

IBM PowerPC[®]970FX RISC Microprocessor

Datasheet

Preliminary Electrical Information

Version 0.5 (Draft)

Advance - IBM Confidential

March 26, 2004

© Copyright International Business Machines Corporation 2002, 2003

All Rights Reserved Printed in the United States of America June 2003

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both

IBM Logo
PowerPC Logo
PowerPC Architecture

Other company, product and service names may be trademarks or service marks of others.

Note: All information contained in this document is subject to change without notice. Verify with your IBM field application enginner that you have the latest version of this document before finalizing a design.

The products described in this document are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties, or give rise to any express or implied warranty. Information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division 2070 Route 52, Bldg. 330 Hopewell Junction, NY 12533-6351

The IBM home page can be found at www.ibm.com

The IBM Microelectronics Division home page can be found at www-3.ibm.com/chips

March 26, 2004

List of Figures	5
List of Tables	7
About This Datasheet	9
1. General Information	11
1.1 Description	. 11
1.2 Features	. 11
1.3 PowerPC 970FX Block Diagram	. 13
1.4 Ordering and Processor Version Register	. 14
2. General Parameters	15
3. Electrical and Thermal Characteristics	15
3.1 DC Electrical Characteristics	. 15
3.1.1 Absolute Maximum Ratings	. 15
3.1.2 Recommended Operating Conditions	. 16
3.1.3 Package Thermal Characteristics	. 10
3.1.4 DC Electrical Specifications	. 17
3 2 AC Electrical Characteristics	18
3 3 Clock AC Specifications	19
3.4 Processor-Clock Timing Relationship Between PSYNC and SYSCLK	. 20
3.5 Input AC Specifications	. 22
3.5.1 TBEN Input Pin	. 23
3.6 Asynchronous Output Specifications	. 24
3.7 Mode Select Input Timing Specifications	. 25
3.8 Spread Spectrum Clock Generator (SSCG)	. 28
3.8.1 Design Considerations	. 28
3.9 I ² C and JTAG	. 29
3.9.1 I ² C Bus Timing Information	. 29
3.9.2 IEEE 1149.1 AC Timing Specifications	. 29
3.9.3 I2C and JTAG Considerations	. 31
	. 31
4. PowerPC 970FX Microprocessor Dimension and Physical Signal Assignments	32
4.1 ESD Considerations	. 32
4.2 PowerPC 970FX Package Side and Top View	. 33
4.3 PowerPC 970FX Package Bottom View	. 34
4.4 Microprocessor Ball Placement	. 35
4.5 PowerPC 970FX Microprocessor Pinout Listings	. 37
5. System Design Information	42
5.1 External Resisters	. 42
5.2 PLL Configuration	. 42

 5.2.1 Determining PLLMULT and BUS_CFG Settings 5.2.2 PLL_RANGE Configuration 5.3 PLL Power Supply Filtering 5.4 Decoupling Recommendations 5.4.1 Using the KVPRBVDD and KVPRBGND Pins 5.5 Decoupling Layout Guide 5.6 Input-Output Usage 5.6.1 Chip Signal I/O and Test Pins 5.7 Thermal Management Information 5.7.2 Reading Thermal Diode Calibration data via JTAG 5.7.3 Heatsink Attachment and Mounting Forces 5.8 Operational and Design Considerations 5.8.1 Power-On Reset Considerations 5.8 2 Debugging PowerPC 970EX Power-On and Reset Sequence 	. 42 43 45 46 46 46 50 50 50 50 54 54 54 55 57 57
5.8.1 Power-On Reset Considerations	. 57
5.8.2 Debugging PowerPC 970FX Power-On and Reset Sequence	. 57 . 57
Revision Log	59

List of Figures

Figure 1-2. Part Number Legend 14 Figure 3-1. Clock Differential HSTL Signal 20 Figure 3-2. Processor-Clock Timing Relationship Between PSYNC and SYSCLK 21 Figure 3-3. Asynchronous Input Timing 23 Figure 3-4. HRESET and BYPASS Timing Diagram 26 Figure 3-5. Spread Spectrum Clock Generator (SSCG) Modulation Profile 28 Figure 3-6. JTAG Clock Input Timing Diagram 30 Figure 3-7. Test Access Port Timing Diagram 31 Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View) 33 Figure 4-3. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 1-1. PowerPC 970FX Block Diagram	
Figure 3-1. Clock Differential HSTL Signal 20 Figure 3-2. Processor-Clock Timing Relationship Between PSYNC and SYSCLK 21 Figure 3-3. Asynchronous Input Timing 23 Figure 3-4. HRESET and BYPASS Timing Diagram 26 Figure 3-5. Spread Spectrum Clock Generator (SSCG) Modulation Profile 28 Figure 3-6. JTAG Clock Input Timing Diagram 30 Figure 3-7. Test Access Port Timing Diagram 31 Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View) 33 Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 1-2. Part Number Legend	
Figure 3-2. Processor-Clock Timing Relationship Between PSYNC and SYSCLK 21 Figure 3-3. Asynchronous Input Timing 23 Figure 3-4. HRESET and BYPASS Timing Diagram 26 Figure 3-5. Spread Spectrum Clock Generator (SSCG) Modulation Profile 28 Figure 3-6. JTAG Clock Input Timing Diagram 30 Figure 3-7. Test Access Port Timing Diagram 31 Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View) 33 Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 3-1. Clock Differential HSTL Signal	
Figure 3-3. Asynchronous Input Timing 23 Figure 3-4. HRESET and BYPASS Timing Diagram 26 Figure 3-5. Spread Spectrum Clock Generator (SSCG) Modulation Profile 28 Figure 3-6. JTAG Clock Input Timing Diagram 30 Figure 3-7. Test Access Port Timing Diagram 31 Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View) 33 Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 3-2. Processor-Clock Timing Relationship Between PSYNC and SYSCLK	
Figure 3-4. HRESET and BYPASS Timing Diagram 26 Figure 3-5. Spread Spectrum Clock Generator (SSCG) Modulation Profile 28 Figure 3-6. JTAG Clock Input Timing Diagram 30 Figure 3-7. Test Access Port Timing Diagram 31 Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View) 33 Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 3-3. Asynchronous Input Timing	
Figure 3-5. Spread Spectrum Clock Generator (SSCG) Modulation Profile 28 Figure 3-6. JTAG Clock Input Timing Diagram 30 Figure 3-7. Test Access Port Timing Diagram 31 Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View) 33 Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 3-4. HRESET and BYPASS Timing Diagram	
Figure 3-6. JTAG Clock Input Timing Diagram 30 Figure 3-7. Test Access Port Timing Diagram 31 Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View) 33 Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 4-4. PowerPC 970FX Ball Placement (Bottom View) 36 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 3-5. Spread Spectrum Clock Generator (SSCG) Modulation Profile	
Figure 3-7. Test Access Port Timing Diagram 31 Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View) 33 Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 4-4. PowerPC 970FX Ball Placement (Bottom View) 36 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 3-6. JTAG Clock Input Timing Diagram	
Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View)	Figure 3-7. Test Access Port Timing Diagram	
Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View) 34 Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 4-4. PowerPC 970FX Ball Placement (Bottom View) 36 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View)	
Figure 4-3. PowerPC 970FX Ball Placement (Top View) 35 Figure 4-4. PowerPC 970FX Ball Placement (Bottom View) 36 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Packag 34	ge (Bottom View)
Figure 4-4. PowerPC 970FX Ball Placement (Bottom View) 36 Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 4-3. PowerPC 970FX Ball Placement (Top View)	
Figure 5-1. PLL Power Supply Filter Circuit 45 Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary) 47 Figure 5-3. PowerPC 970FX Thermal Diode Implementation 55 Figure 5-4. Force Diagram for the PowerPC 970FX Package 56	Figure 4-4. PowerPC 970FX Ball Placement (Bottom View)	
Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary)47Figure 5-3. PowerPC 970FX Thermal Diode Implementation55Figure 5-4. Force Diagram for the PowerPC 970FX Package56	Figure 5-1. PLL Power Supply Filter Circuit	
Figure 5-3. PowerPC 970FX Thermal Diode Implementation	Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary)	
Figure 5-4. Force Diagram for the PowerPC 970FX Package56	Figure 5-3. PowerPC 970FX Thermal Diode Implementation	
	Figure 5-4. Force Diagram for the PowerPC 970FX Package	

List of Tables

Table 1-1. PowerPC 970FX Ordering and Processor Version Register (PVR)	14
Table 2-1. General Parameters of the PowerPC 970FX	15
Table 3-1. Absolute Maximum Ratings	15
Table 3-2. Recommended Operating Conditions	16
Table 3-3. Package Thermal Characteristics	16
Table 3-4. DC Electrical Specifications	17
Table 3-5. Power Consumption	18
Table 3-6. Clock AC Timing Specifications	19
Table 3-7. Processor-Clock Timing Relationship Between PSYNC and SYSCLK	20
Table 3-8. Input AC Timing Specifications	22
Table 3-9. Input AC Timing Specifications for HRESET	22
Table 3-10. Asynchronous Type Output Signals	24
Table 3-11. Asynchronous Open Drain Output Signals	24
Table 3-12. Asynchronous Open Drain Bidirectional (BiDi) Signals	24
Table 3-13. Input AC Timing Specifications	25
Table 3-14. Mode Select Type Input Signals	27
Table 3-15. Debug Pins	27
Table 3-16. JTAG AC Timing Specifications (Dependent on SYSCLK)	29
Table 4-1. Pinout Listing for the CBGA Package	37
Table 4-2. Voltage and Ground Assignments	41
Table 5-1. PowerPC 970FX Bus Configuration	42
Table 5-2. PowerPC 970FX PLL Configuration	43
Table 5-3. System Configuration - Typical Examples of Pin Settings	44
Table 5-4. Recommended Decoupling Capacitor Specifications	46
Table 5-5. Recommended Minimum Number of Decoupling Capacitors	46
Table 5-6. PowerPC 970FX Debug/Bringup Pin Settings and Information	48
Table 5-7. PowerPC 970FX Pins for Manufacturing Test Only	49
Table 5-8. Input/Output Signal Descriptions	50
Table 5-9. Allowable Forces on the PowerPC 970FX Package	56

About This Datasheet

This datasheet describes the IBM PowerPC 970FX RISC Microprocessor. This microprocessor, also called the PowerPC 970FX, is a 64-bit implementation of the IBM PowerPC[®] family of reduced instruction set computer (RISC) microprocessors that are based on the PowerPC Architecture[™].

Who Should Read This Datasheet

This datasheet is intended for designers who plan to develop products using the PowerPC 970FX.

Related Publications

Related IBM publications include the following:

PowerPC 970FX RISC Microprocessor Users Manual

Other related publications include the following:

I2C Bus Specification

This document is produced by Philips Semiconductors and can be downloaded from the following web site: http://semiconductors.philips.com.

Conventions and Notations Used in This Datasheet

The use of overbars, for example DDEL_OUT, designates signals that are active low or the compliment of differential signals.

The following software documentation conventions are used in this manual:

- 1. Function names are written in **bold** type. For example, **np_npms_proc_register (**).
- 2. Variables are written in italic type. For example, *enable_mode*.
- 3. Keywords and data types are shown by being written all in capitals with underlines between words. For example, OFF_DISABLED.

1. General Information

1.1 Description

The IBM PowerPC 970FX RISC Microprocessor, is a 64-bit implementation of the IBM PowerPC[®] family of reduced instruction set computer (RISC) microprocessors that are based on the PowerPC Architecture. This microprocessor, also called the PowerPC 970FX, includes a Vector/SIMD facility which supports high-bandwidth data processing and algorithmic-intensive computations. This microprocessor is also designed to support multiple system organizations, including desktop and lowend server applications, and uniprocessor up through four-way SMP configurations.

Note: The terms microprocessor and processor are used interchangeably in this document.

1.2 Features

- 64-bit implementation of the PowerPC AS Architecture (Version 2.0)
 - Binary compatibility for all PowerPC AS application level code (problem state)
 - Binary compatibility for all PowerPC application level code (problem state)
 - Support for 32-bit O/S bridge facility
 - Vector/SIMD Multimedia eXtension
- Layered implementation strategy for very high frequency operation
 - Deeply pipelined design
 - 16 stages for most fixed-point registerregister operations
 - 18 stages for most load and store operations (assuming L1 Dcache hit)
 - 21 stages for most floating point operations
 - 19, 22, and 25 stages for fixed-point, complex-fixed, and floating point operations, respectively in the VALU.
 19 stages for VMX permute operations
- Dynamic instruction cracking for some instructions allows for simpler inner core dataflow

Figure 1-1 on page 13 is a block diagram of the PowerPC 970FX.

