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Abstract
Traditionally, people have created computer-generated images by writing programs in a pro-
gramming language that supports graphics. More recently, interactive graphics editors have be-
come commonplace. Graphics editors are easy to use but lack many of the capabilities found in
graphics programming languages. This deficiency is intrinsic to graphics editors; it is not a
result of neglect or incompetence by the implementer.

Tweedle is a graphics editor that attempts to bridge this gap by using a program as its internal
representation for a picture. During an editing session the user can modify either the picture
itself or the program representation; the editor modifies the other to keep the two consistent. The
language used by the editor contains features that allow the editor to incrementally execute parts
of a program in response to a change so that the picture can be regenerated without completely
reexecuting the program.

The use of a procedural representation allows the user to create pictures with structure, repeti-
tion, recursion, and calculated point values. It further allows him to define parts of a drawing as
variants of other parts; these variants can differ from their original objects in quite arbitrary ways
but still respond to changes made to the original. The language supports linking different parts
of the picture together to maintain connections between parts as the picture changes.

A working prototype of Tweedle has been implemented under the X Window System.

This document is a revised version of my Ph.D. thesis at Stanford University. The research
was supported in part by a faculty matching grant from Digital Equipment Corporation to Prof.
Brian Reid, and in part by other resources provided to Stanford by Digital Equipment Corpora-
tion. The author was a consultant to Digital’s Western Research Laboratory during the research,
and acknowledges the various WRL resources made available to him during that time.
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1. Introduction

People have used computers to create pictures nearly as long as computers have existed.
These pictures range from crude character graphics on a line printer to the sophisticated output of
today’s laser printers. Traditionally, people created these pictures by writing a program in some
computer language that supported graphics, usually through some kind of subroutine library. In-
teractive drawing programs, or graphics editors, are an alternate way of creating pictures, and in
the past decade these editors have gone from being an interesting novelty to an accepted part of
computer systems. Each approach has advantages and disadvantages, and in many cases these

are complementary: the disadvantages of programs are the advantages of editors, and the dis-
advantages of editors are the advantages of programs.

My goal is to integrate these two approaches by creating a graphics editor that uses a program
as the underlying representation for a picture. This allows a user to use the editor to interactively
create pictures while still having the capability to fall back upon programming when necessary.

1.1. Overview

Tweedle is a system that combines a graphics editor, Dee, with a programming language,
Dum. Any graphics editor must use some kind of data representation to store the picture inter-
nally during execution and externally between executions; in Dee this representation is a
program written in the Dum language. Executing the program produces the picture.

Dee presents the user with two windows, one containing a picture to be edited and the other
containing the text of the program that represents the picture. The user can change the picture by
selecting parts of it with a mouse and issuing commands through menus, or can change the text
using a standard text editing interface. Changes to the picture are reflected immediately by cor-
responding changes to the program so that the modified program will produce the modified pic-
ture; changes to the text take place in the picture when a Do Changes operation is selected.

Tweedle contains several innovative ideas. Most important, it extends procedural represen-
tations into the domain of interactive programs. Up to now, procedural representations have
been batch oriented; programs that used them manipulated them as a whole. In Tweedle, the
representation is constantly changing in response to user input, and acceptable interactive
response precludes fully reexecuting the representation in response to every change. Tweedle’s
interpreter is able to incrementally execute changed representations, executing only a subset of
the program but producing the same results as if the program had been fully reexecuted. The
interpreter automatically determines how much of the program is affected by a program change;
in order to make this work well, Dum was designed to allow this determination be done through
a static structural analysis of the program.

Dum programs are structured by defining and calling drawing procedures that create subparts
of a picture. These subparts, called objects, can later be manipulated by the program in order to
change the picture. Dum thus combines the simplicity of the drawing procedure approach with
the flexibility of the segment approach to graphics languages.

The procedural representation facilitates a variation hierarchy of graphical objects. This
hierarchy allows a user to define a new object as a variant of an existing object by describing the
procedure used to change the original object into the variant. Any later changes to the original




object will also affect the variant. Variant objects make it easy for a user to create different
objects with a similar style and to keep these objects consistent should the style change.

Objects in Dum can define control points that other object can use for positioning. Control
points can allow arrows to connect to boxes, captions to be centered under pictures, or, since
control points are gravity active in the editor, objects to line up on a grid. The interpreter ensures
that whenever an object is changed that all parts of the program that depend upon the values of
the object’s control points are properly reexecuted so that the positioning relationships continue
to hold. '

1.2. Graphics languages and graphics editors

Graphics editors are one type of ‘‘what you see is what you get’’, or WYSIWYG, program. The
picture on the screen directly reflects the picture in the final output, and changes to the picture
take place as soon as they are specified by the user. These editors are easy to use and quite
sufficient for many pictures; however, they have some limitations. Because the editor is con-
strained to show exactly the current picture, structuring information is either invisible to the user
or simply not present at all. Frequently different parts of the picture should bear some spatial
relationship to each other, and unless these relations are explicitly described somewhere they are
likely not to hold as the parts of the picture are moved around. Some pictures require points with
exact or computed values, and these are difficult to create with an editor. Other pictures are most
easily expressed using iteration or recursion, facilities absent in graphics editors.

Figure 1-1 shows some examples of pictures difficult to create with a traditional graphics
editor. The binary tree, Figure 1-1a, contains a great deal of structuring information not evident
in the picture. If one node gets moved, its children should perhaps also move; the lines connect-
ing the nodes should definitely move; and even the points at which the lines connect to the nodes
should change so that the lines continue to be directed to the center of the nodes. Figure 1-1b
shows a bar graph in which the heights of the bars should correspond to some given values. In
most editors the user would be forced to just make a guess at the appropriate heights. The graph
in Figure 1-1c requires iteration and computation; few people would even be tempted to use a
graphics editor for this. Figure 1-1d’s rosette uses computation both to divide the circle into
thirteen equal parts and to determine the appropriate gray scale value for each segment and also
uses iteration to construct and place each segment. The snowflake fractal, Figure 1-1e, is most
easily created using recursion to draw each side.

A different problem arises when dealing with collections of pictures. Books and papers often
contain many illustrations, and the author usually wants them all to have the same style. Some-
times that style will change, requiring, perhaps, bolder lines or a different style of arrows. Using
a graphics editor to change each picture can be very tedious. Many of the shortcomings of
graphics editors are discussed by Jon Bentley in his article ‘‘Little Languages’’ [8].

Graphics languages have none of these difficulties. It is easy to structure a picture, and parts
that depend upon each other can use common variables to gain consistency. Exact and computed
values pose no problems, and iteration and recursion are expressed naturally within a language.

Modifying a collection of pictures is also easy since one can use a standard text editor to effect
the change.
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(a) (b)

(c)

(d) (e
Figure 1-1: Pictures difficult to draw with a graphics editor



Languages are not, however, without their own problems. The overhead involved in writing
even a simple program can be daunting. Interactive behavior must be specifically coded into
each program; without it getting the desired output can be a tedious repetitive cycle of editing,
compiling, running, and looking at the output. The flip side of allowing exact point values is
requiring them, even when the programmer has only a vague idea of what they might be.

These problems most often show up in positioning. It is easy to write a program that draws a
tree, but difficult to place the nodes for a pleasing result without interactive feedback. Drawing a
graph or plot is easy; finding the best place for titles and legends is not. Freehand drawing and
layout require user interaction to prevent total frustration.

Tweedle combines the ease of use of a graphics editor with the completeness and extensibility
of a graphics language; the limitations of graphics editors are overcome by giving the user the
full power of a language for writing extensions, structuring pictures, and specifying exact or
computed values. The editor can manipulate user-defined objects like the five pictures in Figure
1-1 as easily as it can manipulate predefined objects like lines, circles, and rectangles. Both are
represented as procedures that use low-level graphics primitives to do drawing; the only dif-
ference is that the definitions of predefined objects are implicitly included in each drawing.
Users can store their own objects in libraries and thereby make them available to multiple draw-
ings, so it is easy to maintain consistency across drawings.

Of course Tweedle does not require its user to use the language to define new objects; in many
cases the new objects can be created within the editor by combining already existing objects.
Most of the time the user can use the editor without caring that his picture is represented as a
program, but when he encounters the limits of the editor he can edit the program representation
instead. A given picture can combine objects created by the graphics editor and objects created
by the text editor indiscriminately.

1.3. Procedural and nonprocedural representation languages

Computers rarely operate upon real world entities; instead they manipulate representations of
these entities. A representation is a well-defined data structure that maps properties of these real
entities to computer-operable information. A language is a set of rules that defines which data
structures form valid representations. The distinction between languages and representations is
largely artificial, and which term is used frequently depends upon the scale of the problem.
When the rules describing the data structure are simple, as with a binary tree representing a
sorted list, one usually focuses on the data structure itself and calls it a representation. When the
rules are complex, as with a stream of characters representing an algorithm, one focuses on the
rules instead and calls it a language.

In some cases a data structure is complex enough to be called a language, but so clearly
describes a real world object that ‘‘representation’” still seems appropriate. Languages in this
class are often called, logically enough, representation languages; examples include the
knowledge representation languages used in expert systems, document description languages,
and page description languages. These representation languages fall into two classes:
nonprocedural languages, which describe the desired end result but not how to achieve it, and
procedural languages, which describe the end result by describing how to achieve it. Non-
procedural languages are also sometimes called descriptive, declarative, or very high level lan-
guages.



Arguments about whether procedural or nonprocedural languages are most appropriate for a
problem have been going on for quite some time [22]. Nonprocedural languages allow the
program writer to concentrate upon the end result without worrying about implementation
details. This makes them easier to use, especially for nonprogrammers. Conversely, the lan-

guage implementor is free to use whatever means are most appropriate to a particular implemen-
tation to achieve these results.

The most severe limitation of declarative languages is that they do not-extend gracefully. As
long as the user is trying to describe the kinds of things the designer envisioned when he created
the language, there are no problems, but as soon as he tries to do anything else he finds himself
in trouble. If the language cannot describe it, the user cannot write it; this is sometimes called
‘‘running into the edges of the representation.”” Some nonprocedural languages solve this by
allowing extensions to the language, but the language used for the extensions is usually quite
different from the original language.

Procedural languages can solve the extensibility problem by having low level primitives and
control structures for combining them; however, these primitive operations can make it easy for
the user of such a language to become enmeshed in a web of details irrelevant to the problem he
is trying to solve. Most procedural representation languages have facilities for defining macros
or procedures that represent high level constructs; programs that uses these are often indistin-

guishable from descriptive programs. Procedural languages can thus masquerade as declarative
ones, but not vice-versa.

Procedurality, it must be noted, does not automatically guarantee extensibility. Command
stream languages consist of a series of operations and are thus procedural, but they do not have
the ability to compose these operations in an extendible way. Early text formatting programs
provide a good example of this. In order to format an indented quotation, a user would write
something equivalent to

Skip a line

Set left margin to 2 inches

Set right margin to 6.5 inches

Format the text "This is the body of the guotation"
Set left margin to 1 inch

Set right margin to 7.5 inches

Skip a line

(The ‘‘Format the text...”’ command would normally be implicit). Page description languages
can be similar: ‘‘Move to (500,654). Switch to italics. Print an ‘A.’ *’ Extensible procedural
languages contain commands similar to these in order to actually produce results, but they allow
the commands to be grouped into subroutines, used in conditionals and loops, and take cal-
culated values as arguments. [34] I will hereafter use ‘‘procedural’ to refer only to languages
with these properties, and ‘‘command’’ to refer to procedural languages without them.

Of course there is a continuum between purely procedural and purely descriptive languages;
even languages like Pascal or C that initially appear totally procedural contain descriptive ele-
ments in the form of variable declarations. Nonetheless, most languages fall readily into one
class or the other. Concrete comparisons between the two styles are difficult to make since there
are so few applications for which there are both declarative and procedural representations. The
idea of using a procedural representation for something besides a procedure has only recently
started to become popular; the reverse, using a declarative language to represent a procedure, is
even more rare. Document description is one area that has substantial examples on each side.



Scribe [30, 31, 32] is a document description language that is almost entirely declarative. The
bulk of an input file consists of sections of text enclosed in environments that describe the func-
tion or appearance of the text they enclose. Typical functional environments are quotations,
footnotes, subscripts, and enumerated lists; appearance environments can indicate centering,
italics, and so forth. Scribe also contains a few procedural constructs like starting a new page or
setting tab stops. :

TeX [17, 18] and troff [28] are procedural document description languages. They contain
commands to do things like change margins, skip vertical space, and change type faces, and also
contain commands that manipulate esoteric things like registers, parameters, marks, insertions,
diversions, and traps. Neither raw TX nor raw troff is a particularly hospitable environment for
anyone but the most dedicated hacker; fortunately both provide macro facilities that allow the
messy details to be hidden from the casual user.

IATEX [20] is a popular macro package for TgX. A document written using IATEX doesn’t
look much different from one written using Scribe; for example, in I£TgX one writes a quotation
like

\begin{quotation}

This is an uninteresting quote.
\end{quotation}

while in Scribe one writes

@begin (quotation)

And this one isn’t much better.

@Bend (quotation)
The actions taken by the document compiler are, however, very different in each case. In IATeX
the \begin{quotation} and the \end{quotation} get expanded as macros into series
of low-level TEX commands; these commands skip the appropriate space above and below and
change the margins. In Scribe, @begin (quotation) causes a database lookup to find the
attributes of the quotation environment. This lookup tells the compiler that the quotation’s
text should be offset with vertical space above and below and should have narrower margins.
The difference is subtle but important. The definition of a IATEX macro can contain arbitrarily
complicated TgX commands such as conditional expressions, mathematical computations, or
recursive macro calls. The definition of a Scribe environment, on the other hand, gives the set-
tings of predefined text parameters. A TgX user can produce novel layout effects by including
new macro definitions in his input file; in Scribe these could only be produced by modifying the
compiler to add new features.

This distinction is intrinsic to representation languages for any sufficiently complex system.
There will always be things that require computation to represent cleanly, and any language that
includes computation is, by definition, procedural. Any particular feature can be added to a
declarative language by extending the language definition, of course, but before long the lan-
guage starts to lose any coherence it originally had. Descriptive languages excel at well-defined,
closed tasks, while procedural languages are needed when the job is open-ended.

All of which returns us to Tweedle. Tweedle’s representation language, Dum, includes object
definitions that function analogously to macros in TgX. Objects are high level, they can be
manipulated by the editor, and there is a large set of predefined objects. Many pictures will
never need any direct Dum programming. Dum’s low level graphics statements and general
purpose programming constructs are analogous to low-level TgX commands: you can use them
to build up your own objects if you need something unusual.



Figure 1-2 shows some of the flexibility gained by this approach. Each line is an instantiation
of a different object. Each object definition takes two points as arguments; what it does to get
from one point to the other varies from object to object. Computation allows the objects to

slightly modify the circle, square, or dash size in order to assure that the space gets filled with an
integral number of elements.

......................................................................................................................................

Figure 1-2: Sample line styles programmable within Tweedle

1.4. What Tweedle isn’t

Although it resembles one in some superficial ways, Tweedle is not an automatic program-
ming system. The Dee editor generates Dum code in response to user operations, and, in fact,
many Dum programs are completely written by the editor. But there are many programs that the
editor cannot automatically generate and many that it cannot fully understand. Things easy to do
by modifying text but hard to express through a graphics editor interface are done by modifying
the text — that’s why it is there. Conversely, the claims in Section 1.2 about the transparency of
user-written code hold only as long as the program conforms to some minimal structuring con-
ventions. Dee happily accepts non-conforming programs and generates the right picture, but the
user will find that some kinds of editing will not work.



This particular implementation of Tweedle is not a production quality graphics editor; its goal
was to be demonstrative, not comprehensive. Many things have been left out, and many
simplifying assumptions have been made. The implementation is, however, quite usable: except
for occasional screen dumps showing Dee in operation, all the illustrations in this thesis were
drawn with Dee.

1.5. A note on the cast of characters _

Some readers may have difficulty keeping Tweedle, Dee, and Dum distinct. Tweedle is the
general name for the entire system,; it includes both Dee and Dum.  Dee is the graphics editor (it
allows one to design pictures) and Dum is the programming language (it is passive, mute, dumb).



2. Previous Work

2.1. Procedural representations in graphics systems

Procedural graphics representations can be generally divided into two classes: segment-based
representations and display procedure representations. Segment-based representations include
such popular standards as Core and GKS [37, 38]. These representations contain explicit graphi-
cal objects, usually called segments or symbols, that are identified by name and are manipulated
by predefined operations. A program first creates a segment, then adds primitive objects like
lines and curves to it. When the segment is complete, the program closes it and then explicitly
draws the segment on the display. A program may or may not be able to modify an existing
segment once it has been closed. The structure of the program that manipulates the segments is
entirely independent of the structure of the picture; this makes segment-based representations
well-suited for applications that change the picture based on user interaction.

In a display procedure representation, subparts of the picture are represented by procedures
that draw them. The main program consists of a series of procedure calls, and when the program
has finished running, the picture is complete. Procedure-based representations are conceptually
simple but they are poorly suited to many interactive applications since the program must be
changed and reexecuted in order to change the picture. Their big advantage is flexibility: a
segment can be rotated, scaled, or otherwise transformed but otherwise always looks the same,
while a procedure can alter its flow of execution to produce different results depending upon its
input arguments, the current graphics state, or global style parameters [25].

This last feature turns out to be very important for computer flight simulation, which requires
rapid rendering of a constantly changing image. This image will typically contain many small
distant objects and only a few large close ones. The close objects must be rendered in detail to
obtain realism, and the distant objects must be rendered quickly to obtain the needed speed. Dis-
play procedures are ideal for this application since they can readily adapt their output to show a
level of detail appropriate to their size in the image.

In this environment John Gaffney and John Warnock produced the Evans and Sutherland
Design System [14]. This language combined the image model used in other Evans and Suther-
land systems with a simple stack-based semantic model. Although the Design System has never
been described in the literature, it had an enormous impact upon later work. John Warnock
moved to Xerox PARC and together with Martin Newell created an interactive graphics system
called JaM [41]. JaM combined the Design System’s execution model with a slightly different
graphical model.

