
execution mode 2
execution properties 360
OATC3] 289
of locked function 361
set with JFX 294
execution stack 355
exit
See escape
expand
derived from backslash 122
derived from backslash with axis 124
use of fill item 47
explicit argument 31
errors 287
explicit result 31
exponent
See scaled form
exponential *
discussion of 127
relationship to power 127
exponential notation 11
exponentiation
See power
expression
array 27
branch 349
evaluated 32
evaluated with parentheses 37
examples 2
function 27
meaning 27
operator 27
part of statement 28
rule for evaluation 20, 32
rules for valid syntax 28
subexpression 36
used in definitions 63
valueless 31, 120
with 0 262
with 1 265
with variables 39
expressions
and system functions and variables 260
expunge (OEX)
compared with)ERASE 290
discussion of 289

extended transfer form JTF 336

extended transfer formats
discussion of 484

extension, scalar 54

F

F, arbitrary function name 31
factorial !

discussion of 128
failure

See error
false, Boolean value 219
OrFc 291
field, with format by example 139
fill character OFC[31, for format by example
fill functions 56

for scalar functions 56

table 110
fill item 47
find €

discussion of 129
find string, in full-screen editor 406
first 4
compared with pick and enclose 132
discussion of 131
fit, best 174
fix
definition in active workspace 345
object in workspace during editing 399
fix (OFX)
no execution properties
discussion of 292
with execution properties
discussion of 294
fix time JOAT[2] 270
flat array
See array, simple
float, decorator with format 139
floor L
discussion of 133
flow of control 349
See also branching
YJFNS 431
font
See character set
form, transfer OTF 336
format control (OFC)
discussion of 291
format s
by example
discussion of 139
by specification
discussion of 143
default
discussion of 135
rules for display 135

fractional numbers 10
full-screen editor
abandon editing 399
adding lines 398, 402
change command 407
close definition 399
combining lines 404
commands 396
copying from another object 409, 410
copying lines 409
cursor-dependent scroll 402
define new object 398
definition display 400
delete 405
all lines 405
characters from a line 405
lines 405
range of lines 405
specific lines 405
display lines 400
edit character vector or matrix 398
edit existing object 398
entering long lines 404
escape definition 399
features 376
fixing object in workspace 399
function keys 397
get command 409
illustrated 395
immediate execution with 412
information line 395
insert characters in a line 405
insert lines 402
line number 396
locate command 406
multiple objects 411
open definition 397
open segments 411
overview 394
put command 410
renumber lines 406
replace lines 404
scroll through definition 401
work with segments 411
fully-coupled shared variable 367
function expression 27
in parentheses 38
function keys, for full-screen editing 397
function table
See outer product
functions
See also functions, defined
See also functions, primitive
ambi-valent 33
arguments of 23
associated with names 24

Index

501

functions (continued)
dyadic 23
fill 56
for scalar functions 56
table 110
operand(s) to operator 24
functions, defined
ambi-valent 352
annotated example of 346
associating names with 26
body 348

convert to character representation 274

definition mode 2
editing 375
errors when editing 393
establish 345
execution of 353
execution properties 360
fixed in workspace 345
header 347
interrupts and errors 462
local names to 347, 353
locked 361
name 24
name list 311
niladic 23, 31
recursive 355
stop control 362
structure 346
suspended execution 354
syntactic behavior of niladic 31
syntax

illustrated 31

rules for 28
trace control 361
valence 23
with explicit result 31
without explicit result 31

functions, derived
ambi-valence 24
result of applying an operator 24
valence 24
functions, primitive

See also individual functions by name
and selective specification 44
Boolean 68
circular 82
complex number 84
example uses 2
hyperbolic 83
mixed (nonscalar) 52
monadic 23
multivalued 64
names 25
nonscalar

identities 212

list 52

502 APL2 Programming: Language Reference

functions, primitive (continued)
Pythagorean 83
relational 219
scalar
identities 211
list 51
rules for dyadic 54
rules for monadic 53
symbols 470
trigonometric 82
with axis specification 45
functions, system 259
fuzz
relative 58
system 59
OFXx 292, 294

G

gamma function 128
GDDM
and full-screen editor 375
general logarithm
See logarithm
general share offer 330
get command, full-screen editor 409
global name
discussion of 348
shadowed 360
GMT (Greenwich Mean Time) 341
GO TO
See branching, unconditional
grade down (with collating sequence) ¥
discussion of 149
grade down ¥
discussion of 147
grade up (with collating sequence) A
discussion of 155
grade up A
discussion of 153
greater than >
discussion of 219
greater than or equal >
discussion of 219
greatest [/ 212

Greenwich Mean Time (GMT) 341

H

halted
See pendent
See suspended
header
discussion of 347
in definition editing 384

hexadecimal 470
hierarchy, binding 33
YJHOST 432
hour OTSC4] 340
hyperbolic functions 83
hyphen