The PowerPC 970FX is comprised of three main components:

- PowerPC 970FX Core which includes VMX execution units
- PowerPC 970FX Storage subsystem which includes core interface logic, non-cacheable unit, L2 cache and controls, and the Bus Interface Unit
- PowerPC 970FX Pervasive Functions

This document also provides pertinent physical characteristics of the PowerPC 970FX single chip modules (SCM).

- Dedicated dataflow for cracking one instruction into two internal operations
- Microcoded templates for longer emulation sequences
- Speculative superscalar inner core organization
 Aggressive branch prediction
 - Prediction for up to two branches per cycle
 - Support for up to 16 predicted branches in flight
 - Prediction support for branch direction and branch addresses
 - Out of order issue of up to ten operations into 10 execution pipelines
 - Two load or store operations
 - Two fixed-point register-register operations
 - Two floating-point operations
 - One branch operation
 - One condition register operation
 - One VMX permute operation
 - One VMX ALU operation

Datasheet PowerPC 970FX

Advance - IBM Confidential

- In order dispatch of up to five operations into distributed issue queue structure
- Register renaming on GPRs, FPRs, VRFs, CR Fields, XER (parts), FPSCR, VSCR, VRSAVE, Link and Count
- Large number of instructions in flight (theoretical maximum of 215 instructions)
 - Up to 16 instructions in instruction fetch unit (fetch buffer and overflow buffer)
 - Up to 32 instructions in instruction fetch buffer in instruction decode unit
 - Up to 35 instructions in 3 decode pipe stages and 4 dispatch buffers
 - Up to 100 instructions in the inner-core (after dispatch)
 - Up to 32 stores queued in the STQ (available for forwarding)
 - Fast, selective flush of incorrect speculative instructions and results

- Specific focus on storage latency management
 - Out-of-order and speculative issue of load operations
 - Support for up to 8 outstanding L1 cache line misses
 - Hardware initiated instruction prefetching from L2 cache
 - Software initiated data stream prefetching
 Support for up to 8 active streams
 - Critical word forwarding / critical sector first
 - New branch processing / prediction hints added to branch instructions
- Power management
 - Static power management
 - Software initiated doze and nap and deep nap modes
 - Dynamic power management
 - Parts of the design stop their (hardware initiated) clocks when not in use
 - PowerTune
 - Software initiated slow down of the processor; selectable to half or quarter of the nominal operating frequency

Datasheet PowerPC 970FX

1.3 PowerPC 970FX Block Diagram

Figure 1-1. PowerPC 970FX Block Diagram

March 26, 2004

Datasheet PowerPC 970FX

Advance - IBM Confidential

1.4 Ordering and Processor Version Register

The PowerPC 970FX has the following Processor Version Register (PVR) values for the respective design revision levels.

Table 1-1. PowerPC 970FX Ordering and Processor Version Register (PVR)

Order Part Number	Revision Level	PVR
IBM25PPC970FX5SB101ET	DD3.0	0x003C0300
IBM25PPC970FX5SB181ET	DD3.0	0x003C0300
IBM25PPC970FX5SB261ET	DD3.0	0x003C0300

Figure 1-2. Part Number Legend

2. General Parameters

Table 2-1 provides a summary of the general parameters of the PowerPC 970FX.

Table 2-1. General Parameters of the PowerPC 970FX

Description	Notes
66.2 sq. mm	
7.07 x 9.36mm	
58 Million	1
576-pin Ceramic ball grid array (CBGA), 25x25mm (1.0mm pitch)	
e te celeviete reliekiltu je potucija	
	Description 66.2 sq. mm 7.07 x 9.36mm 58 Million 576-pin Ceramic ball grid array (CBGA), 25x25mm (1.0mm pitch) e to calculate reliability is not valid.

3. Electrical and Thermal Characteristics

This section provides AC and DC electrical specifications and thermal characteristics for the PowerPC 970FX.

3.1 DC Electrical Characteristics

The tables in this section describe the PowerPC 970FX DC electrical characteristics.

3.1.1 Absolute Maximum Ratings

Table 3-1. Absolute Maximum Ratings

Characteristic	Symbol	Value	Unit	Notes
Core supply voltage	V _{DD}	-0.3 to 1.5	V	1,3
I/O Supply voltage	OV _{DD}	-0.3 to 1.7	V	1,3
PLL supply voltage	AV _{DD}	-0.3 to 3.0	V	1,3
Input voltage	V _{IN}	-0.3 to 1.7	V	1,2
Storage temperature range	T _{STG}	-55 to 150	°C	1

Note:

- 1. Functional and tested operating conditions are given in *Table 3-2. Recommended Operating Conditions on page 16.* Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed above may affect device reliability or cause permanent damage to the device.
- 2. This is an implied DC voltage specification. Pending further evaluation, an allowance for AC overshoot or undershoot may be accommodated beyond this input voltage specification.
- 3. Power supply ramping recommendations: The order does not matter as long as the supplies reach their final destination in 50ms. V_{DD} can not exceed OV_{DD} by more than 0.8V (Except for 50ms during power up/down, where it is allowed to be \leq 1.35V). OV_{DD} can not exceed V_{DD} by more than 0.8V (Except for 50ms during power up/down, where it is allowed to be \leq 1.55V). AV_{DD} can not exceed V_{DD} by more than 2.5V (Except for 50ms during power up/down, where it is allowed to be \leq 2.75V).

3.1.2 Recommended Operating Conditions

Table 3-2. Recommended Operating Conditions

Characteristic	Symbol	Value	Unit	Notes		
Core supply voltage @ 1.4 GHz	V _{DD}	0.95 ± 50mV	V			
Core supply voltage @ 1.6 GHz	V _{DD}	0.95 ± 50mV	V			
Core supply voltage @ 1.8 GHz	V _{DD}	1.00 ± 50mV	V			
Core supply voltage @ 2.0 GHz	V _{DD}	1.05 ± 50mV	V			
PLL supply voltage	AV _{DD}	2.5 ± 25mV	V			
I/O supply voltage with EIO \leq 900MHz	OV _{DD}	1.2 ± 60mV 1.5 ± 75mV	V	1,2		
I/O supply voltage with EIO > 900MHz	OV _{DD}	1.5 ± 75mV	V	1		
Input voltage	V _{IN}	GND to OV _{DD}	V			
Note: These figures are preliminary and subject to change after characterization.						

1. Data transfer rate is listed

2. Either voltage may be used

3.1.3 Package Thermal Characteristics

Table 3-3. Package Thermal Characteristics

Characteristic	Symbol	Value	Unit
CBGA thermal conductance to back of die	θ _{JC}	0.1	°C/W
CBGA thermal conductance to board	θ _{JB}	5.4	°C/W

3.1.4 DC Electrical Specifications

Table 3-4. DC Electrical Specifications

Characteristic		Volt	Unit	Notes	
Characteristic	Symbol	Minimum	Maximum	Offic	NOLES
SYSCLK, SYSCLK input high voltage	—	0.7 x OV _{DD}	OV _{DD} + 0.3	V	1
SYSCLK, SYSCLK input low voltage	—	-0.3	0.3 x OV _{DD}	V	1
Elastic Input (EI) input high voltage	V _{IH}	(0.5 x OV _{DD}) + 0.2	—	V	2
Elastic Input (EI) input low voltage	V _{IL}	_	(0.5 x OV _{DD}) - 0.2	V	2
Non-EI input high voltage	V _{IH}	0.7 x OV _{DD}	—	V	3
Non-EI input low voltage	V _{IL}	_	0.3 x OV _{DD}	V	3
Elastic Output (EO) output high voltage	V _{он}	0.78 x OV _{DD}	—	V	4
Elastic Output (EO) output low voltage	V _{ol}	_	0.22 x OV _{DD}	V	4
Non-EO output high voltage, I_{OH} = -2mA	V _{он}	OV _{DD} - 0.2	—	V	—
Non-EO output low voltage, $I_{OL} = 2mA$	V _{ol}	_	0.2	V	—
Open Drain (OD) output low, IOL = 2mA (CHKSTOP, I2CGO)	V _{ol}	_	0.2	V	5
Open Drain (OD) output low, IOL = 5mA (I2C)	V _{OL}	_	0.2	V	6
Input leakage current, $V_{IN} = OV_{DD}$, $V_{IN} = 0 V$	I _{IN}	_	60	μA	—
Hi-Z (off state) leakage current, $V_{OUT} = OV_{DD}$, $V_{OUT} = 0$ V	I _{TSO}		60	μA	_
Input Capacitance, $V_{IN} = 0 V$, f = 1MHz	C _{IN}	—	5.0	pF	7

Notes: See Table 3-2 on page 16 for recommended operating conditions.

1. SYSCLK differential receiver requires HSTL differential signaling level. See the JEDEC HSTL standard.

2. See the PowerPC 970FX Users Manual, Electrical Interface section. Minimum input must meet the EYE OPENING REQUIREMENTS of the link.

 The JTAG signals TDI, TMS, and TRST do not have internal pullups; therefore, pullup must be added on the board. Pullups should be added and adjusted according to the system implementation. These input/outputs meet the DC specification in the JEDEC standard JESD8-11 for 1.5V Normal Power Supply Range.

5. There are two open drain signals on this type of driver: CHKSTOP and I2CGO. The pullup for these nets depend on the t_{rise} time requirement, net load, and topology. The following are two bounding suggestions based on a point-topoint 50Ω net with two lengths (5cm and 61cm). A 33Ω series source terminator was added in both runs. A net of 61cm or 24 inches is recommended.

Examples:

500Ω Pullup DC Low Level 0.18V @ Receiver Trise 0.2V - 0.8V = 55ns @ 61cm Trise 0.2V - 0.8V = 10ns @ 5cm

1K Ω Pullup DC Low Level 0.13V @ Receiver Trise 0.2V - 0.8V = 115ns @ 61cm

- Trise 0.2V 0.8V = 20ns @ 5cm
- 6. For the I²C recommendation to have a series terminator and a pullup on the multidrop net, the recommendation is for a 1:7 ratio of series resistors at every source to the pullup. For a 10" 6 drop evenly distributed net, a 150 series and 1K pullup values were used to meet the 200KHz requirements.
- 7. Capacitance values are guaranteed by design and characterization, and are not tested.

^{4.} A 100 Ω split terminator is the test load. Note a 40 Ω driver has an up level of 0.78 x OV_{DD} for V_{OH} and 0.22 x OV_{DD} at V_{OL}.

Datasheet PowerPC 970FX

Advance - IBM Confidential

3.1.5 Power Consumption

For recommended operating conditions, see Table 3-2 on page 16.

Table 3-5. Power Consumption

	Frequency	Voltage	Power (DD3.0 @ 85C)	Power (DD3.0 @105C)	Unit	Notes
Typical Average	14047	0.05.1/	11	12	W	2
Full-On Maximum	1.4 0112	0.93 V	17	19	W	2,3
Typical Average	1.6 GHz	0.05.1/	12	13	W	2
Full-On Maximum		0.93 V	19	21	W	2,3
Typical Average	1.8 GHz	1.00.1/	16	17	W	2
Full-On Maximum		1.00 V	24	27	W	2,3
Typical Average	20047	1.05.\/	19	24	W	2
Full-On Maximum	2.0 GHZ	1.03 V	30	39	W	2,3
Doze			TBD	TBD	W	
Nap			TBD	TBD	W	
Deep Nap			TBD	TBD	W	4

Note:

1. The representative processor frequency is part number specific.

2. **Important:** The data in this table are based on the best available simulation data at the time of publication and may be revised after hardware characterization. Because they have not yet been correlated with production-qualified hardware, these estimates should only be used as guidelines for design.

3. Maximum power is projected at the nominal V_{DD} and max temperature as specified for each application space.

 Power is projected in deep nap mode at VDD = 0.85V at 50°C. Deep nap will always be 1/64th of the max frequency.