Several years later, work began at PARC to develop a successor to Xerox’s page description
language, Press [27]. Press was a device-independent representation that had been implemented
on various raster printers and achieved widespread use in the academic community; however, it
had a very limited set of graphical capabilities. JaM became the base for this successor,
Interpress [42]. During this time Chuck Geschke and John Wamock left PARC to form Adobe
Systems and there they designed the PostScript language [1], also based upon JaM.1.

"This history is given in gloriously gory detail by Brian Reid in a famous ARPANET Laser-Lovers message [33]
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These languages are all more similar than they are different. Each is a stack oriented token
based language; a program consists of a series of operands to push upon the execution stack and
operators that act upon them. Certain operators allow the definition of new operators while
others provide graphic operations, arithmetic functions, control structures, and so forth.
Programs in these languages structure their pictures by defining and calling drawing procedures.

Special purpose graphics languages are designed to represent a particular class of drawings.
Most of these are too limited in scope to be interesting, but one, PIC, provides an interesting mix
of descriptive and procedural operations [15, 16]. PIC addresses itself to the boxes-and-arrows
illustrations so common to technical writing. It contains primitive operations like box, circle,

ellipse, and arrow. A typical PIC program consists of a series of invocations of these operators:

ellipse "PIC" "source"
arrow

box "PIC"

aArrow

ellipse "TROFF" "code"

This would produce a picture similar to Figure 2-1. The PIC interpreter takes care of the spacing
between boxes, the positioning of labels, and other similarly menial tasks. Its defaults can be
overridden by supplying extra arguments to the operators, and the interpreter accepts arguments
in a wide variety of syntaxes, for example
arrow right from 1/3 of the way between last box.ne and last box.se

The ‘“.ne’’ and ‘“.se’’ in this example function similarly to control points in Tweedle but are
restricted to a small set of predefined values. In addition to high level operations like ‘‘box’’ and
“‘ellipse,”” PIC supplies a full set of procedural operations like for and if. A user can define
macros, but these are treated quite differently from the built-in operations. PIC is very good at
boxes-and-arrows pictures but can be difficult to use in other situations.

@ PIC TROFF
code

Figure 2-1: PIC sample output

2.2, Graphics editors

I define an editor as a program that allows a person to interactively edit the representation of
some object. A useful distinction can be drawn between internal and external representations:
an internal representation is how the editor stores the object while working on it, and an external
representation is how the editor stores the object between executions. Most editors use external
representations that are just versions of the internal representation capable of being stored on a
file system; unless otherwise mentioned this is true of all editors discussed here.

Particularly interesting are editors that constantly present the user with an image of the current
state of the object being edited; these are called "what you see is what you get", or WYSIWYG
editors.? There are three main classes of WYSIWYG editors, each requiring successively more
abstract representations: text editors, document editors, and graphics editors.

2Some people use a more restrictive definition of WYSIWYG, reserving it for editors that use a pointing device.
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WYSIWYG text editors are sometimes just called screen editors. Typical of these are the

various implementations of Emacs [39, 13]. The representation being manipulated in text editors
is really just the text file itself.

Document editors provide the same type of formatting as the document description languages
discussed in the last chapter. A section of the current document is displayed upon the screen and
the user manipulates it by chosing sections of text and altering such attributes as font, size, mar-
gins, and line spacing. Bravo [21] was one of the earliest examples of a document editor. It was
actually ‘‘what you see is almost what you get’’ since the screen size and available resolution
precluded showing a full page’s width of characters: a document’s line breaks on the screen
occurred at different places from those in the printed output. Document editors are now com-
monplace, a typical example being MacWrite [4]. Their representation for the document is
generally some form of command language with commands to change the text attributes inter-
spersed with the text of the document.

Since it is impossible to store a picture as such in a computer, a graphics editor’s represen-
tation must be more abstract than the others’. Some graphics editors, often called paint
programs, use bitmaps as representations; among these are Markup [26], a pioneering effort, and
MacPaint [3]. Bitmaps have three main disadvantages as representations, size, nonportability,
and lack of structure. A bitmap representation’s size is proportional to the size and not the com-
plexity of the image; this is an advantage only for very small or extremely complicated images.
Bitmap images cannot take advantage of the improved resolution of most printers; lines, curves,
and letters will be printed at the screen resolution rather than the printer resolution. Bitmaps are
also very difficult to scale by other than an integral amount and to rotate by other than multiples
of ninety degrees. The general transformation algorithms are slow and the results are usually
disappointing. Perhaps the most severe limitation is the lack of structure. While paint programs
have commands to add lines, rectangles, or circles to the picture, once these things have been
added they are just bits in the bitmap. It is impossible to later operate upon these objects as
themselves; the user can only manipulate the bits that make up the objects.

Most graphics editors use some sort of static hierarchical data structure to represent the pic-
ture. The image is kept as a list of picture items, each of which is either a primitive item or
another list. One of the first such editors was Draw from Xerox PARC [7]; MacDraw is a
popular current example [5]. These editors frequently feature grids to help users make accurate
drawings; grids force points in the image to coincide with points in a rectangular grid. Grids can
help in many cases, but even such a simple image as an equilateral triangle is beyond their
capabilities.

Some editors gain some additional power by using an external representation that is human
readable. In these systems the user can use a standard text editor to achieve results that would be
impossible or tedious in the graphics editor. Bell Labs’ PED [29] is one such system.

Constraints are an alternate representation that have been used in several interesting editors.
In a these systems the user gains precision in his picture by placing geometric constraints upon
the points used to define it. Typical examples include constraining two points to be coincident,
constraining three points to be collinear, constraining two points to be the same distance apart as
two other points, constraining two points to lie on a line parallel to the line through two other
points, and constraining two points to lie upon the same horizontal or vertical line. To create a
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rectangle the user would first define four points A, B, C, and D in approximately the right posi-
tions, draw the line segments AB, BC, CD, and DA, and then place the following constraints on
the points:

AB is parallel to CD

AB is the same length as CD
AC is the same length as BD

(Other sets of constraints are possible.) The first constraint forces the quadrilateral ABCD to be
a trapezoid, the second forces it to be a parallelogram, and the third forces it to be a rectangle by
making the diagonals equal in length.

Constraints have many attractive features. Standard numerical analysis algorithms can be
used to resolve them. They represent the types of relations common in drawings in a natural,
consistent fashion. Finally the interface to constraint systems is straightforward: the user uses a

pointing device to select points in the picture and chooses a constraint from a menu to apply to
these points.

These advantages are countered by some serious problems. Getting the constraints right for a
picture can be a difficult task roughly equivalent to trying to draw the picture using a compass
and straightedge. The constraint solver satisfies the constraints by moving points in the picture;
care must be taken to assure that it does not move the wrong points. Similarly, a given set of
constraints can have many solutions. In the rectangle example, above, the constraints would be
solved by any rectangle; the editor must provide some way of making sure that the solver
produces the one the user had in mind. A combinatorial explosion occurs as more and more
constraints are added requiring mutual satisfaction, so the user must carefully structure his pic-
ture hierarchically to allow the solver to limit itself to just a few constraints at one time. Unless
the editor allows the user to define his own constraints, some pictures will be tedious or even
impossible to draw. Without user-definable constraints, it is usually impossible to constrain line
segments to have a particular length, angles to have particular values, or distances to have a
calculated relation to each other. This makes pictures like the bar graph and equation plot in
Figure 1-1 intractable. As in other declarative systems, iteration, recursion, and computation are
only awkwardly expressed.

The first constraint system was Ivan Sutherland’s seminal Sketchpad [40]. Sketchpad stored
constraints as functions that return how far their arguments are from satisfying the constraint; the
constraint solver varied the arguments until all the error terms became zero. As an example, the
procedure for a constraint forcing two points to be horizontal might return the absolute value of
the difference of the points’ x coordinates. New constraints types could only be added by
modifying the editor. Although primitive by today’s standards (it had, for example, no curves,
and constraints were selected by flipping switches on the front panel of the computer) Sketchpad
provided nearly all the features found in graphics editors today.

Alan Borning’s Thinglab [10] is actually a general simulation environment using constraints
to describe the things being modeled. A Thinglab constraint is a Smalltalk class with certain
special properties; since Smalltalk is an interactive interpreted language the addition of new con-
straint types is an easy process. Thinglab constraints contain methods that the interpreter can use

to try to satisfy the constraint; for example, the constraint for the midpoint relation might look
like
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midpoint := (pointl + point2) / 2 OR
peint2 := pointl + 2 * (midpeoint - pointl) OR
pointl := point2 + 2 * (midpoint - point2)

Here the interpreter has the choice of three different methods to use for satisfaction. The order-
ing of the methods indicates that the solver should first try to satisfy the constraint by assigning
midpoint; if that fails it should attempt to assign point2, and if that fails it should attempt to
assign pointl.

Although not usually considered a graphics editor, METAFONT [17, 19] by Don Knuth can be
used as such. In a METAFONT session the user explicitly adds, modifies, and deletes constraints

on named points in the picture. METAFONT’s interface is strictly textual, and the user can define
his own constraints.

Juno [24], by Greg Nelson, is perhaps Tweedle’s closest relative. A Juno picture is
represented as a program in the Juno language, and the user can interactively edit either the pic-
ture or the program. Juno differs from Tweedle in that its language is very restrictive. A state-
ment in Juno takes the form of a guarded command:

LET variables | constraints IN commands END

This introduces a set of point variables (all variables in Juno represent points), forces their values
to satisfy the constraints, and uses them in the commands. The commands can contain drawing
commands like £111 and stroke as well as additional guarded commands. The variables in
the outer guarded command are available within the inner, but their values cannot be changed by
the constraint solver. Juno has a very limited set of constraints, and they may not be extended.
It attempts to find the ‘‘right’’ solution to multiply-valued constraints by allowing an initial
guess of the value; the solver starts with this guess as its solution and tries to satisfy the con-
straints by moving the points as little as possible. The guess starts out as the actual position of
an input point, and, after the constraints have been solved, it is replaced by the actual value
found for the point. This allows subsequent solutions to be found very quickly.

Daedalus [6] is a VLSI editor that uses constraints to represent the spatial relationships of the
components. The layout is represented as a LISP program, and the user is able to change either
the picture or the program. Only a small set of predefined constraints are available.

The CMU Tutor system [35, 36] is similar in some ways to Juno and to Tweedle. This is a
programming environment designed to assist people in producing computer assisted instruction
programs. CMU Tutor shows simultaneously the program to produce the current page of the
CAI program and the present state of the current page. A graphics editor for the current page
generates the source code required to produce the desired output; changes to the current page are
incrementally compiled by the system. The level of editing available is quite primitive; the
CMU Tutor editor allows the user to add objects easily, but once they are added they can only be
modified by selecting sections of code and giving new values to the points included therein.

A novel approach to attaining accuracy in drawings occurs in the Gargoyle editor from Xerox
PARC [9]. In many graphics editors, the pointing device is attracted to existing points in the
picture when it moves near them. This is called gravity, and allows the user to more easily
connect up parts of the picture. Gargoyle extends the concept of gravity to non-visible alignment
objects. The user can select parallel lines, circles, or lines with specified angles; these greatly
facilitate the drawing of many pictures. Gravity is also active when the user transforms parts of
the picture, thereby enabling him to gain precise alignment. This form of gravity, called
snap-dragging by its creators, would make a welcome addition to Dee.
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One final editor of interest is the Adobe Illustrator [2]. Illustrator is noteworthy in that it uses
a directly executable PostScript program as its external representation. Details of its internal
representation are unavailable; however, there is nothing to suggest that it is other than a stan-.
dard hierarchical description. A user can edit the resulting PostScript file if he desires, but he
must take care that he does not use any PostScript operators other than those in the limited set
Ilustrator understands.
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3. The Programming Language

In normal use, the Dum programming language appears to play a subordinate role to the Dee
editor. The user is creating a drawing, not writing a program, and so can, for the most part,
ignore the language except in the rare occasions that he needs to edit the text. This view is a
carefully cultivated illusion; the true relationship is just the opposite.

Dee’s internal structure looks more like a programming environment than a graphics editor.
When the user performs some editor operation, the editor alters the program so that it will
produce the required change, then incrementally executes the program to update the picture
(Figure 3-1). It is therefore important to understand the language in order to understand the
editor.

Picture

Updates Commands

Interpreter Editor

Figure 3-1: The flow of information during an editing session

Conversely, the Dum language must be considered in the context of the editor in order to
understand its design. The program text is constantly being changed, both by the editor and by
the user, so the language should be simple to parse and to interpret. Furthermore, the amount of
work done in response to a program change should be proportional to the size of the change, not
to the size of the program. Finally the language must have constructions analogous to the opera-
tions of the graphics editor in order for the variation hierarchy to exist.

3.1. Language design goals

The most basic goal in Dum was to have it be based upon standard imperative programming
language features. Other systems, notably Juno [24] showed that a multiple-view editor is pos-
sible by using an unconventional language; the goal in Tweedle was to make it work using a
conventional one so as to make it as easy to program as possible. Dum should contain variables,
functions, iteration, alternation, and so forth. ’

The syntax of Dum was designed to be very simple. Whenever the user changes the picture
through either the text or the graphics interface, new code must be parsed and executed. The
turn-around time must be short for good interactive response; this precluded the use of a compli-
cated language. Pragmatics further dictated simplicity: Dum remained in a state of flux for
much of the development, and changes to a simple parser are easier to make than those to an

elaborate one. Finally, syntax design is not really germane to the project; it draws attention away
from the deeper issues involved.
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It is generally acceptable for a major change to a picture to require several seconds to take
place, but small, common changes like adding, moving, or deleting objects must take place
quickly. This is achieved in Tweedle through incremental execution, the ability to selectively
execute parts of the program so that the picture appears as it would had the entire program been
reexecuted in response to the change. Doing this efficiently requires avoiding language con-
structs that allow the execution of one part of a program to make state changes that would affect
the results of unrelated parts of a program, so many important features of Dum programs can be
discovered through static semantic analysis of the program text.

The object variation hierarchy allows one object to be defined as a variant of another. This
mechanism is quite general: a variant object can add, delete, move, or change the subparts of the
original object. The variant is described by the list of changes done to the original to make it
into the variant; therefore Dum needs a means to describe all these types of changes.

3.2. Language overview

The syntax of Dum superficially resembles that of LISP:3 a program is a series of lists whose
elements are either atoms or other lists. This syntax is easy to parse, and the resulting parse tree
is very easy to manipulate. Dum is, however, not an applicative language since its lists are
frequently just convenient ways of grouping together similar items and of delimiting statements.

Dum’s types are summarized in table 3-2. Numbers are either integers or floating point and
are converted from one to the other as required. They are also used as boolean values with zero
representing false and any other value representing true. Points are pairs of numbers; they are
just a convenient method of keeping (x,y) pairs together. Strings are immutable but can be of
any length. Arrays are dynamic collections indexed by integers with no restrictions placed upon
the types of the individual elements. A paint describes something that can be used to draw with;
in the current implementation they are restricted to shades of gray but could also represent colors
or fill patterns. Object variables are used to refer to subparts of the picture and will be discussed
fully in section 3.3.

Datatype Sample constants
number 2 3.14 ~4el0
point {0 0] [100 -100] [1 1.5]
string "hello, world" " "nice new rattle"
array none
paint none
object none

Figure 3-2: Basic types in Dum

Expressions are written exactly as in LISP: the operation name is followed by the arguments.
Each argument is evaluated and the operation is called with the resulting values. Point expres-
sions occur so frequently that there is a bit of syntactic sugar to represent them: [x y] is shor-
thand for (makepoint x y). Here are some sample expressions:

3A complete description of Dum syntax can be found in Appendix L
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[(* r (cos theta)) (* r (sin theta))]
(sgqrt (+ (* =z x) (* y v)))

(concat (translate {100 100)) (rotate 45))

Dum contains most of the features found in any ALGOL-like language; it just uses more
parentheses to express them than usual. A program can contain if, for, while, begin, and assign-
ment statements. Variables must be defined before they are used; however, data definition state-
ments can be freely mixed with executable code. Since arrays can contain values of different
types, all type-checking in assignments and routine calls is done at runtime.

There are two types of subroutines in Dum, functions and object definitions. Object defini-
tions can, to a first approximation, be thought of as functions that retum objects. Two features
guarantee that subroutines act as strict mathematical functions: arguments are always passed by
value, and no non-local references are allowed. Since there are no side effects, a change in a
subroutine can only affect those parts of the program that use the subroutine’s value. This
locality allows the incremental execution mechanism to bound the amount of the program that
needs to be reexecuted in response to a change. Furthermore, the behavior of a subroutine is

totally specified by its parameters, so the interpreter can call subroutines without worrying about
the global context.

An example of a function definition may help to make the syntax more concrete. Consider the
following absolute value function:

(function abs
(returns number)
(args (number 1i))

(method
(if (< i 0)
(:= abs (neg i))
(:= abs i)

)
)

This declares a function abs. Abs takes one argument, a number, and returns a number. The
method clause contains the body of the code, which in this case is a single if statement. The first
sublist of the if statement is the condition, the second is the true branch, and the third is the false

branch. In this case the function assigns either -i or i to abs, depending upon whether or not
i is less than zero.

Dum provides a full set of predefined functions for arithmetic, trigonometry, graphical trans-
formations, point manipulation, and assorted other uses; these are described in Appendix II.
Two functions that are worth noting at this point since they will be used frequently in examples
are grayscale, which returns a paint representing a particular shade of gray, and arr, which
returns an array containing its arguments. Programs can also include libraries of functions and
object definitions; these allow sets of programs to create consistent sets of drawings easily.

3.2.1. Graphics operations

Dum’s graphics primitives are based upon the path model used by PostScript [1]. A path is an
abstract construct that represents a geometric shape; it consists of a sequence of line segments,
curves, and arcs. The current path is part of an exccuting program’s state and is modified by
path construction statements like moveto, lineto, curveto, and arc. Unlike PostScript paths,
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which use Bezier cubics, Dum paths use a single point to specify curved segments and rely upon
other points in the path to condition the curve. This was done primarily out of expediency: the
X Window System that was used to implement Dee only supports simple splines [12].

Dum programs produce graphical output by executing drawpath and fillpath statements.
These are compound statements; within them path construction statements define the path to be
drawn or filled. Options such as the line width and the fill paint are specified as part of the
statement. If a path contains another path, the options of the subpath override those of the main
path for the duration of the subpath and the main path’s options are restored when the subpath is
over. Paths can also contain objects, to be discussed fully in the next section.