See negative

See subtract

i(0J1) 12
I-beam T 473
See also system functions and variables
identification, account JAI 269
identifier
See name
identity element
See indentity functions
identity functions
table of nonscalar 212
table of scalar 211
ignoring your partner's shared variable spec 372
imaginary number 12
immediate execution
error or interrupt in 59
interrupts and errors 461
line editor 393
mode 2
with full-screen editor 412
implication, material 68
implicit argument
errors 287
variable 260
IMPROPER LIBRARY REFERENCE 464
JIN 433
inactive workspace
See workspace, stored
INCORRECT COMMAND 464
indent 1
INDEX ERROR 464
index generator
See interval
index [I
discussion of 160
index of 1
discussion of 162
index origin (OI0)
discussion of 297
index with axis 0L]
discussion of 163
index, of an array 6
indexed assignment
See selective specification
indexed specification
See selective specification

indexing [1 70
indicator, state
See state indicator
information line, full-screen editor 395
inhibit
See shared variable control
inhibiting specification or reference of shared
variable 367
initial value of shared variables 366
inner product
discussion of 165
input, indentation for 2
input/output, evaluated
See evaluated input/output
insert characters, in a definition line 405
insert lines, in a definition 402
instruction
See expression
integer
interval (1) to create consecutive 168
meaning 10
tolerance for determining 59
interaction 1
interface
See shared variables
INTERFACE CAPACITY EXCEEDED
See SYSTEM LIMIT
INTERFACE QUOTA EXHAUSTED
See SYSTEM LIMIT
interlock
See shared variable control
interlock, shared variable 372
interrupt 465
See also attention
display of message 461
entering to escape shared variable interlock 372
in immediate execution 59
of quote-quad input 267
to suspend execution of a function or operator 354
interruptible, execution property 294, 360

interval 1
discussion of 168
inverse
circular functions 82
matrix 177

pseudo of a matrix 178
reciprocal 208
inverse permutation
See grade down
See grade up
inverse transfer form 339

Oro 297

iota 1
index of 162
interval 168

Index 503

iota underbar 1 473
irrational numbers 11
item
by item evaluation
each derived functions 107, 109
scalar functions 53, 54
fill 47
index of 6
number of in an array 6
ofanarray 5

J

J notation 11
join
See catenate
See laminate
jot °
outer product 186
syntactic construction symbol 27
juxtaposition 14

K

keying time 269
keyword
See distinguished name

L
Or 298
L, arbitrary left argument name 31
label 26, 350
importance of 350
in a statement 28
laminate , []
discussion of 169
lamp a
See comment
languages, national 314
largest [/ 212
latent expression (0L X)
discussion of 302
Orc 300
leading zeros 12
least squares 174, 177
least L / 212
left argument (OL) 298
left arrow <« (specification) 27
left shoe
See enclose
left tack = 474
length
See also shape
of a vector 6

504 APL2 Programming: Language Reference

LENGTH ERROR 465
less than <
discussion of 219
less than or equal <
discussion of 219
JLIB 434
library 2
LIBRARY I/0 ERROR 465
LIBRARY NOT AVAILABLFE 465
limitations
system 489
line counter (OLC)
See also branching
See also state indicator
discussion of 300

line editor
abandon definition 392
add lines 385

close definition 386
define new object 385
definition display 389
delete
all lines 392
lines 391
range of lines 391
specific lines 391
display lines 389
display-edit command 393
edit existing object 386
escape definition 392
features 376
illustration 383
immediate execution 393
line number prompts 396
line numbers 384
open definition 385
prompts 384
system commands with 393
with full-screen editor 396
with session manager 394
without session manager 394
line feed character 07CL3]1 335
line number
and label 350
prompts 384
use of fractions 384
with line editor 384
line width
See printing width
linear equations, solving 174

lines, renumbering by full-screen editor 406

link, random 89, 231, 322
list
names 311, 313
list additional diagnostic information 438

list indicated objects in the active workspace
459
list names in the active workspace 439
list workspace names in a library 434
list workspace, library, and Shared Variable
Quotas 448
literal
See character data
literal input/output
See character input/output
L O, arbitrary left operand name 31
JLOAD 436
bring a workspace from a library into the active work-
space 436
latent expression 302
local names
meaning 347
name class for 310
use of 353
localization, automatic
with JEM 281
with EFT 287
locate
See find
See index of
locate command, full-screen editor 406
locked object
created with full-screen editor 399
execution properties of 361
locked workspace 468
logarithm e
discussion of 171
logarithm, natural ® 184
logical
See Boolean
looping
rarely needed 352
replaced by each 109
lowercase 470
Orx 302

magnitude |
discussion of 172
malfunction
See error
mantissa 11
match =
discussion of 173
material implication 68
mathematical membership 181
matrix
display of simple 17
edit of simple character 398
from an array 206

431, 441,

matrix (continued)
meaning 5
matrix divide B
compared to matrix inverse 176
discussion of 174
matrix inverse B
compared to matrix divide 179
discussion of 177
matrix multiplication +.x 165
matrix product +.x 165
maximum [
discussion of 180
member ¢
discussion of 181
membership, mathematical 181
messages 461, 462
display of 461
error in immediate execution 59
latent when workspace loaded 302
with execute 120
migration transfer form OTF 336

millisecond
Orsc71 340
with AT 269
minimum L
discussion of 182
minus

See negative
See subtract
minute O7S[61 340
mixed character and numeric data 10
mixed functions
See nonscalar functions
mode
See also definition mode
See also execution mode
definition of 2
immediate execution 2
modulus
See residue
monadic
format s 135
grade down ¥ 147
grade up 4 153
transpose & 256
monadic functions
distinguished from dyadic 33
rules for scalar 53
syntax 23
valence 23
monadic operators
syntax 24
valence 24
month O7S[2] 340
MOP, arbitrary monadic operator name 31

Index

505

JMORE 438
multidimensional array 5
display of simple 18
multiple branch 351
multiple specification 40
multiplier 11
multiply x
discussion of 183