3.2 AC Electrical Characteristics

This section provides the AC electrical characteristics for the PowerPC 970FX. After fabrication, parts are sorted by maximum processor core frequency as shown in *Section 3.3* on page 19, and tested for conformance to the AC specifications for that frequency. The processor core frequency is determined by the SYSCLK and the settings of the PLL_MULT signal.

This section only describes asynchronous and mode-select inputs and outputs. For bus timing information, see the PowerPC 970FX Users Manual.

3.3 Clock AC Specifications

Table 3-6 provides the clock AC timing specifications as defined in Figure 3-1 Clock Differential HSTL Signal.

Call Out	Characteristic	Value		Unit	Notos
Number	Characteristic	Minimum	Maximum	Onit	NOIES
—	Processor frequency	1.4	2.0	GHz	1, 2, 4
—	SYSCLK frequency	100	300	MHz	1, 2, 4
—	SYSCLK jitter (short term)	—	±75	ps	4, 6
1	SYSCLK rise and fall time	—	500	ps	3, 4, 6
2	SYSCLK and SYSCLK input high voltage	—	OV _{DD} +0.3	V	4
3	SYSCLK and SYSCLK input low voltage	-0.3	—	V	4
4	Differential Crossing Point Voltage	0.4 x OV _{DD}	0.6 x OV _{DD}	V	4, 6
5	Differential voltage	0.385	1.6	V	4, 6, 7
_	PLL lock time	_	800	μSec	4, 6
	Duty Cycle	40%	60%		—

Notes:

- 1. **Important:** Processor frequency is determined by PLL_MULT and SYSCLK input frequency. PLL_RANGE(1:0) must be set to the correct values for expected processor frequency. Consult *Table 5-2. PowerPC 970FX PLL Configuration on page 43* for the allowable frequency range for these pins.
- 2. PowerPC 970FX minimum processor frequency will be determined by characterization. The minimum frequency is an estimation.
- 3. Rise and fall times for the SYSCLK inputs are measured from 0.4 to 1.0V.
- 4. Important: The data in this table is based on simulation and may be revised after hardware characterization.
- 5. For a timing diagram, see *Figure 3-1*.
- 6. Guaranteed by design and not tested.
- 7. The differential voltage is the minimum peak to peak voltage on both the SYSCLK and SYSCLK pins (similar to what would be measured with single ended oscilloscope probes).

Figure 3-1. Clock Differential HSTL Signal

To determine the processor clock, multiply the SYSCLK by one of the following:

- 12 for PLL_MULT = 0
- 8 for PLL_MULT = 1

For more information about the PLL configuration, see *Table 5-2* on page 43.

3.4 Processor-Clock Timing Relationship Between PSYNC and SYSCLK

Table 3-7 and *Figure 3-2* provide a description of the processor-clock timing relationship between PSYNC and SYSCLK.

Table 3-7. Processor-Clock	Timing Relationship Between	PSYNC and SYSCLK
----------------------------	-----------------------------	------------------

Call Out	t Characteristic		Value		Linit	
Number			Minimum	Maximum	Unit	
1	Setup time	t _{SETUP}	0.8	—	ns	
2	Hold time	t _{HOLD}	0.8	—	ns	
3	Guard time	t _{GUARD}	0.5	—	ns	
Note: For	Note: For a timing diagram, see Figure 3-2 on page 21.					

March 26, 2004

3.5 Input AC Specifications

This section provides specifications for pins: INT, MCP, QACK, HRESET, SRESET, TBEN, THERM_INT, and TRIGGERIN.

Table 3-8 and Table 3-9 provides the input AC timing specifications as defined in Figure 3-3.

Table 3-8. Input AC Timing Specifications

Call Out	Call Out Characteristic	Value		Linit
Number		Minimum	Maximum	Offic
1	Rise time	_	<1	ns
2	Pulse width	10	—	ns
3	Fall time	_	<1	ns

Table 3-9. Input AC Timing Specifications for HRESET

Call Out Number	Characteristic	Value		Linit
	Minimum	Maximum	Unit	
1	Rise time	—	<1.5	ns
2	Pulse width	50	—	ns
3	Fall time	—	<1.5	ns

Note: For bus timing information, see the PowerPC 970FX Users Manual.

3.5.1 TBEN Input Pin

The TBEN input pin can be used as either an enable for the internal timebase/decrementer or as an external clock input. The mode is controlled by the setting of HID0 bit 19. When this bit is 0, the timebase and decrementer update at 1/8th the processor core frequency whenever TBEN is high (traditional enable mode). When HID0 bit 19 is 1, the timebase and decrementer are clocked by the rising edge of TBEN (external clock input mode). When the external clock input mode is used the TBEN input frequency must not exceed 1/16th of the core processor's maximum frequency.

3.6 Asynchronous Output Specifications

This section describes the asynchronous outputs and bi-directionals. Timing information is not provided because these signals are launched by the internal processor clock.

Table 3-10, Table 3-11, and *Table 3-12* list the signals for the asynchronous outputs and bi-directionals (BiDi).

Table 3-10. Asynchronous Type Output Signals

Pin	Description	Comment	Pin		
ATTENTION	Attention	To service processor	AD12		
QREQ	Quiesce request	Power management	AB12		
TRIGGEROUT		Debug only	N19		
Note: No reference to SYSCLK because this output is launched by the (internal) processor clock.					

Table 3-11. Asynchronous Open Drain Output Signals

Pin	Description	Comment	Pin
I2CGO	I ² C interface go	Arbitration I ² C and JTAG	N22
Notes: The rise/fall times are measured at 20% No reference to SYSCLK because this Pull up resistor = TBD	6 to 80% of the input signal swing. output is launched by the (internal) process	sor clock.	

Table 3-12. Asynchronous Open Drain Bidirectional (BiDi) Signals

Pin	Description	Comment	Pin
CHKSTOP	Checkstop signal input/output		R20
Notes:			

No reference to SYSCLK because this output is launched by the (internal) processor clock. Pull up resistor = TBD

3.7 Mode Select Input Timing Specifications

This section provides timing specifications for the mode-select pins. These pins are sampled by HRESET.

Table 3-13 provides the input AC timing specifications as defined in *Figure 3-4* on page 26. The mode-select signals and debug pins are listed in *Table 3-14* on page 27 and *Table 3-15* on page 27.

Table 3-13.	Input AC	Timing	Specifications
			,

Call Out Number	Characteristic	Value		Lloit	Notos
		Minimum	Maximum	Offic	NOLES
1	HRESET Width	>1	—	ms	—
2	BYPASS Width	200		μs	—
3	Mode select signal setup	20	—	Processor clocks	1, 5
4	Mode select inputs hold time	1000	—	Processor clocks	1
5	PLL control signal setup	20	—	Processor clocks	2,3
6	PLL control inputs hold time	20	_	Processor clocks	2,3

Notes:

1. Mode select pins must not change level sooner than 20 processor clocks before the falling edge of HRESET and must be held for a minimum of 1000 processor clocks after the rising edge of HRESET.

2. PLL control pins must not change level earlier than 20 processor clocks before the rising edge of BYPASS and must be held for a minimum of 20 processor clocks after the rising edge of HRESET.

- 3. PLL control inputs must not change while HRESET is low.
- 4. For a timing diagram, see Figure 3-4 on page 26 and Figure 3-5 on page 28 .
- 5. Guaranteed by design and not tested.

Figure 3-4. HRESET and BYPASS Timing Diagram

- 3. HRESET and BYPASS may be low during initial IPL stages and not have to transition power prior to reference time A
- 4. PLL control inputs must not change while HRESET is low.
- 5. The legend for this figure is provided by callout number in Table 3-13 on page 25.

Table 3-14. Mode Select Type Input Signals

Pin	Description	Comment	Pin
BUS_CFG(0:2)	Bus configuration	Select processor clock to bus clock ratio	AA19, AC19, AB16
CKTERM_DIS	Clock receiver termination	Disable internal clock receiver terminator	AA14
PLL_MULT	Select between multiplier 8 or 12		AA8
PLL_RANGE(1:0)	PLL range select		AA9, AB7
PROCID(0:2)	Processor ID	For multi processor environment	L19, M19, M18

Table 3-15. Debug Pins

Pin	Description	Comment	Pin
AVP_RESET		Changes POR sequence	W23
EI_DISABLE		Turns off elasticity in the processor interface.	P20
GPULDBG	970FX debug	Change POR to debug mode, JTAG - $\mathrm{I}^{2}\mathrm{C}$ interaction	AA22

3.8 Spread Spectrum Clock Generator (SSCG)

3.8.1 Design Considerations

When designing with the Spread Spectrum Clock Generator (SSCG), there are several design issues that must be considered as described in this section. SSCG creates a controlled amount of long-term jitter. For a receiving PLL in the PowerPC 970FX to operate in this environment, it must be able to accurately track the SSCG clock jitter.

Note: The accuracy to which the PowerPC 970FX PLL can track the SSCG clock is called the *tracking skew*.

The following SSCG configuration is recommended:

- Down spread mode, less than or equal to 1% of the maximum frequency
- A modulation frequency of 30KHz
- A cubic sweep profile, also called a *Hershey Kiss*^{™1} profile (as in a Lexmark² profile), as shown in *Figure 3-5*.

In this configuration the tracking skew is less than 100ps.

^{1.} Hershey Kiss is a trademark of Hershey Foods Corporation.

^{2.} See patent 5,631,920.

3.9 I²C and JTAG

3.9.1 I²C Bus Timing Information

The I²C bus specification can be downloaded from Philips Semiconductors web site at <u>http://semiconductors.philips.com</u>.

The PowerPC 970FX I²C bus conforms to the standard-mode timing specification and does not support the high-speed (Hs-mode) or fast-mode timing.

The PowerPC 970FX I^2C pins are limited to OV_{DD} voltages. Level shifting and/or pullups may be required to interface to higher voltage devices. See the Philips I^2C bus specifications for recommendations on level shifting and pullups.

3.9.2 IEEE 1149.1 AC Timing Specifications

Table 3-16 provides the IEEE 1149.1 (JTAG) AC timing specifications as defined in *Figure 3-6* on page 30 and *Figure 3-7* on page 31. The five JTAG signals are as follows:

- 1. TDI
- 2. TDO
- 3. TMS
- 4. TCK
- 5. TRST

Note: The following are some of the PowerPC 970FX's non-standard IEEE AC timing implementations:

- 1. Refer to Section 3.9.3 I2C and JTAG Considerations to determine pullups/pulldowns for configuration of TCK, TDI, and TMS
- 2. Systems using multiple PowerPC 970FXs in multiprocessor configurations should not daisy chain JTAG scan chains if I2C is supported. They should connect the JTAG scan chains in parallel (TCK, TDI, etc., tied together) and use separate TMS inputs to select each 970 processor forJTAG access.
- 3. JTAG operations need the core clock to be operating usually with PLL in bypass. CLKIN and CLKIN must receive at least 16 pulses for TCK down level and 16 pulses for TCK up level.

Call Out Number	Characteristic	Minimum	Maximum	Unit	Notes
—	TCK frequency of operation	TBD	1/16	Core processor frequency	1, 5
1	TCK cycle time	32	_	Processor clocks	2, 5
2	TCK clock pulse width	15	—	Processor clocks	2, 5
Mataai					

Notes:

1. TCK frequency is limited by the core processor frequency.

2. Processor clock cycles.

- 3. Guaranteed by characterization and not tested.
- 4. Minimum specification guaranteed by characterization and not tested.
- 5. JTAG timings are dependent on an active SYSCLK.
- 6. For a timing diagram, see Figure 3-6 on page 30 and Figure 3-7 on page 31.

Datasheet PowerPC 970FX

Advance - IBM Confidential

Table 3-16. JTAG AC Timing Specifications (Dependent on SYSCLK)

Call Out Number	Characteristic	Minimum	Maximum	Unit	Notes
3	TCK rise and fall times	0	2	ns	3, 5
4	TMS, TDI data setup time	0	—	ns	5
5	TMS, TDI data hold time	15	—	ns	5
6	TCK to TDO data valid	2.5	12	ns	4, 5
7	TCK to TDO high impedance	3	9	ns	3, 5
8	TCK to output data invalid (output hold)	0	—	ns	5
Notes:					

Notes:

1. TCK frequency is limited by the core processor frequency.

2. Processor clock cycles.

3. Guaranteed by characterization and not tested.

4. Minimum specification guaranteed by characterization and not tested.

- 5. JTAG timings are dependent on an active SYSCLK.
- 6. For a timing diagram, see Figure 3-6 on page 30 and Figure 3-7 on page 31.