Graphical transformations are represented as six-element arrays and are provided by various
built-in functions. The available transformations are summarized in Figure 3-3; standard
graphics texts contain a full discussion of transformations and matrices [11, 25]. The current
coordinate system is modified using the with statement, which takes a transformation followed
by statements to execute with that transformation. After the end of the with statement the coor-
dinate system is restored to what it was before.

Dum function Matrix form Array representation
1 0 0 |
(translate [x y]) 0 1 0 [10x01y]
L X y I
T x 0 0 |
(scale [x y]) 0 y 0 x000y 0]
. 0 0 | S
[ cosa -sina 0 |
(rotate a) sina cosa 0 [cosa sina O -sina cos a 0]
. 0 0 1
(concat A BR) B-A

Figure 3-3: Summary of transformations in Dum

When one with statement is nested within another, the inner with is done relative to the outer.
These transformations are performed in the order in which they are encountered, and modify the

global coordinate system. For example, the code fragment

(with (translate [100 100])

(with (rotate 45)
...draw picture...

) )
first translates the origin to (100,100), then rotates the axes by 45°. The order is important; this
is not the same as rotating the axes and then translating the origin. It is sometimes more helpful
to think of what happens to the picture before it gets drawn on the page, and in that case the
transformations are performed from the inside out: here the picture is rotated by 45° and then
translated by (100,100).
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The current transformation, the current path, and the current values of the path options collec-
tively determine the graphic state of an executing program. These can only be changed by the
with, drawpath, and fillpath statements, and all revert to their previous values upon the comple-
tion of the controlling statment. Changes to the graphic state are thus statically limited by
program constructs, so it is possible for the interpreter to save the state at the time of some sub-
routine execution and to restore it should the subroutine need to be reexecuted at a later time.

Unrelated parts of the program cannot affect the state, so the interpreter can know that the saved
state is still correct.

The current graphic state is quite invisible to program execution since there are no functions
that query it. This has both advantages and disadvantages. Operations that query the global state
are really just global variables in disguise; were they included, subroutines would no longer be
mathematical functions. Different invocations with the same arguments might yield different
results. On the other hand, the current system lacks adaptability. One advantage of
procedurality is that objects can modify their appearance based upon their context, showing more
or less detail, for example, depending upon their size. This ability is lost since there is no way
for the object to determine what the current transformation actually is.

3.3. Object semantics

The object is the central mechanism in Dum for structuring pictures and in Dee for controlling
incremental execution. Objects represent distinct manipulable portions of the drawing, and are
thus somewhat similar to segments in Core or GKS [37, 38]. More concretely, an object is a
binding of a path with a transformation to place the path in the picture. If an object represents a
piece of text, a character string and a font replace the path.

It is important to keep distinct several related concepts involving objects. An object definition
is a section of code that defines the appearance and behavior of an object. An object instance,
also called an instantiation or simply an object, is the above mentioned path and transformation
pair. The rype of an object is its definition; two objects are of the same type if they are both
instantiations of the same object definition. An object reference is a pointer to an object, and an
object variable is a variable that holds an object reference. Object references can also be stored
in arrays, so anywhere an object variable is required an array element can also be used.

An object can contain other objects as parts; a component part is called a subobject and the
containing object the parent object.

While segments in Core or GKS and objects in Dum can be manipulated in similar ways, their
definitions are very different. A segment has a name, and a program defines the appearance of a
segment by calling subroutines that add displayable objects to the segment. Code that defines a
particular segment could be scattered throughout the program that uses it. In Dum, an object
definition is just a procedure that draws the object. When an object definition is called, the
interpreter creates a new object with an empty path and a copy of the current transformation.
Draw, drawpath and fillpath statements inside the object do not modify the display but instead
add their paths to the object’s path. The value of a call to an object definition is a reference to

the object that was just created. The object’s path is actually drawn when a reference to it is
used in a draw statement.
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This separation of object creation and object drawing arises because there are times when a
program needs to defer drawing. Filled objects are opaque, and objects drawn later obscure
objects already on the display. Furthermore, certain positioning information about an object is
available to the program whether the object has been drawn or not.

Figure 3-4: A sunburst

The center of a circle is one example of this positioning information, and it was used to create
the sunburst in Figure 3-4. This picture was made by creating an opaque circle but not drawing
it, then using the center of the circle to position the outward radiating lines. The circle was then
drawn, covering the center portions of the lines.

The positioning information takes the form of control points, point values defined within an
object definition but accessible outside. The control points for a rectangle object might be the
four corners, the centers of the sides, and the center of the rectangle. The primary uses for con-
trol points are to specify points that other objects can use for alignment and to specify which
points will be gravity active in the editor. The first use is the most common and allows, for
example, arrows to point to sides of boxes, captions to center themselves, and, in the above sun-
burst example, the radiating lines to use the center of the circle as an endpoint. The effect of
gravity will be described in the chapter on the Dee editor.

Within an object definition a control point acts just like any local point variable. Outside, the
program obtains its value by using the gefpoint operation, (getpoint <object
reference> <control point name>). Getpoint is not a function since its second ar-
gument is not a normal value. The value of a getpoint operation is the value assigned to the
control point within the object definition, transformed by the object’s transformation, and then
inversely transformed by the current transformation. For example, consider the code shown in
Figure 3-5. Here, the object circle has defined the control point center and assigned it the
value [0 0] in its definition. The main program instantiates a circle with a translation of
(100,100) and calls it a_circle. It then changes the coordinate system to a translation of
(250,100) and draws a line from (0,0) to the center of a_circle.4 (0,0) in the new translated
coordinate system becomes (250,100) in device coordinates. The value of the control point must
be the value that, when transformed by the current transformation, will yield the center of the

4The using statement surrounding the lineto statement will be described shortly and can be ignored for now.
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circle; so the value of the control point, (0,0), is transformed by the transformation of the object,

(translate [100 100]), to give the point (100,100) in device coordinates; this value is
then transformed by the inverse of the current transformation to yield the value (-150,0), which is
the value of the control point.

(defineobject circle

(args (number radius)) # one argument, the radius
(control center) # defines the control point
{method
{(:= center [0 0]) # the center is the origin
(drawpath # draw a path that is
#

(arc center radius 0 360) an arc from 0-360 degrees

)
)

(function main
(method

(with (translate [100 100}) # translate to (100,100)
(object a_circle (circle 50)) # create a circle
(draw a_circle) # and draw it
)
(with (translate [250 100]) # translate to (250,100)
(drawpath # and draw a line from
(moveto [0 0]) $# (0,0)
(using a_circle # to a_circle’s center
(lineto (getpoint a_circle center))
)
)
)
)
)
(100,100) (250,100)

Figure 3-5: Sample code illustrating control points

Dum contains five statements that modify already existing objects, delete, raise, lower,
transform and recall. Delete removes a drawn object from the display. Raise and lower change
an object’s stacking order, that is, the way in which it obscures other objects with which it over-
laps. Transform changes the transformation associated with the object, causing it to appear in a

different location. Recall replaces an object with a different object, and will be discussed in
detail later.

These statements at first appear to be superfluous, since the effects of these statements could
be achieved by modifying the original text. Rather than using a delete statement, the object
could never be drawn; rather than using raise and lower the order of the draw statements could
be changed, and rather than using a transform statement the transformation that controls the crea-
tion of the object could be changed. This is frequently the case, but there are times when doing
this would require a fairly deep understanding of the program. Multiple instances of an object
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may be created within a for or while loop, and the appropriate modification in this case is dif-
ficult to discover.> More important, these statements allow the object variation hierarchy to exist.

In the object variation hierarchy, one object is defined to be a variant of another; these objects
are called the variant and the original objects. The definition of a variant object is a list of
operations to perform on the original in order to change it into the variant. These operations can
include adding new subobjects, moving around existing subobjects, or even replacing these sub-
objects with others. When the interpreter is called upon to execute the definition of a variant
object, it first executes the code of the original object and then, using the same values for all
local variables, executes the code of the variant. The variant can thereby use the values of any
variables in the original. A variant takes the same argument list as its original, followed option-
ally by some additional parameters.

This variation mechanism is very powerful, since it allows the variants to follow later changes
made to the original. As long as all the variables that the variant depends upon are defined the
variant will continue to make sense; if they are not, a runtime error occurs. An additional advan-
tage of variants is that they inherit the control points of the original object. A node in a graph
could define itself as a variant circle and thereby inherit whatever control points have already
been defined for circle.

Figures 3-6 and 3-7 show an example of the variation mechanism. The object defined in
Figure 3-6 draws a label centered in an oval; this was used in various figures throughout this
thesis. It consists of two subobjects, a scaled circle to generate the oval and a label.® The variant
object is the same except that it shows two lines of text in the oval. The original line of text is
moved to a new position, and then the new second argument is used to generate the second line
of text. Since the two-line module is a variant object, changes to the original like alterting the
line width or using a different font will automatically apply to the variant.

The transformation of an object is bound when the object is created, not when the object is
drawn. The most important reason for this is to assure that an object’s control points have
values, even though the object itself has not yet been drawn. A second reason is that some
structured types of drawings may want to pass objects to other objects and have them drawn
there. This is best illustrated by an example.

Figure 3-8 show a program to draw a binary tree. The main program creates all the nodes,
placing them as it wishes. The structure of the tree is built by passing to each tree the two trees it
should use as its left and right subtrees. The code that defines the tree creates a node for itself,
draws connecting lines to the subtrees, draws the subtrees,’ and finally draws its own node. The
main program has only to draw the final tree and the entire structure appears. Since the transfor-

mations are bound at creation time, the code for the tree need not worry about positioning the
two subtrees.

5For causes fewer problems since the index variable can be tested; while loops are virtually impossible.
®The exact arguments to the circle object are irrelevant here.

7Once again, ignore the using statement for now.
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(defineocbject module (args (string legend))
(control left right top bottom ne nw se sw center)
(method
(with (scale [1.5 1])
(object oval (circle [1 25] 2))
(draw oval)

)
(number f (getfont "times" 14))
(number w (strwidth legend f))

(with (translate [(* -0.5 w) =5}])
(object the label (text legend f))
(draw the_label)

)

# code omitted that assigns the control points

Figure 3-6: A labelled oval

(defineobject 2 line_module (variant module)
(args (string*lineZ))
(method
(transform the_label (translate [(* -0.5 w) 2]))
(:= w (strwidth line2 £f))
(with (translate [(* -0.5 w) -13])
(object 2nd label (text line2 f))
(draw 2nd_label)
)
)
)

Figure 3-7: A variant with two lines of text

The editor can change an object’s transformation either by changing the transformation in ef-
fect at the object’s creation or by adding a transform statement to the end of the program.
Whichever method is used, the editor then has the job of making sure the picture looks as if the
object had always been in its new location. Simply moving the object is not enough; since the
calculation of a control point’s value includes its object’s transformation, the values of the

object’s control points change. If the picture is to remain consistent, all parts of the program
whose results depend upon the values of these control points must be reexecuted.

In order to do this the interpreter creates for each object a list of code segments whose results
depend upon the object’s control point values. Each of these segments needs to be complete;
that is, any part of the program not in the list of segments must execute in the same way no
matter what the values of the control points may be. In many cases the segments are both ob-
vious and quite self-contained. Most getpoint operations occur in path construction statements
or as arguments to other objects, and in both of these cases the interpreter has no difficulty in
determining how much code needs reexecution: in the first case it is the path construction state-
ment, in the second, the object invocation. Neither reexecution can cause distant sections of
code to become incorrect, although if an object gets reinvoked the values of its control points can
in turn change, causing ripples of reexecution to spread throughout the program. The true dif-
ficulty occurs when the value of a control point affects later execution. A program can test a
control point in an if statement, for example, or assign its value to a point variable and use the
variable later in the program. In these cases a changed control point can cause later execution to
change in arbitrary and unpredictable ways. While these uses of control points are rare, they are
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(defineobject tree
(args (object left right))
(control center)
{method

# the node is a filled circle, centered at the origin,

# through the point {25 0], line width 2, fill paint white
(ocbject node (filled_circle [25 0] 2 (grayscale 1)))

$# left and right subtrees

# my center is the circle’s center
(:= center (getpoint node center))

# if there is a left subtree,
(if (not (null left))
(begin
(using left
(drawpath
(moveto [0 0])
(lineto (getpoint left center))

connect to it and draw it

)
)
(draw left)

)

# ditto for right
(if (not (null right))
(begin
(using right
(drawpath
(moveto [0 01])

(lineto (getpoint right center))
)

)
(draw right)

)

# finally draw myself
(draw node)

)

(function main
(method
# create the nodes
(with (translate [50 25})

(object treel (tree (nullobij) (nullobj))))
(with (translate [150 25})

(object tree2 (tree (nullobj) (nullobj))))
(with (translate [100 125])

(object tree3 (tree treel tree2)))
(with (translate [200 125])

(object tree4 (tree (nullobj) (nullobj))))
(with (translate [150 225])

(cbject tree5 (tree tree3 treed)))

# finally draw the whole tree
(draw treeb)

Figure 3-8: A program to draw a binary tree
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useful; for example, a program might want to test an object’s position, and, depending whether
the object is above or below a particular point, draw an arrow to the bottom or the top of the
object.

Figure 3-9 shows an example of the flexibility gained this way. This code computes the rela-
tive positions of obj1 and obj2 and determines the best way to connect them: the left edge of
objl to the right edge of obj2, the right edge of objl to the left edge of obj2, the bottom
edge of ob3j1 to the top edge of obj2, or the top edge of obj1 to the bottom edge of obj2. It
first calculates the x and y displacements between the centers of the objects, and determines the
best connection by comparing their magnitudes and signs. If the x displacement is larger in
magnitude than the y displacement, ob3j2 is closer to being to the left or right of obj1 than it is
to being above or below it, and either a left-right or right-left connection is appropriate depend-
ing upon the sign of the x displacement. Figure 3-10 shows several connections generated this
way. Whenever either of the objects moves, the entire section of code needs reexecution.

(point cl (getpoint objl center))
(point c2 (getpoint obj2 center))

(number dx (- (px cl) (px <2)))
(number dy (- (py cl) (py <2)}))

(if (> (abs dx) (abs dy))
(Lf (> dx 0)
(with (translate (getpoint objl left))
(draw (arrow (getpoint obj2 right)))

)
(with (translate (getpoint objl right))
(draw (arrow (getpoint obj2 left)))
)
)
(if (> dy 0)
(with (translate (getpoint objl bottom))
(draw (arrow (getpoint obj2 top)))

)

(with (translate (getpoint objl top))
(draw (arrow (getpoint obj2 bottom)))

)

Figure 3-9: Code to determine the best connection strategy

Examples like this can be detected automatically only through dynamic dependency analysis.
In keeping with the goal of using static mechanisms whenever possible, Dum instead contains a
language construct to indicate the relevant portions of the program. All sections of code that
depend upon the location of an object must be enclosed within a using statement, (using
<object reference> <code>). A using statement has no immediate effect on the ex-
ecution of the program; it just informs the interpreter to store the code within it as something that
needs execution if the using’s object is transformed.

The Dee editor automatically includes appropriate usings in code that it produces, and it is not
difficult to see where they belong in user-written code. In the common cases described above,
the path construction statement and the statement with the object invocation need to be wrapped
in a using. If the dependency is more complex, as with the control point being used in an if
statement, the author needs to think about the semantics of the program and encapsulate those
sections that depend upon the control points in using statements.
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Figure 3-10: Several connections using this scheme

When an object gets moved, all the using statements for it get reexecuted. Figures 3-11 and
3-12 show this in action. The picture in Figure 3-11 is composed of two squares with an arrow
connecting the right side if the first square with the left side of the second square. The definition
of arrow, not shown, draws an arrow from (0,0) to the point passed to it as an argument. Here,
the arrow is translated to the right side of the first box and passed the left side of the second box
as an argument. Since the translation involves a control point, the entire with statement must be
wrapped in a using statement for the first box. Inside the with, the invocation of the arrow is
wrapped within another using since it uses another control point. In Figure 3-12 a transform
statement has been added that changes the position of the right square. Since the arrow invoca-
tion is wrapped in a using for that square the invocation is reexecuted, this time with the new
value for the control point, and the arrow continues to be attached correctly. If the left box were
moved instead, the interpreter would reexecuted the entire wirth statement. This example was
fully generated by the Dee editor and illustrates its correct insertion of using statements.

If the object was passed any objects as arguments, all the using statements in it for objects that
were passed as parameters also must be reexecuted. The calculation of a control point’s value
involves both the current transformation and the transformation of the object whose control point
is being used. When an object is transformed, the current transformation changes for all using
statements inside its definition, so these using statements must be reexecuted.

It is important for the interpreter to be alert for potential loops when reexecuting a using state-
ment. These arise when code within a using statement attempts to transform the using’s object,
since this action normally triggers the reexecution of the using statement. The situation can be
even more difficult to detect since the loop could involve two or more objects:
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(with (translate [200 0])
(object sql (square 50)))
(draw sql)

(with (translate [300 0]) '

(object sgq2 (square 50)))
(draw sqg2)

(using sql
(with (translate (getpoint sql right))
(using sq2
(draw (arrow (getpoint sg2 left)))
)
)
)

Figure 3-11: A picture illustrating using

(with (translate [200 0])

(object sql (square 50)))
(draw sql) /
(with (translate [300 0])

(object sq2 (square 50)))
(draw sg2)

(using sql
(with (translate (getpoint sqgl right))
(using sq2
(draw (arrow (getpoint sq2 left)))
)
)
)
(tzansform sq2 (translate [325 25]))

Figure 3-12: The same after translating the right square

(using A

(transform B ...)
)
(using B

(transform A ...)

)

To avoid this problem transform statements are illegal within using statements and any at-
tempt to execute one results in a runtime error. This is more restrictive than it needs to be, since
it disallows many perfectly safe transformations; the interpreter could maintain a list of objects
whose using statements are currently being reexecuted, check any object being transformed
against this list, and only signal an error if a loop should occur.