N

n-wise reduce
derived from slash 213
derived from slash with axis 215
OnvA 304, 305
naked branch
See escape
name association (ON4)
inquire
discussion of 304
set
discussion of 305
name class (ONC)
discussion of 309
name list (ONL)
by alphabet and class
discussion of 311
by class
discussion of 313
named system editor 380
names
array 26
association of 24
binding of 33
constructed
receiving value 25
types of 24
defined functions 26
defined operation 347
defined operators 26
distinguished 26
global 348
in expressions 27
labels 26
local 347
use of 353
of characters 471
primitive 25
rules for 25
shadowed 348
summary of rules for 20
surrogates for shared variables 330
symbols for 25, 470
use of 24
valid 26
variable 26

506 APL2 Programming: Language Reference

names (continued)
without values 26
nand #
discussion of 68
national language translation (ONLT)
discussion of 314
natural logarithm e
discussion of 184
Onvc 309
negation (Boolean)
See not
negative -
discussion of 185
relationship to subtract 185

negative number indicator O#C[6], for format by

specification 144

negative number, representation 11
negative sign - 11
nested arguments, with scalar function 54
nesting, degree of 8
new line character 0T7CL2] 335
niladic branch

See escape
niladic function

syntactic behavior 31

valence 23
Onvrn 311, 313
ONLT 314
)NMS 439
no error, OFT code 287
NO SHARES

See SYSTEM LIMIT
nondisplayable, execution property 360
nonreal number 10

tolerance for determining 59
nonscalar array 5
nonscalar functions, table 52
nonsuspendable, execution property 360
nor »

discussion of 68
NOT COPIED: 465
not equal #

discussion of 219
NOT ERASED: 465
NOT FOUND: 466
not greater

See less than or equal
not less

See greater than or equal
not ~

discussion of 68
NOT SAVED, LIBRARY FULL 466
NOT SAVED, THIS WS IS 466
notation

complex number 11

exponential 11

notation (continued)
scaled form 11
scientific 11
subscript
See bracket index
notation, vector 14
nub (cap) 472
null (jot) 27
null array
See empty array
number
Boolean or not 59
complex 10, 11
data 10
display
in scaled form 13
leading, trailing zeros 12
of complex 13
precision 12
imaginary 12
mixed with characters 10
negative 11
nonreal 10
random 89, 231
real 10
real versus nonreal 59
representation 10
scaled form 11
tolerance for determining kind of 59
numeric data 10

o)

object size, ATL 4] 271
objects
list of 311, 313
meaning 1
system
See system functions and variables
odd root 201
JOFF 440
offer
general share 330
to share 328, 329
omega w 472
one-item vector 15, 242
open definition
full-screen editor 385
line editor 385
operand
See also arguments
and binding for evaluation 35
number of 24
position in binding hierarchy 34
to an operator 23

operation

defined
See function, defined
See operators, defined
description of 1
primitive
See function, primitive
See operator, primitive
suspended 360

operation table 186
operator expression 27

in parentheses 38

operators

associated with names 24
purpose 24
syntax
dyadic 24
monadic 24
rules 28
valence 24
valence of derived function 24

operators, defined

associating names with 26
body 348

convert to character representation 274
editing 375

establish 345

execution 353

execution properties 360
fixed in workspace 345
header 347

interrupts and errors 462
local names to 347, 353
locked, execution properties 361
name 24

name list 311

stop control 362
structure 346

suspended execution 354
syntax 31

trace control 361

with explicit result 31
without explicit result 31

operators, primitive

See also individual operators by name
example uses 2

names of 25

symbols 470

with axis specification 24

JOPS 441
or v

discussion of 68

order

See grade down
See grade up

Index

507

order of execution
of statements within an operation 349
within a statement 32
JORIGIN
See 010
origin 0I0 297
YOUT 442
outer product
discussion of 186
use of jot 27
output
See also character input/output
See also evaluated input/output
distinguished from input 2
overbar ~ 11
overdrop 102
overflow character OFC[4 1, for format 141
overset 372
overspecification, of shared variables 372
overtake 245, 248
use of fill item for 48

P

pad
See also fill
in format by example 139
page 5
page width
See printing width
parameter names, shown in header 347
parameter substitution 26
parentheses
and binding for evaluation 36
and valueless expressions 31
array expressions 38
effect on binding hierarchy 34
evaluation of expression with 37
function expressions 38
operator expressions 38
redundant 30, 37
summary of use 21
syntactic construction symbol 27
syntax rules for 29
vectors 37
partition <
discussion of 188
partition with axis <[]
discussion of 192
partner, shared variable 60
pattern, finding 129
pause ODL 277
)PBS 444
YJPCOPY 446
pendent operation 354

508 APL2 Programming: Language Reference

pending offer, shared variables 367
period
See format by example
See inner product
See numbers
See outer product
permutation
ordered 147, 153
random 89
pervasive 51
phase 84, 93
pi times OR
discussion of 194
pick >
compared with first 200
discussion of 195
picture format
See format by example
YPIN 447
plane 5
plus + (add) 65
point
See period
polar notation 11
polynomial approximation 175
polynomial evaluation 90
power *
See also scaled form
discussion of 201
relationship to exponential 127
Opp 315
OprPr 316
precedence
binding hierarchy 33
right-to-left rule 32
precision 58
See also system limits
See also tolerance
display 12
printing and format (default) 138
primitive functions
See functions, primitive
primitive names 25
primitive operators
See operators, primitive
principal value, of multivalued function 64
print
See display
print-as-blank character OFC[5 1, for format
printing precision (OPP)
discussion of 315
printing precision OPP
and format (default) 138
printing width (OPW)
discussion of 318

141

probability

See random numbers
processor 60
product

See multiply
product, inner 165
product, outer 186
program

See functions, defined

See operators, defined
program function keys 397
progression, arithmetic 168
prompt