3.9.3 I²C and JTAG Considerations

For systems using only JTAG, TDO should be pulled up (tied to OV_{DD}), and the I²C data and clock pins should also be tied to OV_{DD} . For systems using only I²C, TCK, TMS, TDO, and TDI should be pulled down. If the system needs to support both JTAG and I²C access, it will require implementing pulldown resistors for I²C that can be pulled high (overridden or switched out) when JTAG operation is needed. Additionally, the JTAG driver hardware connected to the 970FX should drive its outputs low (on TCK, TMS, TDI) when JTAG is idle. Systems using multiple PowerPC 970FXs in multiprocessor configurations should not daisy chain JTAG scan chains if I²C is supported. They should connect the JTAG scan chains in parallel (TCK, TDI, etc., tied together) and use separate TMS inputs to select each 970 processor for JTAG access.

Note: TRST should always be pulled up to OV_{DD} on the PowerPC 970FX.

3.9.4 Boundary Scan Considerations

The PowerPC 970FX does not support the BSDL standard for implementing boundary scan testing.

4. PowerPC 970FX Microprocessor Dimension and Physical Signal Assignments

IBM offers a ceramic ball grid array, CBGA, which supports 576 balls as the PowerPC 970FX package.

The following sections contain several views of the package, pin information, and a pin listing.

Figure 4-1 shows the side and top views of the package including the height from the top of the die to the bottom of the solder balls. *Figure 4-2* shows a bottom view of the PowerPC 970FX.

4.1 ESD Considerations

This product has been ESD tested to meet or exceed the specifications for Class 1A for Human Body Model, HBM, in JEDEC spec JESD22-A114-B. Appropriate ESD handling procedures should be implemented and maintained for any facilities handling this component.

4.2 PowerPC 970FX Package Side and Top View

Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View)

4.3 PowerPC 970FX Package Bottom View

Figure 4-2. PowerPC 970FX Microprocessor Bottom Surface Nomenclature of CBGA Package (Bottom View)

Datasheet PowerPC 970FX

4.4 Microprocessor Ball Placement

Figure 4-3. PowerPC 970FX Ball Placement (Top View)

I	Note:	This	s diagi	ram is	orien	ted as	s if loo	king c	lown t	hroug	h the	Powe	rPC 9	70FX	with it	place	ed and s	olderec	l on th	ie sys	tem b	oard -	a top	view.	
L	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
4	OV _{DD}	ADIN37	ADIN33	ADIN36	ADIN38	ADIN43	ADIN39	ADIN41	ADIN19	ADIN40	ADIN16	ADIN5	ADOUT2 9	ADOUT1 7	ADOUT4	ADOUT3 8	ADOUT42	ADOUT34	ADOUT4 3	ADOUT2 4	ADOUT3 7	GÑD	ADOUT2 5	OV _{DD}	A
Ľ	ADIN24	ADIN23 A23	GND	ADIN31 A21	A20	ADIN27 A19	GND	ADIN26	OV _{DD} A16	ADIN15 A15	GND	V _{DD}	GND	OV_{DD}	ADOUT1 8 A10	GND	ADOUT14	OV _{DD}	ADOUT3 0 A6	GND	ADOUT3 1 A4	V _{DD}	ADOUT2 2 A2	GND	В
	B24	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	8 B12	9 B11	B10	9 B9	B8	B7	B6	B5	B4	B3	B2	B1	_
•	C24 DV _{DD}	C23 GND	C22 ADIN20	C21 GND	C20 V _{DD}	C19 ADIN34	C18 ADIN35	C17 ADIN29	C16 ADIN42	C15 ADIN17	C14 ADIN28	C13 ADIN4	C12 ADOUT2 8	C11 ADOUT1	C10 ADOUT4 1	C9 ADOUT3 9	C8 ADOUT35	C7 ADOUT33	C6 ADOUT3	C5 ADOUT2	C4 ADOUT3 2	GND		C1 ADOUT2	с
F	D24 CLKIN	D23 V _{DD}	D22 ADIN12	D21 V _{DD}	D20 ADIN32	D19 V _{DD}	D18 ADIN30	D17 V _{DD}	D16 GND	D15 ADIN18	D14 GND	D13 V_{DD}	D12 GND	D11 ADOUT1 5	D10 GND	09 00	D8 ADOUT27	D7 V _{DD}	D6 ADOUT2 3	D5 V _{DD}	GND	D3 CLKOUT	D2 ADOUT2 6	D1 GND	D
	E24 CLKIN	GND	E22 V _{DD}	E21 ADIN22	E20 ADIN21	GND	E18 V _{DD}	GND	E16 V _{DD}	GND	^{E14} V _{DD}	GND	E12 ADOUT1 6	GND	E10 V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	VDD	E3 CLKOUT	E2 ADOUT1 2	OV _{DD}	E
•	F24 GND	F23 ADIN10	F22 GND	F21 ADIN25	GND	F19 OV_{DD}	F18 GND	^{F17} V _{DD}	F16 GND	^{F15} V _{DD}	F14 GND	F13 V _{DD}	F12 GND	^{F11} V _{DD}	F10 GND	^{F9} V _{DD}	GND	ov _{DD}	GND	v _{DD}	F4 ADOUT1 1	ov _{dd}	F2 ADOUT1 0	F1 SROUT1	F
,	G24 ADIN13	G23 GND	G22 V _{DD}	G21 ADIN11	G20 ADIN9	G19 ADIN14	G18 V _{DD}	G17 GND	G16 V _{DD}	G15 GND	G14 V _{DD}	G13 GND	G12 V _{DD}	G11 GND	G10 V _{DD}	G9 GND	G8 V _{DD}	G7 GND	G6 V _{DD}	G5 GND	G4 ADOUT9	G3 ADOUT1 3	G2 GND	G1 SROUT1	G
(H24 DVDD	H23 ADIN7	H22 ADIN2	H21 ADIN0	GND	н19 V_{DD}	GND	н17 V_{DD}	GND	H15 V _{DD}	H14 GND	н13 V_{DD}	GND	h11 V _{DD}	H10 GND	H9 V _{DD}		H7 V _{DD}	GND	V _{DD}	GND	H3 ADOUT7	H2 ADOUT1	H1 ADOUT8	н
	J24 ADIN8	GND	J22 ADIN3	J21 ADIN1	J20 V _{DD}	J19 GND	UI8 OV _{DD}	J17 GND	J16 V _{DD}	J15 GND	U14 OV _{DD}	J13 GND	J12 V _{DD}	J11 GND	J10 OV _{DD}	GND	OV _{DD}	GND	J6 V _{DD}	GND	V _{DD}	GND	V _{DD}	ov _{dd}	J
	K24 SRIN0	к23 V _{DD}	K22 ADIN6	oV _{DD}	GND	к19 V_{DD}	GND	ov _{dd}	GND	K15 V _{DD}	K14 GND	кіз V _{DD}	GND	K11 V _{DD}	GND	кэ V _{DD}	GND	кт V _{DD}	GND	ov _{dd}	K4 ADOUT5	K3 ADOUT2	K2 ADOUT6	GND	к
	L24 SRIN0	GND	L22 SRIN1	L21 SRIN1	L20 V _{DD}	L19 PROCID 0	L18 V _{DD}	GND	OV _{DD}	GND	L14 V _{DD}	GND	V _{DD}	GND	OV _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	L3 SROUT0	L2 SROUT0	L1 ADOUT3	L
•	M24 GND	M23 V _{DD}	GND	M21 V _{DD}	GND	M19 PROCID 1	M18 PROCID 2	M17 V_{DD}	GND	M15 V _{DD}	GND	M13 V _{DD}	GND	M11 V _{DD}	GND	^{м9} ОV _{DD}	GND	M7 V _{DD}	GND	N5 V _{DD}	GND	M3 ADOUT4	GND	ov _{DD}	м
•	N24 DV _{DD}	GND	N22 I2CGO	N21 TRIGGE RIN	N20 V_{DD}	N19 TRIGGE ROUT	N18 V_{DD}	GND	N16 V _{DD}	GND	N14 V _{DD}	GND	N12 V_{DD}	GND	N10 V _{DD}	GND	N8 V _{DD}	GND	N6 V _{DD}	GND	V _{DD}	N3 ADOUT0	V ² V _{DD}	N1 SPARE_ GND	N
	P24 AVDD	P23 V _{DD}	GND	P21 V _{DD}	P20 EI_DISA BLE	P19 V_{DD}	GND	^{Р17} ОV_{DD}	GND	P15 V _{DD}	GND	P13 V_{DD}	GND	P11 V _{DD}	GND	P9 V _{DD}	GND	P7 V _{DD}	GND	V _{DD}	GND	P3 V _{DD}	P2 Z_OUT	P1 V _{DD}	Р
0	R24 ANALO 3_GND	GND	R22 SYSCLK	R21 GND	R20 CHKST OP	GND	R18 V _{DD}	R17 GND	^{R16} V _{DD}	GND	^{R14} V _{DD}	GND	R12 V _{DD}	R11 GND	R10 V _{DD}	GND R9	V _{DD}	GND	R6 V _{DD}	GND	V _{DD}	GND R3	R2 KVPRBV DD	R1 Z_SENS E	R
0	T24 GND	т23 V_{DD}	T22 SYSCLK	OV _{DD}	T20 PLL_LO CK	T19 PLLTES TOUT	GND	т17 V_{DD}	GND	OV _{DD}	GND	T13 V_{DD}	GND	OV _{DD}	GND	т9 V_{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	T2 KVPRB GND	V _{DD}	т
		GND	V _{DD}	GND	V _{DD}	LSSD_S CAN_EN ABLE	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	U
Ē	J24 DI2	PSRO0 U23	THERM _INT U22	QACK U21	HRESET	V _{DD}	GND	V DD U17	GND	V _{DD}	GND U14	V _{DD}	GND	V_{DD} U11	GND	V _{DD}	GND U8	V _{DD}	GND U6	PSRO_ Enable	GND	V _{DD}	GND	V _{DD}	V
•	V24	AVP_RE SET V23	PLLTES T V22	GND V21	TRST V20	GND V19	V DD V18	GND	V DD V16	GND V15	V _{DD} V14	GND V13	V _{DD} V12	GND V11	V _{DD} V10	GND	V _{DD} v8	GND v7	V _{DD} v6	GND	SPARE2 V4	GND	V _{DD}	GND	w
-	GND W24	V _{DD} W23	V _{DD} W22	I2CDT W21	GND	V DD W19	GND W18	OV_{DD} w17	GND W16	V _{DD} W15	GND W14	OV_{DD} W13	GND W12	V _{DD}	GND W10	V _{DD}	GND W8	V _{DD}	GND	V _{DD}	GND	V _{DD} w3	GND	DIODEP OS W1	Y
•	Y24	GND Y23	GPULD BG Y22	GND Y21	I2CCK Y20	BUS_CF G0 Y19	V _{DD} Y18	GND	V DD Y16	GND Y15	CKTER M_DIS Y14	SPARE Y13	AFN Y12	GND Y11	PSYNC Y10	PLL_RA NGE1 Y9	PLL_MULT	GND	OV_{DD} Y6	Y5	V _{DD}	GND Y3	V _{DD}	DIODEN EG Y1	Â
_	AA24	• DD	AA22	AA21	AA20	AA19	AA18	AA17	G2 AA16	AA15	AA14	AA13	AA12	SEL1 AA11	AA10	AA9	AA8	E0 AA7	OP_ENA BLE AA6	ODE AA5 RI	AA4	AA3	AA2	AA1	В
s	AB24 YNC_E	AB23	AB22	AB21 TDI	AB20	AB19 INT	AB18	AB17	L AB16 BUS_CF	AB15	AB14	AB13	AB12 QREQ	AB11 PULSE_	AB10	AB9	AB8	AB7 PLL_RANG	AB6 RAMST	AB5 LSSDM	AB4 SRESET	AB3	AB2 GND	AB1	A
Ē	AC24 BI_MOD E	AC23 GND	AC22 V _{DD}	AC21 GND	AC20 V _{DD}	AC19 BUS_CF G1	AC18 V _{DD}	AC17 GND	AC16 C1_UND _GLOBA	AC15 C2_UND _GLOBA	AC14 V _{DD}	AC13 GND	AC12 V _{DD}	AC11 GND	AC10 PULSE_ SEL2	AC9 PULSE_ SEL0	AC8 V _{DD}	AC7 GND	AC6 V _{DD}	AC5 GND	AC4 V _{DD}	GND	AC2 V _{DD}	AC1 GND	A C
•	AD24 GND	AD23	AD22 TMS	AD21 TCK	AD20 GND	AD19 OV _{DD}	AD18 MCP	AD17 TBEN	AD16 GND	AD15 OV _{DD}	AD14 PSYNC_ OUT	AD13 TDO	AD12 ATTENT ION	AD11 LSSD_S TOP_EN ABLE	AD10 GND	AD9 OV _{DD}	AD8 LSSD_STO PC2_ENAB LE	AD7 LSSD_STO PC2STAR_ ENABLE	AD6 GND	ads V _{DD}	GND	ads V _{DD}	GND	adı OV _{DD}	A D
_																									