There is an additional advantage to having the control point dependency be explicitly stated
with using statements rather than having it be implicitly discovered. Enclosing a control point
use with a using tells the interpreter that the control point value should be updated if it ever
changes. In some cases the user might not want the value to change; for example, the user could
want an arrow to point to the place where a corner of a box is currently located but not want the
arrow to change if the box is moved. This is particularly useful when control points are used to
implement grid-like mechanisms: objects use control point values for initial placement but
should not be constrained to always using these values. By leaving out the enclosing using state-

ment, the user tells the interpreter that the control point access should not change value if a
transformation occurs.
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Frequently in editing one subobject in an object gets replaced by a new object which fills the
same role in the picture. Dee allows its user to change the type of a particular instance of an
object into a new type so that the object can be edited separately from other instances or to
change the fill pattern or line width of an instantiation. These changes cannot be reflected in the
program by simply using a delete statement and a new invocation because using statements in
the parent object for the old subobject should now apply to the new subobject. Dum contains the
recall statement to handle these cases. Recall takes an object reference and an object invocation,
(recall <old reference> <object invocation>), and assigns the result of the
invocation to the reference after deleting the reference’s object from the picture. In addition, any
using statements for the original object are reassigned to the new object. Runtime errors can
occur if the new object does not define all the control points of the old object.
(defineobject underlined_label
(args (string s))
(method

(object lab (label 12 "times" s))
(draw lab)

(point u [0 3)]) # underline offset :
(using lab Underlined Label
(drawpath
(moveto (p+ (getpoint lab left) u))
(lineto (p+ (getpoint lab right) u))
)

)
)
)

Figure 3-13: An underlined label

(defineobject larger underlined label .
(variant underlined label) Under]_]_ned Labﬁl
(method
(recall lab (label 18 "times" s))
}
)

Figure 3-14: A variant with larger text

For a practical example of how this is useful, consider Figures 3-13 and 3-14. Figure 3-13
defines an object that draws an underlined label; it first draws the label then draws the line under
it. The variant object in Figure 3-14 has replaced the label with an one in a larger font. In order
for the underline to continue to be correct, the control points used to draw it must apply to the
new label instead of the old one, and this is precisely what recall does.

Pictures frequently contain repetition, and in a Dum program this takes the form of multiple
invocations of an object definition with identical argument lists but different transformations.
Since objects are functional, these calls will all yield the same path, and executing the code more
than once is wasted effort. Dum programs can avoid this work by using the built-in function
new; this function takes an object reference as a parameter and returns a reference to an object
with the same path but a different transformation. These two objects actually share the same
path, so the amount of space and computation needed by a highly repetitive objects is drastically
reduced. In the recursive snowflake picture in Figure 3-15 each distinct path segment is com-
puted and stored only once. The use of new allows this picture to be drawn in a linear amount of



29

time and space as a function of the maximum recursion depth; without new it would require
exponential time and space.

Figure 3-15: A picture with a high degree of repetition

Using new is completely transparent; the new object appears and behaves exactly as it would
have had it resulted from a call to the appropriate object definition. If the arguments to the
object being new’ed contain any object references, the new function actually does call the ap-
propriate definition. This is because the object being called presumably uses some of the control
points of the passed object, and the relation between the called object and the passed object will

be different in the two cases. This is also completely transparent; the program can always call
new with impugnity.

This path sharing among different instances of an object places some restrictions upon the way
transformations are stored in an object. In particular, the transformations of subobjects must be
stored relative to the transformation of their parent object. Using relative transformations has the
additional benefit that when objects are moved, the editor need not update the transformations of
subobjects. When drawing, a transformation stack is maintained so that local coordinates can be
mapped into global coordinates.

One unfortunate side effect of using relative transformations arises when an object is drawn by
an object other than the one that created it; this occurs in the binary tree example on page 24.
This is a manifestation of the classic funarg problem that arises in programming languages when
functions that have been passed to other functions attempt to do non-local references. To resolve

this problem, an object must maintain enough information to enable the drawing routines to find
its creator.
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3.4. Why a new language?

One question not yet addressed is whether or not a new language is actually necessary. Would
another language serve equally well? One likely candidate is PostScript [1], a language, like
Dum, explicitly designed to represent images. PostScript is especially attractive since many
programs produce it as output, and being able to interactively edit these files would be a valuable
tool. Although Dum and PostScript share some parts of their imaging models, there are some
fundamental differences that make PostScript unsuitable as an interactive representation. A
review of Dum’s language design goals will show how Dum satisfies these goals and why other
languages, particularly PostScript, do not.

The first goal is conventionality. Dum contains all the features commonly found in standard
imperative programming languages: variables, arrays, functions, assignments, for and while
loops, and if statements. PostScript also has these features; their syntax and underlying seman-
tics may be unusual but the features themselves are not.

Another goal is simplicity, and both Dum and PostScript succeed here. A Dum program is a
sequence of lists containing other lists and atoms, while a PostScript program is just a sequence
of stack-based operations and their operands. The need for simplicity is the primary thing that
keeps other languages from being appropriate.

The biggest difference between Dum and PostScript is Dum’s use of static structure to
facilitate incremental execution. Many program properties that would require simulated execu-
tion to discover in PostScript can be found in Dum programs through static semantic analysis of
the source text. All changes to the graphics state of a Dum program are statically bounded by
drawpath, fillpath, and with statements, so the interpreter can determine the graphics state at any
point by inspecting the program. If the program is changed to modify the graphics state the
interpreter can tell just what part of the program is affected by the change. This is very different
from the way PostScript handles state changes since PostScript programs change the graphic

state by executing operators that can be anywhere. For example, the PostScript code

i 0 eq % test if 1 = O
{

45 rotate % and rotate axes by 45 degrees
oA

100 100 translate ¥ or translate origin to (100,100)
} ifelse % depending upon the value

% what is the current transformation now?

leaves the current transformation rotated by 45° if the value of i is 0 and translated to (100,100)
if itisn’t. These state changes may even be tucked away inside drawing functions:

/box { % start definition of box
N % do some drawing operations
10 10 translate % translate the origin

} def % and finish the definition

100 100 translate

translate origin to (100,100)
box

draw a box

o o°

% origin is now translated to (110, 110)

Another way Dum uses static structure is to have all subroutines act as mathematical func-
tions. The nesting structure of graphics state changes already guarantees that subroutine calls
cannot change the graphical state, and disallowing non-local references guarantees that they can-
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not change the program state. Since subroutines cannot have side effects, the interpreter can call
them freely without causing incompatible changes to the program state, and since they cannot
use non-local variables, the amount of context associated with a call is limited to the values of
the subroutine’s parameters and local variables.

The final application of static structure is the using statement. Using allows the interpreter to
determine all parts of a program that rely upon the position of an object so that it can reexecute
them if that position changes. As will be seen in the next chapter, using also enables the in-
cremental execution mechanism to find what parts of a program require reexecution if the defini-
tion of an object changes. PostScript has no formal notion of graphical objects, so it has no
construct analogous to using.

The last goal is having an object variation hierarchy. Dum allows an object’s subobjects to be
manipulated with statements like transform, recall, and raise; these permit the program to
change the graphical output of an object interactively. The idea of having subparts of the picture
change after they have been drawn is dramatically different from PostScript’s graphics model.
PostScript uses a simulated paint model for graphics: the picture is created by placing areas of
opaque ink upon the current page, and once the ink is on the page it cannot be erased or moved.
There are no commands in PostScript to manipulate a picture once it has been produced.

Although Dum and PostScript differ greatly semantically, they share many statements and
functions. This enables anyone familiar with PostScript to understand and write Dum code with
few difficulties. Further, many programs that generate PostScript for hard copy could easily be
changed to generate Dum instead and thereby produce pictures that can be edited with Dee.
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4. The Graphics Editor

Figures 4-1 and 4-2 illustrate the basic difference between the structure of conventional
graphics editors and the structure of the Dee editor. The Dum language interpreter forms the
heart of the Dee editor; whenever the user changes the picture the editor generates new code and
passes it to the interpreter for execution. The execution of this code in turn generates changes to
the displayed picture. This chapter will describe the editor, concentrating on how the interpreter
incrementally executes program changes to keep the picture consistent.

Updates l Commands

Figure 4-1: The flow of information in a conventional editor

Upd ates Commands

Interpreter Editor

Figure 4-2: The flow of information in the Dee editor

4.1. Incremental execution

The execution of any program in any language can be thought of on two levels. It is first a
series of transformations upon some set of objects that collectively comprise the internal state of
the system. But it is also a series of side effects like printing values or drawing on a screen, and
it is the production of these side effects that is often the real goal of running the program. The
line between these effects is sometimes a little fuzzy; updating a file can be thought of as chang-
ing the state if the file is considered as part of the state or as a side effect if it is not. In Dum

programs the division is quite clear: a program modifies its variables and it produces a picture as
a side effect.
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When a program changes, it needs to be rerun so that the resulting picture will reflect the
changes to the program. Since every editing operation in Dee corresponds to some change to the
underlying Dum program, these changes occur very frequently and good interactive response
requires that the resulting reexecution be done quickly. Any individual change can have two
kinds of effects: it can change the way the program transforms the internal state, and it can
change the side effects that the program generates. Having the interpreter produce the correct
side effect changes is a fairly straightforward exercise in manipulating data structures; the next

chapter will discuss how it does this. Handling internal state changes is a much more interesting
problem.

state 2’

Figure 4-3: How changing code affects the program state

It is useful at this point to distinguish between two types of program changes: structural
changes and content changes. Structural changes affect the way various program components fit
together. These can include deleting subroutines, changing objects definitions into functions or
vice versa, changing the return types of functions, and changing the number or types of sub-
routine arguments. Content changes, on the other hand, change the internal code of subroutines
or add new subroutines but do not change how the subroutines interconnect. When a structural
change occurs the editor reexecutes the program in its entirety; however, with content changes it
can often get by by executing only a subset of the program. Structural changes are quite rare, so
the extra time needed to respond to them is not a problem.

Figure 4-3 shows how the interpreter can avoid executing the entire program in response to a
content change. Initially the program contains a block of code that transforms state 1 into state
2, and this is followed by some additional code that transforms state 2 into state 3. If the first
block is changed, state 1 gets transformed into a new state, state 2°, which may be different from
the original state 2. After execution of the following code, however, the state may once again be
the same as it was in the original execution. Any side effects produced before the program
entered state 1 will be the same as before because the changed code has not yet been encoun-

tered, and any side effects produced after state 3 will be the same as before because the program
is proceeding from the same state.

The challenge here is identifying the second block of code, that is, to identify how much of the
program after the change needs to execute in order to return the state to what it was in the
original execution. In some cases, no amount of extra code will satisfy the requirement; the state
remains different even after executing the rest of the program. Dum, however, was designed so
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that common editing operations change the state only in carefully controlled ways so the inter-
preter needs to execute very little extra code to restore its state. Frequently state 2’ is the same
as state 2, and in these cases no extra code needs execution.

As discussed in the previous chapter, Dum’s static structure bounds changes to the graphics
state and forces subroutines to have no side effects. The first feature mostly comes into play in
determining the extent of the effects when the user modifies the text of the program. If graphics

state changes were unbounded, the user could change the code segment
(object a_shape (triangle))

into
# this is not legal Dum code

(translate [20 20]) # translate origin by (20,20)
(object a_shape (triangle))

and thereby change the position of not only the object a_shape but also the position of every
object that was created later in the program. The problem here is that the affected part of the
execution is not bound by the change to the text. In Dum, however, the user would change the
code either into
(with (translate [20 20])
(object a_shape (triangle))
)
to translate just the triangle, or into
(with (translate [20 20])
(object a_shape (triangle))

)

to translate the triangle and everything following. In either case, the change embraces all the
code affected by the change; there are no lingering after effects.

This is less important when the editor changes the code since it could limit itself to changes
that have no long term effects. In the above example using nonexistent state changing state-

ments, the editor could change to code into something like
# this is not legal Dum code either

(gsave) # save the graphics state
(translate [20 20]) # translate origin by (20,20)
(object a_shape (triangle))

(grestore) # put it back

The functional nature of object definitions is much more important. Since an object definition
cannot modify nonlocal variables, the editor can insert an object invocation anywhere in the
program without worrying what effects it will have on the code that follows: it will have no
effects whatever. It can also change the code within an object definition as much as it wishes,
knowing that these changes cannot affect anything besides the actual invocations of that defini-
tion. Finally, since the definition cannot look at nonlocal variables or at the graphics state,
clianges to an object definition cannot affect the subobjects as long as their argument lists are
unchanged.

A primary issue in incremental execution is establishing the appropriate granularity. When a
piece of code changes, the interpreter must reestablish the program state somewhere before the
code and execute until it can be sure that the program state is consistent with what it was before.
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The interpreter must therefore save the program state at appropriate intervals during the initial
execution and use these saved states in incremental execution. The question is how frequently
these states should get saved. Saving them too infrequently leads to extra code being executed
both before and after the change; saving them too frequently slows down execution too much
and uses a lot of storage.

The storage problem can be partially alleviated by using data compaction. Each individual
section of code is likely to change only a small part of the state, so the interpreter could save the
entire state in some places and save only the changed parts in between. The problem with this
approach is that reestablishing the state now requires reconstructing it from multiple sources;
doing this is likely to be nearly as slow as executing extra code.

Dee’s solution is to save the state at the beginning and the end of each execution of an object
definition. Saving at the beginning is easy; it only requires saving the values of the arguments.
Saving at the end is done by maintaining the program execution stack as a linked list of stack
frames; when an object invocation exits its stack frame is removed from the stack and saved in
the object. This allows the final variable values to be saved without doing any copying. The
initial saved state allows the interpreter to reexecute each invocation of a changed object in isola-
tion from the rest of the program,; the final state allows it to avoid completely reexecuting the
definition when the only change has been to add code to the end.

As discussed in the previous chapter, there are only a few ways a Dum program can use object
references: it can draw them, delete them, raise them, lower them, transform them, and recall
them. In particular, the only way a program can use their values to affect the flow of further
execution is through their control points; these can be used like any other point value. But the
interpreter knows what parts of the program depend upon the control points; these are just the
parts of the program delimited by using statements for the changed object.

Thus, when an object definition changes, it suffices to reexecute each invocation of the object.
The original values of the control points for each invocation are compared to the new values,
and, if they vary, the using statements associated with these invocations each get reexecuted.8
Since the interpreter also maintains the final state of each invocation to an object, it can extend
the executions of the objects rather than completely reexecuting them when additional code gets
added to the end of a definition. Further, when an object that has variants is changed or ex-
tended, the interpreter must also reexecute invocations of the variant objects.

There are three other kinds of content changes possible to a program: the definitions of func-
tions can change, the main program can be extended, and the main program can change inter-
nally. The second of these cases is easily handled by saving the final state of the main program
and restoring it before executing the added code. The other two situations cause more dif-
ficulties, and, should they occur, the interpreter abandons incremental execution and just
reexecutes the entire program. '

8No comparison is done in the current implementation; it just assumes that the control point values always
change.
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The problem with function definitions is that changing a definition is likely to change its
value, and changing its value can affect the later execution of the program in unpredictable ways.
Since most of the code in Dum programs is dedicated to producing a picture, functions are used
primarily as support operations peripheral to the main thread of execution. This means that, in
practice, function definitions change much less frequently than object definitions, so the extra
overhead incurred when functions change is not a problem. In particular, the editor never
changes functions; the only time they change is when the user changes them explicitly through
the text editor. Call graph analysis could eliminate some of these full executions by reexecuting

only objects that actually use the changed function, but this was not done in the current im-
plementation.

The problem is more severe with the main program since it changes more frequently. Many
full executions could be avoided by saving additional state checkpoints between some of the
statements in the main program, especially towards the end where changes occur most fre-
quently. About half of the main program changes are to the statements just added to the program
by the most recent editor operation, so saving even one checkpoint would eliminate many full
executions. The current implementation, however, does not do this.

4.2. User interface

Figure 4-4 shows a snapshot of the screen as it appears during an editing session with Dee.
On the left is a window containing the text of the current program, and below it are buttons for
commands that operate upon the picture as a whole. On the right is a window with the picture
and buttons for graphics editor operations. At the bottom a dialog window provides an area for
Dee to display messages and for the user to enter responses.

A text editor runs in the left window to allow the user to modify the program text. The current
implementation uses a version of Emacs [13] with some customized functions to streamline edit-
ing, but Dee does not rely upon any particular features of Emacs so other editors would serve
equally well. The buttons below provide the standard editing functions Read, Reread, Save,
Save as, and Quit. There are also several functions unique to Dee: Do Changes, which tells the
interpreter to use incremental execution to execute the changes made manually to the text, and
Recompile, which tells the interpret to fully reexecute the program. Recompile is actually super-
fluous since Do Changes will always discover when full reexecution is necessary; however, it is
sometimes useful for debugging purposes to force reexecution even when no changes have oc-
curred. Other operations are Redraw, to refresh the screen, Generate, to generate a PostScript
file for hard copy, and Abort, to stop the execution of a running Dum program.

The user begins a session by using the Read function to read in some saved Dum program. An
empty drawing can be obtained by reading a nonexisting file; in this case Dee initializes the
drawing with an empty main program. The interpreter executes the program, and the resulting
picture appears in the window on the right. The user is then free to manipulate the picture either
by using the graphics editor or by editing the source.

The graphics editor uses the familiar select-then-operate mechanism: a subset of the objects in
the picture comprise the selection and the various operations act upon all selected objects. The
user modifies the selection by pointing at objects and clicking a mouse button; depending upon
which button is pushed the pointed-to object becomes the selection, is added to the selection, or
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Figure 4-4: A sample editing session

is removed from the selection. By clicking the button more than once without moving the
mouse, the user can select objects that lie behind other objects in the picture. Initially the user
can only select objects defined in the main program; an object’s component subobjects are not
individually selectable. Selected objects are indicated by displaying small blocks around the
bounding boxes of the selections. Figure 4-5 shows the selection boxes for various figures.

Buttons for graphics editing functions are located below the picture. The user can Edit
selected objects, Transform them, Stack them, Copy them, or Delete them. There are also two
functions that act independently of the selection, Transform All and Add. The following
paragraphs will describe how these operations appear to a user; the next section will describe
how they modify the program text.
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Etring i

Figure 4-5: Various selected objects

Ediring requires all objects in the selection be invocations of the same object t}'per’v * bop-up
menu offers three varieties of editing: the object definition can be changed, causing £ =siances
of this object to change; the selected instances can be changed into instances of a ne= wject that
is a variant of the original object; or the selected instances can be changed into =s=czs of a
new object that is initially the same as the original object but is not a variant. The s—== selec-
tion is stacked, and one of the selected objects becomes the prototype for the che:; At this
point only objects that are subobjects of the object being changed can be selected. i ey can
then be operated upon using any of the editing functions. Changes to the object d?’::::on take
place immediately to all instances of the object. During the editing the user can ac_if x% control
points to the object by clicking the Control button; values for the points are spec 2=t ssing the
mouse. When the user has finished editing the object, he clicks the Done button, = Ze selec-
tion that was stacked when the Edir button was chosen is restored.