0O 262

for line numbers 384

M 266
prompt replacement (OPR)

discussion of 316
prompt/response interaction 266
properties, execution

See execution properties
protocol, for shared variables. 324
prototype 46

See also type

of empty array 49

reasons for 48
pseudo-inverse of a matrix 178
put command, full-screen editor 410
OpPw 318
Pythagorean functions

discussion of 83

Q

quad O

distinguished name 26

evaluated input/output 262

in editing 400
quad backslash = 473
quad divide B 174,177
quad jot @ 473
quad prime M 265
quad prompt 0: 262
quad quote [

See quad prime
query

See deal

See roll

See shared variable query
query or assign the active workspace identifier 460
query or modify the symbol table size 458
query or select editor to be used 427
query or set the printable backspace character 444
question mark ?

deal 89

roll 231

quit

See branch

See escape

See interrupt
)QUOTA 448
quotation mark '

for character data 13

syntactic construction symbol 27

syntax rules for 29
quote

See quotation mark
quote dot !

binomial 66

factorial 128
quote quad M 265
quotient 100

R
Or 319
R, arbitrary right argument name 31
R notation 11
radians
converted from degrees 82
converted to degrees 82
radix, mixed 90, 116
random link (ORL)
discussion of 322
random numbers 89, 231
random seed
See random link
range
See DOMAIN ERROR
See VALUE ERROR
rank 241
See also shape
measure of an array structure 5
RANK ERROR 466
rational numbers 10
ravel ,
compared with enlist 203
discussion of 202
ravel with axis , []
discussion of 204
re-specification
See specification
read a transfer file into the active workspace 433
read a transfer file into the active workspace with pro-
tection 447
real number
attributes 10
formats for 11
meaning 10
tolerance for determining 59
reciprocal +
discussion of 208

Index 509

rectangularity 6
recursive function 355
reduce
derived from slash 209
derived from slash with axis 217
reduce, n-wise
derived from slash 213
derived from slash with axis 215
redundant parentheses 30, 37
redundant spaces 30
reference
of a variable 39
relational functions
discussion of 219
relative fuzz 58
remainder
See residue
remove a workspace from a library 426
replace lines, in a definition 404
replace strings, full-screen editor 407
replacement, prompt 316
replicate
derived from slash 220
derived from slash with axis 222
use of fill item 47
reports
See messages
reports, formatting of
See format
representation
See encode
representation, character
See JAF
See JATV
JRESET 449
description of 449
to clear state indicator 358
reshape p
discussion of 225
residue |
discussion of 227
resource errors 287
respecification, of a variable 39
response time, JA I to determine 269
response vector, with 1 266
response, prompt 266
restart execution 359
result, explicit
defined operations with 31
defined operations without 31
result, valueless expression 31, 120
resume execution 359
See also)CLEAR
See also)RESET
retracting a shared variable 366

510 APL2 Programming: Language Reference

retraction, of shared variable 332
retrieve

See YLOAD

See reference
return

See escape

See line counter

See restart

See resume
return, carriage

See new line character
reverse ¢

alternate symbol © 229
reverse ¢ o

discussion of 228
reverse with axis ¢[] e[]

alternate symbol © 229

discussion of 229

rho p
reshape 225
shape 241

right argument (OR) 319
right arrow -
branching 349
escape 27
right shoe
See disclose
See pick
right tack 4 474
right-to-left rule 32
ORL 322
RO, arbitrary right operand name 31
roll 2
discussion of 231
root 201
rotate ¢
alternate symbol © 236
discussion of 232
rotate with axis ¢ []
alternate symbol © 236
discussion of 235
round off
See ceiling
See floor
See precision
row 5
row-major order 7
rules
evaluation of expressions 32
names 25
scalar conformability 54
syntax 28

S

SA 362
)SAVE 451
save active workspace and end session 422
save the active workspace in a library 451
scalar
compared to one-item vector 242
created with enclose 112
display of simple 17
nested 17
simple 8
scalar extension 54
scalar functions
rules for dyadic 54
rules for monadic 53
table 51
scaled form
display of arrays with 18
meaning 11
when displayed 13
scan
derived from backslash 239
derived from backslash with axis 240
schedule
See shared variable event
scientific notation 11
screen segments 411
scrolling, full-screen editor 401

search

See find

See index of
seconds OJ7S[61 340
seed

See random link
segments

opening 411

screen 411

working with 411
selective specification

bracket index 72

discussion of 40

drop 104

drop with axis 106

functions allowed 44

pick 200

ravel 203

ravel with axis 207

reshape 226

reverse 228

reverse with axis 230

rotate 234

rotate with axis 238

take 246

take with axis 250

transpose (general) 255

selective specification (continued)
transpose (reversed axes) 257
semicolon ;
syntactic construction symbol 27
syntax rules for 29
use in header 348
with bracket index 72
session 1
session manager, and line editor 394
session variable 260
set difference
See without
set membership
See member
set, of a variable 39
shadowed names 348
shape
measure of array structure 6
vector 6
shape p
discussion of 241
shared variable control (OSVC)
inquire
discussion of 323
set
discussion of 324
shared variable event (OSVE)
discussion of 326
shared variable events 373
shared variable offer (0SV0)
inquire
discussion of 328
set
discussion of 329
shared variable query (O0SVQ)
discussion of 331
shared variable retraction (OSVR)
discussion of 332
shared variable state (OSV.S)
discussion of 334
shared variables 260
degree of coupling 60

offer
failure 366
pending 367

system functions and system variables 364

system functions and variables for 60
shoe

See also disclose

See also enclose

left (enclose) 111, 113

right (disclose) 94, 96

right (pick) 195
shriek !