Figure 4-4. PowerPC 970FX Ball Placement (Bottom View)

A	0V _{DD}	5 2	GND 3	7 7 4	4 5	3 6	4 7	2 8	8 9	0 10	7 7 11	9 12	13	14	15	16	17	18	ADIN43	ADIN38	ADIN36	22	23	24
в	A1	B2 ADOUT2 2 ADOUT2	вз V _{DD} Аз	B4 ADOUT3 1	A5	ADOUT3 0	A7	B8 ADOUT1 4	A9 A9	B10 ADOUT1 8 A10	A11 ADDUIT	B12 GND A12	B13 VDD A13	A14	B15 ADIN15	A16	B17 ADIN26	A18	B19 ADIN27 A19	B20 OV _{DD} A20	B21 ADIN31 A21	A22	B23 ADIN23 A23	B24 ADIN24 A24
c	C1 ADOUT2 0		GND	C4 ADOUT3 2	C5 ADOUT2 1	C6 ADOUT3 6	C7 ADOUT3 3	C8 ADOUT3 5	C9 ADOUT3 9	C10 ADOUT4 1	C11 ADOUT1 9	C12 ADOUT2 8	C13 ADIN4	C14 ADIN28	C15 ADIN17	C16 ADIN42	C17 ADIN29	C18 ADIN35	C19 ADIN34	C20 V _{DD}	GND	C22 ADIN20	GND	OV _{DD}
D	GND	D2 ADOUT2 6	D3 CLKOUT	GND	D5 V _{DD}	D6 ADOUT2 3	D7 V _{DD}	D8 ADOUT2 7	09 07 00	GND	D11 ADOUT1 5	GND	D13 V _{DD}	GND	D15 ADIN18	GND	D17 V _{DD}	D18 ADIN30	D19 V _{DD}	D20 ADIN32	D21 VDD	D22 ADIN12	D23 V _{DD}	D24 CLKIN
Е	ov _{dd}	E2 ADOUT1 2	E3 CLKOUT	V _{DD}	GND	^{Е6} V _{DD}	GND	V _{DD}	GND	E10 V _{DD}	GND	E12 ADOUT1 6	GND	E14 V _{DD}	GND	E16 V _{DD}	GND	E18 V _{DD}	GND	E20 ADIN21	E21 ADIN22	E22 V _{DD}	GND	E24 CLKIN
F	F1 SROUT1	F2 ADOUT1 0	oV _{DD}	F4 ADOUT1 1	V _{DD}	GND	ov _{dd}	GND	^{F9} V _{DD}	F10 GND	F11 V _{DD}	GND	F13 V_{DD}	F14 GND	^{F15} V _{DD}	GND	^{F17} V _{DD}	GND	^{F19} ОV_{DD}	GND	F21 ADIN25	F22 GND	F23 ADIN10	F24 GND
G	G1 SROUT1	GP GND	G3 ADOUT1 3	G4 ADOUT9	G5 GND	G6 V _{DD}	G7 GND	G8 V _{DD}	G9 GND	G10 V _{DD}	G11 GND	G12 V _{DD}	G13 GND	^{G14} V _{DD}	G15 GND	G16 V _{DD}	G17 GND	G18 V _{DD}	G19 ADIN14	G20 ADIN9	G21 ADIN11	G22 V _{DD}	G23 GND	G24 ADIN13
н	H1 ADOUT8	H2 ADOUT1	H3 ADOUT7	H4 GND	H5 V _{DD}	GND	нт V _{DD}	H8 GND	H9 V _{DD}	H10 GND	H11 V _{DD}	H12 GND	^{H13} V _{DD}	H14 GND	H15 V _{DD}	H16 GND	^{H17} V _{DD}	H18 GND	^{H19} V _{DD}	H20 GND	H21 ADIN0	H22 ADIN2	H23 ADIN7	H24 OV _{DD}
J	J1 OV _{DD}	J2 V _{DD}	J3 GND	J4 V _{DD}	J5 GND	J6 V _{DD}	J7 GND	J8 OV _{DD}	J9 GND	J10 OV_{DD}	J11 GND	J12 V _{DD}	J13 GND	J14 OV _{DD}	J15 GND	J16 V _{DD}	J17 GND	J18 OV_{DD}	J19 GND	J20 V _{DD}	J21 ADIN1	J22 ADIN3	J23 GND	J24 ADIN8
к	K1 GND	K2 ADOUT6	K3 ADOUT2	K4 ADOUT5	K5	K6 GND	K7	K8 GND	К9	K10 GND	K11	K12 GND	к13	K14 GND	K15	K16	K17	K18	0 K19 Vpp	K20 GND	K21	K22 ADIN6	K23	K24 SRIN0
L	L1 ADOUT3	L2 SROUTO	L3 SROUT0	L4 V _{DD}		le V _{DD}		l8 V _{DD}							L15 GND		L17 GND		1 L19 PROCID		L21 SRIN1	L22 SRIN1		L24 SRIN0
м		M2 GND	M3 ADOUT4	M4 GND	M5 V _{DD}	M6 GND	M7 V _{DD}	M8 GND	M9 OV_{DD}	M10 GND	M11 V_{DD}	M12 GND	M13 V _{DD}	M14 GND	M15 V _{DD}	M16 GND	M17 V _{DD}	M18 PROCID	M19 PROCID	M20 GND	RIN M21 VDD	M22 GND	M23 V _{DD}	M24 GND
N	N1 SPARE_	N2 Vpp	N3 ADOUT0		N5 GND		N7 GND	N8 Vpp	N9 GND	N10	N11 GND	N12	N13 GND	N14	N15	N16	N17 GND	N18	N19 TRIGGE	BLE N20	N21 TRIGGE	N22 I2CGO	N23 GND	N24
P		P2 Z_OUT	P3		P5		P7		P9 Vpp	P10	P11	P12	P13	P14	P15	P16	P17 OVee		P19	P20 EI_DISA	P21	P22 GND	P23	_GND P24 AVDD
I R	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19		R21	R22	R23	R24
-	t1 V _{DD}	T2	тз V _{DD}	T4	t5 V _{DD}	T6	т7 V_{DD}	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	ABLE	T20	T21	T22	T23	T24
U	U1 GND	U2 V _{DD}	U3 GND	u4 V _{DD}		ue V _{DD}	U7 GND	us V _{DD}	U9 GND	010 V_{DD}	U11 GND	U12 V _{DD}	U13 GND	u14 V _{DD}	U15 GND	U16 V_{DD}	U17 GND	U18 V _{DD}	U19 LSSD_S	u20 V _{DD}	U21 GND		U23 GND	U24 DI2
v	v1 V _{DD}	V2 GND	v3 V _{DD}	V4 GND	V5 PSRO_	GND V6	v7 V _{DD}	V8 GND	V9 V_{DD}	V10 GND	V11 V _{DD}	V12 GND	V13 V _{DD}	V14 GND	V15 V _{DD}	V16 GND	v17 V _{DD}	V18 GND	v19 VDD	V20 HRESET	V21 QACK	V22 THERM_	V23 PSRO0	V24 BYPASS
w	W1 GND	w2 V _{DD}	W3 GND	W4 SPARE2	W5 GND	w6 V _{DD}	w7 GND	ws V _{DD}	w9 GND	w10 V_{DD}	W11 GND	w12 V _{DD}	W13 GND	w14 V _{DD}	W15 GND	w16 V_{DD}	W17 GND	^{W18} V _{DD}	W19 GND	W20 TRST	W21 GND	W22 PLLTES	W23 AVP_RE	W24 OV _{DD}
Y	Y1 DIODEP	GND	v3 V _{DD}	GND	v5 V _{DD}	GND	v7 V _{DD}	Y8 GND	Y9 V _{DD}	Y10 GND	V11 V _{DD}	V12 GND	V13 OV_{DD}	Y14 GND	V15 V _{DD}	Y16 GND	V17 OV_{DD}	Y18 GND	Y19 V _{DD}	Y20 GND	Y21 I2CDT	Y22 V _{DD}	V23 V _{DD}	Y24 GND
A	AA1 DIODEN	AA2 V _{DD}	AA3 GND	AA4 V _{DD}	AA5 RI		AA7 GND	AA8 PLL_MU	AA9 PLL_RA	AA10 PSYNC	AA11 GND	AA12 AFN	AA13 SPARE	AA14 CKTER	AA15 GND	AA16 V _{DD}	AA17 GND	AA18 V _{DD}	AA19 BUS_CF	AA20 I2CCK	AA21 GND	AA22 GPULDB	AA23 GND	AA24 OV _{DD}
AB	AB1 V _{DD}	AB2 GND	AB3 V _{DD}	AB4 SRESET	AB5 LSSDM ODE	AB6 RAMST OP_ENA	AB7 PLL_RA NGE0	AB8 GND	AB9 V _{DD}	AB10 GND	AB11 PULSE_ SEL1	AB12 QREQ	AB13 V _{DD}	AB14 GND	AB15 V _{DD}	AB16 BUS_CF G2	AB17 V _{DD}	AB18 GND	AB19 INT	AB20 GND	AB21 TDI	AB22 GND	AB23 V _{DD}	AB24 SYNC_E NABLE
A C	GND	AC2 V _{DD}	GND	AC4 V _{DD}	GND	AC6 V _{DD}	GND	AC8 V _{DD}	AC9 PULSE_ SEL0	AC10 PULSE_ SEL2	AC11 GND	AC12 V _{DD}	AC13 GND	AC14 V _{DD}	AC15 C2_UND _GLOBA L	AC16 C1_UND _GLOBA L	AC17 GND	AC18 V _{DD}	AC19 BUS_CF G1	AC20 V _{DD}	AC21 GND	AC22 V _{DD}	AC23 GND	AC24 BI_MOD E
A D	OV _{DD}	GND	V _{DD}	GND	V _{DD}	GND	TOPC2S TAR_EN ABLE	TOPC2_ ENABLE	OV _{DD}	GND	TOP_EN ABLE	ON	IDO	OUT	OV _{DD}	GND	IBEN	мср	OV _{DD}	GND	ICK	IMS	OV _{DD}	GND
	AD1	AD2	AD3	AD4	AD5	AD6	AD7	AD8	AD9	AD10	AD11	AD12	AD13	AD14	AD15	AD16	AD17	AD18	AD19	AD20	AD21	AD22 TMS	AD23	AD24

4.5 PowerPC 970FX Microprocessor Pinout Listings

Table 4-1 provides the pinout listing for the CBGA package.