Transforms come in six varieties and three flavors. The varieties are translate. T, scale,
scale x, scale y, and stretch, or nonuniform scale; the flavors are normal, anchoreZ. irc exact.
In normal transforms the selected objects’ bounding boxes are displayed as flashiz wxes that
the user can drag around with the mouse; to assist in exact placement a small pos-:z *indow
appears that shows the current value of the transformation. Rotations and scalin:-'”‘_‘xi place
around the object’s origin, that is, the position on the screen that corresponds © . in the
object’s coordinate system. Anchored transforms are just like normal ones excep: = Se user
first specifies the center of the transformation with a mouse click; there are & urse no
anchored translations. In exact transforms the user is prompted for the transform’s 1zue in the

9As a simplification, the current implementation only allows a single object to be in the selectiaZ "z :xtension
to multiple objects is straightforward.
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dialog window; the mouse is not used at all. The various types of transforms are selected
through a three layer pop-up menu.

Stack allows the selected objects to be either raised or lowered with respect to objects they
overlap. If more than one object is selected the stacking is done in the order in which the objects
were selected; this is only relevant when the selected objects overlap each other.

Copy duplicates each of the selected objects. As in transforms, the selected objects’ bounding
boxes are dragged with the mouse.

Delete deletes each of the selected objects from the picture.

Transform All transforms every subobject in the object being edited by the same amount, or, if
the main program is being edited, every object in the picture. It is different from the other opera-
tions in two ways: first, it ignores the current selection, and, second, it also operates upon the
paths in the current object. All the varieties and flavors of regular transforms are also available
through Transform All. This function is most useful for transforming the entire picture.

Add presents the user with a multiple level pop-up menu of objects that can be added. One
pane contains all objects defined in the current program as well as the special entry new, and
additional panes contain all items defined in libraries included in the program. Several libraries
are always included by default; these provide rectangles, curves, labels, arrows, and other com-
mon objects. Dee first requests the origin for the object to be added and then requests values for
each of its parameters; a parameter name protocol specifies how Dee obtains these parameter
values. Certain parameters are provided automatically by Dee depending upon the current
values set by the user: these are number parameters named $1inewidth and $fontsize,
paint parameters named $f£illpaint, and string parameters named $font. Point valued
parameters are input with the mouse, and if an array parameter is named $pointarray, Dee
will fill the array with a sequence of such points. Objects parameters are picked as in the selec-
tion mechanism, and string and number parameters are requested in the dialog window.

Any time Dee requests a point, the user can chose either exact positions on the screen or
nearby control points by using different mouse buttons. Control points are thus gravity active;
mechanisms like grid points can be provided by including objects in the picture that produce no
graphical output but define control points for other objects to use.

4.2.1. Bounding boxes

Dee highlights selected objects by putting small squares on the screen at the corners and edges
of their bounding boxes, and gives feedback for interactive transformations by dragging bound-
ing boxes with the mouse. Because of the semantics of objects, these bounding boxes behave in
what may be a somewhat unexpected manner.

The bounding box of an object is defined to be the smallest rectangle containing the object
with sides parallel to the axes of the object’s parent. If the object’s parent has been rotated or
scaled, however, the bounding box on the screen may not have edges parallel to the edges of the
window and may sometimes not even be a rectangle.
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For example, consider Figure 4-6. This shows the picture produced by invoking this object
definition:

(defineobject boxes
(method
(with (translate [50 25])
(object rectl (rectangle [75 30] 2)))
(draw rectl)

(with (concat (translate [175 25]) (rotate 30))
(object rect2 (new rectl)))
(draw rect2)

(with (concat (translate [300 25]) {(scale [1.5 .75]) (rotate 30)})
(cbject rect3 (new rectl)))
(draw rect3)

.
Figure 4-6: Bounding boxes of three objects
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Figure 4-7: The same, in a rotated coordinate system
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Figure 4-8: The same, in a skewed coordinate system

The three rectangles have been invoked with different transformations: the first was just
translated, the second rotated then translated, and the third rotated, scaled, and then translated.
In all three cases Dee correctly calculates the bounding box of the rectangle. If the boxes
object is rotated in the picture, the result is as in Figure 4-7. The bounding boxes are now rotated
so that their edges remain parallel to the axes of the rotated object. Figure 4-8 shows the results
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of a skewed transformation of the boxes object. Here the bounding boxes have become paral-
lelograms.

One result of this is that the bounding box used for dragging in interactive transformations can
change its shape. Figure 4-9 shows six snapshots of a rotating bounding box taken in a rectan-
gular coordinate system; the six rotations shown are 20°, 40°, 60°, 80°, 100°, and 120°. Com-
pare this with Figure 4-10, taken in a skewed coordinate system. Here the shape of the bounding
box is different for each rotation. The same effect occurs in scaling; Figures 4-11 and 4-12 show
scale factors of (0.25,2), (0.5,1.67), (0.75,1.33), (0.75,-1.33), (0.5,-1.67), and (0.25,-2) in snap-
shots taken in a rectangular and in a skewed coordinate system.

Figure 4-9: A bounding box being r;tated
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Figure 4-10: The same, in a skewed coordinate system

4.3. Generating code

When the user performs one of the various graphics editor operations, the editor modifies the
code of the current program and invokes the incremental execution module to do the changes.
This section will discuss the forms that these modifications take.
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Figure 4-11: A bounding box being scaled
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Figure 4-12: The same, in a skewed coordinate system

In many cases it is possible for the editor to modify the code in either of two ways: it could
change the original invocation of an object, or it could add extra statements to the end of the

invoking routine. For example, assume the program originally contained code that generated a
circle with radius 50 translated to (100,100)
(with (translate [100 100])
(object a_circle (circle 50))
)

(draw a_circle)
and, through the editor, the user moved the circle to (200,200). The editor could either change
the original code to

(with (translate [200 200])

(cbject a_circle (circle 50))

1draw a_circle)
or it could append the statement

(transform a_circle (translate [200 200]))
to the end of the current routine. Which should it chose?
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The first has the advantage that it keeps the program much cleaner. Objects are frequently
moved around many times before the picture assumes its final state, so programs would become
littered with dozens of extra statements at the end. These clutter up the program text, obscure the
program flow, and make the program take longer to execute.

Unfortunately, the first solution will not work if the subobject being moved was defined
within a loop or if the object being edited is a variant. In these situations the definition is un-
touchable; the editor must use the second solution. Since it has to do modifications this way
when editing objects that are variants, the editor just does it this way all the time.

Using the second solution has two additional advantages. The actual modification of the
program text is much easier to do this way since appending to the end of a routine takes less text
manipulation than changing the middle of a routine. More important, appending to the end
means that the incremental execution module can extend execution rather than redoing it, so the
results of the change take place more quickly. The only disadvantage is the cluttering up of the
program text; however, this can be solved by manually invoking a source code optimizer upon
the program when it gets too messy. The optimizer replaces trailing transform, raise, lower,
delete, and recall statements by the appropriate changes to the invocations whenever possible.
The following descriptions of the modifications made by various commands only describes the
changes as they actually take place; next chapter contains a section on the optimizer that
describes how it transforms the text to remove the trailing editing statements. In all the examples
it is assumed that there is only one object in the selection and that the variable ob3j contains a

reference to it. If there are multiple objects in the selection the process must be iterated for each
one.

The three types of editing are all treated slightly differently. The simplest change is choosing
to change the definition of an object; this doesn’t actually modify the text, it just changes the
editor’s focus in the program to the particular object definition. If the user chooses to edit the
instances as different objects, the editor prompts the user for the name of the new object and
appends a recall statement

(recall obj (<new name> <parameters to original call>))

at the end of the current routine. Before executing the recall statement, it creates the definition

for the new object. If the selection is being edited as a variant, the definition is

(defineobject <new name> (variant <old name>)
(method
)

)

and if the selection is being edited as an independent object the definition is a copy of the

original definition with the new name. The new definition is parsed, and then the recall state-
ment is executed.

Transforms are done by appending a transform statement to the program:
(transform obj <new transformation>)
This is the same for all flavors of transformation. The value of the transformation for an
anchored transform is just a concatenation of a rotation or scaling with a translation.

When Stack is chosen, the editor appends either a raise or a lower statement for obj to the
program.
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The Copy operation requires the editor to come up with a name for the new object instance.
This new name is then assigned the result of calling new on the original object with the ap-
propriate transformation and the result is drawn:

(with <transformation of new object>
(object <new name> (new obj))
)

(draw <new name>)
Delete just appends a delete statement for ob 3.

Transform All is the one operation that cannot be done by appending statements since it
operates on paths as well as objects. It instead wraps the entire body of the routine in a with
statement

(with <transformation>
<original routine body>

)

and reexecutes the routine. Since this involves modification, not appending, it is impossible to
do a Transform All on an object that is a variant of another object.

Add acts differently depending on whether the object to add already exists or is a totally new
object. If the latter, the editor prompts for the new name and creates a new skeleton definition
for the object:

(defineobject <new name>
(method
)

)

In either case the editor creates a new name for the instance and appends statements to the
program to instantiate and draw the object to be added

(with <transformation of new object>
(object <new name> (<name of object> <parameters>))

)

(draw <new name>)

and executes the statements. If any control points were specified as parameters, the new code is
wrapped with using statements for the objects involved. Finally, if a new type of object is being
added, the editor shifts its focus to the new object so that the user can add subobjects to the
newly defined object.

4.4. An extended example

To make all this more concrete, here is an extended example that uses most of the interesting
features of the Dee editor. Each step shows the changed section of the program as well as the
picture thus far produced. The part of the code added in each step is shown in boldface.

The user starts out with an empty program, shown in Figure 4-13. He then selects Add new
from the menu, specifies that this new object is to be called car, and indicates the point (325,25)
as the origin for the object using the mouse. Dee transforms the program as shown in Figure
4-14. It creates a skeleton definition for the object car and adds an instantiation of car in the
main program called a__car:.10 Since the definition of car is empty, the instantiation does not

0Dee actually creates variables with uninformative names like object17. They have been changed in this
example to add clarity.
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yield any picture yet. The focus of editing shifts to the definition of car so any new objects
added will be added to this definition.

(function main
; {(method
)

Figure 4-13: Example: the initial program

(function main
(method
(with (translate ([325 25})
(object a car (car)))
(draw a_car)

)

! (definecbject car
! {method
)

Figure 4-14: Example: instantiating a car

In a step not shown here, the user specifies the default fill pattem to be 50% gray and the
default line width to be zero. He then uses Add twice to create two instantiations of the library
object filled rectangle. Filled rectangle takes three arguments, a point, a num-
ber named %linewidth, and a paint named $fillpaint, and draws and fills a rectangle
from the point (0,0) to the passed point with a border width of $1inewidth and a fill pattern of
$fillpaint. Because the number and paint parameters are named %linewidth and
%fillpaint, Dee automatically supplies their values. Figure 4-15 shows the result of adding
these two rectangles. For each, Dee requests the value for the origin and then the value for the
point parameter using the mouse. In the first rectangle, body, the origin is at the origin of the
car, so there is need for a with statement to translate it. In the second, top, the origin is at the
point (25,30), so a with statement is required.

(defineobject car
(method
(object body (filled rectangle

[100 30] O (grayscale 0.5)))
(draw body)

(with (translate [25 30])
(object top (filled rectangle

[S0 25] 0 (grayscale 0.5))))
(draw top)

Figure 4-15: Example: adding the car body
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The user then changes the default to a white fill and a border width of one. In Figure 4-16 he
adds another rectangle, winl, using these values.

(definecbject car
(method

(with (translate [31 31})
(object winl (filled rectangle
[17 20] 1 (grayscale 1))))
(draw winl)

Figure 4-16: Example: adding a window

Figure 4-17 shows the result of a new operation, Copy. Here the user copies winl to a new
location; this location is specified by dragging the bounding box of winl to the new position
(52,31). Dee creates the new instance by adding a call to new with winl as the argument and
assigning the result to the variable win2.

(defineobject car
(method
(with (translate [52 31])

(cbject win2 (new winl)))
(draw win2)

Figure 4-17: Example: copying to make another window

In Figure 4-18 a similar process is ‘used to add two circles for the tires. The
filled circle library object draws a circle around its origin though a specified point. After
drawing the wheels, the user clicks the Done button and the editing focus returns to the main
picture.

(defineobject car
(method

(with (translate [20 0])
(object tirel (filled circle
[0 10] 1 (grayscale 0))))
(draw tirel)

(with (translate [80 0])
(cbject tire2 (new tirel)))
(draw tire2)

Figure 4-18: Example: adding wheels
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The user then uses Copy twice to make two copies of the car; this is illustrated in Figure 4-19.
The two copies are named 2nd_car and 3rd_car.

(function main
(method
(with (translate [325 25])
(object a_car (car)))
(draw a_car)

(with (translate [325 100])
(object 2nd_car (new a_car)))
(draw 2nd_car)

(with (translate [325 175})
{(object 3rd_car (new a_car)))
(draw 3rd car)

Figure 4-19: Example: creating two more copies of the car
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Figure 4-20 shows the result of selecting the middle instance, 2nd_car, and then clicking the
Edit as variant button. Dee requests a new name for the variant, and when truck is entered it
creates a definition for truck as a variant car. 2nd_car is then recalled to be a truck.
Since the definition of truck is initially empty, the picture remains unchanged, but the editing
focus is now on truck.

(function main
(method
(with (translate [325 25])

(cbject a_car (car)))
(draw a_car)

(with (translate [325 100])
(object 2nd car (new a_car}))
(draw 2nd_car)

(with (translate [325 175])
(object 3rd_car (new a_car)))

(draw 3rd_car)

(recall 2nd car (truck))

)

(defineobject truck (variant car)
(method

)

Figure 4-20: Example: turning one copy into a truck

In Figure 4-21 the user makes two changes to the truck definition. He first deletes win2 and
then uses a Scale x transformation to change the size of the rectangle top. The original transfor-
mation of top, (translate [25 30]) is replaced by the new transformation (concat

(translate [25 30]) (scale [0.6 1])). After making these changes, the user
again clicks Done and the focus returns to the main picture.

Next the user selects the top instance, 3rd_car, and chooses Edit instance (Figure 4-22).
The user supplies wagon as the new name and Dee creates a definition for wagon which is a
copy of the definition for car and then adds a recall statement for 3rd_car. This is very
different from the change made to 2nd_car: truck’s definition is a variant of car’s while
wagon’s definition is a copy of it. Again the picture remains the same and Dee changes its
focus to the new definition.
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(defineobject truck (variant car)
(method
(delete win2)
(transform top (concat (translate [25 30])
(scale [0.6 1])))

Figure 4-21: Example: editing the car to make it a truck

(function main
(method
(with (translate [325 25})
(object a_car (car)))
(draw a_car)

(with (translate [325 100])
(object 2nd_car (new a_car)))
(draw 2nd_car)

(with (translate [325 175])
(object 3rd_car (new a_car)))
(draw 3rd_car)

(recall 2nd_car (truck))
(recall 3rd car (wagon))

(definecbject wagon
(method

...aopy of code for car

Figure 4-22: Example: turning another copy into a wagon
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In Figure 4-23 the user deletes winl, win2, and top from wagon. If the optimizer were
now invoked, the invocations of these objects would disappear. Again Done returns the focus to
the main picture. '

(defineobject wagon
(method

(delete winl)
(delete win2)
(delete top)

Figure 4-23: Example: editing the car to make it a wagon

The user then selects the original car for editing using Edit definition. This change involves
adding two small white circles centered on the tires. Figure 4-24 shows the result of this; two
things are worth noticing here. The user specifies the center of tirel as the origin of hubil;
this is done by moving the mouse to approximately the right position and clicking the button to
find the nearest control point. Since the transformation for hubl involves a control point, the
entire invocation is wrapped in a using statement for tirel. This structuring ties the invoca-
tions of the hubcaps to the locations of the wheels; if a wheel were moved its hubcap would
move with it. The second thing to notice is that the instantiation of truck, 2nd_car, also
gains hubcaps since truck is a variant of car.

In Figure 4-25 the focus is again returned to the main picture and the user does an Anchored
rotate all, rotating the entire picture around the center of 2nd_car. Dee computes the ap-
propriate transformation and wraps the entire main program in a new with statement. The final
version of the program can be found in Figure 4-26.
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(defineobject car
(method

e

(using tirel
(with (translate (getpoint tirel center))
(cbject hubl (filled_circle
[0 5] 0 (grayscale 1})))
(draw hubl)
)

(using tire2
(with (translate (getpoint tire2 center))
(object hub2 (new hubl)))
(draw hub2)

Figure 4-24: Example: adding hubcaps to the car

(function main
{method
(with (concat (translate [766.46 137.247])
(rotate 165))

(with (translate [325 25})
(object a_car (car}))
(draw a_car)

(with (translate [325 100])
(object 2nd_car (new a_car)))
(draw 2nd_car)

(with (translate ([325 175])
(object 3rd _car (new a_car)))
(draw 3rd_car)

(recall 2nd _car (truck))
(recall 3rd_car (wagon))

Figure 4-25: Example: rotating the entire picture
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(function main
{(method
(with (concat (translate [766.46 137.247]) (rotate 165))
(with (translate [325 25}])
(object a_car (car)))
(draw a_car)

(with (translate [325 100])
(cbject 2nd_car {new a_car)))
(draw 2nd_car)

(with (translate (325 175])
(object 3rd car (new a_car)))
(draw 3xd_car)

(recall 2nd_car (truck))
(recall 3rd_car (wagon))

)

(definecbject car
(method
(object body (filled rectangle [100 30) 0 (grayscale 0.5)))
(draw body)

(with (translate [25 30})

(cbject top (filled rectangle [50 25] 0 (grayscale 0.5))))
(draw top) R

(with (translate [31 31)])
(object winl (filled rectangle [17 20] 1 (grayscale 1))}))
(draw winl)

(with (translate [52 31])
(cbject win2 (new winl)))
(draw win2)

(with (translate [20 0])

(object tirel (filled circle [0 10] 1 (grayscale 0))))
(draw tirel)

(with (translate [80 0])
(object tire2 (new tirel)})
(draw tire2)

(using tirel
(with (translate (getpoint tirel center))
(cbject hubl (filled_circle [0 5] 0 (grayscale 1))))
(draw hubl)
)

(using tire2
(with (translate (getpoint tire2 center))
(object hub2 (new hubl)))
(draw hub2)

Figure 4-26: The final program (continued on next page)
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(defineobject truck (variant car)
(method
(delete win2)
(transform top (concat (translate ([25 30)) (scale [0.6 1])))

)

(defineobject wagon
(method
(object body (filled rectangle [100 30] 0 (grayscale 0.5)))
(draw body)

(with (translate [25 30])
(object top (filled_rectangle [50 25] 0 (grayscale 0.5))))
(draw top)

(with (translate [31 31}1)
(object winl (filled rectangle {17 20} 1 (grayscale 1)))})
(draw winl)

(with (translate [52 31})
(object win2 (new winl)))
(draw win2)

(with (translate [20 0])
(object tirel (filled circle [0 10] 1 (grayscale 0)}))
(draw tirel)

(with (translate [80 0])
(object tire2 (new tirel)))
(draw tire2)

(delete winl)

(delete win2)
(delete top)

Figure 4-26, continued
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5. Implementation

This chapter covers details of Dee’s implementation. Dee consists of about 14,500 lines of C
code, 200 lines of MLisp [13] to streamline the editor interface, 500 lines of Dum code to
provide the default object library, and 600 lines of PostScript [1] for generating hard copy. Dee
uses the X Window System [12] as its graphics support.