See binomial

See factorial

Index

511

)SI 453
SI DAMAGE

See SI WARNING
SI WARNING 466
)SIC 454

See also)RESET
sign, reversing 185

signaling of shared variable events 373

signum 93
simple array
See array, simple
simple scalar
See scalar, simple
simulate, event JES 282, 285
sine 10R 82
sinh 50R 83
SINH, formula for 81
)SINL 456
SINZ, formula for 81
)SIS 457
size
See also shape
of a vector 6
of an object 271
slash /
deriving n-wise reduce 213
deriving reduce 209
deriving replicate 220
slash bar
See slash with axis
slash with axis /[]
deriving n-wise reduce 215
deriving reduce 217
deriving replicate 222
small circle
See jot
smallest of an array L/ 212
sort
ascending 153
descending 147
spaces
See also)QUOTA
See also blank
See also workspace available
as characters 14
in a comment 28
in vector notation 14
not needed 30
redundant 30
summary of when needed 22
syntax rules for 30
when needed 30
specification
multiple 40
of a variable 39
of axis with primitive functions 23

512 APL2 Programming: Language Reference

specification (continued)
of variables 39
selective 40
functions allowed 44
specification arrow <«
and binding for evaluation 35
position in binding hierarchy 34
syntactic construction symbol 27
syntax rules for 29
specification of variables 39
multiple specification 40
respecifying a variable 39
selective specification 40
using a variable 39
vector specification 40
specification, axis
conditions for 45
operations that allow 45
square root 201
stack indicator
See state indicator
stack, execution 355
stamp, time 0TS 340
star
See exponential
See power
state indicator
actions that add to 357
and value of JEM 281
and value of JET 288
clearing 357
discussion of 355
error in immediate execution 59
resume or restart execution 359
use of)RESET 358
use of escape 358
state, shared variable 334
statement 28
in definition body 348
stile |
magnitude 172
residue 227
stop control SA 362
storage
libraries 2
space 344
workspace 2
strand
See vector notation
strong interrupt
See interrupt

structure
illustrated 9
of arrays 5

subarray 7

contiguous 7

subexpression 36
subroutine
See functions, defined
See operators, defined
subscripts
See bracket index
subtract -
discussion of 243
relationship to negative 185
sum
See add
sum, alternating -/ 212
summary of changes xiv
summation () +/ 212
surrogate name 330
surrogate, or alias, shared variable names 366
suspendable, execution property 360
suspended execution
and line editor 387, 393
of a defined operation 354
suspended operation, if called 360
suspending execution, until shared variable event 373
Osve 323, 324, 365, 367
OSVE 326, 365, 373
determining your next action 374
using, sample function 374
Osvo 328, 329, 365
shared variable offer 365
0sve 331,365
OSvr 332, 365
Osvs 334, 365, 367
SYMBOL TABLFE FULL
See SYSTEM LIMIT
)SYMBOLS 458
symbols
APL2 characters 470
binding of 33
for primitive names 25
list of syntactic construction 27
not names 25
syntactic construction, rules for 27
symmetry
of access control mechanism 368
of access state vector 371
synchronization of share partners 367, 369
syntactic construction symbols
diamond 27
syntax
defined operation with explicit result 31
defined operation without explicit result 31
dyadic functions 23
monadic functions 23
purpose of 22
rules for valid expressions 28
summary 20
syntactic construction symbols 27

SYNTAX ERROR 466
system commands
See also individual commands by name
YCHECK 418
JCLEAR 420
JCONTINUE 422
)COPY 423
)DROP 426
JEDITOR 427
JERASE 428
YFNS 431
JHOST 432
)IN 433
JLIB 434
JLOAD 436
JMORE 438
YNMS 439
JOFF 440
JOPS 441
YOUT 442
YPBS 444
YPCOPY 446
YPIN 447
)QUOTA 448
JRESET 449
)SAVE 451
)SI 453
)SIC 454
)SINL 456
)SIS 457
)SYMBOLS 458
JVARS 459
YJWSID 460
common command parameters 416
error in 462
list of 413
messages 462
range parameters 416
storing and retrieving objects and workspaces 414
system services and information 416
types of 413
uses of 413
using the active workspace 416
with line editor 393
SYSTEM ERROR 467
system functions
distinguished names for 26
list of 261
syntactic behavior 31
uses of 260
system functions and variables
See individual system functions and variables by
name
system functions and variables
ions and variables 259

Index 513

system fuzz 59
SYSTEM LIMIT 467
system limitations 489
system of linear equations 174
system services, with line editor 394
system time 340
system tolerance 59
See also comparison tolerance
system variables
distinguished names for 26
list of 261
syntactic behavior 31
types of 260
uses of 260

T

TA 361
table
See matrix
See outer product
take +
discussion of 244
use of fill item 47
take with axis 4+ []
discussion of 247
use of fill item 47
tangent 30R 82
tanh 70F 83
TANHZ, formula for 81
TANZ, formula for 81
Orc 335
terminal control characters (OTC)
discussion of 335
terminate
See escape
See interrupt
OTF 336
thorn
See format
thousands indicator OFC[2] 140
tilde ~
not 68
without 258
time
OAT to determine 269
delay ODL 277
time stamp
OAT to determine operation's 270
of definition 349
time stamp (O7T5S)
discussion of 340
time zone (07T2)
discussion of 341
timer, for shared variable event 326