Table 4-1. Pinout Listing for the CBGA Package

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
ADIN(0:43)	H21, J21, H22, J22, C13, A13, K22, H23, J24, G20, F23, G21, D22, G24, G19, B15, A14, C15, D15, A16, C22, E20, E21, B23, B24, F21, B17, B19, C14, C17, D18, B21, D20, A22, C19, C18, A21, A23, A20, A18, A15, A17, C16, A19	_	Elastic Input	_
ADOUT(0:43)	N3, H2, K3, L1, M3, K4, K2, H3, H1, G4, F2, F4, E2, G3, B8, D11, E12, A11, B10, C11, C1, C5, B2, D6, A5, A2, D2, D8, C12, A12, B6, B4, C4, C7, A7, C8, C6, A4, A9, C9, A10, C10, A8, A6	_	Elastic Output	_
AFN	AA12	—	—	2
ANALOG_GND	R24	—	Analog GND	
ATTENTION	AD12	High	Output	—
AV _{DD}	P24	—	Analog V _{DD}	—
AVP_RESET	W23	Low	Input	1
BI_MODE	AC24	Low	Input	1
BUS_CFG(0:2)	AA19, AC19, AB16	—	Input	10
BYPASS	V24	Low	Input	—
C1_UND_GLOBAL	AC16	High	Input	—
C2_UND_GLOBAL	AC15	High	Input	—
CHKSTOP	R20	Low	OD BiDi	—
CKTERM_DIS	AA14	High	Input	8
CLKIN	E24	—	Elastic Input	—
CLKIN	D24	—	Elastic Input	—
CLKOUT	D3	—	Elastic Output	—
CLKOUT	E3	—	Elastic Output	—
DI2	U24	Low	Input	1

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.

- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST must be pulled up to OV_{DD}.
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO = Elastic Output OD = Open Drain BiDi = Bidirectional. For additional information, see the *PowerPC 970FX RISC Microprocessor Users Manual.*
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 are tied to GND.
- 8. CKTERM_DIS high disables SYSCLK termination

9. If GPULDBG = 1 during HRESET transistion from low to high: Run POR in debug mode and stop after each POR instruction. If GPULDBG = 0 during HRESET transistion from low to high: Run POR at once and not stop after each POR instruction. Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.

10. The PLL_MULT and PLL_RANGE bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the POR Application Note for more details

Datasheet PowerPC 970FX

IBM

Advance - IBM Confidential

Table 4-1. Pinout Listing for the CBGA Package (Continued)

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
DIODENEG	AA1	—	—	—
DIODEPOS	Y1	—	—	—
EI_DISABLE	P20	High	Input	—
GND	A3, B1, B5, B9, B12, B14, B18, B22, C3, C21, C23, D1, D4, D10, D12, D14, D16, E5, E7, E9, E11, E13, E15, E17, E19, E23, F6, F8, F10, F12, F14, F16, F18, F20, F22, F24, G2, G5, G7, G9, G11, G13, G15, G17, G23, H4, H6, H8, H10, H12, H14, H16, H18, H20, J3, J5, J7, J9, J11, J13, J15, J17, J19, J23, K1, K6, K8, K10, K12, K14, K16, K18, K20, L5, L7, L9, L11, L13, L15, L17, L23, M2, M4, M6, M8, M10, M12, M14, M16, M20, M22, M24, N5, N7, N9, N11, N13, N15, N17, N23, P4, P6, P8, P10, P12, P14, P16, P18, P22, R3, R5, R7, R9, R11, R13, R15, R17, R19, R21, R23, T4, T6, T8, T10, T12, T14, T16, T18, T24, U1, U3, U5, U7, U9, U11, U13, U15, U17, U21, U23, V2, V4, V6, V8, V10, V12, V14, V16, V18, W1, W3, W5, W7, W9, W11, W13, W15, W17, W19, W21, Y2, Y4, Y6, Y8, Y10, Y12, Y14, Y16, Y18, Y20, Y24, AA3, AA7, AA11, AA15, AA17, AA21, AA23, AB2, AB8, AB10, AB14, AB18, AB20, AB22, AC1, AC3, AC5, AC7, AC11, AC13, AC17, AC21, AC23, AD2, AD4, AD6, AD10, AD16, AD20, AD24		GND	
GPULDBG	AA22	High	Input	9
HRESET	V20	Low	Input	—
I2CCK	AA20	_	OD BiDi	-
I2CDT	Y21		OD BiDi	—
I2CGO	N22	—	OD	—
INT	AB19	Low	Input	
KVPRBGND	Т2	_	GND Test Points	6
KVPRBVDD	R2	_	V _{DD} Test Points	6
LSSDMODE	AB5	High	Input	4
LSSD_SCAN_ENABLE	U19	High	Input	4

Notes:

- 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST must be pulled up to OV_{DD}.
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO= Elastic Output OD= Open Drain BiDi= Bidirectional. For additional information, see the PowerPC 970FX RISC Microprocessor Users Manual.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 are tied to GND.
- 8. CKTERM_DIS high disables SYSCLK termination

9. If GPULDBG = 1 during HRESET transistion from low to high: Run POR in debug mode and stop after each POR instruction. If GPULDBG = 0 during HRESET transistion from low to high: Run POR at once and not stop after each POR instruction. Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.

10. The PLL_MULT and PLL_RANGE bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

PowerPC 970FX Microprocessor Dimension and Physical Signal Assignments Page 38 of 59

Table 4-1. Pinout Listing for the CBGA Package (Continued)

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
LSSD_STOP_ENABLE	AD11	High	Input	4
LSSD_STOPC2_ENABLE	AD8	High	Input	4
LSSD_STOPC2STAR_ENABLE	AD7	High	Input	4
MCP	AD18	Low	Input	—
PLL_LOCK	Т20	High	Output	—
PLL_MULT	AA8	—	Input	10
PLL_RANGE(1:0)	AA9, AB7	_	Input	10
PLLTEST	W22	High	Input	—
PLLTESTOUT	T19	—	Output	—
PROCID(0:2)	L19, M19, M18	_	Input	—
PSRO_ENABLE	V5	—	Output	—
PSRO0	V23	—	Output	—
PSYNC	AA10	—	Input	—
PSYNC_OUT	AD14	—	Output	—
PULSE_SEL(0:2)	AC9, AB11, AC10	—	Input	—
QACK	V21	Low	Input	—
QREQ	AB12	Low	Output	—
RAMSTOP_ENABLE	AB6	High	Input	4
RI	AA5	Low	Input	1
SPARE	AA13	—	Input	1, 2
SPARE2	W4	—	—	7
SPARE_GND	N1	—	—	7
SRESET	AB4	Low	Input	—
SRIN(0:1)	L24, L21	—	Elastic Input	—
SRIN(0:1)	K24, L22	—	Elastic Input	—

Notes:

- 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST must be pulled up to OV_{DD}.
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO= Elastic Output OD= Open Drain BiDi= Bidirectional. For additional information, see the PowerPC 970FX RISC Microprocessor Users Manual.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 are tied to GND.
- 8. CKTERM_DIS high disables SYSCLK termination
- 9. If GPULDBG = 1 during HRESET transistion from low to high: Run POR in debug mode and stop after each POR instruction. If GPULDBG = 0 during HRESET transistion from low to high: Run POR at once and not stop after each POR instruction. Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.
- 10. The PLL_MULT and PLL_RANGE bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

IBM

Datasheet PowerPC 970FX

Advance - IBM Confidential

Table 4-1. Pinout Listing for the CBGA Package (Continued)

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
SROUT(0:1)	L3, G1	—	Elastic Output	—
SROUT(0:1)	L2, F1	—	Elastic Output	—
SYNC_ENABLE	AB24	High	Input	4
SYSCLK	R22	—	Input	—
SYSCLK	T22	—	Input	—
TBEN	AD17	High	Input	—
ТСК	AD21	—	Input	3
TDI	AB21	—	Input	3
TDO	AD13	—	Output	—
THERM_INT	V22	Low	Input	—
TMS	AD22	—	Input	3
TRIGGERIN	N21	High	Input	—
TRIGGEROUT	N19	High	Output	—
TRST	W20	Low	Input	3
V _{DD}	B3, B13, C20, D5, D7, D13, D17, D19, D21, D23, E4, E6, E8, E10, E14, E16, E18, E22, F5, F9, F11, F13, F15, F17, G6, G8, G10, G12, G14, G16, G18, G22, H5, H7, H9, H11, H13, H15, H17, H19, J2, J4, J6, J12, J16, J20, K7, K9, K11, K13, K15, K19, K23, L4, L6, L8, L12, L14, L18, L20, M5, M7, M11, M13, M15, M17, M21, M23, N2, N4, N6, N8, N10, N12, N14, N16, N18, N20, P1, P3, P5, P7, P9, P11, P13, P15, P19, P21, P23, R4, R6, R8, R10, R12, R14, R16, R18, T1, T3, T5, T7, T9, T13, T17, T23, U2, U4, U6, U8, U10, U12, U14, U16, U18, U20, U22, V1, V3, V7, V9, V11, V13, V15, V17, V19, W2, W6, W8, W10, W12, W14, W16, W18, Y3, Y5, Y7, Y9, Y11, Y15, Y19, Y22, Y23, AA2, AA4, AA16, AA18, AB1, AB3, AB9, AB13, AB15, AB17, AB23, AC2, AC4, AC6, AC8, AC12, AC14, AC18, AC20, AC22, AD3, AD5		V _{DD}	
OV _{DD}	A1,A24,B7, B11, B16, B20, C2, C24, D9, E1, F3, F7, F19, H24, J1, J8, J10, J14, J18, K5, K17, K21, L10, L16, M1, M9, N24, P17, T11, T15, T21, W24, Y13, Y17, AA6, AA24, AD1, AD9, AD15, AD19, AD23	_	OV _{DD}	_

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.

- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST must be pulled up to OV_{DD}.
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO= Elastic Output OD= Open Drain BiDi= Bidirectional. For additional information, see the PowerPC 970FX RISC Microprocessor Users Manual.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 are tied to GND.
- 8. CKTERM_DIS high disables SYSCLK termination

9. If GPULDBG = 1 during HRESET transistion from low to high: Run POR in debug mode and stop after each POR instruction. If GPULDBG = 0 during HRESET transistion from low to high: Run POR at once and not stop after each POR instruction. Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.

10. The PLL_MULT and PLL_RANGE bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

PowerPC 970FX Microprocessor Dimension and Physical Signal Assignments Page 40 of 59

Table 4-1. Pinout Listing for the CBGA Package (Continued)

Signal Name	Pin Number	Active	I/O EI/EO ⁵	Notes
Z_OUT	P2	—	—	7
Z_SENSE	R1	_	_	7

Notes:

- 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 2. These pins are reserved for potential future use.
- 3. TCK must be tied high or low for normal machine operation. If used, TDI, TMS, and TRST must be pulled up to OV_{DD}.
- 4. These are test signals for factory use only and must be pulled down with a 10K resistor to GND for normal machine operation.
- 5. I = Input, O = Output, EI = Elastic Input, EO= Elastic Output OD= Open Drain BiDi= Bidirectional. For additional information, see the PowerPC 970FX RISC Microprocessor Users Manual.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. Z_OUT, Z_SENSE, SPARE_GND, and SPARE2 are tied to GND.
- 8. CKTERM_DIS high disables SYSCLK termination
- 9. If GPULDBG = 1 during HRESET transistion from low to high: Run POR in debug mode and stop after each POR instruction. If GPULDBG = 0 during HRESET transistion from low to high: Run POR at once and not stop after each POR instruction. Toggling GPULDBG from 1 to 0 later on will exit POR debug mode and continue without stopping after each instruction.
- 10. The PLL_MULT and PLL_RANGE bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

5. System Design Information

This section provides electrical and thermal design recommendations for successful application of the PowerPC 970FX.

5.1 External Resisters

The PowerPC 970FX contains no internal "pullup" resistors for any JTAG, I²C, mode select, or asynchronous inputs. System designs must include these external resistors where required. See *Table 5-6* and *Table 5-7* and *Section 3.9.3 I²C and JTAG Considerations* for information on implementing external pullups/pulldowns.

5.2 PLL Configuration

This section will help in configuring the PLL and determining SYSCLK input frequency for PowerPC 970FX systems.

5.2.1 Determining PLLMULT and BUS_CFG Settings

The first step is to determine the bus frequency. This parameter is a critical component of overall system performance. The bus should run as fast as your memory controller/bridge chip can support. Once you have determined your maximum bus frequency, you should select a bus multiplier ratio that will deliver the optimal processor core frequency.

Note: The PLL_MULT and PLL_RANGE bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details.

The available bus ratios are shown in *Table 5-1* on page 42. In most applications this would be the highest frequency possible for a given PowerPC 970FX part number, but other considerations (i.e. available power) may take precedence.