Since Dee contains an interpreter, there is potential confusion between the Dum language it
interprets and the C language used to implement it. This is particularly severe when talking
about how data is stored, since some things are stored as Dum types and some are stored as C

types. To avoid confusion, I will use the following conventions when talking about data
representation:

Number always refers to a Dum number.
Integer and float always refer to C types.
Array always refers to a Dum array.

List always refers to a C array.

Linked lists will always be qualified as such.

In addition, all unions mentioned are discriminated.

5.1. Overview

Figure 5-1 shows the basic structure of Dee. The program text is parsed to produce a parse
tree and a symbol table; these in turn are interpreted by the interpreter, creating a history of the
execution called the execution tree, a set of object instances, and a display tree representing the
structure of the picture. The display module combines the display tree with the object instances
to produce a picture upon the display. When the user requests a change to the picture, the

graphics editor uses the display tree and the symbol table to construct the appropriate modifica-
tion to the program.

5.2. Parsing

Dee parses a program using two passes. The input file is first preparsed into a linked list
containing tokens and sublists. There are three kinds of tokens: numbers, strings, and names.
Numbers and strings represent constants of the appropriate type, and names represent variables,
routine names, and keywords. Lists are either normal lists, containing one or more elements, or
point expressions, containing exactly two elements. This pass performs no name lookup; it just
translates the program text into a linked list representation.

A simple recursive descent parser then makes another pass over the resulting parse tree. This
pass replaces names with symbol table pointers and checks the structure of all the language con-
structs. Because Dum’s polymorphic arrays require run-time type checking, the parser does

none other than verifying that expressions are used wherever they are required by the language
syntax.

Dee maintains a hashed global symbol table containing keywords, subroutine names, and con-
trol point names. Since different objects can have control points with the same names, the names
stored in the table have the object name and a ‘‘$’’ concatenated to the name; for example, the
top control point of the box object would be stored as box$top. Each symbol table entry for
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Figure 5-1: The structure of the Dee editor

a subroutine contains a pointer to a routine descriptor that in turn contains a local symbol table
for the routine, stored as a sorted binary tree. The local symbol table contains the type and the
stack offset for each variable; if the current routine is an object that is a variant of another object
the variables all have offsets larger than those in the original object.

Dum’s syntax guarantees that the first element of any list in the program is a keyword or
routine name, so the parser looks for these in the global symbol table. If the lookup fails, the
name is assumed to be an as yet undefined routine. Any other names in the list are local vari-
ables, so the parser looks them up in the local symbol table; if this fails and the current routine is
a variant object the parser looks in the symbol table for the original. The only exception to this
is the control point name argument to the getpoint operator, (getpoint <object>

<pointname>). Since the type of the object is not known at compile time, the control point
name cannot be looked up until runtime.

In addition to the local symbol table, the routine descriptor contains these fields:

The return type of the routine.

The number and types of the arguments.

A list of pointers to the arguments in the local symbol table.

A list of pointers to the control points in the global symbol table.
Parent, child, and next pointers for the object variation hierarchy.
A pointer to the definition of the routine in the parse tree.

A pointer to a list of invocations in the execution tree.
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5.3. Data representation

Dee’s internal representation for values is fairly straightforward. There is one type of vari-
able, a value, not available to programs but used heavily throughout Dee. This is just a union of
each of the other types.

Numbers are stored as a union of an integer and a floating point value. Points are pairs of
these numbers, and a paint is a number representing a gray scale value. Strings contain a pointer
to the text itself and an integer length. The representation for objects will be described in Sec-
tion 5.6.

Arrays can be stored in either of two ways, represented as a union. The first representation,
called a free array, is a linked list of index-data pairs. The index is an integer, and the data is a
value. The second representation arises because arrays are used so frequently to hold transfor-
mations. These arrays, called transform arrays, are stored as six element lists of floating point
values with indices implicitly defined to be zero though five. The interpreter automatically con-
verts between these representations as necessary.

5.4. Basic execution

The execution module traverses the parse tree creating a new data structure, the execution tree.
This tree’s nodes represent statement executions, routine calls, expressions, and iterations. As an
example, Figure 5-2 shows the execution tree produced by the following short and rather useless
program:

(function three (returns number)
(method
(:= three 3)

)
)

(function main
(method
(number i 1)
(while (> (three) i)
(:=1i (+ 1 1))
)

)

The top node represents the execution of the main function. It has two children for its two
statements, a datatype statement and a while statement. The datatype statement has an expres-
sion child for the initial value of the variable i. The while statement has two children for each
iteration, an expression child for the loop condition, and an iteration child for the statements in
the loop. The expression contains a routine call to > that in turn contains an expression for each
argument; since > is a built-in function the call contains no statement children. The first ar-
gument to > is a call to the routine three. Three has no arguments, but contains one state-
ment child, an assignment statement. This assignment statement has an expression child for the
value being assigned. Back in the while loop, each iteration contains an assignment node with an
expression child for its value, and the expression contains a call to the built-in routine +. The
two expression children of + are the two arguments to the function, i and 1.

The whole purpose of this tree is to provide the necessary bookkeeping for other functions in
the editor, done by keeping numerous linked lists of nodes through the tree. For each object
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Figure 5-2: A sample execution tree
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type, Dee maintains a linked list of instantiations, and for each object instance, it maintains a
linked list of all using statements for that object and a linked list of all using statements for
object arguments within the execution of the object. The node for a using statement contains
some extra information: a copy of the current routine’s stack frame, the current graphical trans-
formation, and the state of the current path; these allow the interpreter to restore the program
state before reexecuting the using statement.

5.5. Paths and the display tree

A path is maintained as a recursive data structure, each instance containing whether or not the
path is to be filled, the border width, the fill paint, the path’s bounding box, and a linked list of
path components. Path components can be simple path construction operators like moveto,
lineto, and arc, subpaths, transformation pushes and pops, drawn objects, or start and end marks.

When the interpreter begins execution of the main program, it creates a new empty path. As
the program executes, various path components get linked into the current path. Drawpath and
fillpath statements create subpaths, statements like movero and lineto statements add the cor-
responding path components, and with adds a transformation push and pop. Each invocation of
an object creates a new empty path, and statements within the object definition add components
to this path. Drawing an object links its path into the current path. Start and end marks are
added by the using statement to delineate the section of the path created by code within the
using.

The final top-level path is called the display tree. This is used to draw the picture, both in-
itially and when the window system notifies Dee that it needs to refresh its picture window. This
tree is also used by the graphics editor interface to find objects pointed to by the mouse.

5.6. Objects and inheritance

An object value consists of a pass count, described later, and a pointer to an object descriptor.
This descriptor contains the following information:

The transformation in effect when the object was created.
The pass count when the object was drawn.

The head of the using chain for the object.

The head of the using chain in the object.

The object’s bounding box relative to its parent object.

A pointer to the object creating this object.

A pointer to the arguments in the instantiation call.

A pointer to an object low-level descriptor.

The low-level descriptor in turn contains

The object’s path.

A pointer to the object’s routine descriptor.

A list of values of the object’s control points.
The final values of the object’s local variables.

The reason for this distinction is that the low-level descriptor contains all the information com-
mon to multiple copies of the object, while the object descriptor contains the information that
differs for each copy. When one object is created from another using new, the created object
gets a new object descriptor, but shares the original object’s low-level descriptor.
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This sharing can potentially save an enormous amount of time and storage. Figure 5.6 shows
the familiar recursive snowflake curve, this time only expanded to two levels, and below it the
structure of its display tree. Here the rectangles represent paths, and the ellipses components of
the path. The display is represented as a path with three components, each a side object. Since
the second and third objects were created by calls to new rather than by direct calls to side, the
three objects share the low-level descriptor with the path for the side. This call to side is with the
arguments 0, for the current depth, and 2, for the maximum depth. The definition of side calls
itself recursively with an increased depth parameter, (side 1 2), and calls new with the
result three times to create the four segments of the side. They again share a low-level descrip-
tor, and the process recurs until the depth parameter is equal to the maximum parameter, (side
2 2). In this case side just draws a simple line segment.

Without the path sharing, this structure would be a very bushy tree. Dee can compute and
draw the snowflake expanded to three levels in 2 seconds using 61 kilobytes of data storage. If
the program is rewritten without new, the same picture requires 9 seconds and 1023 kilobytes of
storage. Expanding the snowflake to four levels requires 10 seconds and 151 kilobytes using
new and cannot be drawn without running out of virtual memory without new.

Text objects are created using a built-in function, rexz, that returns an object reference. The
low-level descriptor for a text object contains a string and a font instead of a path.

When an object is linked into a path, a reference to the object descriptor is put in the path
component. This means that object descriptors must stay around, even if no variables in the
program refer to them. Objects may also be multiply referred to if one object variable is as-
signed to another. These facts make it rather difficult to determine exactly when object descrip-
tors should be deallocated. To simplify things, all object descriptors and low-level descriptors
are kept in linked lists and deallocated only before a program is fully executed.

Whenever the interpreter executes an object definition it creates a stack frame to hold the
definition’s variables. The frame is a list of values (recall that a value is the union of all other
types); having each entry be the same size simplifies addressing. If the object being executed is
a variant of another object, the frame is large enough to hold the variables of both the original
and the variant objects. Before executing the variant definition the interpreter executes the
definition of the original using the variant’s stack frame. Since, as described above, the variables
in the variant all have offsets different from those in the original, the variant can use both its own
variables and the variables of the original.

5.7. Display and funargs

The display module generates the picture through a simple traversal of the display tree. When
it encounters an object, it must convert the object’s relative position to an absolute position. To
do this it maintains a stack of transformations; each stack entry contains both the new transfor-
mation and the cumulative product of all transformations thus far.

As mentioned in Chapter 3, funarg problems arise with transformations whenever an object
gets drawn by an object other than the one that created it. Since objects can only be passed down
as parameters, not up as return values, the creator’s transformation must be on the transform
stack somewhere. The display module needs to find this transformation and make a branch in
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(side 0 2)

(side 12)

(side 22)

Figure 5-3: A small snowflake and its path structure

the stack for this object and any of its subobjects. Finding the creating object is made difficult
because of the new function. Consider first a case where there is no funarg problem, that of an
object A with one subobject B. A may be duplicated several times, so there can be multiple
instances of A, but because these instances will all share the same path there is only one instance
of B. The display module will encounter B once for each copy of A, and in each case it will
calculate a different absolute transformation for B. This precludes avoiding the funarg problem
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completely by using stored absolute transformations. This also precludes the use of any funarg
solution that involves maintaining and following a parent pointer to the creating object, since an
object’s parent is not unique.

What Dee does is maintain a pass count for each object. This count tells how many levels
separate the current location of the object from its creator’s frame. When an object is passed as a
parameter, the count is incremented, and when the routine to which it was passed returns the
count is decremented. The pass count is copied into the object descriptor when the object is
drawn. This saved count tells the display module how many transformation stack entries it must
skip before it finds the entry for the creating object.

The pass count is also used by the interpreter to calculate the value of control points. Recall
that the value of a control point is the value assigned within the object definition, transformed by
object’s transformation, and then inversely transformed by the current transformation. The dif-
ficulty occurs when an object has been passed; in this case the calculation must invert the current
transformation relative to the object that created the control point’s object. An example may
make this clearer. Consider the following objects:

(defineobject a
(control p)
(method

(:= p [0 0])
)
)

(defineobject b (args (object o))
(method
(with (translate [5 5])
(print (getpoint o p)))

)

(defineobject ¢
(method
(with (translate [10 10])
(object A (a)))
(with (translate [100 100])
(cbject B (b A))
)
)
)
Here object a defines one control point, p, and gives it the value [0 0]. Object b takes an
object o as an argument, and prints the value of its control point p under a translation of [5 5].
Object c instantiates an a translated by [10 10], and then passes the result to b with a trans-
lation of [100 100]. The value of the control point p relative to ¢ (c itself could be instan-
tiated with any transformation) is [10 10], so the value of the control point when it is printed
is [-95 -95]. In order to calculate this the interpreter must take into account not only the
current transformation in b, (translate [5 5]), but also the transformation of b in c,
(translate [100 100]). It does this by keeping the same sort of transformation stack as
the display module and using the pass count to determine how many transformations must be
considered to find the current transformation.
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5.8. The using statement

When an object is transformed, the interpreter must reexecute all using statements that depend
upon the object’s location. These consist of all using statements for the object being moved, as
well as all using statements in the object for objects that were passed to it as parameters. These
usings are found by following the two using chains stored in the object descriptor. There are
several steps involved for each using statement; this section will call the object that is the subject
of the using statement the used object, and the object whose definition contains the using state-
ment the containing object.

The interpreter first frees the part of the execution tree below the using statement’s node. This
may delete other using statements; the interpreter must take care to remove these from their
using chains. When the using was first executed it placed a szart mark in the display tree before
executing any subordinate statements and placed an end mark afterwards. By consulting
pointers to these marks within the using node, the interpreter deletes any portion of the display
tree created by statements within the using.

At this point all results of the original execution have been deleted. The interpreter now
recreates the environment that was in effect when the using was first executed. The using node
contains a copy of the current stack frame when the using was first executed, a pointer to the
current path, and the current transformation. These all temporarily replace the values of the
corresponding variables in the interpreter state. If the used object was passed to the containing
object, the interpreter has to do some extra work. Any calculations of control point values re-
quire taking into consideration the transformations of ancestors of the containing object, so these
transformations must be put onto the stack before the stored current transformation. In order to
find these transformations the interpreter follows the parent pointer in the containing object’s
descriptor and uses the stored transformations in the descriptors found along the way; the pass
count tells how far the parent chain must be followed. This parent pointer is not usually ac-
curate, as described in the previous section, since calling new for an object creates multiple
parents for all of the object’s subobjects, but recall that new actually does a call when copying an
object that was passed any objects as arguments. The parent pointer is correct in this one in-
stance, and this is precisely when it is needed for using.

Once the environment has been reestablished, the interpreter reexecutes the code in the using
statement. This reexecution may include new using statements; the interpreter makes sure these

get put into the using chains ahead of the using currently being reexecuted to avoid needless
reexecution.

3.9. Incremental parsing

When the user makes changes to the textual representation of the picture Dee must determine
just what has been changed and alter the parse tree appropriately. Some window systems [23]
provide the tools needed to do this easily; unfortunately X [12] does not. Building the proper

tools would have been a time-consuming process clearly irrelevant to the research issues in
Tweedle.

Dee runs a subprocess of Emacs [13] and communicates to it using Unix’s interprocess com-
munication mechanisms. When the user asks Dee to do the changes to the text, Dee has Emacs
copy the program into a temporary file. Dee then parses this changed file and compares the new
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and the old parse trees to determine where the changes occur. This technique, clumsy as it is,
works acceptably well in practice and has the advantage of basing the results upon changes to the
parse tree rather than changes to the text of the program. The user can add or change comments
or indentation, or can change a variable’s name, and when the changes get executed the com-
parison module will report that no changes were made, causing no reexecution to take place.

5.10. Incremental execution

As discussed in Section 4.1, there are four different possibilities in incremental execution.
Some objects may need reexecution, some objects may need extension, the main program may
need extension, and the main program may need full reexecution. The final possibility is easy,
the other three are more complicated.

If an object needs reexecution, the interpreter redoes each execution in the invocation chain.
For each one, the statements in the execution and the components in the object’s path are freed.
The argument values stored in the object descriptor initialize the parameters, and the body of the

object is executed. After this, the interpreter reexecutes all using statements for the object as
described in the previous section.

When objects are extended, the stored final values of the stack frame are used to reestablish
the state at the end of the object’s execution, then the newly added code is executed. As in the

previous case the interpreter reexecutes the appropriate using statements, and the new final
values replace the previous ones.

Extending the main program is quite simple; the interpreter just maintains the main program’s
final stack frame between executions.

When an object with variants is changed the interpreter must also reexecute any invocations to
the variant objects. A possible problem occurs if the changed original object definition has new
variables added, since the original’s variables’ offsets now conflict with the offsets of the
variant’s variables. The most common case for this to occur is when the original object gets
extended, and the problem solves itself then. The interpreter assigns offsets in the order that the
variables occur in the program text, so the only conflicts that occur are between the new vari-
ables and the variables in the variant. If the variant definition is unchanged, it cannot refer to
these new variables, and the original’s variables and the variant’s variables peacefully coexist in
the stack frame since all stack frame entries are the same size. If the variant definition uses these

variables, it must have changed too, so it will have been reparsed with new, nonconflicting of-
fsets for its variables.

In the other case, the new variables were added internally to the original definition. This will
cause some of the old variables to have larger offsets, and some of these will conflict with those
in the variant. Moreover, the variant can use these variables, so it would have two variables
available to it with the same offset. When this occurs, the interpreter forces all the variants to be
reparsed and thereby gain new variable offsets.