514 APL2 Programming: Language Reference

times
See multiply
tolerance
comparison 58
system 59
top T (encode) 116
top jot s (format) 135, 139, 143
trace control TA 361
transfer files
discussion of 484
extended transfer form of an object 487
file and record structure 485
internal formats 485
migration transfer form of an object 486
moving between systems 484
reading and writing 484
records not containing objects 486
transfer form (OTF)
discussion of 336
inverse 339
translation
See national language translation
transpose (general) ®
discussion of 251
transpose (reversed axes) &
discussion of 256
trap
See [IEA
See lES
trigonometric functions 80
trouble report
See error messages
true, Boolean value 219
Ors 340
type 46
See also prototype
077 341

U

gucs 342
OuL 343
unconditional branch 351
underbar _ 472
See also names
underline
See underbar
underscore
See underbar
Unicode character mappings 475
unite
See enlist
universal character set (OUCS) 342
up arrow +
first 131
take 244

up shoe 472
up shoe jot
See comment
up stile T
ceiling 79
maximum 180
up tack T
See encode
up tack jot s
See format
upgrade
See grade up
uppercase 470
use
of a variable 39
user identification JAI[1]1 269
user load (OUL)
discussion of 343
user response time, A I to determine 269

\'

valence
OATC1]1 270
how determined for evaluation 33
of an operator 24
of derived function 24
shown in header 347
VALENCE ERROR 467
valid characters 470
VALUE ERROR 467
value, associated with names 25
variables
See also system variables
debug 260
evaluated in an expression 39
implicit argument 260
meaning 26
multiple specification of 40
name 25
reference of 39
selective specification 40
session 260
set of 39
shared 60, 260
specification of 39
using 39
JVARS 459
vector
access control 324
display of simple 17
edit of simple character 398
empty 48
in parentheses 37
intersection of two 258
length or size 6

vector (continued)
nested 15
one item, compared to scalar 242
one-item nested 112
position in binding hierarchy 34
shape 6
simple 14
type of array 5

vector binding 35

vector notation 14
and binding for evaluation 35
compared to catenate 74
compared to enclose 111
syntax rules for 28

vector specification 40

w

OwA 344
wait
See delay

See shared variable event
weak interrupt
See attention
width, printing 318
window, for n-wise reduce 213, 215
withdrawing shared variable offer
See retracting a shared variable
without ~
discussion of 258
work area
See workspace available
workspace 2
MATHFNS 11
stored 2
UTILITY 157
workspace available (OWA)
discussion of 344
workspace dump 467
write objects to a transfer file 442
WS CANNOT BE CONVERTED 467
WS CONVERTED, RESAVE 467
WS FULL 468
WS INVALID 468
WS LOCKED 468
WS NOT FOUND 468
YJWSID 460

Y

year JTS[1]1 340

Z

Z, arbitrary result name 31

Index

515

ZCODE
See AV
zero
display of leading and trailing 12
indicator of numeric type 46
suppress
See format
zone, time 077 341

516 APL2 Programming: Language Reference

Readers' Comments — We'd Like to Hear from You

APL2 Programming :
Language Reference

Publication No. SH21-1061-01

Overall, how satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Overall satisfaction m] m] O a O
How satisfied are you that the information in this book is:
Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Accurate O O O m] O
Complete o mi mi o o
Easy to find u] m] u] a o
Easy to understand O O O m] O
Well organized O O O m] m]
Applicable to your tasks O O O m] O

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? O Yes O No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments

in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers' Comments — We'd Like to Hear from You _ ﬁfcfn‘;rﬁﬁf
SH21-1061-01 =
Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

&@rcfaddr(1)
Fold and Tape Please do not staple Fold and Tape
Cut or F_old

SH21-1061-01 Along Line

File Number :

S§370-40

Program Number: 5688-228

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

The APL2 Library

GH21-1090
SH21-1073
SH21-1061

SX26-3999
SH21-1074
SH21-1057
SH21-1069
SC33-0600
SC33-0601

SC33-0851

SH21-1091

GC23-3058
SC23-3051

GC26-3359
SH21-1092
GH21-1063
GH21-1070
SH21-1062
SH21-1055
SH21-1054
SH21-1056
SH21-1058
LY27-9601

SH21-1059

APL2 Family of Products (fact sheet)

APL2 Programming: An Introduction to APL2

APL2 Programming: Language Reference

APL2 Reference Summary

APL2 GRAPHPAK: User's Guide and Reference

APL2 Programming: Using Structured Query Language
APL2 Migration Guide

APL2 for the IBM PC: User's Guide

APL2 for the IBM PC: Reference Summary

APL2 for the IBM PC: Reference Card

APL2 for OS/2: User's Guide

APL2 for AIX/6000 Licensed Program Specifications
APL2 for AIX/6000: User's Guide

APL2 for Sun Solaris Licensed Program Specifications
APL2 for Sun Solaris: User's Guide

APL2/370 Application Environment Licensed Program Specifications
APL2/370 Licensed Program Specifications

APL2/370 Installation and Customization under CMS
APL2/370 Installation and Customization under TSO
APL2/370 Programming: System Services Reference
APL2/370 Programming: Using the Supplied Routines
APL2/370 Programming: Processor Interface Reference
APL2/370 Diagnosis Guide

APL2/370 Messages and Codes

Spine information:

===5= APL2 Programming : FmbmﬁmmAw Reference

	Contents
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	Who Should Read This Book
	APL2 Publications
	Conventions Used in This Book