BUS_CFG(0:2)	Ratio	Notes
000	2:1	
001	3:1	
010	4:1	2
011	6:1	2
100	8:1	1
101	12:1	3
110	16:1	1
111	Invalid	

Table 5-1. PowerPC 970FX Bus Configuration

Note: BUS_CFG bits may be changed by SCOM commands during the POR sequence. Refer to the POR Application Note.

1. Bus ratios of 8:1 and 16:1 are not supported for Elastic Input (EI) functionality and powertune.

2. Limited PowerTune frequency scaling.

3. No PowerTune frequency scaling.

The bus frequency multiplier ratio will usually indicate the desired PLL multiplier setting. Ratios of 3 (3:1, 6:1, 12:1) should always use PLLMULT=0 (low) for a PLL multiplier of 12. The desired core frequency should be divided by 12 to determine the required input SYSCLK frequency. Ratios of 2 (2:1, 4:1, 8:1, 16:1) should always use PLLMULT=1 (high) to multiply SYSCLK by 8.

Note: Using bus frequency ratios of 3:1, 6:1 or 12:1 with PLLMULT=1 or ratios of 8:1 or 16:1 with PLLMULT=0 is not recommended. Internal clock synchronization delays may reduce performance.

After the correct BUS_CFG(0:2) and PLLMULT pin settings are determined, the required SYSCLK input frequency can be determined. The selected SYSCLK input frequency should be within the minimum/maximum frequencies specified in *Table 3-6* on page 19.

5.2.2 PLL_RANGE Configuration

The PLL VCO configuration for the PowerPC 970FX, using the pins PLL_RANGE1 and PLL_RANGE0, is shown in *Table 5-2* on page 43.

Note: There is some overlap between the PLL_RANGE settings. The best performance will always be obtained by setting the PLL_RANGE bits to run the core processor clock at the highest part of the selected range.

PLL_RANGE	(1:0) Settings	From Dongo
PLL_RANGE1	PLL_RANGE0	Frequency Kange
0	0	1.0 GHz to 1.4 GHz range
0	1	1.2 GHz to 1.8 GHz range
1	0	1.6 GHz to 3.0 GHz range
1 1		Reserved

Table 5-2. PowerPC 970FX PLL Configuration

Notes:

1. When setting the PLL_RANGE bits, processor operation should be preferenced in the higher portion of the processor frequency range for selected range bits. For example, a 2.0 GHz processor should have the PLL_RANGE bit settings (01).

2. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details.

5.2.3 Typical PLL and SYSCLK Configurations

Table 5-3 provides a few examples of typical system configurations.

Table 5-3. System Configuration - Typical Examples of Pin Settings

This table is not a complete list of possible configurations. Additional configurations are possible.

System Configuration	BUS_CFG(0:2) Pins	PLL_RANGE(0:1) Pins	PLL_MULT Pin	SYSCLK, SYSCLK Frequency	Notes
2.0 GHz Core, 1000 MHz EIO	000 (2:1)	01	1	250MHz	1
2.0 GHz core 667 MHz EIO	001 (3:1)	01	0	167MHz	1
1.8 GHz Core, 900 MHz EIO	000 (2:1)	01	1	225MHz	1
1.8 GHz core 600 MHz EIO	001 (3:1)	01	0	150MHz	1
1.6 GHz core, 800 MHz EIO	000 (2:1)	01	1	200MHz	1
1.6 GHz core 533 MHz EIO	001 (3:1)	01	0	133MHz	1
1.4 GHz core 700 MHz EIO	000 (2:1)	00	1	175MHz	1
1.4 GHz core 466 MHz EIO	001 (3:1)	00	0	117MHz	1
1.6 GHz core 100MHz (non-EIO debug scenario)	110 (16:1)	00	1	200MHz	1, 2

Notes:

1. This table is not a complete list of possible configurations. Additional configurations are possible.

2. EI_DISABLE pin = High to disable Elastic Input/Output (EIO) mode.

5.3 PLL Power Supply Filtering

The PowerPC 970FX microprocessor has a separate AV_{DD} pin which provides power to the clock generation phase-locked loop.

To ensure stability of the internal clock, filter the power supplied to the AV_{DD} PLL using a circuit similar to figure 5-1. To ensure that the capacitor filters out as much noise as possible, the capacitor should be placed as close as possible to the AV_{DD} and $ANALOG_GND$ pins. The capacitor used should have minimal inductance. The ferrite bead (FB) shown in *Figure 5-1* should supply an impedance of less than 70Ω in the100-500 MHz region.

Figure 5-1. PLL Power Supply Filter Circuit

5.4 Decoupling Recommendations

Capacitor decoupling is required for the PowerPC 970FX. Decoupling capacitors act to reduce high frequency chip switching noise and provide localized bulk charge storage to reduce major power surge effects. Guidelines for high frequency noise decoupling will be provided. Bulk decoupling requires a more complete understanding of the system and system power architecture which precludes discussion in this document.

High frequency decoupling capacitors should be located as close as possible to the processor with low lead inductance to the ground and voltage planes.

The recommended placement of the decoupling capacitors is shown in *Figure 5-2*. The decoupling layout is divided into three groups:

- Group 1 is located in the center of the package and under the PowerPC 970FX die.
- Group 2 includes Group 1 and is located in the center of the package and under the PowerPC 970FX die.
- Group 3, located adjacent to Group 2 (which includes Group 1), lays under the module footprint. Vias for the decoupling capacitors should ideally be through vias with via in pad for low impedance.

The recommended decoupling capacitor specifications are provided in Table 5-4.

Table 5-4. Recommended Decoupling Capacitor Specifications

0402 size (1.00 x 0.50 mm)
100 nF
Y5V or X7R dielectric
10V voltage rating

The minimum recommended number of decoupling capacitors for Group 1 and Group 2 are provided in *Table 5-5*.

Table 5-5. Recommended Minimum Number of Decoupling Capacitors

Recommer	nded Minimum Number of Decoupling Cap (See <i>Figure 5-2</i> on page 47)	pacitors
Group 1 Includes all balls in the area defined by a red rectangle from H9 to U16.	Group 2 Includes all balls in the area defined by a dotted-green rectangle from F7 to W18. Also includes all balls in Group 1.	Group 3 Includes all balls on the chip not in Groups 1 and 2.
Minimum of 40: 33 V _{DD} -GND 7 OV _{DD} -GND	Minimum of 80 caps (including all 12 OV _{DD})	Minimum of 35 V _{DD} -GND Minimum of 4 OV _{DD} -GND
Note: Add additional decoupling capacitor	rs to improve noise performance.	

5.4.1 Using the KVPRBVDD and KVPRBGND Pins

The PowerPC 970 features one pair of VDD and GND pins to assist in analyzing on-chip noise and voltage drop. These pins should not be connected into the normal VDD and GND planes, but should be brought out to test pads by traces that are as short as possible. An oscilloscope can be used on these test pads to measure on-chip VDD noise and thus to verify the decoupling and voltage regulation in a design. If these pins are not needed, they should be left unconnected.

Datasheet PowerPC 970FX

5.5 Decoupling Layout Guide

Figure 5-2. Decoupling Capacitor (Decap) Locations (Preliminary)

March 26, 2004

Datasheet PowerPC 970FX

Advance - IBM Confidential

For reliable operation, it is highly recommended that the unused inputs be connected to an appropriate signal level. For example:

- Unused active low inputs should be tied to V_{DD}.
- Multiple unused active high inputs may be ganged together for convenience.
- Unused active high inputs should be connected to GND.
- Multiple unused active low inputs may be ganged together for convenience.
- All no-connect (NC) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} and GND pins of the PowerPC 970FX.

Table 5-6. PowerPC 970FX Debug/Bringup Pin Settings and Information

Pin Name	Pin Location	In/Out/BiDi/JTAG ¹	Resistor Pull Up/D2wn Setting ¹ (For Normal Operation)	Comments
AVP_RESET	W23	In	Up	
C1_UND_GLOBAL	AC16	In	Down	
C2_UND_GLOBAL	AC15	In	Down	
GPULDBG	AA22	In	Down	
I2CGO	N22	Out	Up	arbitrates between I2C and JTAG.
TBEN	AD17	In	Down	
тск	AD21	In-JTAG	Down	JTAG – Test Clock
TDI	AB21	In-JTAG	Down	JTAG – Test Data In
TDO	AD13	Out-JTAG	Down	JTAG – Test Data Out
TMS	AD22	In-JTAG	Down	JTAG – Test Mode Select
TRIGGERIN	N21	In	Down	
TRIGGEROUT	N19	Out		
TRST	W20	In-JTAG	Up	Not needed – HRESET does the cop reset function. Tie high and leave unconnected.

Notes:

1. BiDi = Bidirectional

2. Pullups should use a 10K resistor to OV_{DD} . Pulldowns should use a 10K resistor to GND.

3. For I²C or JTAG operation refer to Section 3.9.3

Pin Name	Pin Location	In/Out	Pullup/Pulldown	Notes
AFN	AA12	Out	—	—
BI_MODE	AC24	In	Up	1
DI2	U24	In	Up	1
LSSDMODE	AB5	In	Down	2
LSSD_SCAN_ENABLE	U19	In	Down	2
LSSD_STOPC2_ENABLE	AD8	In	Down	2
LSSD_STOPC2STAR_ENABLE	AD7	In	Down	2
LSSD_STOP_ENABLE	AD11	In	Down	2
PLLTEST		In	Down	2
PSRO_Enable	V5	Out	—	—
PSRO0	V23	Out	—	—
PULSE_SEL(0:2)	AC9, AB11, AC10	In	Down	2
RAMSTOP_ENABLE	AB6	In	Down	2
RI	AA5	In	Up	1
SPARE	AA13	In/Out	—	—
SPARE2	W4	In/Out	_	3

AB24

Table 5-7. PowerPC 970FX Pins for Manufacturing Test Only

Note:

1. Pullups should use a 10K resistor to OV_{DD} . 2. Pulldowns should use a 10K resistor to GND.

3. Tied to GND.

SYNC_ENABLE

Down

In

2

5.6 Input-Output Usage

Table 5-8 provides details on the input-output usage of the PowerPC 970FX signals.

5.6.1 Chip Signal I/O and Test Pins

The system signal names, debug and test pins are shown in *Table 5-8*. There are 172 total chip pads. These include three power/capacitance pins.

Table 5-8. Input/Output Signal Descriptions

Pin Name	Width	In/Out	System/Debug Function	Notes
ADIN(0:43)	44	In	System: EI Address or data and control information	-
ADOUT(0:43)	44	Out	System: Elastic Interface (EI) Address or data and control information out	—
AFN	1	Out	Pin AFN is now a spare output pin	5
ANALOG_GND	1		Analog ground	—
ATTENTION	1	Out	Debug: Signal from PowerPC 970FX	—
AV _{DD}	1	In	Analog power supply	—
AVP_RESET	1	In	Manufacturing test use only	1
BI_MODE	1	In	Dedicated manufacturing	1
BUS_CFG(0:2)	3	In	Bus configuration select. Select bus frequency division factor: Divide CPU clock by 2, 3, 4, 6, 8, 12 or 16. 000 = 2:1 001 = 3:1 010 = 4:1 011 = 6:1 100 = 8:1 101 = 12:1 110 = 16:1 111 = Invalid	3, 8
BYPASS	1	In	Used to bypass the PLL.	1
C1_UND_GLOBAL	1	In	Debug: adjusts C1 clock to internal latches, not used for normal operation	1
C2_UND_GLOBAL	1	In	Debug: adjusts C2 clock to internal latches, not used for normal operation	1
CHKSTOP	1	OD /BiDi	System: Checkstop in/out	7

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal processor operation.