5.11. Display and graphics editor

The display module calculates bounding boxes for objects as it traverses the tree. These
bounding boxes are used by the editor to determine which object the user is pointing to when he
attempts to a selection. The editor maintains a current path pointer into the display tree, and
when the user makes a selection it looks through the components of the current path to find the
appropriate object. If the user clicks the mouse multiple times without moving the mouse, the
components are searched starting with the last object found, and if another object is found
beneath the cursor it replaces the last object in the selection. This allows the selection of objects
that are obscured by other objects in the display. If the user edits the selected objects, the
editor’s current path pointer is moved to the object’s path.

Every element in the picture is not necessarily selectable; in particular output generated
through the direct use of paths cannot be selected. There must also be some variable in the
current routine that refers to the object at the end of the routine. This restriction is not normally
a problem since the editor creates new object variables for each object it creates. The only
problems can occur in user-written code; for example, object creations passed directly to draw
statements, as in

(draw (rectangle))

cannot be selected. The interpreter will find object references even if they are stored in arrays,
so programs can create editable objects in loops by storing their references in an array.

A more severe restriction is that the user cannot select objects that were created within using
statements. The problem with these objects is that they are defined within the program to have a
particular relationship with other objects; if, for example, an arrow is drawn connecting two
boxes the semantics of getpoint and using guarantee that the arrow is guaranteed to connect the
correct points, no matter how the boxes move or change. If the user moves the arrow and then
moves one of the boxes, the reexecution of the using statement would cause the change to the
arrow to be undone. Just what the appropriate behavior here should be is rather unclear; this
solution has the advantage of being at least consistent. In practice this requires the user to divide
the elements of picture into two classes, editable objects and subordinate objects that connect
them. For most pictures this division causes no problems, but for others it is rather contrived.

The editor generates new code in response to user input in the form of a text string, which is
inserted into the program text at the correct place. The editor calls the preparser to translate the
string into a linked list and then passes this list on to the parser. The parser inserts the new code
into the parse tree at the appropriate place and then parses it, and finally editor invokes the in-
cremental execution module on the changed routine definitions.

5.12, Display optimization

Whenever the display tree for a program changes, the editor must update the window contain-
ing the current picture. The current implementation always fully redraws the picture in response
to these changes, but there are several possible optimizations not implemented because of time
pressure. These are display coordinate caching, incremental bounding box calculations, and in-
cremental redisplay.
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5.12.1. Display coordinate caching

The editor display module always has to draw changed portions of a picture, but is sometimes
must also redraw unchanged portions. This occurs very frequently in the current full redisplay
scheme, but will also occur in optimized schemes when the window containing the picture is
uncovered by the window system or when the display module has to patch up newly exposed
parts of the drawing in response to a user change. Each redisplay transforms the relative coor-
dinates stored in the display tree into the absolute display coordinates required by the window
system. Caching these absolute coordinates can make this redisplay more efficient.

Any caching scheme is complicated by the fact that the display tree is not really a tree but
rather a directed acyclic graph. If an object is copied with new its path appears only once in the
tree even though it appears multiple times in the drawing. The following caching method only
saves the display coordinates for one instance of the shared part of the tree; it could easily be
extended to save any fixed number of instances by sacrificing storage in the non-shared case.

The tree traversal can tell which parts of the tree it has encountered before by tagging each
tree entry as it encounters it. This tagging must uniquely identify each traversal; a simple two-
state tag will not suffice since each traversal will not necessarily visit each node in the tree.
Further, altering the display will cause some nodes to be marked as changed, and the cached

information in these nodes will be out of date. There are thus four possible cases to consider for
each node:

1. Marked as changed, tag not equal to current tag: The cached information is
obsolete, and this is the first time the traversal has encountered this node. Recal-
culate the display coordinates, cache them, and tag this node with the current tag.

2. Marked as changed, tag is equal to current tag: This node has been encoun-
tered before, so its cached values do not apply to this visit. Calculate the display
coordinates and use them.

3. Not marked as changed, tag not equal to current tag: The cached information
is still valid and applies to this visit. Use the cached coordinates and tag this node
with the current tag.

4. Not marked as changed, tag is equal to current tag: This node has been en-
countered before, so its cached values do not apply to this visit. Calculate the dis-
play coordinates and use them.

This caching will save some execution time, but it-may not make the picture display more
quickly. A moderately complicated picture like Figure 5-2 takes about 2 seconds of real time
and 1 second of execution time to display. Profiling reveals that between 5 and 10 percent of the
execution time is spent performing matrix multiplications and coordinate transformations, so the
benefits of caching would be slight. Nonetheless, it requires very little extra storage and the
software overhead for maintaining a cache is very small, so it would be a worthwhile addition.

5.12.2. Incremental bounding box calculations

Bounding boxes are used by the editor to resolve mouse hits and by the incremental redisplay
algorithm described in the next section to determine what parts of the picture need to be
redisplayed. Changing the picture will cause some of the bounding boxes to change.
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An objects’ bounding box is the smallest rectangle containing the bounding boxes of its sub-
objects and paths. When an object is moved, added, or deleted the bounding boxes of all its
ancestor objects may change. These changes can be carried out by a two pass algorithm: first
information about what boxes need recalculation propagates up the display tree, then a second
pass downward performs all these calculations.

Because of path sharing with new and object connection with control points, a single editing
operation can affect many different objects throughout the display tree. Were this not the case, a
single pass up the tree would suffice, but when multiple changes occur this approach can result
in calculating bounding boxes for some objects multiple times. By doing two passes this extra
work is avoided. Here is the bounding box algorithm: '

1. For each changed object, mark it and its ancestors as needing recalculation all the
way up the tree to the root. If a node that is already marked is encountered, stop;
all its ancestors will already be marked.

2. Traverse the tree. At each node, recompute the bounding boxes of all marked
children by recursively applying this procedure; then set the current bounding box
to include the boxes of all children,

During this bounding box calculation, the cached display coordinates can be used and updated.

5.12.3. Incremental redisplay

The biggest potential perfomance gain comes from incremental redisplay, since only the parts
of the picture that need redrawing are sent to the window system. This algorithm requires
bounding regions for both the old and the new locations of an object; if an object is added to the
picture its old bounding region is null and if it is deleted from the picture the new bounding
region is null.

The bounding regions used by this algorithm could be either simple bounding boxes or shapes
that fit the object more closely. Closer approximations to the true shape of an object will require
less patching up of the picture, but the union and intersection calculations on regions will be-
come more complex. The optimum balance to achieve fastest redisplay will depend upon the
relative speeds of calculation and drawing in a particular system.

This algorithm relies on the ordered organization of the display tree, with the leftmost children
of a node being drawn first and being overlapped by the children to the right of it.

1. Set up two clipping regions on the picture window, OLD and OLD+NEW. OLD is the
union of the previous bounding regions of all changed objects, and OLD+NEW is the
union of the previous bounding regions and the new bounding regions.

2. Fill the OLD region with the background pattern. This erases the previous objects.

3. Construct a line of nodes through the tree through the leftmost chain of nodes from

- a changed object to the root. Continue this line to a leaf node, always following
the leftmost child. This line divides the tree in two parts, those nodes lower in the
stacking hierarchy than any changed objects and those nodes at least as high in this
hierarchy as the lowest changed object.
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4. Do a preorder traversal of the tree:

e If a node is to the left of the dividing line, check if its bounding region inter-
sects the OLD region.
* If the node is a leaf and intersects OLD, draw it using OLD as a clipping

region. If it is a leaf and does not intersect OLD, ignore it; it does not
need drawing.

* If the node is not a leaf and does not intersect OLD, ignore the node’s
children; they do not need drawing. If it does, apply the same criteria
to each of the node’s children.

o If a node is on the dividing line or to the right of it, do the same except use
OLD+NEW as the testing and clipping region. Any recursive applications
should be tested against the appropriate region depending upon whether the
child is to the left or the right of the dividing line.

Figure 5-4 shows this at work. Figure 5-4a shows the display tree for Figure 5-4b just before
the central box is moved to the position shown by the hollow square. Each of the five children in
the tree is shaded the same as the corresponding box in the picture. The OLD region is the
medium shaded area, and the OLD+NEW region is that plus the area in the hollow box. Figure
5-4c shows the display after OLD is filled with the background pattern. The dividing line is
constructed next, going from the center child node up through the root node.

The display tree now gets traversed. The root node is on the dividing line, so all of its children
are examined. The leftmost child is to the left of the dividing line and intersects OLD, so the part
of it in OLD is redrawn, yielding Figure 5-4d. The next node is also to the left of the line but it
doesn’t intersect OLD, so nothing happens. The third node is the moved object. It is on the line
and intersects OLD+NEW, so it is redrawn in OLD+NEW giving Figure 5-4e. The last two nodes

are each compared to OLD+NEW, each intersects it, and so they are redrawn clipped to OLD+NEW,
Figures 5-4f and 5-4g.

The effect of this algorithm is to compare all objects in the tree against the OLD region; any
intersecting it need redisplay because filling the background pattern will have erased them. Any
objects in the tree to the right of the dividing line should overlap the redrawn object, so they are
also compared to the NEW region by comparing them with OLD+NEW.

5.13. Relative transformations :
When the user moves an object in the editor, the result is a transformation relative to the
object’s current location. The transform statement requires an absolute transformation; how

should the relative transformation be converted to an absolute one? Four solutions come to
mind.

The original transformation of the object is stored in the object descriptor; use
(concat <object’s transform> <new transform>)
as the transformation in the transform statement. Unfortunately the object’s transformation is
just stored as an array; inserting this into the program text is unenlightening.
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Figure 5-4: The stages of incremental redisplay
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Another solution is to add a built-in function to the language that takes an object and returns
its current transformation. The editor would use
(concat (currtrans <object>) <new transform>)
in the transform statement. This has the problem that it makes an object’s transformation an
accessible part of the program state. All the benefits obtained by making this state invisible are
lost.

The best solution would be to keep a symbolic representation of the current transformation,
and use that as the old transformation in the transform statement. This solution works well but is
quite a bit of bookkeeping.

The solution actually used in Dee solves the problem by avoiding it: a new statement
rtransform, or relative transform, was added to Dum. Rrransform is defined so that the two
statements

(rtransform <object> <new transform>)
(transform <object> (concat <object’s transform> <new transform>))

have the same results. This solution, while not quite as elegant as the previous solution, was
considerably easier to implement. The editor actually produces rrransform statements rather
than transform statements in response to the user moving objects.

The same problem arises when the user copies an object: Dee must translate the displacement
for the new object into an absolute position. This is solved in the same way, by adding an rnew
function that creates a new copy of an object relative to where the old one is.

Something subtly unusual goes on with transformations when transforming things in a
graphics editor. This is best explained by first giving an example: Assume the user has created a

square at the point (50,50). The correct code to do this is
(with (translate [50 50])
(object a_square (square))
)
If the user then rotates the square by 10°, the resulting code should have the same effect as
(with (translate [50 50])
(with (rotate 10)
(object a_square (square))
) )
In other words, the rotation should be performed upon the square before the translation (Recall
that transformations are successively applied to the coordinate system from the outside in or
successively applied to the object from the inside out. Either view yields the same results). It
appears that subsequent transformations should be nested inside the extant ones. If, however, the
rotation is then followed by a translation of (20,0) the user expects the rotated square to move
twenty units to the right; that is, the result should have the effect of

(with (translate {70 50])
(with (rotate 10)
(object a_square (square))
)
)

and not of
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(with (translate [50 50])
(with (rotate 10)
(with (translate [20 0])
(object a_square (square))
)
)
)

In the second code example the innermost translation would be along a line rotated 10° from the
horizontal, not the same thing at all.

More generally, the object’s current transformation C can be decomposed into a linear com-
ponent C; and a translation component Cp; C is the product C7C;. A new transformation, N,
can similarly be decomposed into NN, . If N is applied to the object after C the result should be,

not NC as might be expected, but rather NyCN;C;. The graphics editor must be careful to put
the transformations together in the right order.

5.14. Source-code optimization

After being edited for a while with Dee, Dum programs tend to become littered with lots of
rtransform, raise, lower, delete and recall statements, obscuring program flow and increasing
execution time. A source code optimizer can improve the program considerably.1!

This version of the optimization algorithm removes rtransform, delete, and recall statements
but leaves raise and lower statements in the program. Removing these statements is slightly
more complex since it involves reordering the statements in the program but would proceed
along the same general scheme.

This is the optimization algorithm:

1. Traverse the execution tree of the program. For every object that is created, keep
the following information:

¢ A pointer into the parse tree to the invocation.

e Whether or not the invocation is in a loop. If so, the invocation cannot be
modified or deleted since doing so might change or delete the invocations of
other objects.

e Whether or not the invocation contains any calls to user-defined functions.
If it does, it cannot be deleted since user-defined functions can have side
effects in the picture.

e Pointers to each object used in the invocation. As long as the current object
exists, these objects cannot be removed.

¢ A pointer into the parse tree to the draw statement that drew the object, if
any.

e Whether or not the draw statement is in a loop and also uses a subscript cal-

culation to find the object. If so, it cannot be removed since doing so might
delete the other objects from the picture

Due to time pressure, Dee’s source code optimizer was never completely implemented.
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e A list of actions for the object: recall, delete, and rtransform statements,
uses of the object or its control points in other object invocations, and uses of
the object or its control points in other places. Each of these contains a
pointer into the parse tree where the action occurs; the recall, delete, and
rtransform statements also indicate whether or not the statement is safe to
optimize away. A statement is unsafe if it uses user-defined functions, if it
occurs in a loop and uses a subscript calculation to find the object, or if it
occurs in a variant of the object originally defining the current object.

Put all records containing this information into a list of unoptimized objects.

2. Repeat until the list of unoptimized objects is empty:
a. Pick an unoptimized object.

b. Move it to a list of optimized objects.

¢. Go down the list of activities and, depending upon the type, do different
things:

e Recall: If the recall statement is unsafe to remove or the invocation
is unsafe to modify, skip this activity. Otherwise, change the invoca-
tion into the result of the recall statement and remove the recall state-
ment from the parse tree.

e Delete: If either the delete statement or the object’s draw statement
is unsafe to remove, skip this activity. Otherwise, remove the delete
statement and the draw statement from the parse tree. Be sure to fix
the pointer to the draw statement in the optimization record.

e Rtransform: If the rrransform statement is unsafe to remove, skip
this activity. If not, there are two possibilities. If the invocation is
safe to modify, remove the rtransform statement and add a new with
statement around the invocation. Otherwise, if there is a previous
rtransform statement that is safe to modify, remove the current
rtransform and concatenate its transformation into that of the pre-
vious rtransform. This can only be done if the current reransform is
not contained in a variant of the object containing the previous
rtransform.

e Object and control point uses: skip these activities.

d. After going through the activities, see if the invocation can be removed.
This is possible if the activity list is now empty, the optimization record
indicates there is no draw statement, and the invocation is safe to modify.
If these all hold, remove the invocation of this object and go through the list
of objects used in the invocation and, for each one, delete the activity
record referring to the use. Move the object from the optimized list back to
the unoptimized list if it has already been optimized, thereby allowing ob-
jects used only in other invocations to be removed if the other invocations
all go away.

3. Now go through the parse tree and collapse any nested with statements into a single
one. If consecutive transformations are of the same type, for example two trans-
lations, they can be combined into a single transformation; if not, they can be com-
bined with the concat function. Also in this pass remove any statements that have
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no subordinate statements; the previous steps will tend to create empty with and
using statements in particular.

4. Regenerate the program text from the parse tree.

5.15. Libraries

The major goal of the implementation of libraries is to avoid recompiling them at each com-
pilation while still allowing the program to use only the libraries it actually includes. This is
done by keeping all entries for library routines in the symbol table between executions but mark-
ing inactive those entries for libraries not included in the current picture. When the parser en-
counters a library specification, it checks to see if the library is in a list of all libraries encoun-
tered so far. If it is, it activates all library entries for that library; if not, it parses the library.
Several libraries of predefined objects are always implicitly included in each program.

5.16. Generating PostScript

At first glance it appears that Dee could generate PostScript [1] for hardcopy by doing a
straightforward translation of the current program. This would work only if the program con-
tained no statements like fransiate, raise, or lower since these have no PostScript counterparts.
Dee instead generates hardcopy by traversing the display tree and issuing PostScript code. This
is a relatively straightforward task with one notable exception: curve operations. Dum’s curves
are defined to go from the current point through a single specified point with the previous and
next points on the curve providing control information. PostScript instead uses Bezier control
points [11, 25] between the two points on the curve; the hardcopy routine must construct the
appropriate control points from the given information. To make matters still more complex, the
control point calculation for the first curve segment of a closed curve requires the value of the
last point on the curve.

17
2

p3

pl
pé

Figure 5-5: The calculation of a Bezier control point

Figure 5-5 shows part of the calculation used to find the control points. The curve is going
between point p2 and p3 with pI as the preceding point and p4 as the next point. Line !/ is the
line through pl and p2 and I2 the line through p2 and p3. Line /3 is constructed to bisect the
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angle a between /I and /2, and the Bezier control point b is found by going out along line 3.
The distance between p2 and b is depends upon the angle g; small angles mean the curvature is
small near p2, so b is further out, while large angles mean the curvature is large near p2 so b is
closer in. The actual formula used is

d * min(0.5, ¢ * a/180)
where d is the distance between p2 and p3 and c is a constant scaling factor; experimentation

showed that the most pleasing curves are produced with ¢ = 0.82. This method is generally
satisfactory but occasionally produce a strange curve.
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6. Contributions and Future Work

6.1. Contributions

Tweedle fully integrates a procedural language and a graphics editor. Chapter 3 referred to
the ‘‘carefully cultivated illusion’’ that the language serves a subsidiary function to the editor;
one measure of the success of the marriage between language and editor is how well this illusion
succeeds. How frequently does the user need to edit the program text directly? In my ex-

perience creating drawings for this thesis I have encountered four classes of situations requiring
text editing:

1. Creating objects which require procedurality: these are the cases for which text
editing was intended. Because of the nature of the illustrations they tended to
come up more frequently than they might normally.

2. Providing exact values for point variables: this was also intended, but proved to be
far commoner and far more tedious than originally expected. Gargoyle’s snap-

dragging technique [9] would drastically reduce the need for these types of inter-
actions.

3. Deleting code for editing actions performed incorrectly or by mistake: Dee has no
*“Undo’’ function, so these had to be manually removed from the program. An
‘“Undo’’ function would eliminate these interactions.