	Summary of Changes
	Products
	Document Changes

	Chapter 1. APL2 in Action
	Interaction
	Workspaces
	Sample Use of APL2

	Chapter 2. Arrays
	Structure
	Rank
	Shape
	Rectangularity
	Subarrays

	Depth
	Picture of an Array's Structure

	Data
	Numeric Data
	Real Numbers
	Complex Numbers

	Character Data
	Display of Characters

	Construction of Arrays
	Vector Notation
	Using Functions to Create Arrays

	Display of Arrays
	Simple Scalars and Vectors
	Simple Matrixes and Other Multidimensional Arrays
	Nested Arrays

	Chapter 3. Syntax and Expressions
	Summary of Syntax and Evaluation of Expressions
	APL2 Syntax
	Functions
	Axis Specification

	Operators
	Names
	Primitive Names
	Constructed Names
	Rules for Constructed Names
	Distinguished Names

	Syntactic Construction Symbols
	Expressions
	Statements
	Syntactically Valid Expressions

	Defined Functions and Operators
	System Functions and System Variables

	Evaluating Expressions
	Expressions with More Than One Function and No Operators
	Determining Function Valence
	Name and Symbol Binding
	Brackets
	Specification—Left and Right
	Right Operand and Left Operand
	Vector Written with Vector Notation
	Left Argument and Right Argument

	Multiple Expressions in a Line
	Parentheses
	Redundant Parentheses

	Specification of Variables
	Using a Variable
	Respecifying a Variable
	Multiple Specification
	Vector Specification
	Selective Specification

	Conditions for Axis Specification

	Chapter 4. General Information
	Type and Prototype
	Fill Item
	Empty Arrays
	Prototypes of Empty Arrays
	Empty Arrays and Nesting

	Scalar and Nonscalar Functions
	Conformability of Arguments
	Monadic Scalar Function
	Dyadic Scalar Function
	Scalar Conformability Rules
	Axis Specification with Scalar Dyadic Functions

	Fill Functions
	Fill Function for Primitive Scalar Functions
	Fill Functions for Primitive Nonscalar Functions

	System Effects on Evaluation
	Size Limitations
	Precision
	Comparison Tolerance
	System Tolerance

	Errors and Interrupts in Immediate Execution
	Shared Variables

	Chapter 5. Primitive Functions and Operators
	APL2 Expressions Used in the Descriptions
	Meta Notation Used in Descriptions
	Multivalued Functions
	Add
	Binomial
	Boolean Functions
	Bracket Index
	Catenate
	Catenate with Axis
	Ceiling
	Circle Functions
	Circular Functions
	Hyperbolic Functions
	Pythagorean Functions
	Complex Number Functions

	Compress (from Slash)
	Compress with Axis (from Slash)
	Conjugate
	Deal
	Decode
	Depth
	Direction
	Disclose
	Disclose with Axis
	Divide
	Drop
	Drop with Axis
	Each (Dyadic)
	Each (Monadic)
	Enclose
	Enclose with Axis
	Encode
	Enlist
	Execute
	Expand (from Backslash)
	Expand with Axis (from Backslash)
	Exponential
	Factorial
	Find
	First
	Floor
	Format (Default)
	Format by Example
	Format by Specification
	Grade Down
	Grade Down (with Collating Sequence)
	Grade Up
	Grade Up (with Collating Sequence)
	Index
	Index Of
	Index with Axis
	Inner Product (from Array Product)
	Interval
	Laminate
	Logarithm
	Magnitude
	Match
	Matrix Divide
	Matrix Inverse
	Maximum
	Member
	Minimum
	Multiply
	Natural Logarithm
	Negative
	Outer Product (from Array Product)
	Partition
	Partition with Axis
	Pi Times
	Pick
	Power
	Ravel
	Ravel with Axis
	Reciprocal
	Reduce (from Slash)
	Reduce N-Wise (from Slash)
	Reduce N-Wise with Axis (from Slash)
	Reduce with Axis (from Slash)
	Relational Functions
	Replicate (from Slash)
	Replicate with Axis (from Slash)
	Reshape
	Residue
	Reverse
	Reverse with Axis
	Roll
	Rotate
	Rotate with Axis
	Scan (from Backslash)
	Scan with Axis (from Backslash)
	Shape
	Subtract
	Take
	Take with Axis
	Transpose (General)
	Transpose (Reversed Axes)
	Without

	Chapter 6. System Functions and Variables
	Evaluated Input/Output
	Assignment
	Reference

	Character Input/Output
	Assignment
	Reference

	Atomic Function
	Account Information
	Attributes
	Atomic Vector
	Character Representation
	Comparison Tolerance
	Delay
	Execute Alternate
	Execute Controlled
	Event Message
	Event Simulate (with either Error Message or Event Type)
	Event Simulate (with both Error Message and Event Type)
	Event Type
	Expunge
	Format Control
	Fix (No Execution Properties)
	Fix (with Execution Properties)
	Index Origin
	Left Argument
	Line Counter
	Latent Expression
	Name Association (Inquire)
	Name Association (Set)
	Name Class
	Name List (by Alphabet and Class)
	Name List (by Class)
	National Language Translation
	Printing Precision
	Prompt Replacement
	Printing Width
	Right Argument
	Random Link
	Shared Variable Control (Inquire)
	Shared Variable Control (Set)
	Shared Variable Event
	Shared Variable Offer (Inquire)
	Shared Variable Offer (Set)
	Shared Variable Query
	Shared Variable Retraction
	Shared Variable State
	Terminal Control Characters
	Transfer Form
	Creating the Extended or Migration Transfer Form
	Creating the Inverse Transfer Form

	Time Stamp
	Time Zone
	Universal Character Set
	User Load
	Workspace Available

	Chapter 7. Defined Functions and Operators
	Structure
	Header
	Name of Operation
	Valence
	Parameter Names
	Local Names