- 2. For I²C or JTAG operation, must be pull down with a 10K resistor to GND. Refer to Section 3.9.3.
- 3. Bus ratios 8:1 and 16:1 are not supported for Elastic Input (EI) functionality.
- 4. These are test signals for factory use only and must be pulled down to GND for normal processor operation.
- 5. This signal should not be connected.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. BiDi = Bidirectional.
- 8. Using the 4:1 or 12:1 ratio with multiplier of 12 will limit the use of the PowerTune to (freq)/2.
- 9. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

System Design Information Page 50 of 59

Table 5-8. Input/Output Signal Descriptions (Continued)

Pin Name	Width	In/Out	System/Debug Function	Notes
CKTERM_DIS	1	In	Disable internal termination in clock receiver	—
	2	In	System: EI Clock In; differential clock to the processor.	—
CLKOUT CLKOUT	2	Out	System: EI Differential clock to the bus	—
DI2	1	In	Dedicated Manufacturing	1
EI_DISABLE	1	In	Debug: Disable elastic interface	—
GPULDBG	1	In	Debug: POR debug mode select.	—
HRESET	1	In	System: Power on reset	—
IZCCK	1	OD/BiD i	System: I ² C signal clock	7
I2CDT	1	OD/BiD i	System: I ² C interface data	7
I2CGO	1	OD	Debug: Handshake signal to arbitrate JTAG/I ² C access	—
INT	1	In	System: External interrupt when low	—
LSSD_SCAN_ENABLE	1	In	Manufacturing test use only	4
KVPRBVDD	1	In	V _{DD} test point	6
KVPRBGND	1	In	GND test point	6
LSSD_STOP_ENABLE	1	In	Manufacturing test use only	4
LSSD_STOPC2_ENABLE	1	In	Manufacturing test use only	4
LSSD_STOPC2STAR_ENABLE	1	In	Manufacturing test use only	4
LSSDMODE	1	In	Manufacturing test use only	4
MCP)	1	In	System: Machine check interrupt	—
PLL_LOCK	1	Out	Indicates PLL has locked	_

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal processor operation.

2. For I²C or JTAG operation, must be pull down with a 10K resistor to GND. Refer to Section 3.9.3.

3. Bus ratios 8:1 and 16:1 are not supported for Elastic Input (EI) functionality.

4. These are test signals for factory use only and must be pulled down to GND for normal processor operation.

5. This signal should not be connected.

 These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.

7. BiDi = Bidirectional.

8. Using the 4:1 or 12:1 ratio with multiplier of 12 will limit the use of the PowerTune to (freq)/2.

9. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

Table 5-8. Input/Output Signal Descriptions (Continued)

Pin Name	Width	In/Out	System/Debug Function	Notes
PLL_MULT	1	In	Select PLL multiplication factor: 0 = multiply ref frequency by 12 1 = multiply ref frequency by 8	9
PLL_RANGE(1:0)	2	In	Select PLL frequency range 00 = 1 GHz to 1.4 GHz range 01 = 1.2 GHz to 1.8 GHz range 10 = 1.6 GHz to 3.0 GHz range 11 = Reserved	9
PLLTEST	1	In	Manufacturing test use only	4
PLLTESTOUT	1	Out	Measure PLL output (divide by 64)	—
PROCID(0:1)	3	In	System: Processor id maximum eight processors	_
PROCID(0:2)	3	In	System: Processor id maximum eight processors	_
PSRO_Enable	1	Out	Manufacturing test use only	5
PSRO0	1	Out	Manufacturing test use only	5
PSYNC	1	In	System: Phase Synchronization from North Bridge	—
PSYNC_OUT	1	Out	System: Phase synchronization signal for observation that processors are in sync.	_
PULSE_SEL(0:2)	2	In		_
QACK	1	In	System: Acknowledge of quiesce from system	_
QREQ	1	Out	System: Request from processor to quiescence system (nap mode)	-
RAMSTOP_ENABLE	1	In	Manufacturing test use only	4
RI	1	In	Dedicated Manufacturing	1
SPARE	1	In/Out		-
SPARE2	1	In/Out		-
SRESET	1	In	System: Soft reset	-
SRIN(0:1)	2	In	System: El Snoop response in	_

Notes:

- 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal processor operation.
- 2. For I²C or JTAG operation, must be pull down with a 10K resistor to GND. Refer to Section 3.9.3.
- 3. Bus ratios 8:1 and 16:1 are not supported for Elastic Input (EI) functionality.
- 4. These are test signals for factory use only and must be pulled down to GND for normal processor operation.
- 5. This signal should not be connected.
- These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.
- 7. BiDi = Bidirectional.
- 8. Using the 4:1 or 12:1 ratio with multiplier of 12 will limit the use of the PowerTune to (freq)/2.
- 9. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

System Design Information Page 52 of 59

Table 5-8. Input/Output Signal Descriptions (Continued)

Pin Name	Width	In/Out	System/Debug Function	Notes
SRIN(0:1)	2	In	System: El Inverse of Snoop response in	—
SROUT(0:1)	2	Out	System: El Snoop Response out	—
SROUT(0:1)	2	Out	System:El Inverse of Snoop Response out	—
SYNC_ENABLE	1	In	Manufacturing test use only	4
SYSCLK SYSCLK	2	In	System Reference clock (differential input)	_
TBEN	1	In	System: Time base enable	—
тск	1	In	JTAG: Test Clock which is separate from system clock. Controls all Test Access Port functions	2
TDI	1	In	JTAG: Serial input used to feed test data and Test Access Port instructions.	2
тдо	1	Out	JTAG: Serial output used to extract data from the chip under test control.	_
THERM_INT	1	In	System: External thermal interrupt when low	—
TMS	1	In	JTAG: Select used to control the operation of the JTAG state machine	—
TRIGGERIN	1	In	Initiate trace collection from outside	—
TRIGGEROUT	1	Out	Signal to indicate internal trace collection has begun.	_
TRST	1	In	JTAG: Asynchronous Reset for the JTAG state machine.	2

Notes:

1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal processor operation.

2. For I²C or JTAG operation, must be pull down with a 10K resistor to GND. Refer to Section 3.9.3.

3. Bus ratios 8:1 and 16:1 are not supported for Elastic Input (EI) functionality.

4. These are test signals for factory use only and must be pulled down to GND for normal processor operation.

5. This signal should not be connected.

 These pins may be used to measure on-chip voltage drop and noise. They should be connected to a backside probe point immediately behind the module. They should not be connected to GND and V_{DD} planes.

7. BiDi = Bidirectional.

8. Using the 4:1 or 12:1 ratio with multiplier of 12 will limit the use of the PowerTune to (freq)/2.

9. The PLL_MULT and PLL_RANGE(1:0) bits may be overwritten by JTAG commands and the BUS_CFG bits may be changed by SCOM commands during the POR (power on reset) sequence. Refer to the *POR Application Note* for more details

5.7 Thermal Management Information

5.7.1 Thermal Management pins

The PowerPC 970FX features an on-board temperature sensing diode, connected to pins AA1 (DIODENEG) and Y1 (DIODEPOS).

This diode is calibrated at 70°C with no power applied (VDD = 0V); a current of 100μ A is forced through the diode and the voltage drop is logged between 0.60V and 0.80V. The chip temperature can be determined by interpreting the voltage across the diode pins when a controlled 100μ A current is forced through the diode by an external source. Accuracy of this technique is application dependent and is likely to require some calibration to ensure best performance.

Other temperature sensors or monitoring hardware should also be implemented with the PowerPC 970FX and mounted as close to the PowerPC 970FX as practical. If the external temperature-sensing hardware determines that an unsafe operating temperature has been reached, the THERM_INT input should be asserted to initiate power management or shutdown of the system.

Note: The unsafe operating temperature setting is application dependent.

5.7.2 Reading Thermal Diode Calibration data via JTAG

In order to access the Thermal Diode Calibration data stored in each processor, a sequence of JTAG commands must be issued. By using JTAG commands, the desired data will appear serially on the 970FX TDO pin or can be read using I^2C .

This is a one-time only procedure. It is assumed the Thermal Diode Calibration data stored in each processor will be captured and stored in system ROM for subsequent use. This procedure is not meant to be run at every system startup; since reading out this calibration data leaves the processor in an unusable state, until it is restarted.

During the power-on reset (POR) sequence, the processor comes to a WAIT state to allow the service processor to scan the MODE ring facility (address modifier 0x00C08000, 0x00C04000, or 0x00804001). It is during this WAIT state that the thermal diode data can be scanned out. Scanning the MODE ring is not necessary.

Figure 5-3 provides a description of the 970FX Thermal Diode Implementation.

Figure 5-3. PowerPC 970FX Thermal Diode Implementation

5.7.3 Heatsink Attachment and Mounting Forces

Table 5-9 and Figure 5-4 describe the allowable forces for the PowerPC 970FX package. Heatsink design should not exceed these static or dynamic forces.

Table 5-9. Allowable Forces on the PowerPC 970FX Package

Call Out Numb er	Characteristic	Symbol	Maximum	Unit	Note	
1	Compressive force on chin	Static	F _C	22.24	Ν	
Compressive force on chip	Compressive force on chip	Dynamic	F _C	TBD	Ν	
2	Tensile force on chip	Dynamic	FT	17.6	Ν	
2	Compressive force on BCA hollo	Static	F _{BGA}	45.15	Ν	1
3 Compressive force on BGA balls		Dynamic	F _{BGA}	TBD	Ν	I
Note:						

1. The maximum force value for call-out item 3 must include the force value for call-out item 1. $(F_{BGA} + F_{C(Static)} < F_{BGA(Static)})$

Figure 5-4. Force Diagram for the PowerPC 970FX Package

1. The legend for this figure is provided by call out number in Table 5-9 on page 56.

5.8 Operational and Design Considerations

5.8.1 Power-On Reset Considerations

For additional information, see the PowerPC 970 RISC Microprocessor Power-On Reset Application Note

5.8.2 Debugging PowerPC 970FX Power-On and Reset Sequence

For additional information, see the PowerPC 970 RISC Microprocessor Power-On Reset Application Note.

5.8.3 I²C Addressing of PowerPC 970FX

The I²C address of PowerPC 970FX is specified by the binary value 0b1000ppp where ppp = the settings of the Processor ID bits PROCID(0:2). For example, if the PROCID bits are all set to 0 (pulled low), the address is 0b1000000. If the PROCID bits are set to 001, the address is 0b1000001, and so forth.

Datasheet PowerPC 970FX

Advance - IBM Confidential

Revision Log

Revision	Modification
June 20, 2003	Version 0.1 Initial advance release.
August 8, 2003	 Version 0.2 Updated name to 970FX, changed signal names to include overbar, editorial corrections.
September 12, 2003	Version 0.3Updated frequencies, voltage and power numbers and .heatsink mounting forces, PVR
October 31, 2003	 Version 0.4 Updated voltage and power numbers tables 3.2 and 3.5, frequency numbers tables 5.2, 5.3
March 26, 2004	 Version 0.5 Updated Table 3-1. Absolute Maximum Ratings, added tablenote 3 Updated Table 3-6. Clock AC Timing Specifications: spec relief on the minimum differential voltage (call out #5) from 400mV to 385mV change "midpoint voltage" to "differential crossing point voltage" added duty cycle spec added tablenote 7 Added Table 3-9. Input AC Timing Specifications for HRESET Updated Figure Figure 3-3. Asynchronous Input Timing, reference VM to OV_{DD} Table 3-11. Asynchronous Open Drain Output Signals, added note for reference of rise/fall time Updated Section 3.9.1 I2C Bus Timing Information, reference to VO_{DD} in 3rd paragraph Updated Section 3.9.1 I2C Bus Timing Information, reference to VO_{DD} in 3rd paragraph Updated Section 3.9.1 I2C Bus Timing Information, reference to VO_{DD} in 3rd paragraph Updated Section 3.9.1 I2C Bus Timing Information, reference to VO_{DD} in 3rd paragraph Updated Section 3.9.2 IEEE 1149.1 AC Timing Specifications, added note for some of the non-standard IEEE AC timing implementations of 970FX Figure Figure 4-1. PowerPC 970FX Microprocessor Mechanical Package (Side and Top View), revised notes, revised die dimensions including thickness Figure 4-3. PowerPC 970FX Ball Placement (Top View) and Figure 4-4. PowerPC 970FX Ball Placement (Bottom View), updated V5 and V23 Updated Table 3-4. Dirnout Listing for the CBGA Package, added tablenote 9 for GPULDBG states in 1 or 0, and updated PSRO_Enable = V5 and PSRO0 = V23 Table 5-5. Recommended Minimum Number of Decoupling Capacitors, updated group 1 minimum recommendations Table 5-7. PowerPC 970FX Pins for Manufacturing Test Only and Table 5-8. Input/Output Signal Descriptions, updated V23 (PSRO0) and V5 (PSRO_Enable) Section 5.7. Thermal Management Pins, updated (1)diode tested at 70C and (2)voltage drop is verified between 0.60V and 0.80V <l< td=""></l<>