4. Hand-optimizing code: since the source code optimizer was never finished, any
optimization had to be done manually. This only arose for examples where the
code was to be shown in the text. Finishing the optimizer would eliminate this.

The editing process in general runs quite smoothly. I frequently would switch back and forth
between making text changes and graphics changes in the same session; having both styles of
interaction available at the same time is a valuable tool. Even if the graphics editor were un-
available the incremental execution facilities make Dee a good environment for writing and
debugging graphics programs. The current implementation frequently sacrifices efficiency for
simplicity and yet its response time is quite good; this shows that there is nothing inherently slow
about the ideas embodied in Dee, and with some work Dee could be made to execute as quickly
as any other graphics editor.

Tweedle’s greatest contribution is in extending the realm of procedural representations to in-
teractive programs. All procedural representations done previously have been rather batch
oriented: the representation is created and them moved as a whole to its consumer, a document
compiler or a printer. Tweedle is interactive; changes to a program take place incrementally. In
order to make this work well the interpreter must understand the structure and execution of a
program so that it can execute appropriate parts of a program as the representation changes.
Static structure in the language allows the interpreter to gain the information it needs by static
analysis of the program text.

Tweedle’s drawing model combines segment and procedure based models by treating drawing
procedures in an object-oriented fashion. Object definitions are as simple as drawing
procedures, but having their result be manipulable by the program gives the advantages of seg-

ments. The variation hierarchy in Dum is analogous to the class hierarchy in object-oriented
systems.
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The moral of the story is that procedural representation languages are still programming lan-
guages, and their design can benefit from the same techniques used to design general purpose
languages. Besides static structure and an object-oriented drawing model, Dum has subroutine
libraries and typed subroutine parameters. Libraries allow multiple pictures to share common
elements and allow people other than the picture creator to do the programming necessary for
complicated objects. Typed parameters allow the editor to figure out what kinds of values to
supply as arguments to newly instantiated objects and how it should supply them.

The object variation hierarchy is a new idea in editing facilitated by Dum’s procedurality.
Describing the change from original to variant as the series of editing operations that effect the
change is natural, intuitive, and directly models the editing process. In Dum one can move a
subobject around; in the procedural model having something be in different places at different
points in the execution is perfectly reasonable. A declarative model would require either some
sort of meta-syntax to describe the change process or a means of resolving conflicting descrip-
tions such as the original claiming the subobject is in location A but the variant claiming it’s in
location B. The main benefit of variation over simply copying the definition and changing it is
that the variant can follow later changes made to the original object. This benefit has shown up
most in allowing slightly different objects that should remain consistent with each other; the
various labeled ellipses and rectangles used in illustrations in this theses are an example of this.

The incremental execution facilities have worked out extremely well and should be applicable
to other systems with rapidly changing representations.

6.2. Deficiencies & future work

Dee is far from being a production-quality editor. Besides small things like line join styles,
generalized fill patterns, and color, the two major missing features are source-code optimization
and grouping. Optimization was fully described in Section 5.14; grouping is the ability to per-
form actions in the graphics editor to more than one object at a time.

There are many places in Dee where it was easier to always recompute information than to
keep state that would allow Dee to determine if the current information was still valid. Bounding
boxes and redisplay are the two most notable examples of this; whenever the structure of the
image changes at all Dee recomputes all the bounding boxes and redisplays the picture. The

delay caused by this could easily be eliminated by the more clever algorithms described in Sec-
tion 5.12.

The editor would benefit from a finer grade of incremental execution. The present scheme
works well for nicely structured diagrams with many short object definitions; unfortunately, this
characterizes only a subset of possible pictures. Many programs turn out to have a very flat
structure consisting of a long main program calling library objects. Any change other than ad-
ding new code at the end of the program requires complete reexecution. The interpreter could

improve its response for programs like these by checkpointing the state at frequent intervals
through the main program.

When adding an object the editor always prompts for the parameters the same way; as far as it
is concerned a line segment with one point parameter and a circle with one point parameter look
the same. More sophisticated interaction techniques like rubber-banded lines, circles, or rec-
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tangles could be provided by allowing an object definition to designate some kind of interaction
function that the editor would call for each parameter. These interaction functions, written in
Dum and included in the same libraries as the objects they apply to, would provide the inter-
active feedback necessary to support the appropriate type of rubber banding for each type of
object. '

Object definitions act as mathematical functions since their action depends only upon the
values of their variables. Object invocations are thus well suited to being executed in parallel;
one invocation cannot affect the execution of another. The parallel execution of Dum programs
is an interesting research area.

Dee’s internal model has the editor creating new code and passing it to the interpreter, which
adds it to the program and executes it to update the display. This has the advantage that it is
immediately obvious if the editor is generating incorrect code. An interesting alternative struc-
ture would be for the editor to both modify the program and change the display directly. With
this approach the incremental execution mechanism only needs to be invoked when the user
changes the program with the text editor. Changes to the text should occur rarely enough that
the extra time needed to fully reexecute in response to such a change shouldn’t be too much of a
bother, so incremental execution could be completely disposed of. Experimentation is needed to
see if the extra time spent by Dee providing for incremental execution is recovered by the time
saved by incrementally executing programs.

6.3. What I would do differently

The X Window System [12] proved to be simple and easy to use; it also proved to be critically
lacking in high-level capabilities. Particularly missed was the ability to define editable sections
of text on the screen, a feature present in Andrew [23]. This lack led to a baroque process struc-
ture for Dee: an editing session consists of the main Dee process, two copies of the terminal
emulator program, and a copy of Emacs, all communicating through interprocess communication
mechanisms. This turned out to work surprisingly well (I was rather surprised to get it to work at
all!) but would have all been completely unnecessary in a more full-featured window system.

Dee uses X’s curve mechanism; this was easy to implement but has been a source of difficulty
ever since. X'’s curves go through specified points but frequently do very unintuitive things
between these points. Duplicating these curves exactly in hard copy is neither easy nor in many
cases particularly desirable. I originally believed simulating a more accurate curve mechanism
like B-splines using straight line segments would be intolerably slow but recent work by other
people has demonstrated otherwise.

An editing session in Dee consists of creating a complex interlinked data structure, the execu-
tion tree, and then repeatedly throwing pieces of it away and replacing them with new data. The
memory management problems turned out to be immense; I estimate that a month of implemen-
tation time was spent on tasks that would have completely gone away if garbage collection had
been available.

Paths need to become full-fledged datatypes. They were not so designed at first since
PostScript seemed to get along quite well without them, but they have ended up in something of
a state of limbo. The editor never creates paths and it cannot do anything useful with them if the



user does. Paths end up getting hidden away in object definitions where the editor never needs
to look at them. An even more serious deficiency is that variant objects cannot modify paths in
the original object since it has no way to refer to them. The lack of a path datatype also makes it

impossible to extend the various routines used to create different line styles in Figure 1-2 to work
on arbitrary paths.
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I. Syntax of the Dum Language

In this description, SMALL CAPITALS denote nonterminals, boldface denotes terminals, and
italics indicate explanatory information.

Conventional syntax is used: ‘‘*’’ indicates zero or more of the preceding item, square brack-
ets enclose optional material, and *‘I’’ separates alternatives. Quotation marks and parentheses
are always terminals; square brackets, asterisks and vertical bars are always meta-syntax except
in the productions for LBRACKET, RBRACKET, STAR, and VBAR.

PROGRAM -
LIBRARY-SPEC -
ROUTINE -
FUNCTION-DEFINITION —

OBJECT-DEFINITION

l

RETURNS-CLAUSE

VARIANT-CLAUSE

ARGS-CLAUSE

ARG-SPEC

CONTROL-CLAUSE

METHOD-CLAUSE

STATEMENT-LIST

STATEMENT

N A T T

NORMAL-STATEMENT

DATA-DEFINITION 4

WITH-STATEMENT -

LIBRARY-SPEC* ROUTINE*
$library TEXT-STRING NEWLINE
FUNCTION-DEFINITION | OBJECT-DEFINITION

( function NAME [ RETURNS-CLAUSE ] [ ARGS-CLAUSE ]
METHOD-CLAUSE )

( defineobject NAME [ VARIANT-CLAUSE ] [ ARGS-CLAUSE ]
[ CONTROL-CLAUSE ] METHOD-CLAUSE )

( returns DATATYPE )

( variant NAME )

( args ARG-SPEC*)

( DATATYPE NAME* )

( control NAME* )

( method STATEMENT-LIST )

STATEMENT*

NORMAL-STATEMENT | ROUTINE-CALL

DATA-DEFINITION | WITH-STATEMENT | PATH-STATEMENT |
IF-STATEMENT | FOR-STATEMENT | WHILE-STATEMENT |
BEGIN-STATEMENT | ASSIGNMENT |
TRANSFORM-STATEMENT | RTRANSFORM-STATEMENT |
RECALL-STATEMENT | DELETE-STATEMENT |
DRAW-STATEMENT | RAISE-STATEMENT |
LOWER-STATEMENT | USING-STATEMENT |
PATH-CONSTRUCTOR

( DATATYPE NAME [ initial-EXPRESSION ] )

( with transformation-EXPRESSION STATEMENT-LIST )



PATH-STATEMENT

-

DRAWPATH-STATEMENT —

FILLPATH-STATEMENT —

OPTIONS-CLAUSE

OPTION

LINEWIDTH-OPTION

FILLPAINT-OPTION

IF-STATEMENT

FOR-STATEMENT

WHILE-STATEMENT

BEGIN-STATEMENT

ASSIGNMENT

RECALL-STATEMENT

LVALUE

—_—

A A

N R

TRANSFORM-STATEMENT

RTRANSFORM-STATEMENT

DELETE-STATEMENT
DRAW-STATEMENT
RAISE-STATEMENT
LOWER-STATEMENT

USING-STATEMENT

PATH-CONSTRUCTOR

R
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DRAWPATH-STATEMENT | FILLPATH-STATEMENT

( drawpath [ OPTIONS-CLAUSE ] STATEMENT-LIST )
(fillpath [ OPTIONS-CLAUSE ] STATEMENTjLIST )

( options OPTION* )

LINEWIDTH-OPTION | FILLPAINT-OPTION

( linewidth number-EXPRESSION )

( fill paint-EXPRESSION )

(if conditional-EXPRESSION if-true-STATEMENT
[ if-false-STATEMENT ] )

( for initial-EXPRESSION increment-EXPRESSION
ﬁnal-EXPRESSION STATEMENT-LIST )

( while conditional-EXPRESSION STATEMENT-LIST )
( begin STATEMENT-LIST )

( := LVALUE EXPRESSION )

( recall LVALUE ROUTINE-CALL )

NAME | SUBSCRIPT

— ( transform object-EXPRESSION
transformation-EXPRESSION )

— ( rtransform object-EXPRESSION
transformation-EXPRESSION )

( delete object-EXPRESSION )
( draw object-EXPRESSION )
( raise object-EXPRESSION )
(lower object-EXPRESSION )

( using transformation-EXPRESSION
STATEMENT-LIST )

SEGMENT-CONSTRUCTOR | ARC-CONSTRUCTOR |
CLOSE-CONSTRUCTOR



SEGMENT-CONSTRUCTOR

SEGMENT-TYPE

ARC-CONSTRUCTOR

ARC-TYPE

CLOSE-CONSTRUCTOR

CLOSE-TYPE
DATATYPE

EXPRESSION

ROUTINE-CALL
POINT
SUBSCRIPT
GETPOINT
NAME

NUMBER

SIGN
TEXT-STRING
TOKEN-SEPARATOR
SPACE
COMMENT

ANY-CHAR

CHAR

DIGIT

-

l

R A A A R 2 e VN 2

\
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— ( SEGMENT-TYPE point-EXPRESSION )

moveto | rmoveto | lineto | rlineto | curveto | rcurveto

( ARC-TYPE centerpoint-EXPRESSION radius-EXPRESSION

startangle-EXPRESSION endangle-EXPRESSION )
arc | arcn
( CLOSE-TYPE )
closepath | closecurved
number | point | object | paint | array | string

ROUTINE-CALL | POINT | SUBSCRIPT | GETPOINT |
NAME | NUMBER | TEXT-STRING

( NAME argument-EXPRESSION* )

LBRACKET x-EXPRESSION y-EXPRESSION RBRACKET
( sub array-EXPRESSION number-EXPRESSION )

( getpoint object-EXPRESSION point-NAME )

CHAR CHAR¥*

[ SIGN } [ DIGIT* ] [. [ DIGIT*] ][ e [ SIGN ] DIGIT* ]
+1-

" ANY-CHAR* "

SPACE*

SPACE-CHAR | TAB | NEWLINE | COMMENT

# ANY-CHAR* NEWLINE

"1#1$1(1) | LBRACKET | RBRACKET |
SPACE-CHAR | TAB | CHAR

N%I&IPH+T,1-1.1/1: 151
<I=1>121@I\I AT _1¢1{i}I
STAR | VBAR |
DIGIT | CAPITAL-LETTER | LOWER-CASE-LETTER

0111213141516171819
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CAPITAL-LETTER — AIBICIDIEIFIGIHIIIJIKILIMI
NIOIPIQIRISITIUIVIWIXIYIZ

LOWER-CASE-LETTER — alblclidlielfiglhliljlkilim|
nlolplqlrisitiulviwixlylz

LBRACKET - |

RBRACKET - ]

STAR - *

VBAR - |
Notes:

1. A TOKEN-SEPARATOR may appear between any two consecutive tokens. Any two
adjacent NAMES must be separated by a TOKEN-SEPARATOR.

2. At least one of the DIGIT strings in a NUMBER must be present.

3. NUMBERS are a subset of NAMES; any NAME that qualifies as a NUMBER is a
NUMBER, not a NAME.

4. Quotation marks are included in STRINGS by doubling them.

5. SPACE-CHAR, TAB, and NEWLINE are ASCII characters octal 40, 11, and 12,
respectively.
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I1. Predefined Functions

The type definition any in these descriptions indicates that the argument so qualified can be
of any type. If an argument is followed by ellipses (. . .) it means that there may be any number
of arguments of the same type.

I1.1. Mathematical functions

(function + (returns number) (args (number nl n2))
Returns the sum of n1 and n2.

(function -~ (returns number) (args (number nl n2))
Returns the difference of nl and n2.
(function * (returns number) (args (number nl n2))

Returns the product of n1 and n2.

(function / (returns number) (args (number nl n2))
Returns the quotient of n1 and n2.

(function mod (returns number) (args (number nl n2))

Converts n1 and n2 to integers and returns the remainder when nl is
divided by n2.

(function int (returns number) (args (number n))
Converts n into an integer.

(function neg (returns number) (args (number n))
Returns the negative of n.

(function sin (returns number) (args (number n))
Returns the sine of n considered in degrees.

(function cos (returns number) (args (number n))
Returns the cosine of n considered in degrees.

(function atan (returns number) (args (number n))
Returns the arctangent in degrees of n.

(function atanp (returns number) (args (point p))
Returns the arctangent in degrees of p considered as a vector.

(function sqgrt (returns number) (args (number n))
Returns the square root of n.

(function rand (returns number)
Returns a pseudo-random integer between 0 and 231-1, inclusive.

: IL2.Comparison and logical functions

ﬂxé (function < (returns number) (args (number nl n2))
Returns whether n1l is less than n2.

(function <= (returns number) (args (number nl n2))
Returns whether n1 is less than or equal to n2.

(function > (returns number) (args (number nl n2))
Returns whether n1 is greater than n2.
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(function >= (returns number) (args (number nl n2))
Returns whether n1 is greater than or equal to n2.

(function = (returns number) (args (any vl v2))
Returns whether v1 and v2 are of the same type and have the same value.

(function <> (returns number) (args (any vl v2))
Returns whether v1 and v2 are of different types or have different values.

(function and (returns number) (args (number nl n2))
Returns whether both n1 and n2 are nonzero.

(function or (returns number) (args (number nl n2))
Returns whether either of nl or n2 are nonzero.

(function not (returns number) (args (number n))
Returns 1 if n is 0 and 0 otherwise.

(function null (returns number) (args (object o))
Returns whether o is equal to the null object.

I1.3. Point manipulation functions
(function makepoint (returns point) (args (number nl n2))
Returns a point with x coordinate nl and y coordinate n2.

(function px (returns number) (args (point p))
Returns the x coordinate of p.

(function py (returns number) (args (point p))
Returns the y coordinate of p.

(function p+ (returns point) (args (point pl p2))
Returns the sum of p1 and p2 considered as vectors.

(function p- (returns point) (args (point pl p2))
Returns the difference of p1 and p2 considered as vectors.

(function p* (returns point) (args (number n) (point p))
Returns p considered as a vector scaled by n.

I1.4. Transformation functions

(function rotate (returns array) (args (number n))

Returns an array representing a tranformation matrix for a rotation by n
degrees.

(function translate (returns array) (args (point p))
Returns an array representing a tranformation matrix for a translation by p.

(function scale (returns array) (args (point p))
Returns an array representing a tranformation matrix for a scale by p.

(function concat (returns array) (args (array a...))
Returns an array representing the concatenation of all the array arguments.
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I1.5. Array manipulation functions

(function arr (returns array) (args (any a...))
Returns an array containing all the arguments, with subscripts starting at 0.

(function lbound (returns number) (args (array a))
Returns the lowest subscript in a.

(function ubound (returns number) (args (array a))
Returns the highest subscript in a.

(function elements (returns number) (args (array a))
Returns the number of elements in a.

(function in (returns number) (args (array a) (number n)
Returns whether a contains an element subscripted n.

I1.6. String functions

(function str (returns string) (args (any a...))
Returns a string with the string values of all arguments concatenated
together.

(function print (args (any a...))
Prints the same string as would be returned by st r in the dialog window.

(function getfont (returns number) (args (string s) (number n))
Returns a number referring to a font named s in size n.

(function strwidth (returns number) (args (string s) (number n))
Returns the width of s in font n.

I1.7. Paint functions

(function grayscale (returns paint) (args (number n))
Returns a gray paint. If n is 0 or less the paint is white, if n is 1 or more it is
black, and if between it is the corresponding amount between.

IL8. Object functions

(function new (returns object) (args (object o))
See section 3.3.

(function rnew (returns object) (args (object o))
See section 5.13.

(function text (returns object) (args (string s) (number n))
Returns an object that represents s displayed in font n.

(function nullobj (returns object)
~ Returns a null object.
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