OMNIPOTENT Music Playing Program Mk Ia 64-03-29, prs. ncores=4 dimension h(50) define feed n law i n jda fee termin define punbin jda pbw termin jmp dun cos, 0 dap six lac cos add (200000 dac sin jmp sin+3 sin, 0 dap six lac sin spa jmp si1 lio (opr si3, dio si4 ral 1s spa cma si0, dac sin mul sin dac s.i2 law 436 mul s.i2 add (12131 mul s.i2 sub (122533 mul s.i2 add (311037 mul sin scl 1s si4, xx six, jmp si1, cma lio .-1 jmp si3 sqr, 0 dap sqx law i 17. dac sq.c dzm sq.q dzm sq.m lac sqr spa jmp sqx rcl 1s jmp .+2 sq1, lac sq.a rcl 2s dac sq.a dio sq.i law 3 and sq.i add sq.m sub sq.q sub sq.q spq jmp sq2 sub (1 sal 2s dac sq.m law 1 sq3, add sq.q adm sq.q isp sq.c jmp sq1 lac sq.q sqx, jmp sq2, add sq.q add sq.q dac sq.m cla jmp sq3 xp, jsp rn jda cc jmp xp /error rar 6s dac p.p clf 1 pl, law 400 adm p.ph lio i p.p rcr 9s rcr 9s dpy-i lat adm p.pd dap p.p szf i 1 jmp pl jmp re cc, 0 dap ccx lac cc sza i jmp ccr sub (ncores sma jmp ccr idx ccx lac cc ccx, jmp ccr, lac (357421 jda txs law 7234 jda txs jmp ccx txs, 0 dap tsx law i 3 dac ts.v ts2, lac txs ral 6s dac txs sza i jmp ts1 rcl 9s rcl 9s tyo ts1, isp ts.v jmp ts2 tsx, jmp fee, 0 dap fex cli fe2, ppa isp fee jmp .-2 fex, jmp fe1, 0 dap fex lac fe1 dac fee jmp fe2 pbw, 0 dap pbx lio pbw ppb repeat 2 ril 6s ppb lac pbw adm p.oc lac pbw pbx, jmp xs, jsp rn dac .msf stf 6 r1, lio (77 tyo jmp r xu, clf 6 jmp r1 xcc, jsp rn /copy core jda cc jmp xcc rar 6s dac .cdp lac .odp dac .ndp cx1, lac i .cdp dac i .ndp idx .cdp adm m.ys idx .ndp sas .edp jmp cx1 jmp r1 xc, jsp rn jda cc jmp xc dac .n rar 6s dac .odp add (i dac .edp adm m.ys law h dap xcn xc2, lio (77 tyo lac (357034 jda txs xc3, jsp rnl jmp xcn /if number sad (63 jmp xcc /if c sad (51 jmp xcr /if r lio (75 tyo lio (21 sad (21 lio (20 tyo jmp xc3 xr1, rpb xcr, rpb spi i jmp xr1 law h dap xd xrr, rpb spi jmp gt dio .xr2 rpb dio .xr3 lac .xr2 sub .xr3 dac .xr2 /w.c. add .xr3 adm .xr3 /cksum xd0, rpb dio i xd xd, lac adm .xr3 idx xd isp .xr2 jmp xd0 rpb dio .xr2 lac .xr3 sas .xr2 hlt jmp xrr xcn, dac sza i jmp gt idx xcn lac (356134 jda txs jsp rn xct xcn idx xcn jmp xc2 r, clf 1 szf i 1 jmp .-1 re, tyi dio .ch lac .ch sad (30 jmp rdi /y sad (22 jmp xs /s sad (24 jmp xu /u sad (63 jmp xc /c sad (47 jmp xp /p sad (23 jmp xt /t sad (77 jmp r /c.r. cli tyo r00, adm m.ys jsp rch sas (77 jmp r00 jmp r rn, dap rnx rn0, dzm rn.m rn1, jsp rch sza i jmp rny sad (21 jmp rn0 sad (20 cla dac rn.n sub (12 sma jmp rn1 rn3, lac rn.m ral 2s add rn.m ral 1s add rn.n dac rn.m adm m.ys jmp rn1 rnl, dap rnx r10, dzm rn.m r11, jsp rch sad (21 jmp r10 sza i jmp rny sad (20 cla dac rn.n sub (12 sma jmp rxr lac rn.m ral 2s add rn.m ral 1s add rn.n dac rn.m jmp r11 rxr, idx rnx lac rn.n jmp rnx rch, dap rhx clf 1 szf i 1 jmp .