	Body
	Time Stamp

	Definition Contents
	Branching
	Labels
	Conditional Branch
	Unconditional Branch
	Branch to Escape
	Branch in a Line with Diamonds
	Looping Is Rarely Needed

	Structuring Ambi-valent Functions
	Event Handling
	Use of Local Names

	Execution
	Suspension of Execution
	Calling Sequence
	State Indicator
	Clearing the State Indicator
	When a Called Operation Is Suspended

	Execution Properties

	Debug Controls
	Trace Control
	Stop Control

	Chapter 8. Shared Variables
	Shared Variable Concepts
	APL2 Shared Variable System Functions and System Variable
	Characteristics of Shared Variables
	Communication Procedure
	Degree of Coupling

	Synchronization of Asynchronous Processors
	Symmetry of the Access Control Mechanism
	Access Control Vector
	Setting the Access Control Vector

	Access State Vector
	Access State Values

	Effect of Access Control and Access State on Communications
	Shared Variable Interlock
	Over Specification

	Signaling of Shared Variable Events

	Chapter 9. The APL2 Editors
	Editor Features
	Characters Permitted within Statements

	Named System Editor
	Exiting the Editor
	Editing a Program
	Editing Simple Character Arrays
	Editing Evaluated Arrays (APL2/370 Only)

	Named APL Editor (APL/370 Only)
	Guidelines for Writing a Processor 11 Editor

	Editor 1 (The Line Editor)
	Line Numbers
	Line Number Prompts

	Editor 1 Commands
	Opening a Definition
	Opening More Than One Object for Editing
	Closing a Definition
	Changing the Name of an Object
	Displaying an Object
	Replacing or Inserting Lines
	Copying or Moving Lines
	Deleting Lines
	Abandoning Editing of an Object
	The Display-Edit Command

	Immediate Execution with Editor 1
	Entering System Commands

	System Services and Editor 1
	Editor 1 with the APL2 Session Manager
	Editor 1 without the APL2 Session Manager

	Editor 2 (Full-Screen Editor)
	Information Line
	Line Numbers
	Line Number Prompts

	Editor 2 Commands
	Opening a Definition
	Closing a Definition
	Fixing the Object in the Workspace and Staying in Edit Mode
	Abandoning Editing of an Object
	Changing the Name of an Object
	Displaying an Object
	Scrolling through a Definition
	Adding Lines
	Entering Lines Wider Than One Screen Row—Continue Command
	Creating a Single Line from Two Lines—Continue Command
	Replacing Text Lines
	Inserting and Deleting Characters in a Line
	Deleting Lines
	Renumbering Lines
	Locating Strings of Characters—Locate Command
	Replacing One String of Characters with Another—Change Command
	Copying Lines Into a Definition—Get Command
	Copying or Moving Lines within a Definition
	Copying Lines From a Definition—Put Command

	Editing Multiple Objects
	Opening Screen Segments
	Working with Multiple Segments

	Immediate Execution in Editor 2

	Chapter 10. System Commands
	Storing and Retrieving Objects and Workspaces
	Common Command Parameters—Library, Workspace

	System Services and Information
	Using the Active Workspace
	Common Parameters—First, Last

)CHECK—Diagnostic Information
	Workspace Validation
	Tracing Functions
	Forcing Dumps

)CLEAR—Activate a Clear Workspace
)CONTINUE—Save Active Workspace and End Session
)COPY—Copy Objects into the Active Workspace
	Parameters

)DROP—Remove a Workspace from a Library
	Parameters

)EDITOR—Query or Select Editor to be Used
)ERASE—Delete Objects from the Active Workspace
)FNS—List Indicated Objects in the Active Workspace
)HOST—Execute a Host System Command
)IN—Read a Transfer File into the Active Workspace
	Parameters

)LIB—List Workspace Names in a Library
	Parameters

)LOAD—Bring a Workspace from a Library into the Active Workspace
)MORE—List Additional Diagnostic Information
)NMS—List Names in the Active Workspace
)OFF—End APL2 Session
)OPS—List Indicated Objects in the Active Workspace
)OUT—Write Objects to a Transfer File
)PBS—Query or Set the Printable Backspace Character (APL2/370 Only)
)PCOPY—Copy Objects into the Active Workspace with Protection
)PIN—Read a Transfer File into the Active Workspace with Protection
)QUOTA—List Workspace, Library, and Shared Variable Quotas (APL2/370 Only)
)RESET—Clear the State Indicator
)SAVE—Save the Active Workspace in a Library
	Parameters

)SI—Display the State Indicator
)SIC—Clear the State Indicator
)SINL—Display the State Indicator with Name List
)SIS—Display the State Indicator with Statements
)SYMBOLS—Query or Modify the Symbol Table Size
)VARS—List Indicated Objects in the Active Workspace
)WSID—Query or Assign the Active Workspace Identifier
	Parameters

	Chapter 11. Interpreter Messages
	Interrupts and Errors in APL2 Expressions
	Interrupts and Errors in Defined Functions or Operators
	Errors in System Commands
	Messages

	Appendix A. The APL2 Character Set
	APL2 Special Characters
	Explanation of Characters

	Appendix B. APL2 Transfer Files and Extended Transfer Formats
	Reading and Writing Transfer Files
	Moving Transfer Files from One System to Another
	Internal Formats of Transfer Files
	File and Record Structure
	Records Not Containing Objects
	Migration Transfer Form of an Object
	Extended Transfer Form of an Object

	Appendix C. System Limitations for APL2
	Bibliography
	APL2 Publications
	Other Books You Might Need
	APL2 Keycaps and Decals

	Index