-1 tyi dio .rhh lac .rhh rhx, jmp rny, lac rn.m rnx, jmp sh, dap shx law h dap gg dzm ss.q dzm .nhr gg, lac sza i jmp gg1 idx .nhr idx gg xct gg dac te.m mul te.m scr 1s rcr 9s rcr 9s adm ss.q idx gg jmp gg gg1, lac .ssq cli jda sqr dac .qsq adm m.ys lac (400 szf 6 lac .msf cli div .qsq hlt 17 dac .gsf shx, jmp gt, jsp sh lac .nhr cma dac nh.c lac .odp dac d.p dzm i d.p idx d.p sas .edp jmp .-3 w, dzm .inc dzm h.n fhh, idx h.n law 100 adm .inc fh, law h-2 dap fh1 fh0, idx fh1 idx fh1 fh1, lac sza i jmp fhh sas h.n jmp fh0 idx fh1 xct fh1 mul .gsf rcr 4s dio .sf idx fh1 go, dzm .s lac .odp dac d.p jmp is1 is, lac .inc adm .s is1, lac .s jda sin mul .sf adm i d.p idx d.p sas .edp jmp is isp .nhc jmp fhh jmp r1 xt, feed 15. xtc, jsp sh lac (jmp 7751 punbin feed 5 dzm p.oc law h dap po1 punbin lac nh.r ral 1s add (h+1 punbin po1, lac punbin sza i jmp po2 idx po1 xct po1 punbin idx po1 jmp po1 po2, lac p.oc punbin feed 10. lac (hlt punbin feed 150. jmp r1 define h1 n cla rcl 6s add (tab dap pp'n termin define h2 n lac i pp'n ral 1s adm .c'n termin define h3 n pp'n, lac adm .c'n dap p'n termin adm=360000 top=7700 bot=1700 dew=7400 define corr h2 1 h2 2 h2 3 h2 4 termin lz=. 3/ jmp lz lz/ eem cks ril 1s spi i jmp ds rrb rb, jmp rd, rpb-i rd1, dap rb corr repeat 8.,lac i opr ds, lac 0 lio 2 jmp i 1 rm, jsp rd spi jmp rp1 dio .cc1 /fa jsp rd dio .cc2 /la+1 lac .cc1 sub .cc2 dac .cc1 /-n add .cc2 adm .cc2 /cksum rr, jsp rd rr1, dio i rp rp, lac adm .cc2 idx rp sad (lac top jmp rp1 rx, isp .cc1 jmp rr jsp rd /cksm rx1, dio .cc1 lac .cc2 sas .cc1 hlt jmp rm rp1, law bot dap rp law 7777 and 1 sas (ddl jmp rp2 law x dap 1 law bot dap x rp2, jsp rd1 isp .cc1 jmp rr1 jmp rx1 x1, idx x x, lac /time sma jmp dun dac .n idx x lio i x h1 1 h1 2 h1 3 sw, idx x /or jmp sw1 sad (lac dew-1 rpb-i lio i x sad (lac top-1 jmp sw2 sw3, h1 4 mm, corr tpo, lat ral 1s adm .n repeat 2, lac i lac lio c.1 h3 1 h3 2 h3 3 h3 4 lac i p1 add i p2 add i p3 add i p4 dpy-i lat adm .n spa jmp pp1 jmp x1 p1, i print .pointers begin here. p2, and p3, and i p4, i sw2, law bot-1 dap x jmp sw3 sw1, law (0 dap pp4 lac i lac i jmp mm dun, clf 7 eem lsm lac (jmp r1 dac 7751 jmp r1 rdi, cbs esm law bot dap rp law rm 1 dap rb rpb-i ddl, jmp . tab, 0 0 40 42 44 46 50 53 55 60 63 66 71 74 100 104 110 114 121 125 133 140 146 154 162 171 200 210 220 230 241 253 265 300 313 327 344 362 400 417 437 460 503 526 552 600 626 657 710 743 1000 1036 1077 1141 1205 1253 1324 1377 1455 1535 1620 1707 2000 1 variab const, consta start dun